
HCP Understanding Parsers 1

Understanding Parsing
Date of Publish: 2019-04-09

https://docs.hortonworks.com

https://docs.hortonworks.com

Contents

Understanding Parsers... 3
Java Parsers...3
General Purpose Parsers... 4
Parser Message Routing... 8
Parser Configuration... 8

Example: fieldTransformation Configuration.. 9

HCP Understanding Parsers Understanding Parsers

Understanding Parsers

Parsers are pluggable components that transform raw data (textual or raw bytes) into JSON messages suitable for
downstream enrichment and indexing.

Data flows through the parser bolt via Apache Kafka and into the enrichments topology in Apache Storm.

For example, for a Squid parser, NiFi ingests the contents of the Squid proxy access log, the parser transforms the
contents of the log, converts it to json, and inserts it into a Squid Kafka topic, which is then passed on to Metron.

HCP supports two types of parsers: general purpose and Java.

Errors are collected with the context of the error (for example, stacktrace) and the original message causing the error
and are sent to an error queue. Invalid messages as determined by global validation functions are also treated as errors
and sent to an error queue.

Java Parsers
The Java parser is written in Java and conforms with the MessageParser interface. This kind of parser is optimized for
speed and performance and is built for use with higher-velocity topologies.

Java parsers are not easily modifiable; to make changes to them, you must recompile the entire topology.

Currently, the Java adapters included with HCP are as follows:

• org.apache.metron.parsers.ise.BasicIseParser
• org.apache.metron.parsers.bro.BasicBroParser
• org.apache.metron.parsers.sourcefire.BasicSourcefireParser
• org.apache.metron.parsers.lancope.BasicLancopeParser
• org.apache.metron.parsers.syslog.Syslog5424Parser
• org.apache.metron.parsers.syslog.Syslog3164Parser
• org.apache.metron.parsers.cef.CEFParser
• org.apache.metron.parsers.leef.LEEFParser

3

HCP Understanding Parsers Understanding Parsers

General Purpose Parsers
The general-purpose parser is primarily designed for lower-velocity topologies or for quickly setting up a temporary
parser for a new telemetry.

General purpose parsers are defined using a config file, and you need not recompile the topology to change them.
HCP supports two general purpose parsers: Grok and CSV.

Grok parser

The Grok parser class name (parserClassName) is org.apache.metron,parsers.GrokParser.

The Grok parser supports either onw line to parse per incoming message, or incoming messages with multiple log
lines, and will produce a json message per line

Grok has the following entries and predefined patterns for parserConfig:

grokPath The path in HDFS (or in the Jar) to the grok statement.
By default attempts to load from HDFS, then falls back
to the classpath, and finally throws an exception if unable
to load a pattern.

patternLabel The pattern label to use from the Grok statement.

multiLine The raw data passed in should be handled as a long with
multiple lines, with each line to be parsed separately.
This setting's valid values are true or false. The default if
unset is false. When set, the parser will handle multiple
lines with successfully processed lines emitted normally,
and lines with errors sent to the error topic.

timestampField The field to use for timestamp. If your data does not
have a field exactly named "timestamp" this field is
required, otherwise the record will not pass validation. If
the timestampField is included in the list of timeFields, it
will first be parsed using the provided dateFormat.

timeFields A list of fields to be treated as time.

dateFormat The date format to use to parse the time fields. Default is
"yyyy-MM-dd HH:mm:ss.S z".

timezone The timezone to use. UTC is the default.

CSV Parser

The CSV parser class name (parserClassName) is org.apache.metron.parsers.csv.CSVParser

CSV has the following entries and predefined patterns for parserConfig:

timestampFormat The date format of the timestamp to use. If unspecified,
the parser assumes the timestamp is starts at UNIX
epoch.

columns A map of column names you wish to extract from
the CSV to their offsets. For example, { 'name' :
1,'profession' : 3} would be a column map for extracting
the 2nd and 4th columns from a CSV.

4

HCP Understanding Parsers Understanding Parsers

separator The column separator. The default value is ",".

JSON Map Parser

The JSON parser class name (parserClassName) is org.apache.metron.parsers.csv.JSONMapParser

JSON has the following entries and predefined patterns for parserConfig:

mapStrategy A strategy to indicate how to handle multi-dimensional
Maps. This is one of:

DROP Drop fields which contain
maps

UNFOLD Unfold inner maps.
So { "foo" : { "bar" :
1} } would turn into
{"foo.bar" : 1}

ALLOW Allow multidimensional
maps

ERROR Throw an error when a
multidimensional map is
encountered

timestamp This field is expected to exist and, if it does not, then
current time is inserted.

jsonQuery If this JSON query string is present, the result of the
query will be a list of messages. This is useful if you
have a JSON document that contains a list or array of
messages embedded in it, and you do not have another
means of splitting the message.

wrapInEntityArray This setting's valid values are true or false. If jsonQuery
is present and this flag is present and set to "true",
the incoming message will be wrapped in a JSON
entity and array. for example: {"name":"value"},
{"name2","value2"} will be wrapped as {"message" :
[{"name":"value"},{"name2","value2"}]}. This is using
the default value for wrapEntityName if that property is
not set.

wrapEntityName Sets the name to use when wrapping JSON using
wrapInEntityArray. The jsonpQuery should reference
this name. Only applicable if jsonpQuery and
wrapInEntityArray are specified.

timestamp A field called timestamp is expected to exist and, if it
does not, then current time is inserted.

overrideOriginalString A boolean setting that will change the way
original_string is handled by the parser. The default
value of false uses the global functionality that will
append the unmodified original raw source message
as an original_string field. This is the recommended
setting. Setting this option to true will use the

5

HCP Understanding Parsers Understanding Parsers

individual substrings returned by the json query as the
original_string. For example, a wrapped map such as
{"foo" : [{"name":"value"},{"name2","value2"}]} that
uses the jsonpQuery, $.foo, will result in 2 messages
returned. Using the default global original_string
strategy, the messages returned would be:

• { "name" : "value", "original_string" : "{\"foo\" :
[{\"name\":\"value\"},{\"name2\",\"value2\"}]}}

• { "name2" : "value2", "original_string" : "{\"foo\" :
[{\"name\":\"value\"},{\"name2\",\"value2\"}]}}

Setting this value to true would result in messages
with original_string set as follows:

• { "name" : "value", "original_string" : "{\"name\":
\"value\"}}

• { "name" : "value", "original_string" :
"{\"name2\":\"value2\"}}

One final important point to note, and word of caution
about setting this property to true, is about how JSON
PQuery handles parsing and searching the source
raw message - it will NOT retain a pure raw sub-
message. This is due to the JSON libraries under the
hood that normalize the JSON. The resulting generated
original_string values may have a different property
order and spacing. For example, { "foo" :"bar" ,
"baz":"bang"} would end up with an original_string that
looks more like { "baz" : "bang", "foo" : "bar" }.

Regular Expressions Parser

recordTypeRegex A regular expression to uniquely identify a record type.

messageHeaderRegex A regular expression used to extract fields from a
message part which is common across all the messages.

convertCamelCaseToUnderScore If this property is set to true, this parser will
automatically convert all the camel case property
names to underscore seperated. For example, following
conversions will automatically happen:

ipSrcAddr -> ip_src_addr
ipDstAddr -> ip_dst_addr
ipSrcPort -> ip_src_port

Note this property may be necessary, because java does
not support underscores in the named group names.
So in case your property naming conventions requires
underscores in property names, use this property.

fields A json list of maps contaning a record type to regular
expression mapping.

A complete configuration example looks like:

"convertCamelCaseToUnderScore": true,
"recordTypeRegex": "kernel|syslog",

6

HCP Understanding Parsers Understanding Parsers

"messageHeaderRegex": "(<syslogPriority>(<=^<)\\d{1,4}(?=>)).*?
(<timestamp>(<=>)[A-Za-z] {3}\\s{1,2}\\d{1,2}\\s\\d{1,2}:\\d{1,2}:\\d{1,2}(?
=\\s)).*?(<syslogHost>(<=\\s).*?(?=\\s))",
"fields": [
 {
 "recordType": "kernel",
 "regex": ".*(<eventInfo>(<=\\]|\\w\\:).*?(?=$))"
 },
 {
 "recordType": "syslog",
 "regex": ".*(<processid>(<=PID\\s=\\s).*?(?=\\sLine)).*(<filePath>(<=64\
\s)\/([A-Za-z0-9_-]+\/)+(?=\\w)) (<fileName>.*?(?=
\")).*(<eventInfo>(<=\").*?(?=$))"
 }
]

Note: messageHeaderRegex and regex (within fields) can be specified as lists also. For example:

"messageHeaderRegex": [
 "regular expression 1",
 "regular expression 2"
]

Where:

regular expression 1 Valid regular expressions that may have named groups
and which would be extracted into fields. This list will be
evaluated in order until a matching regular expression is
found.

messageHeaderRegex Run on all the messages. All messages are expected to
contain the fields which are being extracted using the
messageHeaderRegex. messageHeaderRegex is a sort of
HCF (highest common factor) in all messages.

recordTypeRegex can be a more advanced regular expression containing named goups. For example:

"recordTypeRegex": "(<process>(<=\s)\b(kernel|syslog)\b(?=\[|:))"

All the named groups will be extracted as fields.

Though having named group in recordType is completely optional, you might want to extract named groups in
recordType for following reasons:

• Because recordType regular expression is already getting matched and you are paying the price for a regular
expression match already, you can extract certain fields as a by product of this match.

• The recordType field is probably common across all the messages. So, having it extracted in the recordType (or
messageHeaderRegex) would reduce the overall complexity of regular expressions in the regex field.

regex within a field can also be a list of regular expressions. In this case all regular expressions in the list will be
matched. Once a full match is found, remaining regular expressions are ignored.

"regex": ["record type specific regular expression 1",
 "record type specific regular expression 2"]

timestamp Because this parser is a general purpose parser, it
will populate the timestamp field with current UTC
timestamp. Actual timestamp value can be overridden
later using stellar. For example in case of syslog

7

HCP Understanding Parsers Understanding Parsers

timestamps, you can use following stellar construct to
override the timestamp value. Let us say you parsed
actual timestamp from the raw log:

<38>Jun 20 15:01:17 hostName
 sshd[11672]: Accepted publickey for
 prod from 55.55.55.55 port 66666
 ssh2

syslogTimestamp="Jun 20 15:01:17"

Then something like the following can be used to
override the timestamp:

"timestamp_str": "FORMAT('%s%s%s',
 YEAR(),' ',syslogTimestamp)",
"timestamp":"TO_EPOCH_TIMESTAMP(timestamp_str,
 'yyyy MMM dd HH:mm:ss')"

Or, if you want to factor in the timezone:

"timestamp":"TO_EPOCH_TIMESTAMP(timestamp_str,
 timestamp_format, timezone_name)"

Parser Message Routing
Parser messages are routed to the Kafka enrichment topic by default.

You can change the output topic with the output_topic option when starting the parser topology or with the
outputTopic parser configuration setting. The order of precedence from highest to lowest is as follows:

• Parser start script option
• Paser configuration setting
• Default enrichments topic

You can also route the message to other locations besides Kafka with the writerClassName parser configuration
setting. Messages can be routed independently for each sensor type when configured with parser configuration
settings.

Parser Configuration
The configuration for the various parser topologies is defined by JSON documents stored in ZooKeeper.

The JSON document consists of the following attributes:

parserClassName The fully qualified class name for the parser to be used.

sensorTopic The Kafka topic to send the parsed messages to.

parserConfig A JSON Map representing the parser implementation
specific configuration.

fieldTransformations An array of complex objects representing the
transformations to be done on the message generated
from the parser before writing out to the Kafka topic.

8

HCP Understanding Parsers Understanding Parsers

The fieldTransformations is a complex object which
defines a transformation that can be done to a message.
This transformation can perform the following:

• Modify existing fields to a message
• Add new fields given the values of existing fields of a

message
• Remove existing fields of a message

Example: fieldTransformation Configuration
The fieldTransformation is a complex object which defines a transformation that can be done to a message.

In this example, the host name is extracted from the URL by way of the URL_TO_HOST function. Domain names
are removed by using DOMAIN_REMOVE_SUBDOMAINS, thereby creating two new fields (full_hostname and
domain_without_subdomains) and adding them to each message.

Configuration File with Transformation Information

The format of a fieldTransformation is as follows:

input An array of fields or a single field representing the input.
This is optional; if unspecified, then the whole message
is passed as input.

output The outputs to produce from the transformation. If
unspecified, it is assumed to be the same as inputs.

transformation The fully qualified class name of the transformation
to be used. This is either a class which implements
FieldTransformation or a member of the
FieldTransformations enum.

9

HCP Understanding Parsers Understanding Parsers

config A String to Object map of transformation specific
configuration.

HCP currently implements the following fieldTransformations options:

REMOVE This transformation removes the specified input fields. If
you want a conditional removal, you can pass a Metron
Query Language statement to define the conditions under
which you want to remove the fields.

The following example removes field1 unconditionally:

{
...
 "fieldTransformations" : [
 {
 "input" : "field1"
 , "transformation" :
 "REMOVE"
 }
]
}

The following example removes field1 whenever field2
exists and has a corresponding value equal to 'foo':

{
...
 "fieldTransformations" : [
 {
 "input" : "field1"
 , "transformation" :
 "REMOVE"
 , "config" : {
 "condition" :
 "exists(field2) and field2 ==
 'foo'"
 }
 }
]
}

IP_PROTOCOL This transformation maps IANA protocol numbers to
consistent string representations.

The following example maps the protocol field to a
textual representation of the protocol:

{
...
 "fieldTransformations" : [
 {
 "input" : "protocol"
 , "transformation" :
 "IP_PROTOCOL"
 }
]
}

10

HCP Understanding Parsers Understanding Parsers

STELLAR

lo
This transformation executes a set of transformations
expressed as Stellar Language statements.

The following example adds three new fields to a
message:

utc_timestamp The UNIX epoch
timestamp based on the
timestamp field, a dc field
which is the data center the
message comes from and
a dc2tz map mapping data
centers to timezones.

url_host The host associated with
the url in the url field.

url_protocol The protocol associated
with the url in the url field.

{
...
 "fieldTransformations" : [
 {
 "transformation" :
 "STELLAR"
 ,"output" :
 ["utc_timestamp", "url_host",
 "url_protocol"]
 ,"config" : {
 "utc_timestamp" :
 "TO_EPOCH_TIMESTAMP(timestamp,
 'yyyy-MM-dd
HH:mm:ss', MAP_GET(dc, dc2tz,
 'UTC'))"
 ,"url_host" :
 "URL_TO_HOST(url)"
 ,"url_protocol" :
 "URL_TO_PROTOCOL(url)"
 }
 }
]
 ,"parserConfig" : {
 "dc2tz" : {
 "nyc" : "EST"
 ,"la" : "PST"
 ,"london" : "UTC"
 }
 }
}

Note that the dc2tz map is in the parser config, so it is
accessible in the functions.

11

	Contents
	Understanding Parsers
	Java Parsers
	General Purpose Parsers
	Parser Message Routing
	Parser Configuration
	Example: fieldTransformation Configuration

