
Data Access 3

Integrating Hive and Kafka
Date of Publish: 2018-11-15

https://docs.hortonworks.com/

https://docs.hortonworks.com/

Contents

Apache Hive-Kafka integration.. 3
Create a table for a Kafka stream..3
Querying live data from Kafka.. 4

Query live data from Kafka... 4
Perform ETL: Ingest data from Kafka into Hive.. 6
Writing transformed data to Kafka.. 6

Write transformed Hive data to Kafka...7
Set consumer and producer properties as table properties.. 8
Kafka storage handler and table properties... 8

Data Access Apache Hive-Kafka integration

Apache Hive-Kafka integration

As a Hive user, you can connect to, analyze, and transform data in Kafka from Hive. You can offload data from
Kafka to the Hive warehouse.

You connect to Kafka data from Hive by creating an external table that maps to a Kafka topic. The table definition
includes a reference to a Kafka storage handler that makes the connection to Kafka. On the external table, Hive-Kafka
integration supports ad hoc queries, such as questions about data changes in the stream within an interval of time just
passed. You can transform Kafka data in the following ways:

• Perform data masking.
• Join dimension tables or any stream.
• Aggregate data.
• Change the Serde encoding of the original stream.
• Create a persistent stream in a Kafka topic.

You can achieve exactly once offloading of data by controlling its position in the stream. The Hive-Kafka connector
supports the following serialization and deserialization formats:

• JsonSerDe (default)
• OpenCSVSerde
• AvroSerDe

Related Information
Apache Kafka Documentation

Create a table for a Kafka stream
You can create an external table in Hive that represents a Kafka stream to query real-time data in Kafka. You use a
storage handler and table properties that map the Hive database to a Kafka topic and broker. If the Kafka data is not in
JSON format, you alter the table to specify a serializer-deserializer for another format.

Procedure

1. Get the name of the Kafka topic you want to query to use as a table property.
For example: "kafka.topic" = "wiki-hive-topic"

2. Construct the Kafka broker connection string.
For example: "kafka.bootstrap.servers"="kafka.hostname.com:9092"

3. Create an external table named kafka_table using 'org.apache.hadoop.hive.kafka.KafkaStorageHandler' as shown
in the following example:

CREATE EXTERNAL TABLE kafka_table
 (`timestamp` timestamp , `page` string, `newPage` boolean,
 added int, deleted bigint, delta double)
 STORED BY 'org.apache.hadoop.hive.kafka.KafkaStorageHandler'
 TBLPROPERTIES
 ("kafka.topic" = "test-topic",
 "kafka.bootstrap.servers"="localhost:9092");

4. If the default JSON serializer-deserializer is incompatible with your data, choose another format in one of the
following ways.

3

https://kafka.apache.org/0110/documentation.html

Data Access Apache Hive-Kafka integration

• Alter the table to use another supported serializer-deserializer. For example, if your data is in Avro format, use
the Kafke serializer-deserializer for Avro:

ALTER TABLE kafka_table SET TBLPROPERTIES
 ("kafka.serde.class"="org.apache.hadoop.hive.serde2.avro.AvroSerDe");

• Create an external table that specifies the table in another format. For example, create a table named that
specifies the Avro format in the table definition:

CREATE EXTERNAL TABLE kafka_t_avro
 (`timestamp` timestamp , `page` string, `newPage` boolean,
 added int, deleted bigint, delta double)
 STORED BY 'org.apache.hadoop.hive.kafka.KafkaStorageHandler'
 TBLPROPERTIES
 ("kafka.topic" = "test-topic",
 "kafka.bootstrap.servers"="localhost:9092"
 -- STORE AS AVRO IN KAFKA
 "kafka.serde.class"="org.apache.hadoop.hive.serde2.avro.AvroSerDe");

Related Information
Apache Kafka Documentation

Querying live data from Kafka
You can get useful information, including Kafka record metadata from a table of Kafka data by using typical Hive
queries.

Each Kafka record consists of a user payload key (byte []) and value (byte[]) plus the following metadata fields:

• Partition int32
• Offset int64
• Timestamp int64

The Hive row represents the dual composition of Kafka data:

• The user payload serialized in the value byte array
• The metadata: key byte array, partition, offset, and timestamp fields

In the Hive representation of the Kafka record, the key byte array is called __key and is of type binary. You can cast
__key at query time. Hive appends __key to the last column derived from value byte array, and appends the partition,
offset, and timestamp to __key columns that are named accordingly.

Related Information
Apache Kafka Documentation

Query live data from Kafka
You can get useful information from a table of Kafka data by running typical queries, such as counting the number of
records streamed within an interval of time and defining a view of streamed data over a period of time.

About this task
This task builds on the previous task in which you created a table named kafka_table for a Kafka stream.

Procedure

1. List the table properties and all the partition or offset information for the topic.

4

https://kafka.apache.org/0110/documentation.html
https://kafka.apache.org/0110/documentation.html

Data Access Apache Hive-Kafka integration

DESCRIBE EXTENDED kafka_table;

2. Count the number of Kafka records having timestamps within the last 10 minutes.

SELECT COUNT(*) FROM kafka_table
 WHERE `__timestamp` > 1000 * to_unix_timestamp(CURRENT_TIMESTAMP -
 interval '10' MINUTES);

Such a time-based seek requires Kafka 0.11 or later, which has a Kafka broker that supports time-based lookups;
otherwise, this query leads to a full stream scan.

3. Define a view of data consumed within the last 15 minutes and mask specific columns.

CREATE VIEW last_15_minutes_of_kafka_table AS SELECT `timestamp`, `user`,
 delta,
 ADDED FROM kafka_table
 WHERE `__timestamp` > 1000 * to_unix_timestamp(CURRENT_TIMESTAMP -
 interval '15' MINUTES) ;

4. Create a dimension table.

CREATE TABLE user_table (`user` string, `first_name` string , age int,
 gender string, comments string) STORED as ORC ;

5. Join the view of the stream over the last 15 minutes to the user_table, group by gender, and compute aggregates
over metrics from fact table and dimension tables.

SELECT SUM(added) AS added, SUM(deleted) AS deleted, AVG(delta) AS delta,
 AVG(age) AS avg_age , gender
 FROM last_15_minutes_of_kafka_table
 JOIN user_table ON `last_15_minutes_of_kafka_table`.`user` =
 `user_table`.`user`
 GROUP BY gender LIMIT 10;

6. Perform a classical user retention analysis over the Kafka stream that does a stream-to-stream join to run adhoc
queries on a view defined over the past 15 minutes.

-- Stream join over the view itself
-- Assuming l15min_wiki is a view of the last 15 minutes
SELECT COUNT(DISTINCT activity.`user`) AS active_users,
COUNT(DISTINCT future_activity.`user`) AS retained_users
FROM l15min_wiki AS activity
LEFT JOIN l15min_wiki AS future_activity ON activity.`user` =
 future_activity.`user`
AND activity.`timestamp` = future_activity.`timestamp` - interval '5'
 minutes ;

-- Stream-to-stream join
-- Assuming wiki_kafka_hive is the entire stream.
SELECT floor_hour(activity.`timestamp`), COUNT(DISTINCT activity.`user`)
 AS active_users,
COUNT(DISTINCT future_activity.`user`) as retained_users
FROM wiki_kafka_hive AS activity
LEFT JOIN wiki_kafka_hive AS future_activity ON activity.`user` =
 future_activity.`user`
AND activity.`timestamp` = future_activity.`timestamp` - interval '1'
 hour
GROUP BY floor_hour(activity.`timestamp`);

Related Information
Apache Kafka Documentation

Write transformed Hive data to Kafka

5

https://kafka.apache.org/0110/documentation.html

Data Access Apache Hive-Kafka integration

Perform ETL: Ingest data from Kafka into Hive
You can extract, transform, and load a Kafka record into Hive in a single transaction.

Procedure

1. Create a table to represent source Kafka record offsets.

CREATE TABLE kafka_table_offsets(partition_id int, max_offset bigint,
 insert_time timestamp);

2. Initialize the table.

INSERT OVERWRITE TABLE kafka_table_offsets
SELECT `__partition`, min(`__offset`) - 1, CURRENT_TIMESTAMP
FROM wiki_kafka_hive
GROUP BY `__partition`, CURRENT_TIMESTAMP;

3. Create the destination table.

CREATE TABLE orc_kafka_table (partition_id int, koffset bigint, ktimestamp
 bigint,
 `timestamp` timestamp , `page` string, `user` string, `diffurl` string,
 `isrobot` boolean, added int, deleted int, delta bigint
) STORED AS ORC;

4. Insert Kafka data, which has an offset of up to 2, into the ORC table.

FROM wiki_kafka_hive ktable JOIN kafka_table_offsets offset_table
ON (ktable.`__partition` = offset_table.partition_id
AND ktable.`__offset` > offset_table.max_offset
AND ktable.`__offset` < 3)
INSERT INTO TABLE orc_kafka_table
SELECT `__partition`, `__offset`, `__timestamp`,
 `timestamp`, `page`, `user`, `diffurl`, `isrobot`, added , deleted ,
 delta
INSERT OVERWRITE TABLE kafka_table_offsets
SELECT `__partition`, max(`__offset`), CURRENT_TIMESTAMP
GROUP BY `__partition`, CURRENT_TIMESTAMP;

5. Check the insertion.

SELECT MAX(`koffset`) FROM orc_kafka_table LIMIT 10;

SELECT COUNT(*) AS c FROM orc_kafka_table
GROUP BY partition_id, koffset HAVING c > 1;

6. Repeat step 4 periodically until all the data is loaded into Hive.

Writing transformed data to Kafka
You can extract, transform, and load a Hive table to a Kafka topic for real-time streaming of a large volume of Hive
data. You need some understanding of write semantics and the metadata columns required for writing data to Kafka.

Write semantics

The Hive-Kafka connector supports the following write semantics:

• At least once (default)
• Exactly once

6

Data Access Apache Hive-Kafka integration

At least once (default) At least once is the most common write semantic used by
streaming engines. The internal Kafka producer retries
on errors. In the event of an undelivered message, the
exception is raised to the task level that causes its restart,
and thus more retries. At least once leads to one of the
following conclusions:

• If the job succeeds, each record is guaranteed to be
delivered at least once.

• If the job fails, some of the records might be lost and
some might not be sent. You can retry the query,
which eventually leads to the delivery of each record
at least once.

Exactly once Following the exactly once semantic, the Hive job
ensures that either every record is delivered exactly once,
or nothing is delivered. You can use only Kafka brokers
supporting the Transaction API (0.11.0.X or later). To
use this semantic, you need to set the following table
property "kafka.write.semantic"="EXACTLY_ONCE".

Metadata columns

In addition to the user row payload, the insert statement must include values for the following extra columns:

__key You can set the value of this metadata column to null,
but using a meaningful key value to avoid unbalanced
partitions is recommended. Any binary value is valid.

__partition The recommended value is null unless you want to route
the record to a particular partition. Do not use a non-
existing partition value. Doing so results in an error.

__offset The value is fixed at -1. Kafka does not allow you to set
this value.

__timestamp You can set this value to a meaningful timestamp,
represented as the number of milliseconds since epoch.
Optionally, you can set this value to null or -1, which
means the Kafka broker strategy sets the timestamp
column.

Related Information
Apache Kafka Documentation

Write transformed Hive data to Kafka
You can extract a Kafka input topic, transform the record in Hive, and load a Hive table back into a Kafka record.

About this task

In this task, you build upon the previous task, “Query live data from Kafka,” by reading the Kafka input topic
named l15min_wiki. When you transform the record in the Hive execution engine, you compute a moving
average over a window of one minute. The resulting record that you write back to another Kafka topic is named
moving_avg_wiki_kafka_hive.

.

7

https://kafka.apache.org/0110/documentation.html

Data Access Apache Hive-Kafka integration

Procedure

1. Create an external table to represent the Hive data you want to load into Kafka.

CREATE EXTERNAL TABLE moving_avg_wiki_kafka_hive
(`channel` string, `namespace` string,`page` string, `timestamp`
 timestamp , avg_delta double)
STORED BY 'org.apache.hadoop.hive.kafka.KafkaStorageHandler'
TBLPROPERTIES
 ("kafka.topic" = "moving_avg_wiki_kafka_hive",
 "kafka.bootstrap.servers"="kafka.hostname.com:9092",
 -- STORE AS AVRO IN KAFKA
 "kafka.serde.class"="org.apache.hadoop.hive.serde2.avro.AvroSerDe");

2. Insert data, whch you select from the Kafka topic, back into the Kafka record.

INSERT INTO TABLE moving_avg_wiki_kafka_hive
SELECT `channel`, `namespace`, `page`, `timestamp`,
 AVG(delta) OVER (ORDER BY `timestamp` ASC ROWS BETWEEN 60 PRECEDING AND
 CURRENT ROW) AS avg_delta,
 null AS `__key`, null AS `__partition`, -1 AS `__offset`, to_epoch_milli
(CURRENT_TIMESTAMP) AS `__timestamp`
FROM l15min_wiki;

The timestamps of the selected data are converted to milliseconds since epoch for clarity.

Related Information
Query live data from Kafka

Set consumer and producer properties as table properties
You can use Kafka consumer and producer properties in the TBLPROPERTIES clause of a Hive query. By prefixing
the key with kafka.consumer or kafka.producer, you can set the table properties.

Procedure

Inject 5000 poll records into the Kafka consumer.

ALTER TABLE kafka_table SET TBLPROPERTIES
 ("kafka.consumer.max.poll.records"="5000");

Kafka storage handler and table properties
You use the Kafka storage handler and table properties to specify the query connection and configuration.

Kafka storage handler

You specify 'org.apache.hadoop.hive.kafka.KafkaStorageHandler' in queries to connect to, and transform a Kafka
topic into, a Hive table. In the definition of an external table, the storage handler creates a view over a single Kafka
topic. For example, to use the storage handler to connect to a topic, the following table definition specifies the storage
handler and required table properties: the topic name and broker connection string.

CREATE EXTERNAL TABLE kafka_table
 (`timestamp` timestamp , `page` string, `newPage` boolean,
 added int, deleted bigint, delta double)
 STORED BY 'org.apache.hadoop.hive.kafka.KafkaStorageHandler'
 TBLPROPERTIES

8

Data Access Apache Hive-Kafka integration

 ("kafka.topic" = "test-topic",
 "kafka.bootstrap.servers"="localhost:9092");

kafka.topic The Kafka topic to connect to

kafka.bootstrap.servers The broker connection string

Storage handler-based optimizations

The storage handler can optimize reads using a filter push-down when executing a query such as the following time-
based lookup supported on Kafka 0.11 or later. The Kafka consumer supports seeking on the stream based on an
offset, which the storage handler leverages to push down filters over metadata columns.

SELECT COUNT(*) FROM kafka_table
 WHERE `__timestamp` > 1000 * to_unix_timestamp(CURRENT_TIMESTAMP -
 interval '10' MINUTES) ;

The storage handler in this example performs seeks based on the Kafka record __timestamp to read only recently
arrived data.

The following logical operators and predicate operators are supported in the WHERE clause:

Logical operators: OR, AND

Predicate operators: <, <=, >=, >, =

The storage handler reader optimizes seeks by performing partition pruning to go directly to a particular partition
offset used in the WHERE clause.

SELECT COUNT(*) FROM kafka_table
 WHERE (`__offset` < 10 AND `__offset` > 3 AND `__partition` = 0)
 OR (`__partition` = 0 AND `__offset` < 105 AND `__offset` > 99)
 OR (`__offset` = 109);

The storage handler scans partition 0 only, and then read only records between offset 4 and 109.

Kafka metadata

In addition to the user-defined payload schema, the Kafka storage handler appends to the table the following
additional columns, which you can use to query the Kafka metadata fields:

__key Kafka record key (byte array)

__partition Kafka record partition identifier (int 32)

__offset Kafka record offset (int 64)

__timestamp Kafka record timestamp (int 64)

The partition identifier, record offset, and record timestamp plus a key-value pair constitute a Kafka record. Because
the key-value is a 2-byte array, you need to use a Serde classes to transform the array into a set of columns.

Table Properties

You can use the following properties in the TBLPROPERTIES clause of a Hive query that specifies the Kafka
storage handler:

Property Description Required Default

kafka.topic Kafka topic name to map the table
to.

Yes null

9

Data Access Apache Hive-Kafka integration

Property Description Required Default

kafka.bootstrap.servers Table property indicating Kafka
broker(s) connection string.

Yes null

kafka.serde.class Serializer and Deserializer class
implementation.

No org.apache.hadoop.hive.serde2.JsonSerDe

hive.kafka.poll.timeout.ms Parameter indicating Kafka
Consumer poll timeout period in
millis. FYI this is independent
from internal Kafka consumer
timeouts.

No 5000 (5 Seconds)

hive.kafka.max.retries Number of retries for Kafka
metadata fetch operations.

No 6

hive.kafka.metadata.poll.timeout.ms Number of milliseconds before
consumer timeout on fetching
Kafka metadata.

No 30000 (30 Seconds)

kafka.write.semantic Writer semantic, allowed values
(NONE, AT_LEAST_ONCE,
EXACTLY_ONCE)

No AT_LEAST_ONCE

10

	Contents
	Apache Hive-Kafka integration
	Create a table for a Kafka stream
	Querying live data from Kafka
	Query live data from Kafka

	Perform ETL: Ingest data from Kafka into Hive
	Writing transformed data to Kafka
	Write transformed Hive data to Kafka

	Set consumer and producer properties as table properties
	Kafka storage handler and table properties

