HCP Tuning Guide 1

Use Case Specific Tuning Suggestions

Date of Publish: 2018-11-15

P

Hortonworks

http://docs.hortonwor ks.com



http://docs.hortonworks.com

Contents

Use Case Specific TUNING SUQGQESLIONS.......coiviiieerieeeesereneeseeesiee e esseesseeenseesneas

Performance MONITOMNG TOOIS........cuieiiiiirieirieeet ettt b et b et b et b e et se b e seebeseebeseeseseenenreneas
LI 0] oo OO TSO VPSPPSR



HCP Tuning Guide Use Case Specific Tuning Suggestions

Use Case Specific Tuning Suggestions

The following discussion outlines a specific tuning exercise we went through for driving 1 Gbps of traffic through a
Metron cluster running with 4 Kafka brokers and 4 Storm Supervisors.

General machine specs:

e 10 GB network cards
e 256 GB memory

e 12disks

e 32cores

Performance Monitoring Tools

Before we get to tuning our cluster, it helps to describe what we might actually want to monitor as well as any
potential pain points.

Prior to switching over to the new Storm Kafka client, which leverages the new Kafka consumer API under the hood,
offsets were stored in ZooK eeper. While the broker hosts are still stored in ZooK eeper, thisis no longer true for the
offsets which are now stored in Kafka itself. Thisis a configurable option, and you may switch back to ZooK eeper if
you choose, but Metron is currently using the new defaults. With thisin mind, there are some useful tools that come
with Storm and Kafka that we can use to monitor our topologies.

Tooling
Y ou can use the Storm and Kafka tools to monitor your topologies.

Kafka

« Consumer group offset lag viewer

» ThereisaGUI tool to make creating, modifying, and generally managing your Kafkatopics a bit easier - see
kafka-manager

« Console consumer - useful for quickly verifying topic contents

Storm

For more information on the Storm user interface, see Reading and Understanding the Storm UI.

View Kafka Offset Lags Example
Y ou can use the Kafka consumer group offset lag viewer to monitor the delta cal cul ations between the current and
end offset for a partition.

Procedure

1. Set up some environment variables.

export BROKERLI ST your broker conma-delimated |ist of host:ports>
export ZOOKEEPER your zookeeper comma-delimated |ist of host:ports>
export KAFKA HOVE kafka hone dir>

export METRON _HOVE your netron home>

export HDP_HOVE your HDP home>

2. If you have Kerberos enabled, set up the security protocol.

$ cat /tnp/consunergroup.config
security. protocol =SASL_PLAI NTEXT



https://github.com/yahoo/kafka-manager
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained

HCP Tuning Guide

3. Enter the following command to display atable containing offsets for all partitions and consumers associated with
arunning topology's consumer group:

${ KAFKA_HOME} /bin/kafka-consumer-groups.sh \ --command-config=/tmp/consumergroup.config \ --describe
\ --group enrichments\ --bootstrap-server $BROKERLIST \ --new-consumer

The command displays the following table:

GROUP TOPI C PARTI TI ON CURRENT-

OFFSET LOG END- OFFSET LAG OMNER

enri chnents enri chnents 9 29746066
29746067 1 CONSUMEer - 2_/ XXX. XXX. XXX. XXX

enrichnments enrichnments 3 29754325
29754326 1 consumer - 1_/ XXX. XXX. XXX. XXX

enrichnments enrichnments 43 29754331
29754332 1 CONSUITEN - 6_/ XXX. XXX. XXX. XXX

Note: Output displays only when the topology is running because the consumer groups only exist while
B consumers in the spouts are up and running.

The LAG column lists the current delta cal culation between the current and end offset for the partition. The
column value indicates how close you are to keeping up with incoming data. It also indicates whether there are
any problems with specific consumers getting stuck.

4. To watch the offsets and lags change over time, add a watch command and set the refresh rate to 10 seconds:

watch -n 10 -d ${KAFKA HOVE}/ bi n/ kaf ka- consuner - gr oups. sh \
- - conmand- confi g=/t np/ consuner gr oup. config \
--describe \
--group enrichnents \
- - boot st rap-server $BROKERLI ST \
- - new- consumner

The watch command runs every 10 seconds and refreshes the screen with new information. The command also
highlights the differences from the current output and the last output screens.

Parser Tuning Example
Well be using the Bro sensor in this parser tuning example.

We started with a single partition for the inbound Kafka topics and eventually worked our way up to 48 partitions.
And we're using the following pending value, as shown below. The default is 'null' which would result in no limit.

storm-bro.config

'l'i;)pol ogy. max. spout . pendi ng" : 2000
}

And the following default spout settings. Again, this can be omitted entirely since we are using the defaults.

spout-bro.config

"spout . pol | Ti meout Ms" : 200,
"spout . maxUncommi tt edCf f sets" : 10000000,
"spout . of f set Commi t Peri odMs" : 30000

Use Case Specific Tuning Suggestions



HCP Tuning Guide Use Case Specific Tuning Suggestions

And we ran our Bro parser topology with the following options. We did not need to fully match the number of Kafka
partitions with our parallelism in this case, though you could certainly do so if necessary. Notice that we only needed
1 worker.

/usr/ metron/ 0. 4.0/ bin/start_parser_topol ogy. sh -k $BROKERLI ST -z $ZOOKEEPER
-S bro -ksp SASL_PLAI NTEXT

-ot enrichments

-e ~metron/.storm stormbro.config \

-esc ~/.stornispout-bro.config \

-sp 24\

-snt 24\

-nw 1\

-pnt 24\

-pp 24\

From the usage docs, here are the options we've used.

-e,--extra_topol ogy_options (JSON FI LE) Extra options in the form
of a JSON file with a map
for content.

-esc, --extra_kaf ka_spout _config (JSON _FI LE) Extra spout config options
in the formof a JSON file
with a map for content.
Possi bl e keys are:
retryDel ayMaxMs, retryDel ay

Multiplier,retrylnitial Del ayMs, st at eUpdat el nt erval Ms,
buf f er Si zeByt es, f et chMaxWai t, f et chSi zeByt es, maxOf f swt

Behi nd, netri csTi neBucket Si zel nSecs, socket Ti neout Ms

-Sp, --spout _p (SPOUT_PARALLELI SM HI NT) Spout Parall elism Hint
-snt, --spout _num t asks ( NUM _TASKS) Spout Num Tasks

- nw, - - num wor ker s ( NUM_WORKERS) Nunmber of Workers

-pnt, --parser_num tasks (NUM TASKS) Par ser Num Tasks

-pp, - - parser _p (PARALLELI SM HI NT) Parser Parallelism Hint

Enrichment Tuning Example
We landed on the same number of partitions for enrichment and indexing as we did for bro - 48.

For configuring Storm, there isaflux file and properties file that we modified. Here are the settings we changed for
Bro in Flux. +Note that the main Metron-specific option we've changed to accommodate the desired rate of data
throughput is max cache sizein the join bolts.

More information on Flux can be found here - https://storm.apache.org/releases/1.1.0/flux.html
general storm settings

t opol ogy. workers: 8
t opol ogy. acker . executors: 48
t opol ogy. max. spout . pendi ng: 2000




HCP Tuning Guide

Use Case Specific Tuning Suggestions

Spout and Bolt Settings

kaf kaSpout
paral |l el i sm=48
sessi on. ti meout. ns=29999
enabl e. aut 0. commi t =f al se
set Pol | Ti mreout Ms=200
set MaxUncommi tt edOF f set s=10000000
set O f set Conmi t Peri odMs=30000
enri chnent SplitBolt
paral |l el i sm=4
enri chment Joi nBol t
paral | el i sm=8
wi t hMaxCacheSi ze=200000
wi t hMaxTi neRet ai n=10
threatlntel SplitBolt
paral |l el i sm=4
t hreat | nt el Joi nBol t
paral l el i sn=4
wi t hMaxCacheSi ze=200000
wi t hMaxTi neRet ai n=10
out put Bol t
paral |l el i sm=48

Indexing (HDFS) Tuning

There are 48 partitions set for the indexing partition, per the previous enrichment exercise.

These are the batch size settings for the Bro index.

cat ${ METRON_HOVE}/ confi g/ zookeeper/i ndexi ng/ bro. j son

{
"hdf s" : {
"index": "bro",
"bat chSi ze": 50,
"enabl ed" : true
oo
}

And here are the settings we used for the indexing topology

General storm settings

t opol ogy. wor kers: 4
t opol ogy. acker . executors: 24
t opol ogy. max. spout . pendi ng: 2000

Spout and Bolt Settings

hdf sSyncPol i cy

or g. apache. storm hdf s. bol t. sync. Count SyncPol i cy

constructor arg=100000
hdf sRot at i onPol i cy

bolt. hdfs.rotation. policy. units=DAYS

bolt. hdfs.rotation. policy.count=1
kaf kaSpout
parallelism 24




HCP Tuning Guide

Use Case Specific Tuning Suggestions

sessi on. ti meout. n5=29999

enabl e. aut 0. conmi t =f al se

set Pol | Ti meout Ms=200

set MaxUncommi tt edOf f set s=10000000
set O f set Conm t Peri odMs=30000

hdf sl ndexi ngBol t

parallelism 24

PCAP Tuning Example
PCAP is aspecialized topology that is a Spout-only topology. Both Kafka topic consumption and HDFS writing is
done within a spout to avoid the additional network hop required if using an additional bolt.

General Storm topology properties

t opol ogy. wor ker s=16
t opol ogy. ackers. executors: 0

__Spout and Bolt properties

kaf kaSpout

parallelism 128

pol | . ti neout. ns=100

of fset.commit. peri od. ms=30000
sessi on. ti neout . ms=39000

max. unconmi t t ed. of f set s=200000000
max. pol | .interval.nms=10

max. pol | . recor ds=200000

recei ve. buf f er. byt es=431072

max. partition. fetch. bytes=10000000
enabl e. aut 0. commi t =f al se

set MaxUnconmi t t edCf f set s=20000000
set O f set Commi t Peri odMs=30000

writerConfig

| ssues

wi t hNunmPacket s=1265625

wi t hMaxTi neMs=0

wi t hRepl i cat i onFact or =1

wi t hSyncEver y=80000

wi t hHDFSConf i g
io.file.buffer.size=1000000
df s. bl ocksi ze=1073741824

Y ou can run into issues when you tune your system.

__Error__

or g. apache. kaf ka. cl i ents. consuner. Conmi t Fai | edExcepti on:

Conmmit cannot be

conmpl eted since the group has already rebal anced and assi gned

the partitions to another nenber.

This nmeans that the tine

bet ween subsequent calls to poll () was |onger than the configured
session. tineout. s,
which typically inplies that the poll

| oop is spending too nmuch tine nessage
processing. You can address this either by increasing the

session timeout or by reducing the nmaxi mum si ze of batches returned in
poll () with max.poll.records

Suggestions




HCP Tuning Guide Use Case Specific Tuning Suggestions

Thisimplies that the spout hasn't been given enough time between polls before committing the offsets. In other
words, the amount of time taken to process the messages is greater than the timeout window. In order to fix this, you
can improve message throughput by modifying the options outlined above, increasing the poll timeout, or both.




	Contents
	Use Case Specific Tuning Suggestions
	Performance Monitoring Tools
	Tooling
	View Kafka Offset Lags Example
	Parser Tuning Example
	Enrichment Tuning Example
	Indexing (HDFS) Tuning
	PCAP Tuning Example


	Issues


