
HCP Understanding Parsers 1

Understanding Parsing
Date of Publish: 2019-3-18

https://docs.hortonworks.com

https://docs.hortonworks.com

Contents

Understanding Parsers... 3
Java Parsers...3
General Purpose Parsers... 3
Parser Configuration... 5

Example: fieldTransformation Configuration.. 5

HCP Understanding Parsers Understanding Parsers

Understanding Parsers

Parsers are pluggable components that transform raw data (textual or raw bytes) into JSON messages suitable for
downstream enrichment and indexing.

Data flows through the parser bolt via Apache Kafka and into the enrichments topology in Apache Storm. Errors are
collected with the context of the error (for example, stacktrace) and the original message causing the error and are
sent to an error queue. Invalid messages as determined by global validation functions are also treated as errors and
sent to an error queue.

For example, for a Squid parser, NiFi ingests the contents of the Squid proxy access log, the parser transforms the
contents of the log, converts it to json, and inserts it into a Squid Kafka topic, which is then passed on to Metron.

HCP supports two types of parsers: general purpose and Java.

Java Parsers
The Java parser is written in Java and conforms with the MessageParser interface. This kind of parser is optimized for
speed and performance and is built for use with higher-velocity topologies.

Java parsers are not easily modifiable; to make changes to them, you must recompile the entire topology.

Currently, the Java adapters included with HCP are as follows:

• org.apache.metron.parsers.ise.BasicIseParser
• org.apache.metron.parsers.bro.BasicBroParser
• org.apache.metron.parsers.sourcefire.BasicSourcefireParser
• org.apache.metron.parsers.lancope.BasicLancopeParser

General Purpose Parsers
The general-purpose parser is primarily designed for lower-velocity topologies or for quickly setting up a temporary
parser for a new telemetry.

3

HCP Understanding Parsers Understanding Parsers

General purpose parsers are defined using a config file, and you need not recompile the topology to change them.
HCP supports two general purpose parsers: Grok and CSV.

Grok parser

The Grok parser class name (parserClassName) is org.apache.metron,parsers.GrokParser.

Grok has the following entries and predefined patterns for parserConfig:

grokPath The path in HDFS (or in the Jar) to the grok statement.
By default attempts to load from HDFS, then falls back
to the classpath, and finally throws an exception if unable
to load a pattern.

patternLabel The pattern label to use from the Grok statement.

timestampField The field to use for timestamp. If your data does not
have a field exactly named "timestamp" this field is
required, otherwise the record will not pass validation. If
the timestampField is included in the list of timeFields, it
will first be parsed using the provided dateFormat.

timeFields A list of fields to be treated as time.

dateFormat The date format to use to parse the time fields. Default is
"yyyy-MM-dd HH:mm:ss.S z".

timezone The timezone to use. UTC is the default.

CSV Parser

The CSV parser class name (parserClassName) is org.apache.metron.parsers.csv.CSVParser

CSV has the following entries and predefined patterns for parserConfig:

timestampFormat The date format of the timestamp to use. If unspecified,
the parser assumes the timestamp is starts at UNIX
epoch.

columns A map of column names you wish to extract from
the CSV to their offsets. For example, { 'name' :
1,'profession' : 3} would be a column map for extracting
the 2nd and 4th columns from a CSV.

separator The column separator. The default value is ",".

JSON Map Parser

The JSON parser class name (parserClassName) is org.apache.metron.parsers.csv.JSONMapParser

JSON has the following entries and predefined patterns for parserConfig:

mapStrategy A strategy to indicate how to handle multi-dimensional
Maps. This is one of:

DROP Drop fields which contain
maps

UNFOLD Unfold inner maps.
So { "foo" : { "bar" :

4

HCP Understanding Parsers Understanding Parsers

1} } would turn into
{"foo.bar" : 1}

ALLOW Allow multidimensional
maps

ERROR Throw an error when a
multidimensional map is
encountered

timestamp This field is expected to exist and, if it does not, then
current time is inserted.

jsonQuery If this JSON query string is present, the result of the
query will be a list of messages. This is useful if you
have a JSON document that contains a list or array of
messages embedded in it, and you do not have another
means of splitting the message.

Parser Configuration
The configuration for the various parser topologies is defined by JSON documents stored in ZooKeeper.

The JSON document consists of the following attributes:

parserClassName The fully qualified class name for the parser to be used.

sensorTopic The Kafka topic to send the parsed messages to.

parserConfig A JSON Map representing the parser implementation
specific configuration.

fieldTransformations An array of complex objects representing the
transformations to be done on the message generated
from the parser before writing out to the Kafka topic.

The fieldTransformations is a complex object which
defines a transformation that can be done to a message.
This transformation can perform the following:

• Modify existing fields to a message
• Add new fields given the values of existing fields of a

message
• Remove existing fields of a message

Example: fieldTransformation Configuration
The fieldTransformation is a complex object which defines a transformation that can be done to a message.

In this example, the host name is extracted from the URL by way of the URL_TO_HOST function. Domain names
are removed by using DOMAIN_REMOVE_SUBDOMAINS, thereby creating two new fields (full_hostname and
domain_without_subdomains) and adding them to each message.

Configuration File with Transformation Information

5

HCP Understanding Parsers Understanding Parsers

The format of a fieldTransformation is as follows:

input An array of fields or a single field representing the input.
This is optional; if unspecified, then the whole message
is passed as input.

output The outputs to produce from the transformation. If
unspecified, it is assumed to be the same as inputs.

transformation The fully qualified class name of the transformation
to be used. This is either a class which implements
FieldTransformation or a member of the
FieldTransformations enum.

config A String to Object map of transformation specific
configuration.

HCP currently implements the following fieldTransformations options:

REMOVE This transformation removes the specified input fields. If
you want a conditional removal, you can pass a Metron
Query Language statement to define the conditions under
which you want to remove the fields.

The following example removes field1 unconditionally:

{
...
 "fieldTransformations" : [
 {
 "input" : "field1"
 , "transformation" :
 "REMOVE"
 }
]

6

HCP Understanding Parsers Understanding Parsers

}

The following example removes field1 whenever field2
exists and has a corresponding value equal to 'foo':

{
...
 "fieldTransformations" : [
 {
 "input" : "field1"
 , "transformation" :
 "REMOVE"
 , "config" : {
 "condition" :
 "exists(field2) and field2 ==
 'foo'"
 }
 }
]
}

IP_PROTOCOL This transformation maps IANA protocol numbers to
consistent string representations.

The following example maps the protocol field to a
textual representation of the protocol:

{
...
 "fieldTransformations" : [
 {
 "input" : "protocol"
 , "transformation" :
 "IP_PROTOCOL"
 }
]
}

STELLAR

lo
This transformation executes a set of transformations
expressed as Stellar Language statements.

The following example adds three new fields to a
message:

utc_timestamp The UNIX epoch
timestamp based on the
timestamp field, a dc field
which is the data center the
message comes from and
a dc2tz map mapping data
centers to timezones.

url_host The host associated with
the url in the url field.

url_protocol The protocol associated
with the url in the url field.

{

7

HCP Understanding Parsers Understanding Parsers

...
 "fieldTransformations" : [
 {
 "transformation" :
 "STELLAR"
 ,"output" :
 ["utc_timestamp", "url_host",
 "url_protocol"]
 ,"config" : {
 "utc_timestamp" :
 "TO_EPOCH_TIMESTAMP(timestamp,
 'yyyy-MM-dd
HH:mm:ss', MAP_GET(dc, dc2tz,
 'UTC'))"
 ,"url_host" :
 "URL_TO_HOST(url)"
 ,"url_protocol" :
 "URL_TO_PROTOCOL(url)"
 }
 }
]
 ,"parserConfig" : {
 "dc2tz" : {
 "nyc" : "EST"
 ,"la" : "PST"
 ,"london" : "UTC"
 }
 }
}

Note that the dc2tz map is in the parser config, so it is
accessible in the functions.

8

	Contents
	Understanding Parsers
	Java Parsers
	General Purpose Parsers
	Parser Configuration
	Example: fieldTransformation Configuration

