
Apache NiFi 3

Using DataFlow Provenance Tools
Date of Publish: 2018-08-13

http://docs.hortonworks.com

http://docs.hortonworks.com

Contents

Data Provenance... 3
Provenance Events.. 3
Searching for Events...4
Details of an Event...6
Replaying a FlowFile... 8
Viewing FlowFile Lineage... 9

Find Parents.. 10
Expanding an Event..11

Write Ahead Provenance Repository... 12
Backwards Compatibility..12
Older Existing NiFi Version.. 12
Bootstrap.conf... 12
System Properties..12
Encrypted Provenance Considerations... 13

Encrypted Provenance Repository..13
What is it?...13
How does it work?... 13
Writing and Reading Event Records..14
Potential Issues... 15

Apache NiFi Data Provenance

Data Provenance

While monitoring a dataflow, users often need a way to determine what happened to a particular data object
(FlowFile). NiFi's Data Provenance page provides that information. Because NiFi records and indexes data
provenance details as objects flow through the system, users may perform searches, conduct troubleshooting and
evaluate things like dataflow compliance and optimization in real time. By default, NiFi updates this information
every five minutes, but that is configurable.

To access the Data Provenance page, select Data Provenance from the Global Menu. Clicking this button opens
a dialog window t hat allows the user to see the most recent Data Provenance information available, search the
information for specific items, and filter the search results. It is also possible to open additional dialog windows to see
event details, replay data at any point within the dataflow, and see a graphical representation of the data's lineage, or
path through the flow. (These features are described in depth below.)

When authorization is enabled, accessing Data Provenance information requires the 'query provenance' Global Policy
as well as the 'view provenance' Component Policy for the component which generated the event. In addition, access
to event details which include FlowFile attributes and content require the 'view the data' Component Policy for the
component which generated the event.

Provenance Events

Each point in a dataflow where a FlowFile is processed in some way is considered a 'provenance event'. Various types
of provenance events occur, depending on the dataflow design. For example, when data is brought into the flow, a
RECEIVE event occurs, and when data is sent out of the flow, a SEND event occurs. Other types of processing events
may occur, such as if the data is cloned (CLONE event), routed (ROUTE event), modified (CONTENT_MODIFIED
or ATTRIBUTES_MODIFIED event), split (FORK event), combined with other data objects (JOIN event), and
ultimately removed from the flow (DROP event).

The provenance event types are:

3

Apache NiFi Data Provenance

Provenance Event Description

ADDINFO Indicates a provenance event when additional information such as a
new linkage to a new URI or UUID is added

ATTRIBUTES_MODIFIED Indicates that a FlowFile's attributes were modified in some way

CLONE Indicates that a FlowFile is an exact duplicate of its parent FlowFile

CONTENT_MODIFIED Indicates that a FlowFile's content was modified in some way

CREATE Indicates that a FlowFile was generated from data that was not received
from a remote system or external process

DOWNLOAD Indicates that the contents of a FlowFile were downloaded by a user or
external entity

DROP Indicates a provenance event for the conclusion of an object's life for
some reason other than object expiration

EXPIRE Indicates a provenance event for the conclusion of an object's life due
to the object not being processed in a timely manner

FETCH Indicates that the contents of a FlowFile were overwritten using the
contents of some external resource

FORK Indicates that one or more FlowFiles were derived from a parent
FlowFile

JOIN Indicates that a single FlowFile is derived from joining together
multiple parent FlowFiles

RECEIVE Indicates a provenance event for receiving data from an external
process

REPLAY Indicates a provenance event for replaying a FlowFile

ROUTE Indicates that a FlowFile was routed to a specified relationship and
provides information about why the FlowFile was routed to this
relationship

SEND Indicates a provenance event for sending data to an external process

UNKNOWN Indicates that the type of provenance event is unknown because the
user who is attempting to access the event is not authorized to know the
type

Searching for Events

One of the most common tasks performed in the Data Provenance page is a search for a given FlowFile to determine
what happened to it. To do this, click the Search button in the upper-right corner of the Data Provenance page. This
opens a dialog window with parameters that the user can define for the search. The parameters include the processing
event of interest, distinguishing characteristics about the FlowFile or the component that produced the event, the
timeframe within which to search, and the size of the FlowFile.

4

Apache NiFi Data Provenance

For example, to determine if a particular FlowFile was received, search for an Event Type of "RECEIVE" and include
an identifier for the FlowFile, such as its uuid or filename. The asterisk (*) may be used as a wildcard for any number
of characters. So, to determine whether a FlowFile with "ABC" anywhere in its filename was received at any time on
Jan. 6, 2015, the search shown in the following image could be performed:

5

Apache NiFi Data Provenance

Details of an Event

In the far-left column of the Data Provenance page, there is a View Details icon for each event

().
Clicking this button opens a dialog window with three tabs: Details, Attributes, and Content.

6

Apache NiFi Data Provenance

The Details tab shows various details about the event, such as when it occurred, what type of event it was, and the
component that produced the event. The information that is displayed will vary according to the event type. This
tab also shows information about the FlowFile that was processed. In addition to the FlowFile's UUID, which is
displayed on the left side of the Details tab, the UUIDs of any parent or children FlowFiles that are related to that
FlowFile are displayed on the right side of the Details tab.

The Attributes tab shows the attributes that exist on the FlowFile as of that point in the flow. In order to see only the
attributes that were modified as a result of the processing event, the user may select the checkbox next to "Only show
modified" in the upper-right corner of the Attributes tab.

7

Apache NiFi Data Provenance

Replaying a FlowFile

A DFM may need to inspect a FlowFile's content at some point in the dataflow to ensure that it is being processed
as expected. And if it is not being processed properly, the DFM may need to make adjustments to the dataflow and
replay the FlowFile again. The Content tab of the View Details dialog window is where the DFM can do these things.
The Content tab shows information about the FlowFile's content, such as its location in the Content Repository and its
size. In addition, it is here that the user may click the Download button to download a copy of the FlowFile's content
as it existed at this point in the flow. The user may also click the Submit button to replay the FlowFile at this point
in the flow. Upon clicking Submit, the FlowFile is sent to the connection feeding the component that produced this
processing event.

8

Apache NiFi Data Provenance

Viewing FlowFile Lineage

It is often useful to see a graphical representation of the lineage or path a FlowFile took
within the dataflow. To see a FlowFile's lineage, click on the "Show Lineage" icon (

) in the far-right column of the Data Provenance table. This opens a graph displaying the FlowFile (

) and the various processing events that have occurred. The selected event will be highlighted in red. It is possible to
right-click or double-click on any event to see that event's details. To see how the lineage evolved over time, click
the slider at the bottom-left of the window and move it to the left to see the state of the lineage at earlier stages in the
dataflow.

9

Apache NiFi Data Provenance

Find Parents

Sometimes, a user may need to track down the original FlowFile that another FlowFile was spawned from. For
example, when a FORK or CLONE event occurs, NiFi keeps track of the parent FlowFile that produced other
FlowFiles, and it is possible to find that parent FlowFile in the Lineage. Right-click on the event in the lineage graph
and select "Find parents" from the context menu.

Once "Find parents" is selected, the graph is re-drawn to show the parent FlowFile and its lineage as well as the child
and its lineage.

10

Apache NiFi Data Provenance

Expanding an Event

In the same way that it is useful to find a parent FlowFile, the user may also want to determine what children were
spawned from a given FlowFile. To do this, right-click on the event in the lineage graph and select "Expand" from the
context menu.

Once "Expand" is selected, the graph is re-drawn to show the children and their lineage.

11

Apache NiFi Data Provenance

Write Ahead Provenance Repository

By default, the Provenance Repository is implemented in a Persistent Provenance configuration. In Apache
NiFi 1.2.0, the Write Ahead configuration was introduced to provide the same capabilities as Persistent
Provenance, but with far better performance. Migrating to the Write Ahead configuration is easy to accomplish.
Simply change the setting for the nifi.provenance.repository.implementation system property in the
nifi.properties file from the default value of org.apache.nifi.provenance.PersistentProvenanceRepository to
org.apache.nifi.provenance.WriteAheadProvenanceRepository and restart NiFi.

However, to increase the chances of a successful migration consider the following factors and recommended actions.

Backwards Compatibility

The WriteAheadProvenanceRepository can use the Provenance data stored by the PersistentProvenanceRepository.
However, the PersistentProvenanceRepository may not be able to read the data written by the
WriteAheadProvenanceRepository. Therefore, once the Provenance Repository is changed to use the
WriteAheadProvenanceRepository, it cannot be changed back to the PersistentProvenanceRepository without first
deleting the data in the Provenance Repository. It is therefore recommended that before changing the implementation
to Write Ahead, ensure your version of NiFi is stable, in case an issue arises that requires the need to roll back to a
previous version of NiFi that did not support the WriteAheadProvenanceRepository.

Older Existing NiFi Version

If you are upgrading from an older version of NiFi to 1.2.0 or later, it is recommended that you do not change the
provenance configuration to Write Ahead until you confirm your flows and environment are stable in 1.2.0 first. This
reduces the number of variables in your upgrade and can simplify the debugging process if any issues arise.

Bootstrap.conf

While better performance is achieved with the G1 garbage collector, Java 8 bugs may surface more frequently in the
Write Ahead configuration. It is recommended that the following line is commented out in the bootstrap.conf file in
the conf directory:

java.arg.13=-XX:+UseG1GC

System Properties

Many of the same system properties are supported by both the Persistent and Write Ahead configurations, however
the default values have been chosen for a Persistent Provenance configuration. The following exceptions and
recommendations should be noted when changing to a Write Ahead configuration:

• nifi.provenance.repository.journal.count is not relevant to a Write Ahead configuration

12

Apache NiFi Data Provenance

• nifi.provenance.repository.concurrent.merge.threads and nifi.provenance.repository.warm.cache.frequency are
new properties. The default values of 2 for threads and blank for frequency (i.e. disabled) should remain for most
installations.

• Change the settings for nifi.provenance.repository.max.storage.time (default value of 24 hours) and
nifi.provenance.repository.max.storage.size (default value of 1 GB) to values more suitable for your production
environment

• Change nifi.provenance.repository.index.shard.size from the default value of 500 MB to 4 GB
• Change nifi.provenance.repository.index.threads from the default value of 2 to either 4 or 8 as the Write Ahead

repository enables this to scale better
• If processing a high volume of events, change nifi.provenance.repository.rollover.time from a default of 30 secs to

1 min and nifi.provenance.repository.rollover.size from the default of 100 MB to 1 GB

Once these property changes have been made, restart NiFi.

Encrypted Provenance Considerations

The above migration recommendations for WriteAheadProvenanceRepository also apply to the encrypted version of
the configuration, EncryptedWriteAheadProvenanceRepository.

The next section has more information about implementing an Encrypted Provenance Repository.

Encrypted Provenance Repository

While OS-level access control can offer some security over the provenance data written to the disk in a repository,
there are scenarios where the data may be sensitive, compliance and regulatory requirements exist, or NiFi is running
on hardware not under the direct control of the organization (cloud, etc.). In this case, the provenance repository
allows for all data to be encrypted before being persisted to the disk.

Performance:

The current implementation of the encrypted provenance repository intercepts the record writer and reader
of WriteAheadProvenanceRepository, which offers significant performance improvements over the legacy
PersistentProvenanceRepository and uses the AES/GCM algorithm, which is fairly performant on commodity
hardware. In most scenarios, the added cost will not be significant (unnoticable on a flow with hundreds of
provenance events per second, moderately noticable on a flow with thousands - tens of thousands of events
per second). However, administrators should perform their own risk assessment and performance analysis and
decide how to move forward. Switching back and forth between encrypted/unencrypted implementations is not
recommended at this time.

What is it?

The EncryptedWriteAheadProvenanceRepository is a new implementation of the provenance repository which
encrypts all event record information before it is written to the repository. This allows for storage on systems where
OS-level access controls are not sufficient to protect the data while still allowing querying and access to the data
through the NiFi UI/API.

How does it work?

The WriteAheadProvenanceRepository was introduced in NiFi 1.2.0 and provided a refactored and much
faster provenance repository implementation than the previous PersistentProvenanceRepository. The encrypted
version wraps that implementation with a record writer and reader which encrypt and decrypt the serialized bytes
respectively.

The fully qualified class org.apache.nifi.provenance.EncryptedWriteAheadProvenanceRepository is specified as the
provenance repository implementation in nifi.properties as the value of nifi.provenance.repository.implementation. In
addition, EncryptedWriteAheadProvenanceRepository must be populated to allow successful initialization.

13

Apache NiFi Data Provenance

StaticKeyProvider

The StaticKeyProvider implementation defines keys directly in nifi.properties. Individual keys are provided in
hexadecimal encoding. The keys can also be encrypted like any other sensitive property in nifi.properties using the
Encrypted Config tool in the NiFi Toolkit.

The following configuration section would result in a key provider with two available keys, "Key1" (active) and
"AnotherKey".

nifi.provenance.repository.encryption.key.provider.implementation=org.apache.nifi.security.kms.StaticKeyProvider
nifi.provenance.repository.encryption.key.id=Key1
nifi.provenance.repository.encryption.key=0123456789ABCDEFFEDCBA98765432100123456789ABCDEFFEDCBA9876543210
nifi.provenance.repository.encryption.key.id.AnotherKey=01

FileBasedKeyProvider

The FileBasedKeyProvider implementation reads from an encrypted definition file of the format:

key1=NGCpDpxBZNN0DBodz0p1SDbTjC2FG5kp1pCmdUKJlxxtcMSo6GC4fMlTyy1mPeKOxzLut3DRX
+51j6PCO5SznA==
key2=GYxPbMMDbnraXs09eGJudAM5jTvVYp05XtImkAg4JY4rIbmHOiVUUI6OeOf7ZW
+hH42jtPgNW9pSkkQ9HWY/vQ==
key3=SFe11xuz7J89Y/IQ7YbJPOL0/YKZRFL/
VUxJgEHxxlXpd/8ELA7wwN59K1KTr3BURCcFP5YGmwrSKfr4OE4Vlg==
key4=kZprfcTSTH69UuOU3jMkZfrtiVR/eqWmmbdku3bQcUJ/
+UToecNB5lzOVEMBChyEXppyXXC35Wa6GEXFK6PMKw==
key5=c6FzfnKm7UR7xqI2NFpZ+fEKBfSU7+1NvRw
+XWQ9U39MONWqk5gvoyOCdFR1kUgeg46jrN5dGXk13sRqE0GETQ==

Each line defines a key ID and then the Base64-encoded cipher text of a 16 byte IV and wrapped AES-128, AES-192,
or AES-256 key depending on the JCE policies available. The individual keys are wrapped by AES/GCM encryption
using the master key defined by nifi.bootstrap.sensitive.key in conf/bootstrap.conf.

Key Rotation

Simply update nifi.properties to reference a new key ID in nifi.provenance.repository.encryption.key.id.
Previously-encrypted events can still be decrypted as long as that key is still available in the key definition file or
nifi.provenance.repository.encryption.key.id.<OldKeyID> as the key ID is serialized alongside the encrypted record.

Writing and Reading Event Records

Once the repository is initialized, all provenance event record write operations are serialized according to the
configured schema writer (EventIdFirstSchemaRecordWriter by default for WriteAheadProvenanceRepository) to
a byte[]. Those bytes are then encrypted using an implementation of ProvenanceEventEncryptor (the only current
implementation is AES/GCM/NoPadding) and the encryption metadata (keyId, algorithm, version, IV) is serialized
and prepended. The complete byte[] is then written to the repository on disk as normal.

14

Apache NiFi Data Provenance

On record read, the process is reversed. The encryption metadata is parsed and used to decrypt the serialized bytes,
which are then deserialized into a ProvenanceEventRecord object. The delegation to the normal schema record writer/
reader allows for "random-access" (i.e. immediate seek without decryption of unnecessary records).

Within the NiFi UI/API, there is no detectable difference between an encrypted and unencrypted provenance
repository. The Provenance Query operations work as expected with no change to the process.

Potential Issues

Switching Implementations

When switching between implementation "families" (i.e. VolatileProvenanceRepository or
PersistentProvenanceRepository to EncryptedWriteAheadProvenanceRepository), the existing repository must
be cleared from the file system before starting NiFi. A terminal command like localhost:$NIFI_HOME $ rm -rf
provenance_repository/ is sufficient.

• Switching between unencrypted and encrypted repositories

• If a user has an existing repository (WriteAheadProvenanceRepository only - not
PersistentProvenanceRepository) that is not encrypted and switches their configuration to use an encrypted
repository, the application writes an error to the log but starts up. However, previous events are not accessible
through the provenance query interface and new events will overwrite the existing events. The same behavior
occurs if a user switches from an encrypted repository to an unencrypted repository. Automatic roll-over is a
future effort (https://issues.apache.org/jira/browse/NIFI-3722) but NiFi is not intended for long-term storage of
provenance events so the impact should be minimal. There are two scenarios for roll-over:

• Encrypted # unencrypted - if the previous repository implementation was encrypted, these events should be
handled seamlessly as long as the key provider available still has the keys used to encrypt the events (see
Key Rotation)

• Unencrypted # encrypted - if the previous repository implementation was unencrypted, these events should
be handled seamlessly as the previously recorded events simply need to be read with a plaintext schema
record reader and then written back with the encrypted record writer

15

https://issues.apache.org/jira/browse/NIFI-3722

Apache NiFi Data Provenance

• There is also a future effort to provide a standalone tool in NiFi Toolkit to encrypt/decrypt an existing
provenance repository to make the transition easier. The translation process could take a long time depending
on the size of the existing repository, and being able to perform this task outside of application startup would
be valuable (https://issues.apache.org/jira/browse/NIFI-3723).

• Multiple repositories - No additional effort or testing has been applied to multiple repositories at this time. It is
possible/likely issues will occur with repositories on different physical devices. There is no option to provide a
heterogenous environment (i.e. one encrypted, one plaintext repository).

• Corruption - when a disk is filled or corrupted, there have been reported issues with the repository becoming
corrupted and recovery steps are necessary. This is likely to continue to be an issue with the encrypted repository,
although still limited in scope to individual records (i.e. an entire repository file won't be irrecoverable due to the
encryption).

16

https://issues.apache.org/jira/browse/NIFI-3723

	Contents
	Data Provenance
	Provenance Events
	Searching for Events
	Details of an Event
	Replaying a FlowFile
	Viewing FlowFile Lineage
	Find Parents
	Expanding an Event

	Write Ahead Provenance Repository
	Backwards Compatibility
	Older Existing NiFi Version
	Bootstrap.conf
	System Properties
	Encrypted Provenance Considerations

	Encrypted Provenance Repository
	What is it?
	How does it work?
	StaticKeyProvider
	FileBasedKeyProvider
	Key Rotation

	Writing and Reading Event Records
	Potential Issues

