HCP Tuning Guide 1

Tuning Topologies
Date of Publish: 2019-04-09

P

Hortonworks

https://docs.hortonwor ks.com

https://docs.hortonworks.com

Contents

Performance TUNING OVEN VIEW........ccueiieeiee e eseeseesee e esiee e ssesseeesseesnseenseeens 3
TUNING @ P S ... et e s be e e s sbr e e s s narae e aa 3
TuNE Parser KafKa Partitions............couvreereirrmereininsieee s 3
SEOIMM ParSEr PArAMELENS........c.oiveiiteiireieerese st sttt st re et r e e R s s se s e ae e e e s r e nr et re e ne 4
TUNE Parser Core SEOMMM SEHINGS.......coveieieirireeesesestes e seesaessesaeseeseesesses e stessesaestestesaessessessesenssessesssssesessensensens 5
Tune Additional Parser SEOrM SELINGS......ceiiieierieieeirere e st e e e e et re s sresteseesaeeenseneeneenennes 6
Tuning an Enrichment Topology........ccueiriiiiie e 7
Test Enrichment TOPOIOGY SEELINGS.......uerueeeeeieieieeere sttt sttt et ae bbb b e beseesbebe e e e eneeneeneene 7
Tune Enrichment KafKa Partitions.............ovoiiiiii e 8
StOrm ENFiChMENt ParaimELers.........ccoo ettt r et e 8
Tune Enrichment Core StOrMM SEHINGS......c.coeririeieere et sb e s s b bt se e e e e e e 11
Tune Additional Enrichment SEOrm SELINGS........oeieieeriirieree et b e sen 13
Modifying Enrichment Properties Using FIuX (AdvanCed)...........cooeeiiriinneresese e 14
Tuning a Batch Indexing Topology........cccuieierreiieneeee e 15
Test Batch Indexing TOPO0IOgY SEHINGS.........cviiiriiiriiiriertee et a e 15
Tune Batch Indexing KafKa Partitions.............coioiiiiiiineieseese s 16
S (0 T 10 Lo o= T = £ SRS 16
Tune Batch Indexing Core SOrM SEHINGS.........oireirieirieirierieri et eens 16
Tune Additional Batch INdexing SLOrM SELLINGS........coeereririeererresesie e 18
Modifying Index Parameters Using FIUX (AQVANCE).........ooeiriiiriiiriiriineeiee et 19
Tuning a Random Access Indexing Topology.......ccccveveeiieeiiescie e 20
Test Random Access Indexing Topology SEiNGS.......coevereeririeeeeeeerese e s sesre e seesee e saeseeseeee e eseesessessesnens 20
Tune Random Access Indexing Kafka Partitions...........ccoccveieieieceniescesesese st se e e s 20
TUNE BUIK MESSAGE WIITING.ueeveeiirieieietesesteste e steseeaee e e eseese s e sseste s e saestesteseesaensense e enseseeseeseesensesanssenteseessensen 20
Tune Random Access Indexing Elasticsearch TEMPIAES........ccevverveieieeiecerecese e sneas 21
Tune Random Access Indexing Core StOrM SEiNGS.......coveveerereresieseseseseseeseeesseeseeese s sresresresresseseeseenees 24

HCP Tuning Guide Performance Tuning Overview

Performance Tuning Overview

Y ou can use these very high level steps to tune your HCP topologies. For more detailed performance tuning
information, see the instructions for tuning a parser, enrichment topology, and indexing topology.

Procedure

1

Start the tuning process with a single worker.
After tuning the bolts within a single worker, scale out with additional worker processes.
Initially set the thread pool sizeto 1.

Increase this value slowly only after tuning the other parameters first. Consider that each worker hasits own
thread pool and the total size of this thread pool should be far less than the total number of cores available in the
cluster.

Initially set each bolt parallelism hint to the number of partitions on the input Kafka topic.
Monitor bolt capacity and increase the parallelism hint for any bolt whose capacity is close to or exceeds 1.

If the topology is not able to keep-up with agiven input, then increasing the parallelism is the primary meansto
scale up.

Parallelism units can be used for determining how to distribute processing tasks across the topology.
The sum of parallelism can be close to, but should not far exceed this value.

(nunber of worker nodes in cluster * nunber cores per worker node) -
(nunber of acker tasks)
The throughput that the topology is able to sustain should be relatively consistent.
If the throughput fluctuates greatly, increase back pressure using topology.max.spout.pending.
When you restart the topologies, ensure that the Kafka offset strategy is set to LATEST.

Tuning a Par ser

When tuning Metron, it is best to start with Parsers before moving on to Enrichments and Indexing topologies. A new
parser should be tuned to efficiently handle the estimated throughput.

Tune Parser Kafka Partitions

When you tune a new parser, the first variable that you should determine is the minimum number of Kafka partitions
required.

Procedure

1
2.

Create a Kafkatopic with a single partition.

Run the Kafka producer for a set amount of time.

For example, 10 minutes.

Calculate the approximate number of events per second based on the total size of the Kafka partition.
Launch the parser toplogy with the following:

e 1 spout

e 1 worker

e Several parser executers (10 or more)

Let the parser run for a set amount of time.

HCP Tuning Guide Tuning a Parser

6. If the parser executors reach capacity, increase the number of executors and restart.
When you restart the toplogies, ensure that the Kafka offset strategy isset to "LATEST".
7. Calculate the approximate number of events per second from the statistics in the Storm user interface.

8. If the eventsin the Kafkatopic are fully processed by the parser topology before the set amount of timeis
complete, you can omit the events per second calculation and instead use the first result.

For example:
Num partitions = t/p
The number of partitions should be proportional to the number of Storm nodes. Because Kafka partitions are

tied to the number of Kafka spouts, which need to be evenly distributed between Storm workers, the number of
partitions should be divisible by the number of Storm workers.

Storm Parser Parameters

Y ou can modify certain parser properties to tune your HCP architecture using the Management user interface.
Modifying properties using the Management Ul is simple and can be performed by any user.

Parsers tend to vary alot. Some will be very high volume receiving thousands of messages per second and others will
be much lower. Rather than using a standard setting for the number of partitions and parallelism, you should base
your settings on the expected data volume. That said, use the following guidelines:

» The spout paralelism should be roughly the same as your Kafka partitions.
» Consider data flow when assigning Kafka partitions to parsers.

» Keepin mind the aggregate number of partitions when assigning them to partitions. Y ou do not want to assign the
maximum number of partitions to each parser because that can overload your system.

The parser topologies are deployed by a builder pattern that takes parameters from the CLI| as set by the Management
Ul. The parser properties materialize as follows:

Managenment Ul -> parser json config and CLI -> Storm

The following table lists the parser properties you can modify in the Management Ul :

Category Management Ul Property Name CLI Option
Storm topology config Num Workers -nw,--num_workers <NUM_WORKERS>
Num Ackers --na,--num_ackers <NUM_ACKERS>
Storm Config <JSON_FILE>, eg.,
{ "topology.max.spout.pending” : NUM }
Kafka Spout Parallelism -sp,--spout_p
<SPOUT_PARALLELISM_HINT>
Spout Num Tasks -snt,--spout_num_tasks <NUM_TASKS>
Spout Config <JSON_FILE>, eg.,
{ "spout.poll TimeoutMs" : 200 }
Spout Config <JSON_FILE>, eg,,
{ "spout.maxUncommittedOffsets" :
10000000 }
Spout Config <JSON_FILE>, eg.,
{ "spout.offsetCommitPeriodMs" : 30000 }
Parser bolt Parser Num Tasks -pnt,--parser_num_tasks <NUM_TASKS>

Parser Parallelism

-pp,--parser_p <PARALLELISM_HINT>

Parser Parallelism

-pp,--parser_p <PARALLELISM_HINT>

HCP Tuning Guide Tuning a Parser

All of the Storm parameters are available in the STORM SETTINGS section of the Management Ul.

For the Storm config and Spout config properties, you enter the JSON_FILE information in the appropriate field
using the JSON format supplied in the following table.

For more detail on starting parsers, see Starting and Stopping Parsers.

Tune Parser Core Storm Settings

Y ou can set the number of Kafka spouts to match the number of Kafka partitions. Y ou can aso increase the number
of workers and ackers to match the Storm nodes, unless the estimated throughput for the parser is very low.

Procedure

1. Set the parser Storm settings in the Management user interface.

Configure Storm Settings

2. You can add the following command to the Storm settings to test the parser:
spout . firstPol|l O fset Strategy": "LATEST"

The command allows the Kafka topic to be written to continuously during testing so when the parser is restarted,
the topology will not be flooded with events.

3. Increase the Parser Parallelism and Num Tasks values in increments based on the number of workers.
For example, in the previous example, the parameters could be incremented by 3.

4. Asyouincrease the Par ser Parallelism and Num Tasks values, check two Storm statistics. Parser Capacity and
the number of tuples acked in a 10-minute window.

https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.9.1/managing/content/starting_and_stopping_parsers.html

HCP Tuning Guide Tuning a Parser

Topology stats

Window 4 Emitted Transferred Complete latency (ms) Acked Failed

Bolts (All time)

Capacity Execute Process
(last latency latency Error. Error Last Error
id Executors Tasks Emitted Transferred 10m) (ms) Executed (ms) Acked Failed Host Port error Time

rMessageWriter 0) 0.000 0.000 (.000

Bolt 1 1 () 0.000 0.00(().00()]

For a given estimated throughput, the capacity should be no greater than ~0.800. This will allow for ~20%
overhead should the number of incoming events spike above the estimated average. If the capacity is above this
level, Parallelism and Num Tasks should be incremented and the topology restarted.

The number of acked tuples should be approximately equal to (Desired Throughput x600) assuming the topology
has been active for at least 11 - 12 minutes. If the number of acked tuples and the capacity of the topology are both
low, there may not be enough Kafka partitions.

If the Storm Ul is showing a capacity of ~0.800 or less, the Kafka consumer should be monitored to ensure that
thereis no significant lag or buildup of messages for the parser. The following command shows an example of
how this can be monitored via the command line on a Kafka node:

cd /usr/ hdp/ current/kaf ka- br oker/ bi n/

watch -n 2 ./kafka-run-cl ass. sh kaf ka. t ool s. Consuner O f set Checker - -
zookeeper
mast er 01: 2181 --topic asa --group asa_parser

Group Topic Pid Offset logSize Lag Owner
asa_parser asa 0 233 234 1 none
asa_parser asa 1 231 232 1 none
asa_parser asa 2 234 235 1 none
asa_parser asa 3 232 233 1 none
asa_parser asa 4 232 233 1 none
asa_parser asa 5 233 234 1 none
asa_parser asa 6 231 232 1 none
asa_parser asa 7 231 232 1 none
asa_parser asa 8 234 235 1 none

Tune Additional Parser Storm Settings

After the number of parser executors has been determined and thoroughly tested, you can set or modify the last
remaining Storm parameters.

Procedure

1. Based on the capacity you've seen during testing, reduce the overall number of ackers.

Alternatively, you can leave a single acker per worker asit will ensure that there are no messages sent between
Storm workers over the network interface.

2. Set the Max Spout Pending parameter such that the maximum number of unacked tuples in the topology is close
to the Par ser Executor capacity (for example, ~0.950).

Setting the maximum number of unacked tupples to the Par ser Executor capacity ensuresthat if thereisalarge
spike in incoming events, the topology will not become overloaded. For example, to determine this value you can

HCP Tuning Guide Tuning an Enrichment Topology

increase the producer events per second by alarge amount and test various values for Max Spout Pending. The
value can be set under the Storm settings of the relevant parser.

3. Check the Par ser Executor capacity.

The Par ser Executor capacity should not exceed ~0.950. Assuming the number of events generated by the
producer is far greater than the capacity of the Parser topology, capacity is the only value that needs to be
monitored in the Storm UI.

4. SettheError Writer Parallelism and Num Tasks values.

Generally, since asmall number of errorsis expected, it can be set quite low. There should be more than 3 for
redundancy but going as high as 1 per worker may also be of benefit for even distribution.

Tuning an Enrichment Topology

Enrichment settings focus more on the compute workload than on the mapping workload in parsers or the 10 driven
workload in indexing. Enrichments make significant use of caching for performance. Because all of the dataiis
coming together in enrichments, you will probably need larger enrichments settings than your parallelism settings.

Y ou can modify many performance tuning properties for enrichment using Ambari or Storm Flux. Modifying
properties using Ambari is simple and can be performed by any user. However, you should have knowledge of Storm
Flux usage and formatting before attempting to modify any Flux files.

Test Enrichment Topology Settings

While the parameters for the Enrichments topology should be modified via Ambari for persistence, there is a method
by which the topol ogies can be started via the command line on the Metron node and parameters easily modified

for testing. The commands below demonstrate how to create a copy of the Metron files for making changes quickly
during testing.

Procedure
1. From the user’s home directory, execute the following commands:

sudo cp /usr/ hcp/current/netron/bin/start_enrichnent topol ogy.sh ~
sudo cp /usr/ hcp/current/netron/config/enrichnment. properties ~

HCP Tuning Guide Tuning an Enrichment Topology

sed -i 's+$METRON _HOMVE/ confi g/ +/ hone/ <user >/ +g' ./
start_enri chnment _t opol ogy. sh

2. Now, the variables can be edited outside of Ambari viathe following command:

vi ~/enrichnent. properties

3. To start the topology with the new variables, you must execute the following command:

~/ start _enrichnent topol ogy. sh

Tune Enrichment Kafka Partitions

Thefirst enrichment variable that should be determined is the minimum number of Kafka partitions required.

Procedure

Use the following formula to determine the minimum number of Kafka partitions for the enrichment toplogy
Num Partitions=Max(t/p,t/c)

where

* tisthe desired throughput
e pisthe maximum throughout using a single producer
e cisthe maximum throughput using a single consumer

Note: You can estimate the minimum number of partitions requres based on the original calculations

E performed for parser topologies. However, this may or may not be suitable as the message size increases as it
progresses through Metron topologies. Thisincreased message size can affect throughput. For this reason, we
recommend that you perform the same steps to calculate the value for the enrichment topic.

Storm Enrichment Parameters
Y ou can modify various Storm enrichment properties for the unified topology using Ambari.

The following list provides tuning guidelines for the enrichment properties you can modify in Ambari:

enrichment.workers The number of worker processes for the enrichment
topology. Increase parallelism before attempting to
increase the number of workers.

Start by tuning only a single worker. Maximize
throughput for that worker, then increase the number of
workers.

The throughput should scale relatively linearly as
workers are added. This reaches alimit as the number of
workers running on a single node saturate the resources
available,

When this happens, adding workers, but on additional
nodes should allow further scaling.
enrichment.acker .executors The number of ackers within the topology.

This should most often be equal to the number of
workers defined in enrichment.workers.

Within the Storm UlI, click the "Show System Stats'
button. Thiswill display abolt named __acker. If the

HCP Tuning Guide Tuning an Enrichment Topology

capacity of thisbolt istoo high, then increase the number
of ackers.

topology.worker .childopts This parameter accepts arguments that will be passed to
the VM created for each Storm worker. This alows for
control over the heap size, garbage collection, and any
other JV M-specific parameter.

Start with a 2G heap and increase as needed. Running
with 8G was found to be beneficial, but will vary
depending on caching needs.

-Xms8g -Xmx8g

The Garbage First Garbage Collector (G1GC) is
recommended along with a cap on the amount of
time spent in garbage collection. Thisisintended to
help address small object allocation issues due to our
extensive use of caches.

-XX:+UseG1GC -XX:MaxGCPauseMillis=100

If the caches in use are very large (as defined by either
enrichment.join.cache.size or threat.intel.join.cache.size)
and performance is poor, turning on garbage collection
logging might be helpful.

topology.max.spout.pending This limits the number of unacked tuples that the spout
can introduce into the topology.

Decreasing this value will increase back pressure and
alow the topology to consume messages at a pace that is
maintainable.

If the spout throws '‘Commit Failed Exceptions then the
topology is not keeping up. Decreasing thisvalue is one
way to ensure that messages can be processed before
they time out.

If the topology's throughput is unsteady and inconsistent,
decrease this value. This should help the topology
consume messages at a maintainable pace.

If the bolt capacity is low, the topology can handle
additional load. Increase this value so that more tuples
are introduced into the topology which should increase
the bolt capacity.

kafka.spout.parallelism The parallelism of the Kafka spout within the topology.
Defines the maximum number of executors for each
worker dedicated to running the spout.

The spout parallelism should most often be set to the
number of partitions of the input Kafka topic.dd

If the enrichment bolt capacity islow, increasing the
parallelism of the spout can introduce additional load on
the topology.

enrichment.parallelism The parallelism hint for the enrichment bolt. Defines
the maximum number of executors within each worker
dedicated to running the enrichment bolt.

If the capacity of the enrichment bolt is high, increasing
the parallelism will introduce additional executorsto
bring the bolt capacity down.

HCP Tuning Guide Tuning an Enrichment Topology

If the throughput of the topology istoo low, increase this
value. This allows additional tuplesto be enriched in
paralel.

Increasing parallelism on the enrichment bolt will at
some point put pressure on the downstream threat intel
and output bolts. Asthisvalueisincreased, monitor the
capacity of the downstream bolts to ensure that they do
not become a bottleneck.

threat.intel.parallelism The parallelism hint for the threat intel bolt. Defines
the maximum number of executors within each worker
dedicated to running the threat intel bolt.

If the capacity of the threat intel bolt is high, increasing
the parallelism will introduce additional executorsto
bring the bolt capacity down.

If the throughput of the topology istoo low, increase this
value. This allows additional tuplesto be enriched in
parallel.

Increasing parallelism on this bolt will at some point put
pressure on the downstream output bolt. Asthisvalue
isincreased, monitor the capacity of the output bolt to
ensure that it does not become a bottleneck.

kafka.writer.parallelism The parallelism hint for the output bolt which writes to
the output Kafka topic. Defines the maximum number of
executors within each worker dedicated to running the
output bolt.

If the capacity of the output bolt is high, increasing the
parallelism will introduce additional executorsto bring
the bolt capacity down.

enrichment.cache.size The Enrichment bolt maintains a cache so that if the
same enrichment occurs repetitively, the value can be
retrieved from the cache instead of it being recomputed.
Increase the size of the cache to improve the rate of
cache hits.

Thereisagreat deal of repetition in network telemetry,
which leads to a great deal of repetition for the
enrichments that operate on that telemetry. Having
ahighly performant cache is one of the most critica
factors driving performance.

Increasing the size of the cache may require
that you increase the worker heap size using
“topology.worker.childopts.

threat.intel.cache.size The Threat Intel bolt maintains a cache so that if the
same enrichment occurs repetitively, the value can be
retrieved from the cache instead of it being recomputed.

Thereisagreat deal of repetition in network telemetry,
which leads to a great deal of repetition for the
enrichments that operate on that telemetry. Having
ahighly performant cache is one of the most critica
factors driving performance.

Increase the size of the cache to improve the rate of
cache hits.

10

HCP Tuning Guide

Tuning an Enrichment Topology

enrichment.threadpool.size

enrichment.threadpool.type

Tune Enrichment Core Storm Settings

Increasing the size of the cache may require
that you increase the worker heap size using
“topology.worker.childopts'.

This value defines the number of threads maintained
within a pool to execute each enrichment. This value can
either be afixed number or it can be amultiple of the
number of cores (5C = 5 times the number of cores).

The enrichment bolt maintains a static thread pool that
is used to execute each enrichment. Thisthread pool is
shared by all of the executors running within the same
worker.

Start with athread pool size of 1. Adjust this value after
tuning al other parametersfirst. Only increase this value
if testing shows performance improvementsin your
environment given your workload.

If the thread pool size istoo large thiswill cause the
work to be shuffled amongst multiple CPU cores, which
significantly decreases performance. Using a smaller
thread pool helps pin work to asingle core.

If the thread pool size istoo small this can negatively
impact 10-intensive workloads. Increasing the thread
pool size, helps when using 10-intensive workloads with
asignificant cache missrate. A thread pool size of 3-5
can help in these cases.

Most workloads will make significant use of the cache
and so 1-2 threads will most likely be optimal.

The bolt uses a static thread pool. To scale out, but keep
the work mostly pinned to a CPU core, add more Storm
workers while keeping the thread pool size low.

If alarger thread pool increases load on the system, but
decreases the throughput, then it islikely that the system
isthrashing. In this case the thread pool size should be
decreased.

The enrichment bolt maintains a static thread pool that
is used to execute each enrichment. Thisthread pool is
shared by all of the executors running within the same
worker.

Defines the type of thread pool used. This value can be
either "FIXED" or "WORK_STEALING".

Currently, this value must be manually defined within
the flux file at SMETRON_HOM E/flux/enrichment/
remote-unified.yaml. This value cannot be altered within
Ambari.

Y ou can set the number of Kafka spouts to match the number of Kafka partitions. Y ou can also increase the number
of workers and ackers to match the Storm nodes, unless the estimated throughput for the parser is very low.

HCP Tuning Guide Tuning an Enrichment Topology

Procedure

1. Set the parser Storm settings using the enrichment.propertiesfile.

vi ~/enrichment. properties

#H#HE St or m #H#H#AH

enri chnent . wor ker s=3

enri chnent . acker. execut or s=3
t opol ogy. wor ker . chi | dopt s=

t opol ogy. aut o- credenti al s=[]
t opol ogy. max- spout . pendi ng=

kaf ka. st art =LATEST

#e### Paral | el | sm #####
kaf ka. spout . paral |l el i smF9

2. Set the Kafka Offset Strategy to LATEST to allow the Kafka topic to be written to continuously during testing so
when the parser is restarted, the topology will not be flooded with events.

kaf ka. st art - LATEST

3. Alternatively, you can set the Kafka Offset Strategy to EARLIEST to determine the maximum throughput of the
topology though you should set Max Spout Pending to avoid errors..

kaf ka. st art - EARLI EST

4. Increase the enrichment.join.parallelism, threat.intel join.parallelism, and kafka.writer.parallelism valuesin
increments based on the number of workers.

For example, in the previous example, the parameters could be incremented by 3.

#H####H Par al | el | sm #####

kaf ka. spout . paral | el i sm=9
enrichnent.split.parallelisne
enrichnent.stellar.parallelisne
enrichnent.join.parallelism18
threat.intel.split.parallelism
threat.intel.stellar.parallelism
threat-intel.join-parallelism18
kaf ka.witer.parallelism9

5. Asyou increase the enrichment.join.parallelism, threat.intel .join.parallelism, and kafka.writer.parallelism values,
check the two Storm statistics, Parser Capacity and the number of tuples acked in a 10-minute window.

Topology stats

Window 4 Emitted Transferred Complete latency (ms) Acked Failed

12

HCP Tuning Guide Tuning an Enrichment Topology

Bolts (All time)

Capacity Execute Process

(last latency latency Error Error Last Error
Id Executors Tasks Emitted Transferred 10m) (ms) Executed (ms) Acked Failed Host Port error Time
enrichmentBolt 18 18 0 0 0.000
enrichmentErrorOutputBolt 1 1 0 0 021
outputBolt 9 9 0 V] 1 0.004
threatintelBolt 18 18 0 0 0
threatintelErrorQutputBolt 1 1 V] o 0.000

For a given estimated throughput, the capacity should be no greater than ~0.800. This will allow for ~20%
overhead should the number of incoming events spike above the estimated average. If the capacity is above this
level, Parallelism and Num Tasks should be incremented and the topology restarted.

The number of acked tuples should be approximately equal to (Desired Throughput x600) assuming the topology
has been active for at least 11 - 12 minutes. If the number of acked tuples and the capacity of the topology are both
low, there may not be enough Kafka partitions.

If the Storm Ul is showing a capacity of ~0.800 or less, the Kafka consumer should be monitored to ensure that
thereis no significant lag or buildup of messages for the parser. The command below shows an example of how
this can be monitored via the command line on a Kafka node:

cd /usr/ hdp/ current/kaf ka- br oker/ bi n/

watch -n 2 ./kafka-run-cl ass. sh kaf ka. tool s. Consuner O f set Checker - -
zookeeper
mast er 01: 2181 --topic enrichnents --group enrichnmentss

Group Topic Pid Offset logSize Lag Owner
enrichments enrichments 0 346 347 1 none
enrichments enrichments 1 346 347 1 none
enrichments enrichments 2 339 340 1 none
enrichments enrichments 3 340 341 1 none
enrichments enrichments 4 345 346 1 none
enrichments enrichments 5 342 343 1 none
enrichments enrichments 3] 349 350 1 none
enrichments enrichments 7 349 350 1 none
enrichments enrichments 8 344 345 1 none

Tune Additional Enrichment Storm Settings

After the number of enrichment executors has been determined and thoroughly tested, you can set or modify the last
remaining Storm parameters.

Procedure

1. Based on the capacity you've seen during testing, reduce the overall number of ackers.

Alternatively, you an leave a single acker per worker asit will ensure that there are no messages sent between
Storm workers over the network interface.

2. Setthe Max Spout Pending parameter such that the maximum number of unacked tuplesin the topology is close
to the Par ser Executor capacity (for example, ~0.950).

If thisisthe case then it can be assured that if there is alarge spike in incoming events, the topology will not
become overloaded. An example approach to determine this value would be to increase the producer events per

13

HCP Tuning Guide Tuning an Enrichment Topology

second by alarge amount and test various values for Max Spout Pending. The value can be set under the Storm
settings of the relevant Parser.

vi ~/enrichment. properties

#H#HE St or m #H#H#AH

enri chnent . wor ker s=3

enri chnent . acker. execut or s=3
t opol ogy. wor ker . chi | dopt s=

t opol ogy. aut o- credenti al s=[]
t opol ogy. max- spout . pendi ng=

3. Check the Executor capacity.

The executor capacity should not exceed ~0.950. Assuming the number of events generated by the producer is far
greater than the capacity of the Parser topology, capacity is the only value that needs to be monitored in the Storm
ul.

4. If you need to increase the Error Writer Num Executor s value, you can directly modify the Flux file and include
the "parallelism™ parameter under the appropriate Storm Bolt declarations.

sudo vi /usr/hcp/current/metron/flux/enrichnent/renote-unified. yam

id: "enrichment ErrorQutputBolt”
cl assNane: "org.apache.metron.writer.bolt.Bul kMesageWiterBolt"
constructor Args:

- "${kaf ka. zk}"
confi gMet hods:

- nane: "w thMessageWiter"

ar gs:
- ref: "erichnment ErrorKaf kawWiter"

parallelism 3

Generally, since asmall number of errorsis expected, the Error Writer Num Executor s value does not need to
be increased.

Modifying Enrichment Properties Using Flux (Advanced)

Some of the tuning enrichment properties can only be modified using Flux. However, if you manually change your
Flux file, if you perform an upgrade, Ambari will overwrite al of your changes. Be sure to save your Flux changes
prior to performing an upgrade.

Important: You should be familiar with Storm Flux before you adjust the values in this section. Changesto
Flux file properties that are managed by Ambari will render Ambari unable to further manage the property.
Y ou can find the enrichment Flux file at SMETRON_HOM E/flux/enrichment/remote.yaml.

The following table lists the enrichment properties you can modify in the flux file:

Category Flux Property or Function Flux Section Location

K afka spout session.timeout.ms line 201, id: kafkaProps
enable.auto.commit line 201, id: kafkaProps
setPoll TimeoutM s line 230, id: kafkaConfig
setMaxUncommittedOffsets line 230, id: kafkaConfig
setOffsetCommitPeriodMs line 230, id: kafkaConfig

Y ou can add Kafka spout properties or functions using two methods:

14

HCP Tuning Guide Tuning a Batch Indexing Topology

Flux properties - Flux # kafkaProps Add anew key/value to the kafkaProps section HashMap
on line 201. For example, if you want to set the Kafka
Spout consumer'ssession.timeout.ms to 30 seconds, add
the following:

- nane:
args:

put

"session. ti neout.ns"
- 30000

Flux functions - Flux # kafkaConfig Add anew setter to the kafkaConfig object section on

line 230. For example, if you want to set the Kafka Spout
consumer's poll timeout to 200 milliseconds, add the
following under configM ethods:

- namne:
"set Pol | Ti meout Ms"
ar gs:
- 200

Tuning a Batch Indexing T opology

Indexing is primarily 10 driven. Tuning indexing tends to focus on the search index (Solr or Elasticsearch). Problems
with indexing running too slow will often manifest as Kafka not commiting in time. This results from the indexing
backing up so that it fails batches and the poll interval in Kafkais exceeded. The issueis actualy with the index
rather than Kafka.

Test Batch Indexing Topology Settings

While the parameters for the Batch Indexing topology should be modified via Ambari for persistence, thereisa
method by which the topologies can be started via the command line on the Metron node and parameters easily
modified for testing. The commands below demonstrate how to create a copy of the Metron files for making changes
quickly during testing.

Procedure

1. From the user’s home directory, execute the following commands:

sudo cp /usr/ hcp/current/metron/bin/start_hdfs_topol ogy. sh ~
sudo cp /usr/hcp/current/netron/confi g/ hdfs. properties ~
sed -i 's+$METRON HOVE/ confi g/ +/ hone/ <user >/ +g' ./start_hdfs_topol ogy. sh
2. Now, the variables can be edited outside of Ambari viathe following command:
vi ~/ hdfs.properties

3. To start the topology with the new variables, you must execute the following command:

~/ start _hdfs_topol ogy. sh

15

HCP Tuning Guide

Tuning a Batch Indexing Topology

Tune Batch Indexing Kafka Partitions
Thefirst batch indexing variable that should be determined is the minimum number of Kafka partitions required.

Procedure

Use the following formulato determine the minimum number of Kafka partitions for the enrichment toplogy

Num Partitions=Max(t/p,t/c)

where

e tisthe desired throughput

e pisthe maximum throughout using a single producer
e cisthe maximum throughput using a single consumer

Note: You can estimate the minimum number of partitions requres based on the original calculations

E performed for enrichment topol ogies. However, this may or may not be suitable as the message size increases
asit progresses through Metron topologies. This increased message size can affect throughput. For this
reason, we recommend that you perform the same steps to calculate the value for the batch indexing topic.

Storm Index Parameters

Y ou can modify various Storm indexing properties using Ambari. The HDFS sync policy is not currently managed by
Ambari. To accommodate the HDFS sync policy setting, modify the Flux file directly.

The following table lists the indexing properties you can modify in Ambari:

Category

Ambari Property Name

Storm Property Name

Storm topology config

enrichment_workers

topology.workers

enrichment_acker_executors

topology.acker.executors

enrichment_topology_max_spout_pending

topology.max.spout.pending

Kafka spout batch_indexing_kafka_spout_parallelism na
Qutput bolt hdfs_writer_parallelism na
bolt_hdfs rotation_policy_units na
bolt_hdfs rotation_policy_count na

Tune Batch Indexing Cor e Storm Settings

Y ou can set the number of Kafka spouts to match the number of Kafka partitions. Y ou can also increase the number
of workers and ackers to match the Storm nodes, unless the estimated throughput for the parser is very low.

Procedure

1. Set the parser Storm settings using the enrichment.propertiesfile.

vi ~/hdfs.properties

H#tH##H St or m #HHH#H
enri chment . wor ker s=3

enri chnent . acker. execut or s=3
t opol ogy. wor ker . chi | dopt s=
t opol ogy. aut o-credenti al s=[]

16

HCP Tuning Guide Tuning a Batch Indexing Topology

t opol ogy. max- spout . pendi ng=

kaf ka. st art =LATEST

#e### Paral | el | sm #####
kaf ka. spout . paral |l el i smF9

2. Setthe Kafka Offset Strategy to LATEST to alow the Kafka topic to be written to continuously during testing so
when the parser is restarted, the topology will not be flooded with events.

kaf ka. st art - LATEST

3. Alternatively, you can set the Kafka Offset Strategy to EARLIEST to determine the maximum throughput of the
topology though you should set Max Spout Pending to avoid errors..

kaf ka. st art - EARLI EST

4. Increase the hdfs.writer.parallelism values in increments based on the number of workers.
For example, in the previous example, the parameters could be incremented by 3.

#H####H Paral | el | sm #####

kaf ka. spout . paral | el i sm=9
enrichnent.split.parallelisne
enrichnent.stellar.parallelisne
enrichnent.join.parallelism18
threat.intel.split.parallelism
threat.intel.stellar.parallelism
threat-intel.join-parallelism18
kaf ka.witer.parallelism9

5. Asyou increase the enrichment.join.parallelism, threat.intel .join.parallelism, and kafka.writer.parallelism values,
check the two Storm statistics, Capacity of the HDFS indexing component, the number of tuples acked in a 10-
minute window, and the complete latency.

Topology stats

Window & Emitted Transferred Complete latency (ms) Acked Failed

Bolts (All time)

Capacity Execute Process
(last latency latency Error Error Last Error
Id Executors Tasks Emitted Transferred 10m) (ms) Executed (ms) Acked Failed Host Port error Time

hdfsindexingBolt £)) 0) 1,035 44 .01

indexingErrorBolt 1

For a given estimated throughput, the capacity should be no greater than ~0.800. Thiswill allow for ~20%
overhead should the number of incoming events spike above the estimated average. If the capacity is above this
level, Parallelism and Num Tasks should be incremented and the topology restarted.

The number of acked tuples should be approximately equal to (Desired Throughput x600) assuming the topology
has been active for at least 11 - 12 minutes. If the number of acked tuples and the capacity of the topology are both
low, there may not be enough Kafka partitions.

17

HCP Tuning Guide Tuning a Batch Indexing Topology

If the Storm Ul is showing a capacity of ~0.800 or less, the Kafka consumer should be monitored to ensure that
thereis no significant lag or buildup of messages for the parser. The command below shows an example of how
this can be monitored via the command line on a Kafka node:

cd /usr/ hdp/ current/ kaf ka- br oker/ bi n/

wat ch -n 2 ./kaf ka-run-cl ass. sh kaf ka. t ool s. Consuner O f set Checker --
zookeeper
mast er 01: 2181 --topic indexing --group index-batch

Group Topic Pid Offset logSize Lag Owner
indexing-batch 1indexing 0 560 561 1 none
indexing-batch indexing 1 605 606 1 none
indexing-batch indexing 2 6689 610 1 none
indexing-batch 1indexing 3 666 687 1 none
indexing-batch indexing 4 606 687 1 none
indexing-batch 1indexing 5 668 689 1 none
indexing-batch indexing 6 685 686 1 none
indexing-batch indexing 7 664 685 1 none
indexing-batch indexing 8 668 609 1 none

Tune Additional Batch Indexing Storm Settings

After the number of executors has been determined and thoroughly tested, you can set or modify the last remaining
Storm parameters.

Procedure

1. Based on the capacity you've seen during testing, reduce the overall number of ackers.

Alternatively, you an leave a single acker per worker asit will ensure that there are no messages sent between
Storm workers over the network interface.

2. Set the Max Spout Pending parameter such that the maximum number of unacked tuples in the topology is close
to the Parser Executor capacity (for example, ~0.950).

If thisis the case then it can be assured that if there is alarge spike in incoming events, the topology will not
become overloaded. An example approach to determine this value would be to increase the producer events per
second by alarge amount and test various values for Max Spout Pending. The value can be set under the Storm
settings of the relevant Parser.

vi ~/enrichnent. properties

#it#H## St or m #H#HHH

i ndexi ng. wor ker s=3

i ndexi ng. acker. execut ors=3
t opol ogy. wor ker. chi | dopt s=
t opol ogy. aut o- credenti al s=[]
t opol ogy. max- spout . pendi ng=

3. Check the Executor capacity.

The executor capacity should not exceed ~0.950. Assuming the number of events generated by the producer is far
greater than the capacity of the Parser topology, capacity is the only value that needs to be monitored in the Storm
Ul.

4. 1f you need to increase the Error Writer Num Executor s value, you can directly modify the Flux file and include
the "parallelism” parameter under the appropriate Storm Bolt declarations.

sudo vi /usr/hcp/current/nmetron/fl ux/indexi ng/ batch/renote.yanl

i d: "indexi ngErrorCut put Bol t"
cl assName: "org.apache. metron.witer. bolt.Bul kMesageWiterBolt"

18

HCP Tuning Guide Tuning a Batch Indexing Topology

constructor Args:
- "${kaf ka. zk}"
confi gMet hods:
- nane: "w thMessageWiter"
ar gs:
- ref: "KafkaWiter"
parallelism 3

Generally, since asmall number of errorsis expected, the Error Writer Num Executors value does not need to be
increased.

Modifying Index Parameter s Using Flux (Advanced)

Some of the tuning indexing properties, for example the HDFS sync policy setting, can only be modified using
Flux. However, if you manually change your Flux file, if you perform an upgrade, Ambari will overwrite all of your
changes. Be sure to back up your Flux changes prior to performing an upgrade.

Important: You should be familiar with Storm Flux before you adjust the values in this section. Changesto
Flux file properties that are managed by Ambari will render Ambari unable to further manage the property.

Y ou can find the indexing Flux file at $SMETRON_HOM E/flux/indexing/batch/remote.yaml.

Category Flux Property Flux Section Location Suggested Value

Kafka spout session.timeout.ms line 80, id: kafkaProps Kafka consumer client property
enable.auto.commit line 80, id: kafkaProps Kafka consumer client property
setPoll TimeoutM's line 108, id: kafkaConfig Kafka consumer client property
setMaxUncommittedOffsets line 108, id: kafkaConfig Kafka consumer client property
setOffsetCommitPeriodMs line 108, id: kafkaConfig Kafka consumer client property

Output bolt hdfsSyncPolicy line 47, id: hdfsWriter See notes below about adding this

prop

To modify index tuning properties, complete the following steps:
1. Add anew setter to the hdfsWriter around line 56.

53 - nane: "w t hRotationPolicy"

54 ar gs:

55 - ref: "hdfsRotationPolicy
56 - nane: "w thSyncPolicy"

57 args:

58 - ref: "hdfsSyncPolicy

Lines are 53-55 provided for context.
2. Add an hdfsSyncPolicy after the hdfsRotationPolicy that appearson line 41:

41 - i d: "hdf sRot ati onPol i cy"
45 - "${bolt.hdfs.rotation.policy.units}"
46
47 - id: "hdfsSyncPolicy"
48 cl assNanme: "org. apache. storm hdfs. bol t. sync. Count SyncPol i cy"
49 constructorArgs:
50 - 100000

19

HCP Tuning Guide Tuning a Random Access Indexing Topology

Tuning a Random Access | ndexing T opology

Indexing is primarily 10 driven. Tuning indexing tends to focus on the search index (Solr or Elasticsearch). Problems
with indexing running too slow will often manifest as Kafka not commiting in time. This results from the indexing
backing up so that it fails batches and the poll interval in Kafkais exceeded. The issueis actually with the index
rather than Kafka.

Test Random Access Indexing Topology Settings

While the parameters for the Indexing topology should be modified via Ambari for persistence, there is a method
by which the topol ogies can be started via the command line on the Metron node and parameters easily modified
for testing. The commands below demonstrate how to create a copy of the Metron files for making changes quickly
during testing.

Procedure

1. From the user’s home directory, execute the following commands:

sudo cp /usr/hcp/current/netron/bin/start_el asti csearch_topol ogy. sh ~
sudo cp /usr/ hcp/current/metron/config/el asticsearch. properties ~
sed -i 's+$METRON_HOVE/ confi g/ +/ home/ <user >/ +g' ./

start _el asti csearch_t opol ogy. sh

2. Now, the variables can be edited outside of Ambari via the following command:

vi ~/ el asticsearch. properties

3. To start the topology with the new variables, you must execute the following command:

~/ start _el asti csearch_topol ogy. sh

Tune Random Access | ndexing Kafka Partitions

If the number of Kafka partitions was correctly calculated for the Indexing topic, then no modifications should be
required to the Kafka topic.

Tune Bulk Message Writing

The primary purpose of the Bulk Message Writing abstraction is to enable efficient writing to external components.
Because most HCP installation include a variety of sensors with different volumes and velocities, different sensors
need to be tuned differently.

Procedure

1. For high volume sensors, set batch sizes higher.

Configure high volume sensors with higher batch sizes (1000+ is recommended). Use logging to verify these
batches are filling up. The number of actual message written should match the batch size. Keep in mind that large
batch sizes also require more memory to hold messages. Streaming engines like Storm limit how many messages
can be processed at atime (the topol ogy.max.spout.pending setting).

2. For low volume sensors, set batch timeouts lower.

20

HCP Tuning Guide Tuning a Random Access Indexing Topology

Low volume sensors may take longer to fill up abatch, especialy if the batch sizeis set higher. This can be
undesirabl e because messages may stay cached for longer than necessary, consuming memory and increasing
latency for that sensor type.
A maxBatchTimeout is set at creation time and serves as the ceiling for a batch timeout. In Storm topologies,
thisvalue is set to 1/2 the tuple timeout setting to ensure messages are always flushed before their tuples timeout.
After abatch isflushed, the batch timer is reset for that sensor type.

3. Allocate threads appropriately.
Each thread (executor in Storm) maintains its own message cache. Allocating too many threads will cause
messages to be spread too thin across separate caches and batches won't fill up completely. This should be
balanced with having enough threads to take advantage of any parallel write capability offered by the endpoint
that's being written to.

4. Watch for high write times.

Use logging to evaluate write timing. Unusually high write times can indicate that an endpoint is not configured
correctly or undersized.

Tune Random Access | ndexing Elasticsearch Templates

Before tuning the Elasticsearch indexing topology, the Elasticsearch templates for the appropriate sensors should be
created and uploaded to Elasticsearch.

Procedure

1. Useacurl request to upload the Elasticsearch templates:

curl -X PCST \
http://<ES Master |P>:9200/ tenpl ate/ <sensor>_index \
-H 'content-type: application/json' \
-d <Tenpl ate JSO\N>

{
"tenpl ate": "<sensor>_index*",
"mappi ngs": {
" _default_": {
"allt: {
"enabl ed": "false"
}
}
}

"<sensor>_doc": {
"dynami c_tenplates": |

{
"geo_location_point": {
"match": "enrichnments: geo: *:location_point",
"mat ch_mappi ng_type": "*",
“mappi ng”: { _
"type": "geo_point"
}
}l
{
"geo_country": {
"mat ch": "enrichnents: geo: *: country",
"mat ch_mappi ng_type": "*",
"mappi ng”: {

"type": "keyword"

21

HCP Tuning Guide Tuning a Random Access Indexing Topology

3
{

"geo city": {

"match": "enrichnments:geo:*:city",
"mat ch_mappi ng_type": "*",
“mapping": {

"type": "keyword"

}

}

}1

{ o
"geo_location_id": {

"match": "enrichnments: geo: *:1oclD'
"“mat ch_mappi ng_type": "*",
"mapping": {

"type": "keyword"

P S T)

"geo_dma_code": {

"match": "enrichnments: geo: *: dmaCode"
"mat ch_mappi ng_type": "*",

“mappi ng”: {

"type": "keyword"

}

}

} il

{

"geo_postal _code": {

"match": "enrichments: geo: *: post al Code"
"mat ch_mappi ng_type": "*",

“mappi ng": {

"type": "keyword"

P S T)

"geo_latitude": {

"match": "enrichnments: geo:*:latitude"
"mat ch_mappi ng_type": "*",

"mappi ng":

"type": "float"

}

}

} il

{ _

"geo_l ongi tude": {

"mat ch": "enrichnments: geo: *: 1 ongitude”
"“mat ch_mappi ng_type": "*",

“mappi ng": {

"type": "float"

P S T)

"timestanps": {

"match": "*:ts",

"mat ch_mappi ng_type": "*",
“mappi ng": {

Iltypell: Ildat ell,

"format": "epoch_millis"

}
}

22

HCP Tuning Guide Tuning a Random Access Indexing Topology

},

"threat _triage_score": {
"mapping": {
"type": "float"

“ﬁatch": “"threat:triage: *score"
"mat ch_mappi ng_type": "*"

}

} il

“threat _triage_reason": {
"mappi ng”: {

"type": "text",
"fielddata": "true"

}

tch": "threat:triage:rul es:*:reason",
"mat ch_mappi ng_type": "*"

H
{

"threat _triage_name": {
“mappi ng”: {

"type": "text",
"fielddata": "true"

}

tch": "threat:triage:rules:*: nang"
"mat ch_mappi ng_type": "*"
}
I, |
"properties": {
"timestamp": {
"type": "date",
"format": "epoch_millis"

}

’ource:typeH {
"type": "text",
"fielddata": "true"

"is_ alert": {
"type": "bool ean"
"alert”: {
"type": "nested"

N e e

liases": {},
"settings": {
"nunber _of shards": 16
"nunber _of replicas": 2
}

}

2. Modify the template to specify all other fields that can appear in an HCP event under the properties section:

"ip_src_addr": {
Iltypell: Ili p

"ip_src_port": {

23

HCP Tuning Guide

"type": "integer"

":alction": {
"type": "keyword"

CI scotag": {
"type": "keyword"

Note: It isvery important for the specified type to be the minimum size required for the field. For

B example, if you do not specify “int”, the value would be auto-detected as “long” which will consume more
system resources. If thereisastring field, it is advised to specify it as “keyword” only and not “text”. See
the following link for full list of datatypes: https://www.elastic.co/guide/en/el asticsearch/reference/5.2/
mapping-types.html. Duplication of fields should be avoided as it can lead to large performance impacts
when indexing. Some consideration should aso be given to the index.refresh_interval parameter in
Ambari. This specifiestheinterval at which Elasticsearch creates a new segment. Increasing this value can
improve indexing performance by allowing larger segments to flush and decreasing merge pressure.

Tune Random Access | ndexing Cor e Storm Settings

Y ou can set the number of Kafka spouts to match the number of Kafka partitions. Y ou can also increase the number
of workers and ackers to match the Storm nodes, unless the estimated throughput for the parser is very low.

Procedure

1. Setthe parser Storm settings using the enrichment.propertiesfile.

vi ~/ el asticsearch. properties

#H#HE St or m ##H#AH

i ndexi ng. wor ker s=3

i ndexi ng. acker. execut ors=3
t opol ogy. wor ker . chi | dopt s=
t opol ogy. aut o- credenti al s=[]
t opol ogy. max- spout . pendi ng=

kaf ka. st art =LATEST

#H#### Par al | el | sm #####
kaf ka. spout . paral | el i smF9

2. Setthe Kafka Offset Strategy to LATEST to alow the Kafka topic to be written to continuously during testing so
when the parser is restarted, the topology will not be flooded with events.

kaf ka. st art - LATEST

3. Alternatively, you can set the Kafka Offset Strategy to EARLIEST to determine the maximum throughput of the
topology though you should set Max Spout Pending to avoid errors..

kaf ka. st art - EARLI EST

4. Increase the hdfs.writer.parallelism values in increments based on the number of workers.

24

Tuning a Random Access Indexing Topology

https://www.elastic.co/guide/en/elasticsearch/reference/5.2/mapping-types.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.2/mapping-types.html

HCP Tuning Guide

For example, in the previous example, the parameters could be incremented by 3.

#H###H Par al | el | sm #####

kaf ka. spout . paral | el i sm=9
enrichnent.split.parallelisne
enrichnent.stellar.parallelisne
enrichnent.join.parallelism18
threat.intel.split.parallelism
threat.intel.stellar.parallelism
threat-intel.join-parallelism18
kaf ka.witer.parallelism9

5. Asyou increase the enrichment.join.parallelism, threat.intel .join.parallelism, and kafka.writer.parallelism values,

check the two Storm statistics, Capacity of the HDFS indexing component, the number of tuples acked in a 10-
minute window, and the complete latency.

Topology stats

Window 4 Emitted Transferred Complete latency (ms) Acked Failed

Bolts (All time)

Capacity Execute Process
(last latency latency Error Error Last Error
Id Executors Tasks Emitted Transferred 10m) (ms) Executed (ms) Acked Failed Host Port error Time

hdfsindexingBolt 1¢ 1f)) 0.000 0.035 1446(.011

indexingErrorBolt 1 1 0) 0.000

For a given estimated throughput, the capacity should be no greater than ~0.800. Thiswill allow for ~20%
overhead should the number of incoming events spike above the estimated average. If the capacity is above this
level, Parallelism and Num Tasks should be incremented and the topology restarted.

The number of acked tuples should be approximately equal to (Desired Throughput x600) assuming the topology
has been active for at least 11 - 12 minutes. If the number of acked tuples and the capacity of the topology are both
low, there may not be enough Kafka partitions.

If the Storm Ul is showing a capacity of ~0.800 or less, the Kafka consumer should be monitored to ensure that
thereis no significant lag or buildup of messages for the parser. The command below shows an example of how
this can be monitored via the command line on a Kafka node:

cd /usr/ hdp/ current/ kaf ka- br oker/ bi n/

wat ch -n 2 ./kaf ka-run-cl ass. sh kaf ka. t ool s. Consuner O f set Checker --
zookeeper
mast er 01: 2181 --topic indexing --group index-batch

Group Topic Pid Offset logSize Lag Owner
indexing-batch 1indexing 0 560 561 1 none
indexing-batch 1indexing 1 605 606 1 none
indexing-batch 1indexing 2 609 610 1 none
indexing-batch 1indexing 3 666 687 1 none
indexing-batch indexing 4 606 687 1 none
indexing-batch 1indexing 5 668 689 1 none
indexing-batch indexing 6 685 686 1 none
indexing-batch indexing 7 664 685 1 none
indexing-batch indexing 8 668 609 1 none

25

Tuning a Random Access Indexing Topology

HCP Tuning Guide Tuning a Random Access Indexing Topology

Tune Additional Random Access | ndexing Storm Settings

After the number of executors has been determined and thoroughly tested, you can set or modify the last remaining
Storm parameters.

Procedure

1. Based on the capacity you've seen during testing, reduce the overall number of ackers.

Alternatively, you an leave a single acker per worker as it will ensure that there are no messages sent between
Storm workers over the network interface.

2. Set the Max Spout Pending parameter such that the maximum number of unacked tuples in the topology is close
to the Parser Executor capacity (for example, ~0.950).

If thisisthe case then it can be assured that if thereis alarge spike in incoming events, the topology will not
become overloaded. An example approach to determine this value would be to increase the producer events per
second by alarge amount and test various values for Max Spout Pending. The value can be set under the Storm
settings of the relevant Parser.

vi ~/enrichnent. properties

#H#HE St or m #H#H#AH

i ndexi ng. wor ker s=3

i ndexi ng. acker. execut ors=3

t opol ogy. wor ker . chi | dopt s=
t opol ogy. aut o- credenti al s=[]
t opol ogy. max- spout . pendi ng=

3. Check the Executor capacity.

The executor capacity should not exceed ~0.950. Assuming the number of events generated by the producer is far
greater than the capacity of the Parser topology, capacity is the only value that needs to be monitored in the Storm
Ul.

4. If you need to increase the Error Writer Num Executorsvalue, you can directly modify the Flux file and include
the "parallelism™ parameter under the appropriate Storm Bolt declarations.

sudo vi /usr/hcp/current/netron/fl ux/indexi ng/ batch/renote.yanl

i d: "indexingErrorQutputBolt"
cl assNanme: "org.apache.metron.witer. bolt.Bul kMesageWiterBolt"
constructor Args:

- "${kaf ka. zk}"
confi gMet hods:

- nane: "w thMessageWiter"

ar gs:
- ref: "KafkaWiter"

parallelism 3

Generally, since asmall number of errorsis expected, the Error Writer Num Executor s value does not need to
be increased.

26

	Contents
	Performance Tuning Overview
	Tuning a Parser
	Tune Parser Kafka Partitions
	Storm Parser Parameters
	Tune Parser Core Storm Settings
	Tune Additional Parser Storm Settings

	Tuning an Enrichment Topology
	Test Enrichment Topology Settings
	Tune Enrichment Kafka Partitions
	Storm Enrichment Parameters
	Tune Enrichment Core Storm Settings
	Tune Additional Enrichment Storm Settings
	Modifying Enrichment Properties Using Flux (Advanced)

	Tuning a Batch Indexing Topology
	Test Batch Indexing Topology Settings
	Tune Batch Indexing Kafka Partitions
	Storm Index Parameters
	Tune Batch Indexing Core Storm Settings
	Tune Additional Batch Indexing Storm Settings
	Modifying Index Parameters Using Flux (Advanced)

	Tuning a Random Access Indexing Topology
	Test Random Access Indexing Topology Settings
	Tune Random Access Indexing Kafka Partitions
	Tune Bulk Message Writing
	Tune Random Access Indexing Elasticsearch Templates
	Tune Random Access Indexing Core Storm Settings
	Tune Additional Random Access Indexing Storm Settings

