Security 3

Deploying SAM Applicationsin a Secure Cluster

Date of Publish: 2018-08-13

http://docs.hortonworks.com

http://docs.hortonworks.com

Contents

Deploying SAM Applicationsin a Secure CIUSLESoovveveeiieecin e, 3
Connecting to a Secure Service that Supports Delegation TOKENS.........cccoeireirierineieserese e 3
CONNECLING 10 SECUINE KBFKBL......eueeteeeteriete ettt ettt e ettt s b et bbbt b e 4
Securing SAM — AN ENd-t0-ENA WOTKFIOW.........c.oriiiiiiiiinine s 5

Understanding the ENd-to-ENd WOIKFIOW...........cciiiiiiiiice e 5

Security Deploying SAM Applicationsin a Secure Cluster

Deploying SAM Applicationsin a Secure Cluster

In a secure/kerberized env, SAM will deploy an application to kerberized Storm cluster and that app hasto talk

to secure services (e.g.: Secure Kafka, HBase, HDFS, Hive, etc..). Deploying secure streaming apps that talksto
secure services has been traditionally very difficult to configure. SAM makes it considerably easier to deploy secure
streaming apps.

Connecting to a Secure Service that Supports Delegation Tokens

SAM uses del egation tokens when possible, when talking to secure streaming services. The concept of delegation
token isintroduced to avoid frequent authentication checks against Kerberos(AD/MIT). After the initia

authentication against Namenode using Kerberos, subsequent authentication are done without a Kerberos service
ticket(TGT). Once the client authentication with Kerberos for Namenode is successful, the client receives a delegation
token from the Namenode. This token has an expiration and max issue date but can be reviewed.

A delegation token is secret key shared with the Storm/NameNode/HBase which provides a mechanism for Storm/
NameNode/HBase to impersonate a user to perform an operation. Delegation tokens are supported for the following
services: Storm, HDFS, Hive, HBase.

Y ou can use Storm’s Nimbus service to get del egation tokens on behalf of the topology submitter user. Nimbus can
get HDFS, HBase and other delegation tokens associated with the user who submitted the topology and can push it to
the users stream application. This decreases operational/deployment complexity because you do not have to distribute
keytabsto all possible key tabs.

Example

If your application is going to interact with secure HBase, your bolts/states needs to be authenticated by HBase.
Typically, you are required to have storm.keytab.file on all the potential worker hosts. If you have multiple topologies
on acluster, each with different user, you will have to create multiple keytabs and distribute it to all workers.

With SAM, you can configure Nimbus to automatically get delegation tokens on behalf of the topology submitter
user. To do thisin SAM, you can configure asingle principal and keytab in SAM for a given application and this
principal is used by Nimbus to impersonate the user/app. The only requirement is that the keytab for this principal
must reside on the host where Nimbus is located. To configure this single principal that will be used by Nimbusto
impersonate the user/app when connecting to secure big data services like HBase, HDFS, Hive, do the following:

Steps

1. Click into your stream application, and then click Edit.
2. Click the Configureicon

&
I(ocated on top right of the stream application. :
3. Sdlect the Security tab.
4. Select the principal and Keytab path. SAM automatically populates all the principal and key tabs located on the
Nimbus Host to make this easier. Then click Ok.

Security

Deploying SAM Applicationsin a Secure Cluster

Application Configuration

GENERAL SECURITY ADVANCED

Clusters Security Config +
CLUSTER MAME *
streamanalytics

FRINCIPAL *

storm-streamanalytics{@STREAMANALYTICS

KEYTAB PATH *

/etc/security/keytabs/storm.headless keytab

Result

When user X deploys the application, Nimbus uses the principal and the keytab configured above to impersonate user

X when interacting with the big data services in the application.

Connecting to Secure Kafka

Kafka does not support delegation tokens. Y ou must configure the Kafka source/sink processor with the principal and
keytab used to authenticate the stream applications with Kafka. Use these steps to configure SAM to communication

with a secure Kafka service.

1. Double click on the Kafka source/sink component on the canvas.

2. Select the Security tab.

3. Configure the Kerberos client principal, Kerberos keytab file, and the Kafka service name. The client principal
and keytab selected must exist on all the worker nodes in the cluster. Using the storm-<cluster-name> principal
is recommended because Ambari creates that keytab on each worker node when running the Ambari Kerberos

Wizard . Set the Kafka service name to “kafka”.

Security Deploying SAM Applicationsin a Secure Cluster

REQUIRED SECURITY OPTIONAL NOTES

KERBERUS CLIEMT FRINCIFAL * U'Ll'lpl.lt
storm-streamanalytics[@STREAMAMNALYTICS eventTime*
eventSource®
KERBEROUS KEY TAB FILE =
i truckld*
Jetc/security/keytabs/storm. headless keytab
driverld*

KAFKA SERVICE NAME *

driverMame*

kafka
routela®
55L KEYSTORE LOCATION
' route®
speed*

35L KEYSTORE PASSWORD

SaL KEY PASSWORD

Securing SAM — An End-to-End Wor kflow

To help understand how all of thisfitstogether, let's walk through a use case to see how SAM to deploys applications
in asecure cluster.

The use case details are the following:

* An organization has a secure HDF/HDP cluster and all cluster services have been Kerberize.
» User gvetticaden is a developer and part of the release engineering team, builds a streaming application that
includes of the following capabilities:
« Creating streams from a set of Kafka topics from a secure Kafka Broker.
* Doing analytics on the stream.
» Persisting different events to following secure data stores: HDFS, HBase, Hive
« User gvetticaden wants to deploy the streaming application to a secure storm Service.

Under standing the End-to-End Wor kflow
The below image provides an explanation on how SAM functions for the above use case.

Security Deploying SAM Applicationsin a Secure Cluster

H 1 H ! Secure Big Data Services that |
' ; i 1 ! Supports Delegation Tokens

! 3 E 1 AP ACHE (G
! Ej__a o | LiAsEdR Tl
User ! ' ! H
gvetticaden j | H i
kinit / i i N\

authenticates ! | IVE :
against KDC ! i H

Nimbus will configure the App to use the its |
o I configured principal/keytab for the App and i
will impersonate gvetticaden to talk to !

secure big data services via delegation

@ _____________) tokens
| Streaming !

% 9 i InSAM, user | Analytics App |
' gvetticaden deploys | C i
_ deploys an app e __d
User STREAMING ,B
il ANALY T ICS [l The App wil use the
SAM ang RSN RN ! SAM using the internal configured principal /key tab
SAM I:oks istreamline principal/keytab STORM for the Kafka source/sink to
up user's will authenticate to Storm to talk to secure Kafka Service
Role /= -~--mmm-mmmmemmoeeoooe . i deploythe app
Authorization Services {impersanating gvetticaden o

__

i Secure Big Data Services that don’t support i
1 Delegation Tokens !

Apache Ranoer o %8 kafka .

Ranger provides Access control for
the principal user or the
impersonated user for all secure

big data services

Step 1: Initial Login

User gvetticaden authenticates himself to the organization AD/KDC by doing akinit. Typically in an organization,
the ticket is granted when the user logs into the corporate LAN.

Principal/Keytab Used to Connct: gvetticaden
Step 2: SAM Grants Access Based on Roles and Permissions

SAM looks up the roles for gvetticaden. Based on the permissions associated with the roles, SAM gives gvetticaden
access to specific features.

Step 3a: Build and Deploy a Streaming Application

User gvetticaden builds the streaming analytics application and deploys it. The application includes the following
capabilities:

» Creating streams from a set of Kafka topics from a secure Kafka Broker.

» Doing analytics on the stream.
» Persigting different events to following secure data stores: HDFS, HBase, Hive

Step 3b: SAM Communicates with Storm

SAM communicates with Storm Streaming Engine to deploy the stream application using the streamline principal/
keytab. SAM isfunctioning as a client submitting ajob to Secure Storm. The internal streamline user will
impersonate gvetticaden when it talks to Storm. Hence ACLs within Ranger for Storm can be configured for
gvetticaden, the person deploying the streaming application.

Principal/Keytab Used to Connect: The streamline principal/keytab is used to connect, and user gvetticaden is
impersonated.

Step 4: Communication with Secured Big Data Services

Security

Deploying SAM Applicationsin a Secure Cluster

When SAM deploys the application, it passes the application principal and keytab to Nimbus. Nimbus uses this
principal to authenticate to big data services that support tokens. The principal impersonates gvetticaden. The result

isthat all Ranger ACLsfor HBase, Hive, and HDFS are configured for gvetticadne, the user deploying the streaming
application.

Step 5: Communication with Secured Big Data Services that do not Support Delegation Tokens

If the application uses a Kafka Source or Sink, then the application uses the principal and keytab configured under the
Kafka component security settings.

Principal/Keytab Used to Connect:: The principal/keytab configured in Kafka are used to connect.

	Contents
	Deploying SAM Applications in a Secure Cluster
	Connecting to a Secure Service that Supports Delegation Tokens
	Connecting to Secure Kafka
	Securing SAM – An End-to-End Workflow
	Understanding the End-to-End Workflow

