HCP Creating Models 1

Creating Models

Date of Publish: 2018-12-21

P

Hortonworks

https://docs.hor tonwor ks.com/

https://docs.hortonworks.com/

Contents

Creating MOEIS.........ooe e et sre e ere e 3
INStall the YARN APPIICEIION.ciiitiiiieieierete sttt sttt bbbt b b
DEPIOY MOUEIS.....ceiectecte ettt e b e b e bt e et beae bbbt b et e b e e e b e st b se e b e e bt e R bt nne
Add the MaaS Stellar Function to the Sensor ConfiguIation...........coceerrerrerne s
Start Topologies and SENAING DELA..........ccoeiriiriiirieerere ettt se bbb e
MOITY @ IMOGEL. ...t b bbbt b et b et b et b et b e et e be e

HCP Creating Models Creating Models

Creating Models

One of the enhancements to cybersecurity most frequently requested is the ability to augment the threat intelligence
and enrichment processes with insights derived from machine learning and statistical models. While valuable, this
model management infrastructure has significant challenges.

« Applying the model management infrastructure might be both computationally and resource intensive and could
require load balancing and multiple versions of models.
* Modelsrequire frequent training or updating to react to growing threats and new patterns that emerge.

* Models should be language and environment agnostic as much as possible. So, models should include small-data
and big-data libraries and languages.

To support these regquirements, Hortonworks Cybersecurity Platform (HCP) powered by Metron provides the
following components:

A YARN application that listens for model deployment requests and upon execution, registers their endpointsin
ZooK eeper.

e A command line deployment client that |ocalizes the model payload onto HDFS and submits a model request.

« A Javaclient that interacts with ZooK eeper and receives updates about model state changes (for example, new
deployments and removals).

« A series of Stellar functions for interacting with models deployed by the Model as a Service infrastructure.

Install the YARN Application

The YARN application listens for model deployment requests. Models are exposed as REST microservices that
expose your model application as an endpoint. The Y ARN application takes the submitted request that specifies
the model payload that includes a shell script and other model collateral which will start the microservice. Upon
execution of the shell script that starts the model, the Y ARN application registers the endpointsin ZooK eeper.

About thistask

If you are using or depending upon an API library in your model such as Flask and Jinja2, the library must be
installed on every data node. Thisis because the model is executed by a shell script which must be able to run
successfully on every node.

In order to know on which port that the REST service islistening, the model must create afile in the current working
directory which indicates the URL for the model. Because you might have more than one copy of the model, it isa
good ideato find an open port and bind to that. An example of how to do that in Python is as follows:

sock = socket. socket (socket. AF_| NET, socket.SOCK STREAM
sock. bi nd(('l ocal host', 0))
port = sock. getsockname()[1]
sock. cl ose()
with open("endpoint.dat", "w') as text file:
text file.wite("{\"url\" : \"http://0.0.0.0:%d\"}" % port)

Procedure

1. Asroot, log into the host from which you run Metron.
2. Createadirectory called "sample" in the root user's home directory where you will put avery simple model.

3. Now, you can create a simple shell script that will expose a REST endpoint called "echo” that will echo back
the arguments passed to it. Create afile in the "sample" directory named "echo.sh", and copy the following
information into the file.

HCP Creating Models Creating Models

Note: Inthissimple REST service, we are always binding to port 1500. In areal REST service which
would expose your model, we would be more intelligent about the choice of the port.

#!/ bi n/ bash
rm-f out
nkfifo out
trap "rm-f out" EXIT
echo "{ \"url\" : \"http://local host:1500\", \"functions\" : { \"apply\"
\"echo\" } }" > endpoint. dat
whil e true
do
cat out | nc -1 0.0.0.0 1500 > >(# parse the netcat output, to build
the answer redirected to the pipe "out".

export REQUEST=

while read |ine

do

i ne=$(echo "$line" | tr -d '[\r\n]")

if echo "$line" | grep -qE ""CET /' # if line starts with "GET /"

t hen

REQUEST=$(echo "$line" | cut -d ' ' -f2) # extract the request
elif ["x$line" = x] # enpty line / end of request
t hen

HTTP_200="HTTP/ 1.1 200 CK"
HTTP_LOCATI ON=" Locat i on: "
HTTP_404="HTTP/ 1.1 404 Not Found"
call a script here
Note: REQUEST is exported, so the script can parse it (to answer
200/ 403/ 404 status code + content)
if echo $REQUEST | grep -qE '~/ echo/'
t hen
printf "%\n% 9%\n\n%\n" "$HTTP_200" "$HTTP_LOCATI ON'
$REQUEST ${ REQUEST#"/echo/"} > out
el se
printf "9%\n% 9%\n\n%\n" "$HTTP_404" "$HTTP_LOCATI ON'
$REQUEST " Resource $REQUEST NOT FOUND! " > out
fi
fi
done

done
4. Change directoriesto SMETRON_HOME.
cd $METRON_HOVE
5. Start the MaaS servicein bin/maas_service.sh -zq nodel:2181.

bash bi n/ maas_servi ce. sh -zq nodel: 2181

where
-C, --create Flag to indicate whether to create the domain specified
with -domain.
-d,--domain <arg> ID of the time line domain where the time line entities
will be put
-€,--shell_env <arg> Environment for shell script. Specified as

env_key=env_val pairs.

HCP Creating Models Creating Models

-h,--help The help screen

-j,~jar <arg> Jar file containing the application master

-|,--log4j <arg> The log4j propertiesfile to load

-ma,--modify_acls <arg> Users and groups that allowed to modify the time line

entitiesin the given domain

-ma,--master_vcores <arg> Amount of virtual cores to be requested to run the
application master

-mm,--master_memory Amount of memory in MB to be requested to run the
application master

-nle,--node_label_expression <arg> Node label expression to determine the nodes where
all the containers of this application will be allocated,
"" means containers can be allocated anywhere, if you
don't specify the option, default node_label_expression
of queue will be used.

-g,--queue <arg> RM Queue in which this application is to be submitted
-t,--timeout <arg> Application timeout in milliseconds
-va,--view_acls <arg> Users and groups that allowed to view the time line

entitiesin the given domain
-2q,--zK_quorum <arg> ZooK eeper Quorum

-2r,--zk_root <arg> ZooK eeper Root

6. Test the configuration to ensure that the MaaS service is running correctly.
For example, you would enter the following:
a) Start one instance of a sample echo service (named 'sample’ version '1.0") in a container of 500m:

bi n/ mas_depl oy.sh -l np ~/sanple -hnp /user/root/naas/sanple -m 500 -no
ADD -n sanple -ni 1 -v 1.0 -zq nodel: 2181

b) Wait a couple seconds and then ensure that the service started by running the following command:
curl -i http://1ocal host: 1500/ echo/ f oobar

Y ou should see aresponse foobar.
¢) List the active models and ensure that you see the sample model in the output.

bi n/ maas_depl oy.sh -no LI ST -n sanple -zq nodel: 2181

d) Remove oneinstance of the sample model.

bi n/ maas_depl oy. sh -nmo REMOVE -n sanple -ni 1 -v 1.0 -zq nodel: 2181

€) After acouple seconds ensure that you cannot access the sample model any longer:

curl -i http://Iocal host: 1500/ echo/ f oobar

HCP Creating Models Creating Models

Deploy Models

After creating amodel, you need to deploy the model onto HDFS and submit arequest for one or more instances of
the model.

Procedure

1. Create asimple sample python model.

Let's say that you have amodel, exposed as a REST microservice called "mock_dga" that takes as an input
argument "host" which represents an internet domain name and returns afield called "is_malicious" whichis
either "malicious’ if the domain is thought to be malicious or "legit" if the domain is not thought to be malicious.
Thefollowing is avery simple example service that thinks that the only legitimate domains are "yahoo.com™ and
"amazon.com":

fromflask inmport Flask
fromflask inmport request,jsonify
i mport socket

app = Flask(__nane_)

@pp.route("/apply", nmethods=['GET'])
def predict():
h = request. args. get(' host")

r

if h == "'yahoo.com or h == 'anmazon.com :
r['is_ malicious'] = '"legit'

el se:
r['is_malicious'] = 'malicious'

return jsonify(r)

if _ nane =" _ min

sock = socket. socket (socket. AF_| NET, socket.SOCK STREAM

sock. bind(('local host', 0))

port = sock. getsockname()[1]

sock. cl ose()

with open("endpoint.dat", "w') as text file:

text file.wite("{\"url\" : \"http://0.0.0.0:%\"}" %

port)
app. run(t hreaded=True, host="0.0.0.0", port=port)

2. Storethis python model in adirectory called /root/mock_dga as dga.py and an accompanying shell script called
rest.sh which starts the model:

#!'/ bi n/ bash
pyt hon dga. py

3. If you have not aready done so, start MaaS:

$METRON_HOME/ bi n/ maas_servi ce. sh -zq nodel: 2181

4, Start one or more instances of the model, calling it "dga" and assigning an amount of memory to each instance:
Because you have placed the model in the /root/mock_dga directory, enter the following:

$METRON_HOVE/ bi n/ maas_depl oy. sh -zq nodel: 2181 -1 np /root/nock_dga -hnp /
user/root/nodels -nmo ADD -m 512 -n dga -v 1.0 -ni 1

where

-h,--h A list of functions for maas_deploy.sh

HCP Creating Models Creating Models

-hmp, --hdfs_model_path <arg> Model path (HDFS)

-Imp, --local_model_path <arg> Model path (local)

-m, --memory <arg> Memory for container

-mo, --mode <arg> ADD, LIST, or REMOVE
-n, --name <arg> Model name

-ni, --num_instances <arg> Number of mode! instances
-V, --version <arg> Model version

-zq, --zk_gquorum <arg> ZooK egper quorum

-zr, --zK_root <arg> ZooK eeper root

Add the MaaS Stellar Function to the Sensor Configuration

After deploying amodel, you need to add the Stellar function for MaaS to the configuration file for the sensor on
which you want to run the model.

Procedure

1. Edit the sensor configuration at SMETRON_HOM E/config/zookeeper/parsers/$PARSER.json to include a new
FieldTransformation to indicate athreat alert based on the model.

{

"parser Cl assNane": "org.apache. netron. parsers. G okPar ser",
"sensor Topi c": "squid",
"par ser Config":

"grokPat h": "/patterns/squid",

"patternLabel": "SQU D DELI M TED",

"timestanpField': "tinmestanmp"

"fieldTransformations” : [
{
"transformation" : "STELLAR'
,“output™ @ ["full _hostnane", "domai n_wi t hout subdonai ns",
"is_malicious", "is_ alert"]
,"config" : {
"full _hostnane" : "URL_TO HOST(url)"

, "domai n_wi t hout subdomai ns" :
" DOVAI N_REMOVE_SUBDOMAI NS(f ul | _host nane) "
,"is_malicious" : "MAP_GET('is_nmalicious',
MAAS MODEL_APPLY(MAAS_GET_ENDPO NT('dga'), {'host'
domai n_wi t hout _subdonai ns}))"
,"is_alert” : "if is_malicious == '"malicious' then "true' else null"”

}

where

HCP Creating Models Creating Models

transformation Enter 'STELLAR' to indicate thisis a Stellar field
transformation.

output The information the transformation will
output. Thistypically contains full_host,
domain_without_subdomains, is_malicious, and

is aert.
full_hostname The domain component of the "url" field.
domain_without_subdomains The domain of the "url" field without subdomains.
is_malicious The output of the "mock_dga" model as deployed

earlier. In this case, it will be "malicious’ or "legit",
because those are the values that our model returns.

is alert Set to "true" if and only if the mode! indicates the
hostname is malicious.

2. Edit the sensor enrichment configuration at M ETRON_HOM E/config/zookeeper/parsers/PARSER.json to adjust
the threat triage level of risk based on the model output:

{
"index": "$PARSER_NAME",
"bat chSi ze": 1,
"enrichment" : {
"fieldvap": {}
}1
“"threatintel" : {
"fieldvap":{},
"triageConfig" : {
"riskLevel Rul es" : {
"is_malicious == "malicious'" : 100
}1
"aggregator" : "MAX"
}
}

3. Upload the new configurations to SMETRON_HOME/bin/zk_load_configs.sh --mode PUSH -i
SMETRON_HOME/config/zookeeper -z nodel:2181.

4. If thisisanew sensor and it does not have a Kafka topic associated with it, then we must create a new sensor topic
in Kafka.

/usr/ hdp/ current/ kaf ka- br oker/ bi n/ kaf ka-t opi cs. sh --zookeeper nodel: 2181
--create --topic $PARSER NAME --partitions 1 --replication-factor 1

Start Topologies and Sending Data
Thefina step in setting up Model as a Service, isto start the topologies and send some data to test the model.

HCP Creating Models Creating Models

Procedure

1. Start the sensor upon which the Model as a Service will run:

$METRON_HOVE/ bi n/ start _par ser _t opol ogy. sh -k nodel: 6667 -z nodel: 2181 -s
$PARSER NANME

2. Generate some legitimate data and some malicious data on the sensor.
For example:

#lLegi ti mat e exanpl e:

squi dclient http://yahoo.com
#Mal i ci ous exanpl e:
squidclient http://cnn.com

3. Send the datato Kafka:

cat /var/log/squid/access.log | /usr/hdp/current/kafka-broker/bin/kaf ka-
consol e- producer. sh --broker-1list nodel: 6667 --topic squid

4. Browsethe datain Elasticsearch at http://nodel:9100/ plugin/head to verify that it contains the appropriate
documents.

For the current example, you would see the following:

¢ Onefrom yahoo.com which does not have is_alert set and does haveis_malicious set to legit.
e Onefrom cnn.com which does haveis_alert set to true, is_malicious set to malicious, and threat:triage:level set
to 100.

Modify a M odel

Y ou can remove a number of instances of the model by executing maax_deploy.sh with remove as the -mo argument.

Procedure

1. For example, the following removes one instance of the dga model, version 1.0:

$METRON_HOVE/ bi n/ maas_depl oy. sh -zq nodel: 2181 -nmo REMOVE -m 512 -n dga -v
1.0 -ni 1

2. If you need to modify a model, you need to modify the model itself and deploy a new version, then remove the old
version instances afterward.

	Contents
	Creating Models
	Install the YARN Application
	Deploy Models
	Add the MaaS Stellar Function to the Sensor Configuration
	Start Topologies and Sending Data
	Modify a Model

