
HCP Tuning Guide 1

Tuning Topologies
Date of Publish: 2019-04-09

https://docs.hortonworks.com

https://docs.hortonworks.com

Contents

Performance Tuning Overview... 3

Tuning a Parser.. 3
Tune Parser Kafka Partitions... 3
Storm Parser Parameters...4
Tune Parser Core Storm Settings...5
Tune Additional Parser Storm Settings..6

Tuning an Enrichment Topology..7
Test Enrichment Topology Settings...7
Tune Enrichment Kafka Partitions...8
Storm Enrichment Parameters.. 8
Tune Enrichment Core Storm Settings.. 11
Tune Additional Enrichment Storm Settings... 13
Modifying Enrichment Properties Using Flux (Advanced)... 14

Tuning a Batch Indexing Topology.. 15
Test Batch Indexing Topology Settings...15
Tune Batch Indexing Kafka Partitions...16
Storm Index Parameters... 16
Tune Batch Indexing Core Storm Settings.. 16
Tune Additional Batch Indexing Storm Settings... 18
Modifying Index Parameters Using Flux (Advanced)...19

Tuning a Random Access Indexing Topology... 20
Test Random Access Indexing Topology Settings.. 20
Tune Random Access Indexing Kafka Partitions.. 20
Tune Bulk Message Writing.. 20
Tune Random Access Indexing Elasticsearch Templates..21
Tune Random Access Indexing Core Storm Settings..24
Tune Additional Random Access Indexing Storm Settings.. 26

HCP Tuning Guide Performance Tuning Overview

Performance Tuning Overview

You can use these very high level steps to tune your HCP topologies. For more detailed performance tuning
information, see the instructions for tuning a parser, enrichment topology, and indexing topology.

Procedure

1. Start the tuning process with a single worker.

After tuning the bolts within a single worker, scale out with additional worker processes.

2. Initially set the thread pool size to 1.

Increase this value slowly only after tuning the other parameters first. Consider that each worker has its own
thread pool and the total size of this thread pool should be far less than the total number of cores available in the
cluster.

3. Initially set each bolt parallelism hint to the number of partitions on the input Kafka topic.

Monitor bolt capacity and increase the parallelism hint for any bolt whose capacity is close to or exceeds 1.

4. If the topology is not able to keep-up with a given input, then increasing the parallelism is the primary means to
scale up.

5. Parallelism units can be used for determining how to distribute processing tasks across the topology.

The sum of parallelism can be close to, but should not far exceed this value.

(number of worker nodes in cluster * number cores per worker node) -
 (number of acker tasks)

6. The throughput that the topology is able to sustain should be relatively consistent.

If the throughput fluctuates greatly, increase back pressure using topology.max.spout.pending.

When you restart the topologies, ensure that the Kafka offset strategy is set to LATEST.

Tuning a Parser

When tuning Metron, it is best to start with Parsers before moving on to Enrichments and Indexing topologies. A new
parser should be tuned to efficiently handle the estimated throughput.

Tune Parser Kafka Partitions
When you tune a new parser, the first variable that you should determine is the minimum number of Kafka partitions
required.

Procedure

1. Create a Kafka topic with a single partition.

2. Run the Kafka producer for a set amount of time.

For example, 10 minutes.

3. Calculate the approximate number of events per second based on the total size of the Kafka partition.

4. Launch the parser toplogy with the following:

• 1 spout
• 1 worker
• Several parser executers (10 or more)

5. Let the parser run for a set amount of time.

3

HCP Tuning Guide Tuning a Parser

6. If the parser executors reach capacity, increase the number of executors and restart.

When you restart the toplogies, ensure that the Kafka offset strategy is set to "LATEST".

7. Calculate the approximate number of events per second from the statistics in the Storm user interface.

8. If the events in the Kafka topic are fully processed by the parser topology before the set amount of time is
complete, you can omit the events per second calculation and instead use the first result.

For example:

Num partitions = t/p

The number of partitions should be proportional to the number of Storm nodes. Because Kafka partitions are
tied to the number of Kafka spouts, which need to be evenly distributed between Storm workers, the number of
partitions should be divisible by the number of Storm workers.

Storm Parser Parameters
You can modify certain parser properties to tune your HCP architecture using the Management user interface.
Modifying properties using the Management UI is simple and can be performed by any user.

Parsers tend to vary a lot. Some will be very high volume receiving thousands of messages per second and others will
be much lower. Rather than using a standard setting for the number of partitions and parallelism, you should base
your settings on the expected data volume. That said, use the following guidelines:

• The spout parallelism should be roughly the same as your Kafka partitions.
• Consider data flow when assigning Kafka partitions to parsers.
• Keep in mind the aggregate number of partitions when assigning them to partitions. You do not want to assign the

maximum number of partitions to each parser because that can overload your system.

The parser topologies are deployed by a builder pattern that takes parameters from the CLI as set by the Management
UI. The parser properties materialize as follows:

Management UI -> parser json config and CLI -> Storm

The following table lists the parser properties you can modify in the Management UI:

Category Management UI Property Name CLI Option

Storm topology config Num Workers -nw,--num_workers <NUM_WORKERS>

Num Ackers --na,--num_ackers <NUM_ACKERS>

Storm Config <JSON_FILE>, e.g.,
{ "topology.max.spout.pending" : NUM }

Kafka Spout Parallelism -sp,--spout_p
<SPOUT_PARALLELISM_HINT>

Spout Num Tasks -snt,--spout_num_tasks <NUM_TASKS>

Spout Config <JSON_FILE>, e.g.,
{ "spout.pollTimeoutMs" : 200 }

Spout Config <JSON_FILE>, e.g.,
{ "spout.maxUncommittedOffsets" :
10000000 }

Spout Config <JSON_FILE>, e.g.,
{ "spout.offsetCommitPeriodMs" : 30000 }

Parser bolt Parser Num Tasks -pnt,--parser_num_tasks <NUM_TASKS>

Parser Parallelism -pp,--parser_p <PARALLELISM_HINT>

Parser Parallelism -pp,--parser_p <PARALLELISM_HINT>

4

HCP Tuning Guide Tuning a Parser

All of the Storm parameters are available in the STORM SETTINGS section of the Management UI.

For the Storm config and Spout config properties, you enter the JSON_FILE information in the appropriate field
using the JSON format supplied in the following table.

For more detail on starting parsers, see Starting and Stopping Parsers.

Tune Parser Core Storm Settings
You can set the number of Kafka spouts to match the number of Kafka partitions. You can also increase the number
of workers and ackers to match the Storm nodes, unless the estimated throughput for the parser is very low.

Procedure

1. Set the parser Storm settings in the Management user interface.

2. You can add the following command to the Storm settings to test the parser:

spout.firstPollOffsetStrategy": "LATEST"

The command allows the Kafka topic to be written to continuously during testing so when the parser is restarted,
the topology will not be flooded with events.

3. Increase the Parser Parallelism and Num Tasks values in increments based on the number of workers.

For example, in the previous example, the parameters could be incremented by 3.

4. As you increase the Parser Parallelism and Num Tasks values, check two Storm statistics: Parser Capacity and
the number of tuples acked in a 10-minute window.

5

https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.9.1/managing/content/starting_and_stopping_parsers.html

HCP Tuning Guide Tuning a Parser

For a given estimated throughput, the capacity should be no greater than ~0.800. This will allow for ~20%
overhead should the number of incoming events spike above the estimated average. If the capacity is above this
level, Parallelism and Num Tasks should be incremented and the topology restarted.

The number of acked tuples should be approximately equal to (Desired Throughput ×600) assuming the topology
has been active for at least 11 - 12 minutes. If the number of acked tuples and the capacity of the topology are both
low, there may not be enough Kafka partitions.

If the Storm UI is showing a capacity of ~0.800 or less, the Kafka consumer should be monitored to ensure that
there is no significant lag or buildup of messages for the parser. The following command shows an example of
how this can be monitored via the command line on a Kafka node:

cd /usr/hdp/current/kafka-broker/bin/

watch -n 2 ./kafka-run-class.sh kafka.tools.ConsumerOffsetChecker --
zookeeper
master01:2181 --topic asa --group asa_parser

Tune Additional Parser Storm Settings
After the number of parser executors has been determined and thoroughly tested, you can set or modify the last
remaining Storm parameters.

Procedure

1. Based on the capacity you've seen during testing, reduce the overall number of ackers.

Alternatively, you can leave a single acker per worker as it will ensure that there are no messages sent between
Storm workers over the network interface.

2. Set the Max Spout Pending parameter such that the maximum number of unacked tuples in the topology is close
to the Parser Executor capacity (for example, ~0.950).

Setting the maximum number of unacked tupples to the Parser Executor capacity ensures that if there is a large
spike in incoming events, the topology will not become overloaded. For example, to determine this value you can

6

HCP Tuning Guide Tuning an Enrichment Topology

increase the producer events per second by a large amount and test various values for Max Spout Pending. The
value can be set under the Storm settings of the relevant parser.

3. Check the Parser Executor capacity.

The Parser Executor capacity should not exceed ~0.950. Assuming the number of events generated by the
producer is far greater than the capacity of the Parser topology, capacity is the only value that needs to be
monitored in the Storm UI.

4. Set the Error Writer Parallelism and Num Tasks values.

Generally, since a small number of errors is expected, it can be set quite low. There should be more than 3 for
redundancy but going as high as 1 per worker may also be of benefit for even distribution.

Tuning an Enrichment Topology

Enrichment settings focus more on the compute workload than on the mapping workload in parsers or the IO driven
workload in indexing. Enrichments make significant use of caching for performance. Because all of the data is
coming together in enrichments, you will probably need larger enrichments settings than your parallelism settings.
You can modify many performance tuning properties for enrichment using Ambari or Storm Flux. Modifying
properties using Ambari is simple and can be performed by any user. However, you should have knowledge of Storm
Flux usage and formatting before attempting to modify any Flux files.

Test Enrichment Topology Settings
While the parameters for the Enrichments topology should be modified via Ambari for persistence, there is a method
by which the topologies can be started via the command line on the Metron node and parameters easily modified
for testing. The commands below demonstrate how to create a copy of the Metron files for making changes quickly
during testing.

Procedure

1. From the user’s home directory, execute the following commands:

sudo cp /usr/hcp/current/metron/bin/start_enrichment_topology.sh ~
 sudo cp /usr/hcp/current/metron/config/enrichment.properties ~

7

HCP Tuning Guide Tuning an Enrichment Topology

 sed -i 's+$METRON_HOME/config/+/home/<user>/+g' ./
start_enrichment_topology.sh

2. Now, the variables can be edited outside of Ambari via the following command:

vi ~/enrichment.properties

3. To start the topology with the new variables, you must execute the following command:

~/start_enrichment_topology.sh

Tune Enrichment Kafka Partitions
The first enrichment variable that should be determined is the minimum number of Kafka partitions required.

Procedure

Use the following formula to determine the minimum number of Kafka partitions for the enrichment toplogy

Num Partitions=Max(t/p,t/c)

where

• t is the desired throughput
• p is the maximum throughout using a single producer
• c is the maximum throughput using a single consumer

Note: You can estimate the minimum number of partitions requres based on the original calculations
performed for parser topologies. However, this may or may not be suitable as the message size increases as it
progresses through Metron topologies. This increased message size can affect throughput. For this reason, we
recommend that you perform the same steps to calculate the value for the enrichment topic.

Storm Enrichment Parameters
You can modify various Storm enrichment properties for the unified topology using Ambari.

The following list provides tuning guidelines for the enrichment properties you can modify in Ambari:

enrichment.workers The number of worker processes for the enrichment
topology. Increase parallelism before attempting to
increase the number of workers.

Start by tuning only a single worker. Maximize
throughput for that worker, then increase the number of
workers.

The throughput should scale relatively linearly as
workers are added. This reaches a limit as the number of
workers running on a single node saturate the resources
available.

When this happens, adding workers, but on additional
nodes should allow further scaling.

enrichment.acker.executors The number of ackers within the topology.

This should most often be equal to the number of
workers defined in enrichment.workers.

Within the Storm UI, click the "Show System Stats"
button. This will display a bolt named __acker. If the

8

HCP Tuning Guide Tuning an Enrichment Topology

capacity of this bolt is too high, then increase the number
of ackers.

topology.worker.childopts This parameter accepts arguments that will be passed to
the JVM created for each Storm worker. This allows for
control over the heap size, garbage collection, and any
other JVM-specific parameter.

Start with a 2G heap and increase as needed. Running
with 8G was found to be beneficial, but will vary
depending on caching needs.

-Xms8g -Xmx8g

The Garbage First Garbage Collector (G1GC) is
recommended along with a cap on the amount of
time spent in garbage collection. This is intended to
help address small object allocation issues due to our
extensive use of caches.

-XX:+UseG1GC -XX:MaxGCPauseMillis=100

If the caches in use are very large (as defined by either
enrichment.join.cache.size or threat.intel.join.cache.size)
and performance is poor, turning on garbage collection
logging might be helpful.

topology.max.spout.pending This limits the number of unacked tuples that the spout
can introduce into the topology.

Decreasing this value will increase back pressure and
allow the topology to consume messages at a pace that is
maintainable.

If the spout throws 'Commit Failed Exceptions' then the
topology is not keeping up. Decreasing this value is one
way to ensure that messages can be processed before
they time out.

If the topology's throughput is unsteady and inconsistent,
decrease this value. This should help the topology
consume messages at a maintainable pace.

If the bolt capacity is low, the topology can handle
additional load. Increase this value so that more tuples
are introduced into the topology which should increase
the bolt capacity.

kafka.spout.parallelism The parallelism of the Kafka spout within the topology.
Defines the maximum number of executors for each
worker dedicated to running the spout.

The spout parallelism should most often be set to the
number of partitions of the input Kafka topic.dd

If the enrichment bolt capacity is low, increasing the
parallelism of the spout can introduce additional load on
the topology.

enrichment.parallelism The parallelism hint for the enrichment bolt. Defines
the maximum number of executors within each worker
dedicated to running the enrichment bolt.

If the capacity of the enrichment bolt is high, increasing
the parallelism will introduce additional executors to
bring the bolt capacity down.

9

HCP Tuning Guide Tuning an Enrichment Topology

If the throughput of the topology is too low, increase this
value. This allows additional tuples to be enriched in
parallel.

Increasing parallelism on the enrichment bolt will at
some point put pressure on the downstream threat intel
and output bolts. As this value is increased, monitor the
capacity of the downstream bolts to ensure that they do
not become a bottleneck.

threat.intel.parallelism The parallelism hint for the threat intel bolt. Defines
the maximum number of executors within each worker
dedicated to running the threat intel bolt.

If the capacity of the threat intel bolt is high, increasing
the parallelism will introduce additional executors to
bring the bolt capacity down.

If the throughput of the topology is too low, increase this
value. This allows additional tuples to be enriched in
parallel.

Increasing parallelism on this bolt will at some point put
pressure on the downstream output bolt. As this value
is increased, monitor the capacity of the output bolt to
ensure that it does not become a bottleneck.

kafka.writer.parallelism The parallelism hint for the output bolt which writes to
the output Kafka topic. Defines the maximum number of
executors within each worker dedicated to running the
output bolt.

If the capacity of the output bolt is high, increasing the
parallelism will introduce additional executors to bring
the bolt capacity down.

enrichment.cache.size The Enrichment bolt maintains a cache so that if the
same enrichment occurs repetitively, the value can be
retrieved from the cache instead of it being recomputed.
Increase the size of the cache to improve the rate of
cache hits.

There is a great deal of repetition in network telemetry,
which leads to a great deal of repetition for the
enrichments that operate on that telemetry. Having
a highly performant cache is one of the most critical
factors driving performance.

Increasing the size of the cache may require
that you increase the worker heap size using
`topology.worker.childopts'.

threat.intel.cache.size The Threat Intel bolt maintains a cache so that if the
same enrichment occurs repetitively, the value can be
retrieved from the cache instead of it being recomputed.

There is a great deal of repetition in network telemetry,
which leads to a great deal of repetition for the
enrichments that operate on that telemetry. Having
a highly performant cache is one of the most critical
factors driving performance.

Increase the size of the cache to improve the rate of
cache hits.

10

HCP Tuning Guide Tuning an Enrichment Topology

Increasing the size of the cache may require
that you increase the worker heap size using
`topology.worker.childopts'.

enrichment.threadpool.size This value defines the number of threads maintained
within a pool to execute each enrichment. This value can
either be a fixed number or it can be a multiple of the
number of cores (5C = 5 times the number of cores).

The enrichment bolt maintains a static thread pool that
is used to execute each enrichment. This thread pool is
shared by all of the executors running within the same
worker.

Start with a thread pool size of 1. Adjust this value after
tuning all other parameters first. Only increase this value
if testing shows performance improvements in your
environment given your workload.

If the thread pool size is too large this will cause the
work to be shuffled amongst multiple CPU cores, which
significantly decreases performance. Using a smaller
thread pool helps pin work to a single core.

If the thread pool size is too small this can negatively
impact IO-intensive workloads. Increasing the thread
pool size, helps when using IO-intensive workloads with
a significant cache miss rate. A thread pool size of 3-5
can help in these cases.

Most workloads will make significant use of the cache
and so 1-2 threads will most likely be optimal.

The bolt uses a static thread pool. To scale out, but keep
the work mostly pinned to a CPU core, add more Storm
workers while keeping the thread pool size low.

If a larger thread pool increases load on the system, but
decreases the throughput, then it is likely that the system
is thrashing. In this case the thread pool size should be
decreased.

enrichment.threadpool.type The enrichment bolt maintains a static thread pool that
is used to execute each enrichment. This thread pool is
shared by all of the executors running within the same
worker.

Defines the type of thread pool used. This value can be
either "FIXED" or "WORK_STEALING".

Currently, this value must be manually defined within
the flux file at $METRON_HOME/flux/enrichment/
remote-unified.yaml. This value cannot be altered within
Ambari.

Tune Enrichment Core Storm Settings
You can set the number of Kafka spouts to match the number of Kafka partitions. You can also increase the number
of workers and ackers to match the Storm nodes, unless the estimated throughput for the parser is very low.

11

HCP Tuning Guide Tuning an Enrichment Topology

Procedure

1. Set the parser Storm settings using the enrichment.properties file.

vi ~/enrichment.properties

Storm
enrichment.workers=3
enrichment.acker.executors=3
topology.worker.childopts=
topology.auto-credentials=[]
topology.max-spout.pending=

 ...

kafka.start=LATEST

 ...

Parallelism
kafka.spout.parallelism=9

2. Set the Kafka Offset Strategy to LATEST to allow the Kafka topic to be written to continuously during testing so
when the parser is restarted, the topology will not be flooded with events.

kafka.start-LATEST

3. Alternatively, you can set the Kafka Offset Strategy to EARLIEST to determine the maximum throughput of the
topology though you should set Max Spout Pending to avoid errors..

kafka.start-EARLIEST

4. Increase the enrichment.join.parallelism, threat.intel.join.parallelism, and kafka.writer.parallelism values in
increments based on the number of workers.

For example, in the previous example, the parameters could be incremented by 3.

Parallelism
kafka.spout.parallelism=9
enrichment.split.parallelism=
enrichment.stellar.parallelism=
enrichment.join.parallelism=18
threat.intel.split.parallelism=
threat.intel.stellar.parallelism=
threat-intel.join-parallelism-18
kafka.writer.parallelism=9

5. As you increase the enrichment.join.parallelism, threat.intel.join.parallelism, and kafka.writer.parallelism values,
check the two Storm statistics, Parser Capacity and the number of tuples acked in a 10-minute window.

12

HCP Tuning Guide Tuning an Enrichment Topology

For a given estimated throughput, the capacity should be no greater than ~0.800. This will allow for ~20%
overhead should the number of incoming events spike above the estimated average. If the capacity is above this
level, Parallelism and Num Tasks should be incremented and the topology restarted.

The number of acked tuples should be approximately equal to (Desired Throughput ×600) assuming the topology
has been active for at least 11 - 12 minutes. If the number of acked tuples and the capacity of the topology are both
low, there may not be enough Kafka partitions.

If the Storm UI is showing a capacity of ~0.800 or less, the Kafka consumer should be monitored to ensure that
there is no significant lag or buildup of messages for the parser. The command below shows an example of how
this can be monitored via the command line on a Kafka node:

cd /usr/hdp/current/kafka-broker/bin/

watch -n 2 ./kafka-run-class.sh kafka.tools.ConsumerOffsetChecker --
zookeeper
master01:2181 --topic enrichments --group enrichmentss

Tune Additional Enrichment Storm Settings
After the number of enrichment executors has been determined and thoroughly tested, you can set or modify the last
remaining Storm parameters.

Procedure

1. Based on the capacity you've seen during testing, reduce the overall number of ackers.

Alternatively, you an leave a single acker per worker as it will ensure that there are no messages sent between
Storm workers over the network interface.

2. Set the Max Spout Pending parameter such that the maximum number of unacked tuples in the topology is close
to the Parser Executor capacity (for example, ~0.950).

If this is the case then it can be assured that if there is a large spike in incoming events, the topology will not
become overloaded. An example approach to determine this value would be to increase the producer events per

13

HCP Tuning Guide Tuning an Enrichment Topology

second by a large amount and test various values for Max Spout Pending. The value can be set under the Storm
settings of the relevant Parser.

vi ~/enrichment.properties

Storm
enrichment.workers=3
enrichment.acker.executors=3
topology.worker.childopts=
topology.auto-credentials=[]
topology.max-spout.pending=

3. Check the Executor capacity.

The executor capacity should not exceed ~0.950. Assuming the number of events generated by the producer is far
greater than the capacity of the Parser topology, capacity is the only value that needs to be monitored in the Storm
UI.

4. If you need to increase the Error Writer Num Executors value, you can directly modify the Flux file and include
the "parallelism" parameter under the appropriate Storm Bolt declarations.

sudo vi /usr/hcp/current/metron/flux/enrichment/remote-unified.yaml

id: "enrichmentErrorOutputBolt"
className: "org.apache.metron.writer.bolt.BulkMesageWriterBolt"
constructorArgs:
 - "${kafka.zk}"
configMethods:
 - name: "withMessageWriter"
 args:
 - ref: "erichmentErrorKafkaWriter"
parallelism: 3

Generally, since a small number of errors is expected, the Error Writer Num Executors value does not need to
be increased.

Modifying Enrichment Properties Using Flux (Advanced)
Some of the tuning enrichment properties can only be modified using Flux. However, if you manually change your
Flux file, if you perform an upgrade, Ambari will overwrite all of your changes. Be sure to save your Flux changes
prior to performing an upgrade.

Important: You should be familiar with Storm Flux before you adjust the values in this section. Changes to
Flux file properties that are managed by Ambari will render Ambari unable to further manage the property.

You can find the enrichment Flux file at $METRON_HOME/flux/enrichment/remote.yaml.

The following table lists the enrichment properties you can modify in the flux file:

Category Flux Property or Function Flux Section Location

Kafka spout session.timeout.ms line 201, id: kafkaProps

enable.auto.commit line 201, id: kafkaProps

setPollTimeoutMs line 230, id: kafkaConfig

setMaxUncommittedOffsets line 230, id: kafkaConfig

setOffsetCommitPeriodMs line 230, id: kafkaConfig

You can add Kafka spout properties or functions using two methods:

14

HCP Tuning Guide Tuning a Batch Indexing Topology

Flux properties - Flux # kafkaProps Add a new key/value to the kafkaProps section HashMap
on line 201. For example, if you want to set the Kafka
Spout consumer'ssession.timeout.ms to 30 seconds, add
the following:

 - name: "put"
 args:
 -
 "session.timeout.ms"
 - 30000

Flux functions - Flux # kafkaConfig Add a new setter to the kafkaConfig object section on
line 230. For example, if you want to set the Kafka Spout
consumer's poll timeout to 200 milliseconds, add the
following under configMethods:

 - name:
 "setPollTimeoutMs"
 args:
 - 200

Tuning a Batch Indexing Topology

Indexing is primarily IO driven. Tuning indexing tends to focus on the search index (Solr or Elasticsearch). Problems
with indexing running too slow will often manifest as Kafka not commiting in time. This results from the indexing
backing up so that it fails batches and the poll interval in Kafka is exceeded. The issue is actually with the index
rather than Kafka.

Test Batch Indexing Topology Settings
While the parameters for the Batch Indexing topology should be modified via Ambari for persistence, there is a
method by which the topologies can be started via the command line on the Metron node and parameters easily
modified for testing. The commands below demonstrate how to create a copy of the Metron files for making changes
quickly during testing.

Procedure

1. From the user’s home directory, execute the following commands:

sudo cp /usr/hcp/current/metron/bin/start_hdfs_topology.sh ~
 sudo cp /usr/hcp/current/metron/config/hdfs.properties ~
 sed -i 's+$METRON_HOME/config/+/home/<user>/+g' ./start_hdfs_topology.sh

2. Now, the variables can be edited outside of Ambari via the following command:

vi ~/hdfs.properties

3. To start the topology with the new variables, you must execute the following command:

~/start_hdfs_topology.sh

15

HCP Tuning Guide Tuning a Batch Indexing Topology

Tune Batch Indexing Kafka Partitions
The first batch indexing variable that should be determined is the minimum number of Kafka partitions required.

Procedure

Use the following formula to determine the minimum number of Kafka partitions for the enrichment toplogy

Num Partitions=Max(t/p,t/c)

where

• t is the desired throughput
• p is the maximum throughout using a single producer
• c is the maximum throughput using a single consumer

Note: You can estimate the minimum number of partitions requres based on the original calculations
performed for enrichment topologies. However, this may or may not be suitable as the message size increases
as it progresses through Metron topologies. This increased message size can affect throughput. For this
reason, we recommend that you perform the same steps to calculate the value for the batch indexing topic.

Storm Index Parameters
You can modify various Storm indexing properties using Ambari. The HDFS sync policy is not currently managed by
Ambari. To accommodate the HDFS sync policy setting, modify the Flux file directly.

The following table lists the indexing properties you can modify in Ambari:

Category Ambari Property Name Storm Property Name

Storm topology config enrichment_workers topology.workers

enrichment_acker_executors topology.acker.executors

enrichment_topology_max_spout_pending topology.max.spout.pending

Kafka spout batch_indexing_kafka_spout_parallelism n/a

Output bolt hdfs_writer_parallelism n/a

bolt_hdfs_rotation_policy_units n/a

bolt_hdfs_rotation_policy_count n/a

Tune Batch Indexing Core Storm Settings
You can set the number of Kafka spouts to match the number of Kafka partitions. You can also increase the number
of workers and ackers to match the Storm nodes, unless the estimated throughput for the parser is very low.

Procedure

1. Set the parser Storm settings using the enrichment.properties file.

vi ~/hdfs.properties

Storm
enrichment.workers=3
enrichment.acker.executors=3
topology.worker.childopts=
topology.auto-credentials=[]

16

HCP Tuning Guide Tuning a Batch Indexing Topology

topology.max-spout.pending=

 ...

kafka.start=LATEST

 ...

Parallelism
kafka.spout.parallelism=9

2. Set the Kafka Offset Strategy to LATEST to allow the Kafka topic to be written to continuously during testing so
when the parser is restarted, the topology will not be flooded with events.

kafka.start-LATEST

3. Alternatively, you can set the Kafka Offset Strategy to EARLIEST to determine the maximum throughput of the
topology though you should set Max Spout Pending to avoid errors..

kafka.start-EARLIEST

4. Increase the hdfs.writer.parallelism values in increments based on the number of workers.

For example, in the previous example, the parameters could be incremented by 3.

Parallelism
kafka.spout.parallelism=9
enrichment.split.parallelism=
enrichment.stellar.parallelism=
enrichment.join.parallelism=18
threat.intel.split.parallelism=
threat.intel.stellar.parallelism=
threat-intel.join-parallelism-18
kafka.writer.parallelism=9

5. As you increase the enrichment.join.parallelism, threat.intel.join.parallelism, and kafka.writer.parallelism values,
check the two Storm statistics, Capacity of the HDFS indexing component, the number of tuples acked in a 10-
minute window, and the complete latency.

For a given estimated throughput, the capacity should be no greater than ~0.800. This will allow for ~20%
overhead should the number of incoming events spike above the estimated average. If the capacity is above this
level, Parallelism and Num Tasks should be incremented and the topology restarted.

The number of acked tuples should be approximately equal to (Desired Throughput ×600) assuming the topology
has been active for at least 11 - 12 minutes. If the number of acked tuples and the capacity of the topology are both
low, there may not be enough Kafka partitions.

17

HCP Tuning Guide Tuning a Batch Indexing Topology

If the Storm UI is showing a capacity of ~0.800 or less, the Kafka consumer should be monitored to ensure that
there is no significant lag or buildup of messages for the parser. The command below shows an example of how
this can be monitored via the command line on a Kafka node:

cd /usr/hdp/current/kafka-broker/bin/

watch -n 2 ./kafka-run-class.sh kafka.tools.ConsumerOffsetChecker --
zookeeper
master01:2181 --topic indexing --group index-batch

Tune Additional Batch Indexing Storm Settings
After the number of executors has been determined and thoroughly tested, you can set or modify the last remaining
Storm parameters.

Procedure

1. Based on the capacity you've seen during testing, reduce the overall number of ackers.

Alternatively, you an leave a single acker per worker as it will ensure that there are no messages sent between
Storm workers over the network interface.

2. Set the Max Spout Pending parameter such that the maximum number of unacked tuples in the topology is close
to the Parser Executor capacity (for example, ~0.950).

If this is the case then it can be assured that if there is a large spike in incoming events, the topology will not
become overloaded. An example approach to determine this value would be to increase the producer events per
second by a large amount and test various values for Max Spout Pending. The value can be set under the Storm
settings of the relevant Parser.

vi ~/enrichment.properties

Storm
indexing.workers=3
indexing.acker.executors=3
topology.worker.childopts=
topology.auto-credentials=[]
topology.max-spout.pending=

3. Check the Executor capacity.

The executor capacity should not exceed ~0.950. Assuming the number of events generated by the producer is far
greater than the capacity of the Parser topology, capacity is the only value that needs to be monitored in the Storm
UI.

4. If you need to increase the Error Writer Num Executors value, you can directly modify the Flux file and include
the "parallelism" parameter under the appropriate Storm Bolt declarations.

sudo vi /usr/hcp/current/metron/flux/indexing/batch/remote.yaml

id: "indexingErrorOutputBolt"
className: "org.apache.metron.writer.bolt.BulkMesageWriterBolt"

18

HCP Tuning Guide Tuning a Batch Indexing Topology

constructorArgs:
 - "${kafka.zk}"
configMethods:
 - name: "withMessageWriter"
 args:
 - ref: "KafkaWriter"
parallelism: 3

Generally, since a small number of errors is expected, the Error Writer Num Executors value does not need to be
increased.

Modifying Index Parameters Using Flux (Advanced)
Some of the tuning indexing properties, for example the HDFS sync policy setting, can only be modified using
Flux. However, if you manually change your Flux file, if you perform an upgrade, Ambari will overwrite all of your
changes. Be sure to back up your Flux changes prior to performing an upgrade.

Important: You should be familiar with Storm Flux before you adjust the values in this section. Changes to
Flux file properties that are managed by Ambari will render Ambari unable to further manage the property.

You can find the indexing Flux file at $METRON_HOME/flux/indexing/batch/remote.yaml.

Category Flux Property Flux Section Location Suggested Value

Kafka spout session.timeout.ms line 80, id: kafkaProps Kafka consumer client property

enable.auto.commit line 80, id: kafkaProps Kafka consumer client property

setPollTimeoutMs line 108, id: kafkaConfig Kafka consumer client property

setMaxUncommittedOffsets line 108, id: kafkaConfig Kafka consumer client property

setOffsetCommitPeriodMs line 108, id: kafkaConfig Kafka consumer client property

Output bolt hdfsSyncPolicy line 47, id: hdfsWriter See notes below about adding this
prop

To modify index tuning properties, complete the following steps:

1. Add a new setter to the hdfsWriter around line 56.

 53 - name: "withRotationPolicy"
 54 args:
 55 - ref: "hdfsRotationPolicy
 56 - name: "withSyncPolicy"
 57 args:
 58 - ref: "hdfsSyncPolicy

Lines are 53-55 provided for context.
2. Add an hdfsSyncPolicy after the hdfsRotationPolicy that appears on line 41:

 41 - id: "hdfsRotationPolicy"
...
 45 - "${bolt.hdfs.rotation.policy.units}"
 46
 47 - id: "hdfsSyncPolicy"
 48 className: "org.apache.storm.hdfs.bolt.sync.CountSyncPolicy"
 49 constructorArgs:
 50 - 100000

19

HCP Tuning Guide Tuning a Random Access Indexing Topology

Tuning a Random Access Indexing Topology

Indexing is primarily IO driven. Tuning indexing tends to focus on the search index (Solr or Elasticsearch). Problems
with indexing running too slow will often manifest as Kafka not commiting in time. This results from the indexing
backing up so that it fails batches and the poll interval in Kafka is exceeded. The issue is actually with the index
rather than Kafka.

Test Random Access Indexing Topology Settings
While the parameters for the Indexing topology should be modified via Ambari for persistence, there is a method
by which the topologies can be started via the command line on the Metron node and parameters easily modified
for testing. The commands below demonstrate how to create a copy of the Metron files for making changes quickly
during testing.

Procedure

1. From the user’s home directory, execute the following commands:

sudo cp /usr/hcp/current/metron/bin/start_elasticsearch_topology.sh ~
 sudo cp /usr/hcp/current/metron/config/elasticsearch.properties ~
 sed -i 's+$METRON_HOME/config/+/home/<user>/+g' ./
start_elasticsearch_topology.sh

2. Now, the variables can be edited outside of Ambari via the following command:

vi ~/elasticsearch.properties

3. To start the topology with the new variables, you must execute the following command:

~/start_elasticsearch_topology.sh

Tune Random Access Indexing Kafka Partitions
If the number of Kafka partitions was correctly calculated for the Indexing topic, then no modifications should be
required to the Kafka topic.

Tune Bulk Message Writing
The primary purpose of the Bulk Message Writing abstraction is to enable efficient writing to external components.
Because most HCP installation include a variety of sensors with different volumes and velocities, different sensors
need to be tuned differently.

Procedure

1. For high volume sensors, set batch sizes higher.

Configure high volume sensors with higher batch sizes (1000+ is recommended). Use logging to verify these
batches are filling up. The number of actual message written should match the batch size. Keep in mind that large
batch sizes also require more memory to hold messages. Streaming engines like Storm limit how many messages
can be processed at a time (the topology.max.spout.pending setting).

2. For low volume sensors, set batch timeouts lower.

20

HCP Tuning Guide Tuning a Random Access Indexing Topology

Low volume sensors may take longer to fill up a batch, especially if the batch size is set higher. This can be
undesirable because messages may stay cached for longer than necessary, consuming memory and increasing
latency for that sensor type.

A maxBatchTimeout is set at creation time and serves as the ceiling for a batch timeout. In Storm topologies,
this value is set to 1/2 the tuple timeout setting to ensure messages are always flushed before their tuples timeout.
After a batch is flushed, the batch timer is reset for that sensor type.

3. Allocate threads appropriately.

Each thread (executor in Storm) maintains its own message cache. Allocating too many threads will cause
messages to be spread too thin across separate caches and batches won't fill up completely. This should be
balanced with having enough threads to take advantage of any parallel write capability offered by the endpoint
that's being written to.

4. Watch for high write times.

Use logging to evaluate write timing. Unusually high write times can indicate that an endpoint is not configured
correctly or undersized.

Tune Random Access Indexing Elasticsearch Templates
Before tuning the Elasticsearch indexing topology, the Elasticsearch templates for the appropriate sensors should be
created and uploaded to Elasticsearch.

Procedure

1. Use a curl request to upload the Elasticsearch templates:

curl -X POST \
 http://<ES Master IP>:9200/_template/<sensor>_index \
 -H 'content-type: application/json' \
 -d <Template JSON>

{
 "template": "<sensor>_index*",
 "mappings": {
 "_default_": {
 "_all": {
 "enabled": "false"
 }
 },
 },
 "<sensor>_doc": {
 "dynamic_templates": [
 {
 "geo_location_point": {
 "match": "enrichments:geo:*:location_point",
 "match_mapping_type": "*",
 "mapping": {
 "type": "geo_point"
 }
 }
 },
 {
 "geo_country": {
 "match": "enrichments:geo:*:country",
 "match_mapping_type": "*",
 "mapping": {
 "type": "keyword"
 }
 }

21

HCP Tuning Guide Tuning a Random Access Indexing Topology

 },
 {
 "geo_city": {
 "match": "enrichments:geo:*:city",
 "match_mapping_type": "*",
 "mapping": {
 "type": "keyword"
 }
 }
 },
 {
 "geo_location_id": {
 "match": "enrichments:geo:*:locID",
 "match_mapping_type": "*",
 "mapping": {
 "type": "keyword"
 }
 }
 },
 {
 "geo_dma_code": {
 "match": "enrichments:geo:*:dmaCode",
 "match_mapping_type": "*",
 "mapping": {
 "type": "keyword"
 }
 }
 },
 {
 "geo_postal_code": {
 "match": "enrichments:geo:*:postalCode",
 "match_mapping_type": "*",
 "mapping": {
 "type": "keyword"
 }
 }
 },
 {
 "geo_latitude": {
 "match": "enrichments:geo:*:latitude",
 "match_mapping_type": "*",
 "mapping": {
 "type": "float"
 }
 }
 },
 {
 "geo_longitude": {
 "match": "enrichments:geo:*:longitude",
 "match_mapping_type": "*",
 "mapping": {
 "type": "float"
 }
 }
 },
 {
 "timestamps": {
 "match": "*:ts",
 "match_mapping_type": "*",
 "mapping": {
 "type": "date",
 "format": "epoch_millis"
 }
 }

22

HCP Tuning Guide Tuning a Random Access Indexing Topology

 },
 {
 "threat_triage_score": {
 "mapping": {
 "type": "float"
 },
 "match": "threat:triage:*score",
 "match_mapping_type": "*"
 }
 },
 {
 "threat_triage_reason": {
 "mapping": {
 "type": "text",
 "fielddata": "true"
 },
 "match": "threat:triage:rules:*:reason",
 "match_mapping_type": "*"
 }
 },
 {
 "threat_triage_name": {
 "mapping": {
 "type": "text",
 "fielddata": "true"
 },
 "match": "threat:triage:rules:*:name",
 "match_mapping_type": "*"
 }
 }
],
 "properties": {
 "timestamp": {
 "type": "date",
 "format": "epoch_millis"
 },
 "source:type": {
 "type": "text",
 "fielddata": "true"
 }
 "is_alert": {
 "type": "boolean"
 },
 "alert": {
 "type": "nested"
 }
 }
 }
 },
 "aliases": {},
 "settings": {
 "number_of_shards": 16,
 "number_of_replicas": 2
 }
 }

2. Modify the template to specify all other fields that can appear in an HCP event under the properties section:

…
 "ip_src_addr": {
 "type": "ip"
 },
 "ip_src_port": {

23

HCP Tuning Guide Tuning a Random Access Indexing Topology

 "type": "integer"
 },
 "action": {
 "type": "keyword"
 },
 "ciscotag": {
 "type": "keyword"
 }
 …

Note: It is very important for the specified type to be the minimum size required for the field. For
example, if you do not specify “int”, the value would be auto-detected as “long” which will consume more
system resources. If there is a string field, it is advised to specify it as “keyword” only and not “text”. See
the following link for full list of data types: https://www.elastic.co/guide/en/elasticsearch/reference/5.2/
mapping-types.html. Duplication of fields should be avoided as it can lead to large performance impacts
when indexing. Some consideration should also be given to the index.refresh_interval parameter in
Ambari. This specifies the interval at which Elasticsearch creates a new segment. Increasing this value can
improve indexing performance by allowing larger segments to flush and decreasing merge pressure.

Tune Random Access Indexing Core Storm Settings
You can set the number of Kafka spouts to match the number of Kafka partitions. You can also increase the number
of workers and ackers to match the Storm nodes, unless the estimated throughput for the parser is very low.

Procedure

1. Set the parser Storm settings using the enrichment.properties file.

vi ~/elasticsearch.properties

Storm
indexing.workers=3
indexing.acker.executors=3
topology.worker.childopts=
topology.auto-credentials=[]
topology.max-spout.pending=

 ...

kafka.start=LATEST

 ...

Parallelism
kafka.spout.parallelism=9

2. Set the Kafka Offset Strategy to LATEST to allow the Kafka topic to be written to continuously during testing so
when the parser is restarted, the topology will not be flooded with events.

kafka.start-LATEST

3. Alternatively, you can set the Kafka Offset Strategy to EARLIEST to determine the maximum throughput of the
topology though you should set Max Spout Pending to avoid errors..

kafka.start-EARLIEST

4. Increase the hdfs.writer.parallelism values in increments based on the number of workers.

24

https://www.elastic.co/guide/en/elasticsearch/reference/5.2/mapping-types.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.2/mapping-types.html

HCP Tuning Guide Tuning a Random Access Indexing Topology

For example, in the previous example, the parameters could be incremented by 3.

Parallelism
kafka.spout.parallelism=9
enrichment.split.parallelism=
enrichment.stellar.parallelism=
enrichment.join.parallelism=18
threat.intel.split.parallelism=
threat.intel.stellar.parallelism=
threat-intel.join-parallelism-18
kafka.writer.parallelism=9

5. As you increase the enrichment.join.parallelism, threat.intel.join.parallelism, and kafka.writer.parallelism values,
check the two Storm statistics, Capacity of the HDFS indexing component, the number of tuples acked in a 10-
minute window, and the complete latency.

For a given estimated throughput, the capacity should be no greater than ~0.800. This will allow for ~20%
overhead should the number of incoming events spike above the estimated average. If the capacity is above this
level, Parallelism and Num Tasks should be incremented and the topology restarted.

The number of acked tuples should be approximately equal to (Desired Throughput ×600) assuming the topology
has been active for at least 11 - 12 minutes. If the number of acked tuples and the capacity of the topology are both
low, there may not be enough Kafka partitions.

If the Storm UI is showing a capacity of ~0.800 or less, the Kafka consumer should be monitored to ensure that
there is no significant lag or buildup of messages for the parser. The command below shows an example of how
this can be monitored via the command line on a Kafka node:

cd /usr/hdp/current/kafka-broker/bin/

watch -n 2 ./kafka-run-class.sh kafka.tools.ConsumerOffsetChecker --
zookeeper
master01:2181 --topic indexing --group index-batch

25

HCP Tuning Guide Tuning a Random Access Indexing Topology

Tune Additional Random Access Indexing Storm Settings
After the number of executors has been determined and thoroughly tested, you can set or modify the last remaining
Storm parameters.

Procedure

1. Based on the capacity you've seen during testing, reduce the overall number of ackers.

Alternatively, you an leave a single acker per worker as it will ensure that there are no messages sent between
Storm workers over the network interface.

2. Set the Max Spout Pending parameter such that the maximum number of unacked tuples in the topology is close
to the Parser Executor capacity (for example, ~0.950).

If this is the case then it can be assured that if there is a large spike in incoming events, the topology will not
become overloaded. An example approach to determine this value would be to increase the producer events per
second by a large amount and test various values for Max Spout Pending. The value can be set under the Storm
settings of the relevant Parser.

vi ~/enrichment.properties

Storm
indexing.workers=3
indexing.acker.executors=3
topology.worker.childopts=
topology.auto-credentials=[]
topology.max-spout.pending=

3. Check the Executor capacity.

The executor capacity should not exceed ~0.950. Assuming the number of events generated by the producer is far
greater than the capacity of the Parser topology, capacity is the only value that needs to be monitored in the Storm
UI.

4. If you need to increase the Error Writer Num Executors value, you can directly modify the Flux file and include
the "parallelism" parameter under the appropriate Storm Bolt declarations.

sudo vi /usr/hcp/current/metron/flux/indexing/batch/remote.yaml

id: "indexingErrorOutputBolt"
className: "org.apache.metron.writer.bolt.BulkMesageWriterBolt"
constructorArgs:
 - "${kafka.zk}"
configMethods:
 - name: "withMessageWriter"
 args:
 - ref: "KafkaWriter"
parallelism: 3

Generally, since a small number of errors is expected, the Error Writer Num Executors value does not need to
be increased.

26

	Contents
	Performance Tuning Overview
	Tuning a Parser
	Tune Parser Kafka Partitions
	Storm Parser Parameters
	Tune Parser Core Storm Settings
	Tune Additional Parser Storm Settings

	Tuning an Enrichment Topology
	Test Enrichment Topology Settings
	Tune Enrichment Kafka Partitions
	Storm Enrichment Parameters
	Tune Enrichment Core Storm Settings
	Tune Additional Enrichment Storm Settings
	Modifying Enrichment Properties Using Flux (Advanced)

	Tuning a Batch Indexing Topology
	Test Batch Indexing Topology Settings
	Tune Batch Indexing Kafka Partitions
	Storm Index Parameters
	Tune Batch Indexing Core Storm Settings
	Tune Additional Batch Indexing Storm Settings
	Modifying Index Parameters Using Flux (Advanced)

	Tuning a Random Access Indexing Topology
	Test Random Access Indexing Topology Settings
	Tune Random Access Indexing Kafka Partitions
	Tune Bulk Message Writing
	Tune Random Access Indexing Elasticsearch Templates
	Tune Random Access Indexing Core Storm Settings
	Tune Additional Random Access Indexing Storm Settings

