Hortonworks DataFlow

MiNiFi Java Agent Administration

(July 27, 2017)

http://docs.cloudera.com

Hortonworks DataFlow

July 27, 2017

Hortonworks DataFlow: MiNiFi Java Agent Administration
Copyright © 2012-2017 Hortonworks, Inc. Some rights reserved.

@ @ Except where otherwise noted, this document is licensed under
@ Creative Commons Attribution ShareAlike 4.0 License.
BY SA

http://creativecommons.org/licenses/by-sa/4.0/legalcode

http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks DataFlow

July 27, 2017

Table of Contents

1. MiNiFi System Administrator's GUIAEueuueiiiiimimiiiiiiiiiiiniieeeereereeeeere e nenererenenenes 1
1.1. Automatic Warm-Redeployccoeiiiiiiiiiiiiiiiiiiiiieiieieeteeee e 1
1.1.1. FileChangelngestorcoouiiiiiiiiii 1
1.1.2. RestChangelngestorcoouii i 2
1.1.3. PUllHttpChangelNgestorccooiiiiieie i 3

1.2. Status Reporting and QUEIYINGccooeiiiiiiieiie s 3
1.2.1. FlowStatus SCript QUENYoooieieie e 3
1.2.2. Periodic Status REPOITEISuuiiiiiiiiiiiiiiiiiiiieiiieeeeeeeeaasaeeseeeeeeseessnssssnnennnes 4
1.2.3. FlowStatus QUery OPtiONSceevririiiiiiimiiiiimiiiiiiiieeeeeeeeee e e e eeeeeees 5

1.3 CONTIG FIlE e 8
1.3.71. VEISIONING ..tttiiiiiiiiiiiiiiieiee e ee s b s e nnnnnnnnne 8
1.3.2. FIow CONtrollerccooiiiiiiiiiiei e 8

I T8 T @0 TN o o o= =PSRRI 9
1.3.4. FIoWFile REPOSILOIY ...ccoiiiiiiiiiiiiiieie e 9
1.3.5. CONENt REPOSITOIY ..oeeviiiiiiiiiiiiiiiiiiiiie ettt 10
1.3.6. Provenance REPOSITONYcouiuuuiiiii it 10
1.3.7. Component Status REPOSITONYcceviuueiiiiiiiiiiiiicee e 10
1.3.8. SeCUrity Properti€sccouuuuiiiiiieiiciiiie e e e e e e eeeeees 11
1.3.9. PrOCESSOIS ...uiiiiieeiie ittt et et e e e e e e e e e e e e e e ea e e r s e e e eennenen 12
1.3.70. ProCeSS GIrOUPS ...cevuueeeennareennieaeinniseeeenseerana e e e ren s e eraneeennnaeeennnas 13
[P0 70 I I 1 o U ol =] o PPN 14
1.3.712. OULPUL POIES ..o e e e e e e 14
1.3.13. FUNNEIS <. e e et e e e e e eeeees 14
1.3.14. CONNECLIONS ...ieiieieiiie et e e e e e e e e e e e e e e e e e nnn e eeas 14
1.3.15. Remote ProCess GrOUPSc.uiiruieruiernierieeeee e eei e e s e e e s e e e eeneeeen 15
1.3.16. Provenance REPOITINGcooeiiiiimiiuiiieeeeeceieii e e e e e e e e e e e e eeenenas 16

1.4. Example Config Fileccooeeeeeeeeeeeeee e 17

Hortonworks DataFlow July 27, 2017

1. MiNiFi System Administrator's Guide
1.1. Automatic Warm-Redeploy

When many MiNiFi agents running on the edge, it may not be possible to manually stop,
edit the config.yml and then restart every one every time their configuration needs to
change. The Config Change Coordinator and its Ingestors were designed to automatically
redeploy in response to a configuration update.

The Config Change Ingestors are the means by which the agent is notified of a potential
new configuration. Currently there are three:

* FileChangelngestor
» RestChangelngestor
* PullHttpChangelngestor

After a new configuration has been pulled/received the Ingestors use a Differentiator

in order to determine if the currently running config is different than the new config.
Which Differentiator is used, is configurable for each Ingestor. Currently there is only one
Differentiator:

* WholeConfigDifferentiator: Compares the entire new config with the currently running
one, byte for byte.

After a new config is determined to be new, the MiNiFi agent will attempt to restart. The
bootstrap first saves the old config into a swap file. The bootstrap monitors the agent as it
restarts and if it fails it will roll back to the old config. If it succeeds then the swap file will
be deleted and the agent will start processing using the new config.

Note: Data left in connections when the agent attempts to restart will either be mapped to
a connection with the same ID in the new config, or orphaned and deleted.

The configuration for Warm-Redeploy is done in the bootstrap.conf and primarily revolve
around the Config Change Ingestors. The configuration in the bootstrap.conf is done using
the "nifi.minifi.notifier.ingestors" key followed by the full path name of the desired Ingestor
implementation to run. Use a comma separated list to define more than one Ingestor
implementation. For example:

nifi.mnifi.notifier.ingestors=org.apache.nifi.mnifi.bootstrap.configuration.
i ngestors. Pul | Ht t pChangel ngest or

Ingestor specific configuration is also necessary and done in the bootstrap.conf as well.
Specifics for each are detailed below.

1.1.1. FileChangelngestor

class name: org.apache.nifi.minifi.bootstrap.configuration.ingestors.FileChangelngestor

This Config Change Ingestor watches a file and when the file is updated, the file is ingested
as a new config.

Hortonworks DataFlow

July 27, 2017

Note: The config file path configured here and in "nifi.minifi.config" cannot be the same.
This is due to the swapping mechanism and other implementation limitations.

Below are the configuration options. The file config path is the only required property.

Option Description

nifi.minifi.notifier.ingestors.file.config.path Path of the file to monitor for changes. When these
occur, the FileChangeNotifier, if configured, will begin the
configuration reloading process

nifi.minifi.notifier.ingestors.file.polling.period.seconds How frequently the file specified by
"nifi.minifi.notifier.file.config.path' should be evaluated
for changes. If not set then a default polling period of 15
seconds will be used.

nifi.minifi.notifier.ingestors.file.differentiator Which differentiator to use. If not set then it uses the
WholeConfigDifferentiator as a default.

1.1.2. RestChangelngestor

class name: org.apache.nifi.minifi.bootstrap.configuration.ingestors.RestChangelngestor

This Config Change Ingestor sets up a light-weight Jetty HTTP(S) REST service in order to
listen to HTTP(S) requests. A potential new configuration is sent via a POST request with
the BODY being the potential new config.

Note: The encoding is expected to be Unicode and the exact version specified by the BOM
mark ('UTF-8','UTF-16BE' or 'UTF-16LE"). If there is no BOM mark, then UTF-8 is used.

Here is an example post request using 'curl' hitting the local machine on pot 8338 and it is
executed with the config file "config.yml" in the directory the command is run from:

curl --request POST --data-binary "@onfig.ym " http://|ocal host: 8338/

Below are the configuration options. There are no required options. If no properties are set
then the server will bind to hostname "localhost" on a random open port, will only connect
via HTTP and will use the WholeConfigDifferentiator.

Option Description

nifi.minifi.notifier.ingestors.receive.http.host Hostname on which the Jetty server will bind to. If not
specified then it will bind to localhost.

nifi.minifi.notifier.ingestors.receive.http.port Port on which the Jetty server will bind to. If not specified
then it will bind to a random open port.

nifi.minifi.notifier.ingestors.receive.http.truststore.location | If using HTTPS, this specifies the location of the truststore.

nifi.minifi.notifier.ingestors.receive.http.truststore.passwordIf using HTTPS, this specifies the password of the
truststore.

nifi.minifi.notifier.ingestors.receive.http.truststore.type If using HTTPS, this specifies the type of the truststore.

nifi.minifi.notifier.ingestors.receive.http.keystore.location | If using HTTPS, this specifies the location of the keystore.

nifi.minifi.notifier.ingestors.receive.http.keystore.password | If using HTTPS, this specifies the password of the keystore.

nifi.minifi.notifier.ingestors.receive.http.keystore.type If using HTTPS, this specifies the type of the keystore.

nifi.minifi.notifier.ingestors.receive.http.need.client.auth | If using HTTPS, this specifies whether or not to require
client authentication.

nifi.minifi.notifier.ingestors.receive.http.differentiator Which differentiator to use. If not set then it uses the
WholeConfigDifferentiator as a default.

Hortonworks DataFlow July 27, 2017

1.1.3. PullHttpChangelngestor

class name:
org.apache.nifi.minifi.bootstrap.configuration.ingestors.PullHttpChangelngestor

This Config Change Ingestor periodically sends a GET request to a REST endpoint using
HTTP(S) to order to pull the potential new config.

Below are the configuration options. The hostname and port are the only required

properties.
Option Description
nifi.minifi.notifier.ingestors.pull.http.hostname Hostname on which to pull configurations from
nifi.minifi.notifier.ingestors.pull.http.port Port on which to pull configurations from
nifi.minifi.notifier.ingestors.pull.http.path Path on which to pull configurations from
nifi.minifi.notifier.ingestors.pull.http.period.ms Period on which to pull configurations from, defaults to 5
minutes if not set.
nifi.minifi.notifier.ingestors.pull.http.use.etag If the destination server is set up with cache control ability

and utilizes an "ETag" header, then this should be set to
true to utilize it. Very simply, the Ingestor remembers
the "ETag" of the last successful pull (returned 200) then
uses that "ETag" in a "If-None-Match" header on the next
request.

nifi.minifi.notifier.ingestors.pull.http.connect.timeout.ms | Sets the connect timeout for new connections. A value of
0 means no timeout, otherwise values must be a positive
whole number in milliseconds.

nifi.minifi.notifier.ingestors.pull.http.read.timeout.ms Sets the read timeout for new connections. A value of 0
means no timeout, otherwise values must be a positive
whole number in milliseconds.

nifi.minifi.notifier.ingestors.pull.http.truststore.location If using HTTPS, this specifies the location of the truststore.
nifi.minifi.notifier.ingestors.pull.http.truststore.password | If using HTTPS, this specifies the password of the
truststore.
nifi.minifi.notifier.ingestors.pull.http.truststore.type If using HTTPS, this specifies the type of the truststore.
nifi.minifi.notifier.ingestors.pull.http.keystore.location If using HTTPS, this specifies the location of the keystore.
nifi.minifi.notifier.ingestors.pull.http.keystore.password If using HTTPS, this specifies the password of the keystore.
nifi.minifi.notifier.ingestors.pull.http.keystore.type If using HTTPS, this specifies the type of the keystore.
nifi.minifi.notifier.ingestors.pull.http.differentiator Which differentiator to use. If not set then it uses the

WholeConfigDifferentiator as a default.

1.2. Status Reporting and Querying

In NiFi there is a lot of information, such as stats and bulletins, that is only available to view
through the Ul. MiNiFi provides access to this information through a query mechanism. You
can query FlowStatus either using the MiNiFi.sh script or by configuring one of the Periodic
Status Reporters. The API for the query is the same for the reporters and the "flowStatus"
script option. The APl is outlined in the "FlowStatus Query Options" section below.

1.2.1. FlowStatus Script Query

From the minifi.sh script, you can manually query to get the current status of your
dataflow. The following is an example of a minifi.sh query you might run to view health,

Hortonworks DataFlow July 27, 2017

stats, and bulletins for the TailFile processor. This query returns information to your
command-line.

mnifi.sh flowStatus processor: Tail File:health,stats, bulletins

Currently the script only accepts one high level option at a time. Also any names of
connections, remote process groups, or processors that contain " " (a space), ":", ";" or ","
cause parsing errors when querying.

1.2.2. Periodic Status Reporters

1.2.2.1.

You can set up Periodic Status Reporters to periodically report the status of your dataflow.
The query executes at configurable intervals and the results are reported using the
configured implementation. Configure the Reporters in the bootstrap.conf file, using the
"nifi.minifi.status.reporter.components" key followed by the full path name of the desired
Reporter implementation to run. Use a comma separated list to define more than one
Reporter implementation. For example:

nifi.mnifi.status.reporter.conponents=org.apache.nifi.mnifi.bootstrap.
status.reporters. StatusLogger

StatusLogger
class name: org.apache.nifi.minifi.bootstrap.status.reporters.StatusLogger

The Periodic Status Reporter logs the results of the query to the logs. By default it is logged
to the minifi-bootstrap.log but you can modify logback.xml to log to an alternate file and
location.

Option Description
nifi.minifi.status.reporter.log.query The FlowStatus query to run.
nifi.minifi.status.reporter.log.level The log level at which to log the status. Available options

are "TRACE", "DEBUG", "INFO", "WARN" and "ERROR".

nifi.minifi.status.reporter.log.period The delay (in milliseconds) between each query.

Example bootstrap.conf configuration:

The FlowStatus query to submit to the M N Fi instance
nifi.mnifi.status.reporter.|og.query=instance: heal th, bull etins
The log |l evel at which the status will be | ogged
nifi.mnifi.status.reporter.|og.!|evel =I NFO

The period (in mlliseconds) at which to |og the status
nifi.mnifi.status.reporter.|og. peri od=60000

Example logback.xml configuration to output the status to its own rolling log file:

<appender nanme="STATUS LOG FILE" cl ass="ch. gos. | ogback. core.rolling.
Rol | i ngFi | eAppender " >
<file>l ogs/mnifi-status.|og</file>
<rol lingPol icy class="ch. gos. | ogback. core.rolling.Ti reBasedRol | i ngPol i cy" >
<l--
For daily rollover, use 'user_%d.|og".
For hourly rollover, use 'user_ %ad{yyyy-Midd_HH} .l og'.
To GZIP rolled files, replace '.log" with '.log.gz'.
To ZIP rolled files, replace '".log" with '.log.zip'.
-->

Hortonworks DataFlow July 27, 2017

<fil eNanePattern>./l ogs/mnifi-status_%. | og</fil eNamePattern>
<I-- keep 5 1log files worth of history -->
<maxHi st or y>5</ maxHi st ory>

</rollingPolicy>
<encoder cl ass="ch. qos. | oghack. cl assi c. encoder. Pat t er nLayout Encoder " >

<pattern>%late % evel [% hread] % ogger{40} %rsg¥%m</pattern>
</ encoder >
</ appender >

<l ogger name="org. apache.nifi.mnifi.bootstrap.status.reporters. StatusLogger"

| evel ="I NFO' additivity="fal se">
<appender -ref ref="STATUS LOG FILE" />

</| ogger >

1.2.3. FlowStatus Query Options

This section outlines each option to query the MiNiFi instance for the FlowStatus.

1.2.3.1. Processors

To query the processors use the "processor" flag followed by the processor ID to get (or
"all") followed by one of the processor options. The processor options are below.

Option Description

health The processor's run status, whether or not it has bulletins
and the validation errors (if there are any).

bulletins A list of all the current bulletins (if there are any).

The current stats of the processor. This includes but is not

stats
limited to active threads and FlowFiles sent/received.

An example query to get the health, bulletins and stats of the "TailFile" processor is below.
mnifi.sh flowStatus processor:Tail File: health,stats, bulletins

1.2.3.2. Connections

To query the connections use the "connection" flag followed by the connection ID to get (or
"all") followed by one of the connection options. The connection options are below.

Option Description
health The connections's queued bytes and queued FlowfFile
count.

The current stats of the connection. This includes input/

stats
output count and input/output bytes.

An example query to get the health and stats of the "TailToS2S" connection is below.

mnifi.sh flowStatus connection: Tail ToS2S: heal th, stats

1.2.3.3. Remote Process Groups

To query the remote process groups (RPG) use the "remoteProcessGroup" flag followed
by the RPG ID to get (or "all") followed by one of the remote process group options. The
remote process group options are below.

Hortonworks DataFlow July 27, 2017

1.2.3.4.

1.2.3.5.

1.2.3.6.

Option Description

health The connections's queued bytes and queued FlowFile
count.

bulletins A list of all the current bulletins (if there are any).

inputPorts A list of every input port for this RPG and their status.

Their status includes it's name, whether the target exit and
whether it's currently running.

stats The current stats of the RPG. This includes the active
threads, sent content size and count.

An example query to get the health, bulletins, input ports and stats of all the RPGS is
below.

mnifi.sh fl owStatus renoteprocessgroup: all:health,bulletins,inputports, stats

Controller Services

To query the controller services use the "controllerServices" flag followed by one of the
controller service options. The controller service options are below.

Option Description

health The controller service's state, whether or not it has
bulletins and any validation errors.

bulletins A list of all the current bulletins (if there are any).

An example query to get the health and bulletins of all the controller services is below.

mnifi.sh fl owStatus control |l erservices: health, bull etins

Provenance Reporting

To query the status of the provenance reporting use the "provenancereporting" flag
followed by one of the provenance reporting options. The provenance reporting options
are below.

Option Description

health The provenance reporting state, active threads, whether
or not it has bulletins and any validation errors.

bulletins A list of all the current bulletins (if there are any).

An example query to get the health and bulletins of the provenance reporting is below.

m nifi.sh fl owStatus provenancereporting: health, bulletins

Instance

To query the status of the MiNiFi instance use the "instance" flag followed by one of the
instance options. The instance options are below.

Option Description

health The provenance reporting state, active threads, whether
or not it has bulletins and any validation errors.

bulletins A list of all the current bulletins (if there are any).

stats The current stats of the instance. This including but
not limited to bytes read/written and FlowfFiles sent/
transferred.

Hortonworks DataFlow July 27, 2017

An example query to get the health, stats and bulletins of the instance is below.

mnifi.sh fl owStatus instance: health, stats, bulletins

1.2.3.7. System Diagnostics

To query the system diagnostics use the "systemdiagnostics" flag followed by one of the
system diagnostics options. The system diagnostics options are below.

Option Description

heap Information detailing the state of the JVM heap.

processorstats The system processor stats. This includes the available
processors and load average.

contentrepositoryusage A list of each content repository and stats detailing its
usage.

flowfilerepositoryusage Stats about the current usage of the FlowFile repository.

garbagecollection A list of the garbage collection events, detailing their

name, collection count and time.

An example query to get the heap, processor stats, content repository usage, FlowFile
repository usage and garbage collection from the system diagnostics is below.

mnifi.sh fl owStatus systendi agnosti cs: heap, processor st at s,
cont ent reposi t oryusage, fl owf i | er eposi t or yusage, gar bagecol | ecti on

1.2.3.8. Example

This is an example of a simple query to get the health of all the processors and its results
from a simple flow:

User:mnifi-0.0.1- SNAPSHOT user ./bin/mnifi.sh flowStatus
processor:all:health

Java hone: /Library/Javal/ JavaVirtual Machi nes/j dkl. 8. 0_74.j dk/ Cont ent s/ Hone
M N Fi home: /Users/user/projects/nifi-minifi/mnifi-assenbly/target/mnifi-O0.
0. 1- SNAPSHOT- bi n/ mi ni fi - 0. 0. 1- SNAPSHOT

Bootstrap Config File: /Users/user/projects/nifi-mnifi/mnifi-assenbly/
target/ mnifi-0.0.1- SNAPSHOT- bi n/ m ni fi-0. 0. 1- SNAPSHOT/ conf / boot st r ap. conf

{"control | erServi ceStatusList": null,"processor StatusList":

[{"nane": " Connection Di agnostics", "processorHeal th": {"runStatus":"Runni ng",
"hasBul | etins": fal se,"validationErrorList":[]},"processorStats":null,
"bulletinList":null}, {"nane": "UpdateAttribute", "processorHeal th":
{"runStatus": " Runni ng", "hasBul | eti ns": fal se,"validationErrorlList":

[1},"processorStats":null,"bulletinList":null},{"nanme":"Processor
Di agnostics", "processorHeal th": {"runStatus": " Runni ng", "hasBul | eti ns": fal se,
"validationErrorList":[]},"processorStats":null,"bulletinList":null},

{"nane": " System Di agnhosti cs", "processorHeal th": {"runSt atus":"Runni ng",
"hasBul | eti ns": fal se,"validationErrorList":[]},"processorStats":null,
"bul l etinList":null}, {"name": " Generat eFl owFi | e", "processor Heal t h":
{"runStatus": "Runni ng", "hasBul | etins":fal se,"validationErrorList":[]},

"processorStats":null,"bulletinList":null}],"connectionStatusList": null,
"renot eProcessG oupStatusList":null,"instanceStatus": null,
"syst enDi agnosti csStatus": null,"reportingTaskStatusList”: null,

"errorsGeneratingReport":[]}

Hortonworks DataFlow July 27, 2017

1.3. Config File

The config.yml in the conf directory is the main configuration file for controlling how MiNiFi
runs. This section provides an overview of the properties in this file. The file is a YAML and
follows the YAML format laid out here.

Alternatively, the MiNiFi Toolkit Converter can aid in creating a config.yml from a
generated template exported from a NiFi instance. This tool can be downloaded from
http://nifi.apache.org/minifi/download.html under the M Ni Fi Tool kit Bi nari es
section. Information on the toolkit's usage is available at https://nifi.apache.org/minifi/
minifi-toolkit.html.

Note: Values for periods of time and data sizes must include the unit of measure, for
example "10 sec" or "10 MB", not simply "10".

1.3.1. Versioning

1.3.1.1.

1.3.1.2.

The "MiNiFi Config Version" property is used to indicate to the configuration parser which
version of the config file it is looking at. If the property is empty or missing, version 1 is
assumed.

The MiNiFi Toolkit Converter is capable of parsing previous versions (possibly subject to a

future deprecation policy) and writing out the current version. It can also validate that a
given config file parses and upconverts to the current version without issue.

Version 1 -> Version 2 changes

1. Use ids instead of names for processors, connections.

2. Allow multiple source relationships for connections.

3. Added support for process groups, and internal input ports an output ports.

4. Change Id Key for RPGs from "Remote Processing Groups" to the proper "Remote Process
Groups" (not "ing").

Version 2 -> Version 3 changes

1. Added support for Controller Services.

2. Added support for Site-To-Site over proxy.

1.3.2. Flow Controller

The first section of config.yml is for naming and commenting on the file.

Property Description

MiNiFi Config Version The version of the configuration file. The default value if
this property is missing or empty is 1, the current value is 2.

name The name of the file.

http://www.yaml.org/
http://nifi.apache.org/minifi/download.html
https://nifi.apache.org/minifi/minifi-toolkit.html
https://nifi.apache.org/minifi/minifi-toolkit.html

Hortonworks DataFlow

July 27, 2017

Property

Description

comment

A comment describing the usage of this config file.

1.3.3. Core Properties

The Core Properties section applies to the core framework as a whole.

Property

Description

flow controller graceful shutdown period

Indicates the shutdown period. The default value is 10 sec.

flow service write delay interval

When many changes are made to the flow.xml, this
property specifies how long to wait before writing out the
changes, so as to batch the changes into a single write.
The default value is 500 ms.

administrative yield duration

If a component allows an unexpected exception to escape,
it is considered a bug. As a result, the framework will
pause (or administratively yield) the component for this
amount of time. This is done so that the component does
not use up massive amounts of system resources, since it is
known to have problems in the existing state. The default
value is 30 sec.

bored yield duration

When a component has no work to do (i.e., is "bored"),
this is the amount of time it will wait before checking to
see if it has new data to work on. This way, it does not use
up CPU resources by checking for new work too often.
When setting this property, be aware that it could add
extra latency for components that do not constantly have
work to do, as once they go into this "bored" state, they
will wait this amount of time before checking for more
work. The default value is 10 millis.

max concurrent threads

The maximum number of threads any processor can have
running at one time.

1.3.4. FlowFile Repository

The FlowFile repository keeps track of the attributes and current state of each FlowFile
in the system. By default, this repository is installed in the same root installation directory
as all the other repositories; however, it is advisable to configure it on a separate drive if

available.
Property Description
partitions The number of partitions. The default value is 256.

checkpoint interval

The FlowFile Repository checkpoint interval. The default
value is 2 mins.

always sync

If set to true, any change to the repository will be
synchronized to the disk, meaning that NiFi will ask the
operating system not to cache the information. This is very
expensive and can significantly reduce NiFi performance.
However, if it is false, there could be the potential for data
loss if either there is a sudden power loss or the operating
system crashes. The default value is false.

1.3.4.1. Swap Subsection

A part of the FlowFile Repository section there is a Swap subsection.

Hortonworks DataFlow July 27, 2017

NiFi keeps FlowFile information in memory (the JVM) but during surges of incoming data,
the FlowFile information can start to take up so much of the JVM that system performance
suffers. To counteract this effect, NiFi "swaps" the FlowFile information to disk temporarily
until more JVM space becomes available again. The "Swap" subsection of properties govern
how that process occurs.

Property Description

threshold The queue threshold at which NiFi starts to swap FlowFile
information to disk. The default value is 20000.

in period The swap in period. The default value is 5 sec.

in threads The number of threads to use for swapping in. The default
value is 1.

out period The swap out period. The default value is 5 sec.

out threads The number of threads to use for swapping out. The

default value is 4.

1.3.5. Content Repository

The Content Repository holds the content for all the FlowFiles in the system. By default,

it is installed in the same root installation directory as all the other repositories; however,
administrators will likely want to configure it on a separate drive if available. If nothing
else, it is best if the Content Repository is not on the same drive as the FlowFile Repository.
In dataflows that handle a large amount of data, the Content Repository could fill up a
disk and the FlowFile Repository, if also on that disk, could become corrupt. To avoid this
situation, configure these repositories on different drives.

Property Description

content claim max appendable size The maximum size for a content claim. The default value is
10 MB.

content claim max flow files The maximum number of FlowFiles to assign to one

content claim. The default value is 100.

always sync If set to true, any change to the repository will be
synchronized to the disk, meaning that NiFi will ask the
operating system not to cache the information. This is very
expensive and can significantly reduce NiFi performance.
However, if it is false, there could be the potential for data
loss if either there is a sudden power loss or the operating
system crashes. The default value is false.

1.3.6. Provenance Repository

Property Description

provenance rollover time The amount of time to wait before rolling over the latest
data provenance information so that it is available to be
accessed by components. The default value is 1 min.

1.3.7. Component Status Repository

The Component Status Repository contains the information for the Component Status
History tool in the User Interface. These properties govern how that tool works.

10

Hortonworks DataFlow July 27, 2017

The buffer.size and snapshot.frequency work together to determine the amount of
historical data to retain. As an example to configure two days worth of historical data with
a data point snapshot occurring every 5 minutes you would configure snapshot.frequency
to be "5 mins" and the buffer.size to be "576". To further explain this example for every 60
minutes there are 12 (60 / 5) snapshot windows for that time period. To keep that data for
48 hours (12 * 48) you end up with a buffer size of 576.

Property Description

buffer size Specifies the buffer size for the Component Status
Repository. The default value is 1440.

snapshot frequency This value indicates how often to present a snapshot of
the components' status history. The default value is 1 min.

1.3.8. Security Properties

These properties pertain to various security features in NiFi. Many of these properties are
covered in more detail in the Security Configuration section of this Administrator's Guide.

Property Description

keystore The full path and name of the keystore. It is blank by
default.

keystore type The keystore type. It is blank by default.

keystore password The keystore password. It is blank by default.

key password The key password. It is blank by default.

truststore The full path and name of the truststore. It is blank by
default.

truststore type The truststore type. It is blank by default.

truststore password The truststore password. It is blank by default.

ssl protocol The protocol to use when communicating via https.
Necessary to transfer provenance securely.

Note: A StandardSSLContextService will be made automatically with the ID "SSL-Context-
Service" if "ssl protocol" is configured.

1.3.8.1. Sensitive Properties Subsection

Some properties for processors are marked as sensitive and should be encrypted. These
following properties will be used to encrypt the properties while in use by MiNiFi. This will
currently not be used to encrypt properties in the config file.

Property Description

key This is the password used to encrypt any sensitive property
values that are configured in processors. By default, it

is blank, but the system administrator should provide a
value for it. It can be a string of any length, although the
recommended minimum length is 10 characters. Be aware
that once this password is set and one or more sensitive
processor properties have been configured, this password
should not be changed.

algorithm The algorithm used to encrypt sensitive properties. The
default value is PBEW THVD5AND256BI TAES- CBC-
OPENSSL.

11

Hortonworks DataFlow

July 27, 2017

Property

Description

provider

The sensitive property provider. The default value is BC.

1.3.9. Processors

The current implementation of MiNiFi supports multiple processors. The "Processors"
subsection is a list of these processors. Each processor must specify these properties. They
are the basic configuration general to all processor implementations. Make sure that all
relationships for a processor are accounted for in the auto-terminated relationship list or

are used in a connection.

Property

Description

name

The name of what this processor will do. This is not used
for any underlying implementation but solely for the users
of this configuration and MiNiFi agent.

The id of this processor. This can be omitted but in
processors without this field, there should not be any
duplicate names and connections will need to specify
source and destination name instead of id. If set it should
be a filesystem-friendly value (regex: [A-Za-z0-9_-]+)

class

The fully qualified java class name of the processor to run.
For example for the standard TailFile processor it would
be: org.apache.nifi.processors.standard.TailFile

max concurrent tasks

The maximum number of tasks that the processor will use.

scheduling strategy

The strategy for executing the processor. Valid options are
CRON_DRI VENor TI MER_DRI VEN

scheduling period

This property expects different input depending on the
scheduling strategy selected. For the TI MER_DRI VEN
scheduling strategy, this value is a time duration specified
by a number followed by a time unit. For example, 1
second or 5 mins. The default value of 0 sec means that
the Processor should run as often as possible as long as it
has data to process. This is true for any time duration of
0, regardless of the time unit (i.e., 0 sec, 0 mins, 0 days).
For an explanation of values that are applicable for the
CRON driven scheduling strategy, see the description of
the CRON driven scheduling strategy in the scheduling tab
section of the NiFi User documentation.

penalization period

Specifies how long FlowFiles will be penalized.

yield period

In the event the processor cannot make progress it should
yi el d which will prevent the processor from being
scheduled to run for some period of time. That period of
time is specific using this property.

run duration nanos

If the processor supports batching this property can

be used to control how long the Processor should be
scheduled to run each time that it is triggered. Smaller
values will have lower latency but larger values will have
higher throughput. This period should typically only be set
between 0 and 2000000000 (2 seconds).

auto-terminated relationships list

A YAML list of the relationships to auto-terminate for the
processor.

annotation data

Some processors make use of "Annotation Data" in order
to do more complex configuration, such as the Advanced
portion of UpdateAttribute. This data will be unique to
each implementing processor and more than likely will not
be written out manually.

https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#scheduling-tab

Hortonworks DataFlow July 27, 2017

1.3.9.1.

1.3.9.2.

1.3.9.2.1

Processor Properties

Within the Processor Configuration section, there is the Pr oper t i es subsection. The keys
and values in this section are the property names and values for the processor. For example
the TailFile processor would have a section like this:

Properti es:
File to Tail: |ogs/nifi-app.!|og
Rol ling Fil ename Pattern: nifi-app*
State File: ./conf/state/tail-file
Initial Start Position: Beginning of File

Controller Services

The current implementation of MiNiFi supports Controller Services. The "Controller
Services" subsection is a list of these services. Each Controller Service must specify the
following properties. They are the basic configuration general to all Controller Service
implementations.

Property Description

name The name of what this Controller Service will do. This is not
used for any underlying implementation but solely for the
users of this configuration and MiNiFi agent.

id The id of this Controller Service. This must be a valid UUID.
To reference this Controller Service in the properties of
another component, this ID is used.

type The fully qualified java class name of the
processor to run. For example for the standard
StandardSSLContextService processor would be:
org.apache.nifi.ssl.StandardSSLContextService

Note: If the "Security Properties" is configured with an "ssl protocol” then a
StandardSSLContextService will be made automatically with the ID "SSL-Context-Service".

. Controller Service Properties

Within the Controller Service Configuration section, there is the Pr operti es subsection.
The keys and values in this section are the property names and values for the service. For
example the StandardSSLContextService would have a section like this:

Properti es:
Keystore Fil enanme: /tnp/local host/keystore.jks
Keyst ore Password: keystorePassword
Keystore Type: JKS
SSL Protocol: TLS
Truststore Filenane: /tnp/truststore.jks
Trust store Password: truststorePassword
Truststore Type: JKS
key- password: keyPassword

1.3.10. Process Groups

Process groups can be nested from the top level. They can contain other process groups as
well and can be used to logically group related operations.

Property Description

name The name of what this process group will do.

13

Hortonworks DataFlow

July 27, 2017

Property Description

id The id of this process group. This needs to be set to a
unique filesystem-friendly value (regex: [A-Za-z0-9_-]+)

Processors The processors contained in this Process Group. (Defined

above)

Remote Process Groups

The remote process groups contained in this Process
Group. (Defined below)

Connections

The connections contained in this Process Group. (Defined
below)

Input Ports

The input ports contained in this Process Group. (Defined
below)

Output Ports

The output ports contained in this Process Group. (Defined
below)

Funnels

The funnels contained in this Process Group. (Defined
below)

Process Groups

The child Process Groups contained in this Process Group.

1.3.11. Input Ports

These ports provide input to the Process Group they reside on. (Currently only for internal

Input ports.)

Property Description

name The name of what this input port will do.

id The id of this input port. This needs to be set to a unique
filesystem-friendly value (regex: [A-Za-z0-9_-]+)

1.3.12. Output Ports

These ports provide output from the Process Group they reside on. (Currently only for

internal Output ports.)

Property Description

name The name of what this output port will do.

id The id of this output port. This needs to be set to a unique
filesystem-friendly value (regex: [A-Za-z0-9_-]+)

1.3.13. Funnels

Funnels can be used to combine outputs from multiple processors into a single connection

for ease of design.

Property

Description

id

The id of this funnel. This needs to be set to a unique
filesystem-friendly value (regex: [A-Za-z0-9_-]+)

1.3.14. Connections

There can be multiple connections in this version of MiNiFi. The "Connections" subsection is
a list of connections. Each connection must specify these properties.

Property

Description

name

The name of what this connection will do. This is used for
the id of the connection so it must be unique.

14

Hortonworks DataFlow

July 27, 2017

Property

Description

id

The id of this connection. This needs to be left empty or
set to a filesystem-friendly value (regex: [A-Za-z0-9_-]+)

source name

The name of what of the processor that is the source for
this connection.

source relationship name

The name of the processors relationship to route to this
connection

destination name

The name of the component to receive this connection.

max work queue size

This property is the max number of FlowFiles that can be
in the queue before back pressure is applied. When back
pressure is applied the source processor will no longer be
scheduled to run.

max work queue data size

This property specifies the maximum amount of data
(in size) that should be queued up before applying back
pressure. When back pressure is applied the source
processor will no longer be scheduled to run.

flowfile expiration

Indicates how long FlowfFiles are allowed to exist in the
connection before be expired (automatically removed
from the flow).

queue prioritizer class

This configuration option specifies the fully qualified
java class path of a queue prioritizer to use. If

no special prioritizer is desired then it should be

left blank. An example value of this property is:
org.apache.nifi.prioritizer.NewestFlowFileFirstPrioritizer

1.3.15. Remote Process Groups

MiNiFi can be used to send data using the Site to Site protocol (via a Remote Process
Group) or a Processor. These properties configure the Remote Process Groups that use Site-
To-Site to send data to a core instance. The proxy settings are for HTTP Site-To-Site.

Property Description

name The name of what this Remote Process Group points to.
This is not used for any underlying implementation but
solely for the users of this configuration and MiNiFi agent.

comment A comment about the Remote Process Group. This is not
used for any underlying implementation but solely for the
users of this configuration and MiNiFi agent.

url The URL of the core NiFi instance.

timeout How long MiNiFi should wait before timing out the
connection.

yield period When communication with this Remote Process Group

fails, it will not be scheduled again for this amount of time.

transport protocol

The transport protocol to use for this Remote Process
Group. Can be either "RAW" or "HTTP"

proxy host The hostname of the proxy server
proxy port The port to connect to on the proxy server
proxy user The user name on the proxy server

proxy password

The password for the proxy server

1.3.15.1. Input Ports Subsection

When connecting via Site to Site, MiNiFi needs to know which input port to communicate
to of the core NiFi instance. These properties designate and configure communication with

that port.

Hortonworks DataFlow

July 27, 2017

Property

Description

id

The id of the input port as it exists on the core NiFi
instance. To get this information access the Ul of the core
instance, right the input port that is desired to be connect
to and select "configure". The id of the port should under
the "Id" section.

name

The name of the input port as it exists on the core NiFi
instance. To get this information access the Ul of the core
instance, right the input port that is desired to be connect
to and select "configure". The id of the port should under
the "Port name" section.

comments:

A comment about the Input Port. This is not used for any
underlying implementation but solely for the users of this
configuration and MiNiFi agent.

max concurrent tasks

The number of tasks that this port should be scheduled for
at maximum.

use compression

Whether or not compression should be used when
communicating with the port. This is a boolean value of
either "true" or "false"

1.3.16. Provenance Reporting

MiNiFi is currently designed only to report provenance data using the Site to Site protocol.
These properties configure the underlying reporting task that sends the provenance events.

Property

Description

comment

A comment about the Provenance reporting. This is not
used for any underlying implementation but solely for the
users of this configuration and MiNiFi agent.

scheduling strategy

The strategy for executing the Reporting Task. Valid
options are CRON_DRI VENor TI MER_DRI VEN

scheduling period

This property expects different input depending on the
scheduling strategy selected. For the TI MER_DRI VEN
scheduling strategy, this value is a time duration specified
by a number followed by a time unit. For example, 1
second or 5 mins. The default value of 0 sec means that
the Processor should run as often as possible as long as it
has data to process. This is true for any time duration of
0, regardless of the time unit (i.e., 0 sec, 0 mins, 0 days).
For an explanation of values that are applicable for the
CRON driven scheduling strategy, see the description of
the CRON driven scheduling strategy in the scheduling tab
section of the NiFi User documentation.

destination url

The URL to post the Provenance Events to.

port name

The name of the input port as it exists on the receiving NiFi
instance. To get this information access the Ul of the core
instance, right the input port that is desired to be connect
to and select "configure". The id of the port should under
the "Port name" section.

originating url

The URL of this MiNiFi instance. This is used to include the
Content URI to send to the destination.

use compression

Indicates whether or not to compress the events when
being sent.

timeout How long MiNiFi should wait before timing out the
connection.
batch size Specifies how many records to send in a single batch, at

most. This should be significantly above the expected
amount of records generated between scheduling. If

16

https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#scheduling-tab

Hortonworks DataFlow July 27, 2017

Property Description

it is not, then there is the potential for the Provenance
reporting to lag behind event generation and never catch
up.

Note: In order to send via HTTPS, the "Security Properties" must be fully configured. A
StandardSSLContextService will be made automatically with the ID "SSL-Context-Service"
and used by the Provenance Reporting.

1.4. Example Config File

Below are two example config YAML files. The first tails the minifi-app.log, send
the tailed log and provenance data back to a secure instance of NiFi. The second
uses a series of processors to tail the app log, routes off only lines that contain
"WriteAheadFlowFileRepository" and puts it as a file in the "./" directory.

M N Fi Config Version: 1
Fl ow Control ler:
nane: M N Fi Fl ow
conment :

Core Properties:
flow controll er graceful shutdown period: 10 sec
flow service wite delay interval: 500 ns
admini strative yield duration: 30 sec
bored yield duration: 10 mllis

Fl owFi | e Repository:
partitions: 256
checkpoint interval: 2 mns
al ways sync: fal se
Swap:
t hreshol d: 20000
in period: 5 sec
in threads: 1
out period: 5 sec
out threads: 4

Provenance Repository:
provenance rollover tine: 1 mn

Cont ent Repository:
content clai mmax appendabl e size: 10 MB
content claimmax flow files: 100
al ways sync: fal se

Conponent Status Repository:
buffer size: 1440
snapshot frequency: 1 mn

Security Properties:
keystore: /tnp/ssl/|ocal host-Kks.jks
keystore type: JKS
keyst ore password: |ocaltest
key password: |ocaltest
truststore: /tnp/ssl/local host-ts.jks
truststore type: JKS
truststore password: |ocaltest

17

Hortonworks DataFlow

July 27, 2017

ssl protocol : TLS
Sensitive Props:

key:
al gori thm PBEW THVD5AND256BI TAES- CBC- OPENSSL
provi der: BC

Processors:

nanme: Tail File
cl ass: org.apache. nifi.processors.standard. Tail File
max concurrent tasks: 1
schedul i ng strategy: TIMER DRI VEN
schedul i ng period: 1 sec
penal i zati on period: 30 sec
yield period: 1 sec
run duration nanos: O
auto-term nated rel ati onships |ist:
Properties:
File to Tail: logs/mnifi-app.log
Rol ling Filename Pattern: mnifi-app*
Initial Start Position: Beginning of File

Connect i ons:

name: Tail ToS2S

source name: TailFile

source rel ati onshi p name: success

destinati on name: 8644cbcc- a45c-40e0- 964d- 5e536e2ada6bl
max wor k queue size: 0

max work queue data size: 1 MB

flowfile expiration: 60 sec

queue prioritizer class: org.apache.nifi.prioritizer.

Newest Fl owFi | eFirstPrioritizer

Renpot e Processing G oups:

name: N Fi Fl ow

comrent :

url: https://I1ocal host: 8090/ ni f
ti meout: 30 secs

yield period: 10 sec

I nput Ports:

- id: 8644cbcc-a45c-40e0-964d- 5e536e2adabl
nane: tailed |og
conment s:
max concurrent tasks: 1
use conpression: false

Provenance Reporti ng:
conment :
schedul i ng strategy: TIMER DRI VEN
schedul i ng period: 30 sec
destination url: https://|ocal host: 8090/
port name: provenance
originating url: http://${hostname(true)}: 8081/ nifi
use conpression: true
timeout: 30 secs
bat ch size: 1000

Fl ow Control |l er:
nane: M N Fi Fl ow
conment :

18

Hortonworks DataFlow July 27, 2017

Core Properties:
flow controll er graceful shutdown period: 10 sec
flow service wite delay interval: 500 ns
admini strative yield duration: 30 sec
bored yield duration: 10 mllis
max concurrent threads: 1

Fl owFi | e Repository:
partitions: 256
checkpoint interval: 2 mns
al ways sync: false
Swap:
t hreshol d: 20000
in period: 5 sec
in threads: 1
out period: 5 sec
out threads: 4

Cont ent Repository:
content claimmax appendabl e size: 10 MB
content claimmax flow files: 100
al ways sync: false

Conponent Status Repository:
buf fer size: 1440
snapshot frequency: 1 nmin

Security Properties:
keystore: /tnp/ssl/|ocal host-ks.jks
keystore type: JKS
keyst ore password: |ocaltest
key password: |ocaltest
truststore: /tnp/ssl/local host-ts.jks
truststore type: JKS
truststore password: |ocaltest
ssl protocol: TLS
Sensitive Props:

key:
al gori thm PBEW THVD5AND256BI TAES- CBC- OPENSSL
provi der: BC

Processors:
- nanme: Tail AppLog
cl ass: org.apache. nifi.processors.standard. Tail File
max concurrent tasks: 1
schedul i ng strategy: TIMER DRI VEN
schedul i ng period: 10 sec
penal i zati on period: 30 sec
yield period: 1 sec
run duration nanos: 0
auto-term nated rel ationships |ist:
Properti es:
File to Tail: logs/mnifi-app.log
Rol ling Fil ename Pattern: mnifi-app*
Initial Start Position: Beginning of File
- name: SplitlntoSingleLines
cl ass: org.apache. nifi.processors. standard. Split Text
max concurrent tasks: 1
schedul i ng strategy: TIMER DRI VEN
schedul i ng period: 0 sec

19

Hortonworks DataFlow July 27, 2017

penal i zation period: 30 sec
yield period: 1 sec
run duration nanos: 0
auto-term nated rel ati onships |ist:
- failure
- original
Properti es:
Line Split Count: 1
Header Line Count: O
Renove Trailing New ines: true
- name: RouteErrors
cl ass: org.apache. nifi.processors. st andard. Rout eText
max concurrent tasks: 1
schedul i ng strategy: TIMER DRI VEN
schedul i ng period: 0 sec
penal i zati on period: 30 sec
yield period: 1 sec
run duration nanos: 0
auto-term nated rel ationships |ist:
- unmat ched
- original
Properti es:
Routing Strategy: Route to 'matched' if |line matches all conditions
Mat chi ng Strategy: Contains
Character Set: UTF-8
I gnore Leadi ng/ Trailing Witespace: true
I gnore Case: true
G oupi ng Regul ar Expressi on:
WALFFR: Wit eAheadF| owFi | eRepository
- name: PutFile
cl ass: org.apache. nifi.processors. standard. PutFile
max concurrent tasks: 1
schedul i ng strategy: TIMER DRI VEN
schedul i ng period: 0 sec
penal i zation period: 30 sec
yield period: 1 sec
run duration nanos: O
auto-term nated rel ationships |ist:
- failure
- success
Properties:
Directory: ./
Conflict Resolution Strategy: repl ace
Create Mssing Directories: true
Maxi mum Fi | e Count :
Last Modified Tine:
Per mi ssi ons:
Omner :
G oup:

Connect i ons:
- name: Tail ToSplit

source nane: Tail AppLog

source rel ati onshi p nanme: success

destination nane: SplitlntoSingleLines

max wor k queue size: 0

max work queue data size: 1 MB

flowfile expiration: 60 sec

queue prioritizer class: org.apache.nifi.prioritizer.
Newest Fl owFi | eFirstPrioritizer

20

Hortonworks DataFlow

July 27, 2017

- name: SplitToRoute
source nane: SplitlntoSinglelLines
source rel ationship nanme: splits
destinati on name: RouteErrors
max wor k queue size: O
max wor k queue data size: 1 MB
flowfile expiration: 60 sec

queue prioritizer class: org.apache.nifi.prioritizer.

Newest Fl owFi | eFirstPrioritizer
- nane: RouteToS2S
source nane: RouteErrors
source rel ati onshi p name: matched
destination nane: PutFile
max wor k queue size: 0
max work queue data size: 1 MB
flowfile expirati on: 60 sec

queue prioritizer class: org.apache.nifi.prioritizer.

Newest Fl owFi | eFirstPrioritizer

Provenance Reporti ng:
conment :
schedul i ng strategy: TIMER DRI VEN
schedul i ng period: 30 sec
destination url: https://I|ocal host: 8080/
port name: provenance
originating url: http://${hostname(true)}: 8081/ nifi
use conpression: true
timeout: 30 secs
batch size: 1000

21

	Hortonworks DataFlow
	Table of Contents
	1. MiNiFi System Administrator's Guide
	1.1. Automatic Warm-Redeploy
	1.1.1. FileChangeIngestor
	1.1.2. RestChangeIngestor
	1.1.3. PullHttpChangeIngestor

	1.2. Status Reporting and Querying
	1.2.1. FlowStatus Script Query
	1.2.2. Periodic Status Reporters
	1.2.2.1. StatusLogger

	1.2.3. FlowStatus Query Options
	1.2.3.1. Processors
	1.2.3.2. Connections
	1.2.3.3. Remote Process Groups
	1.2.3.4. Controller Services
	1.2.3.5. Provenance Reporting
	1.2.3.6. Instance
	1.2.3.7. System Diagnostics
	1.2.3.8. Example

	1.3. Config File
	1.3.1. Versioning
	1.3.1.1. Version 1 -> Version 2 changes
	1.3.1.2. Version 2 -> Version 3 changes

	1.3.2. Flow Controller
	1.3.3. Core Properties
	1.3.4. FlowFile Repository
	1.3.4.1. Swap Subsection

	1.3.5. Content Repository
	1.3.6. Provenance Repository
	1.3.7. Component Status Repository
	1.3.8. Security Properties
	1.3.8.1. Sensitive Properties Subsection

	1.3.9. Processors
	1.3.9.1. Processor Properties
	1.3.9.2. Controller Services
	1.3.9.2.1. Controller Service Properties

	1.3.10. Process Groups
	1.3.11. Input Ports
	1.3.12. Output Ports
	1.3.13. Funnels
	1.3.14. Connections
	1.3.15. Remote Process Groups
	1.3.15.1. Input Ports Subsection

	1.3.16. Provenance Reporting

	1.4. Example Config File

