
Apache NiFi 3

Apache NiFi Security Reference
Date of Publish: 2019-03-15

https://docs.hortonworks.com/

https://docs.hortonworks.com/

Contents

User Authentication..3
Lightweight Directory Access Protocol (LDAP)...3
Kerberos.. 5
OpenId Connect.. 5
Apache Knox.. 6

Multi-Tenant Authorization.. 6
Authorizer Configuration..6
Authorizers.xml Setup.. 7

FileUserGroupProvider... 7
LdapUserGroupProvider... 7
Composite Implementations... 9
FileAccessPolicyProvider... 10
StandardManagedAuthorizer...10
FileAuthorizer... 11
Initial Admin Identity (New NiFi Instance).. 11
Legacy Authorized Users (NiFi Instance Upgrade)...18
Cluster Node Identities... 19

Configuring Users & Access Policies..20
Creating Users and Groups.. 21
Access Policies..23
Viewing Policies on Users... 25
Access Policy Configuration Examples... 27

Encryption Configuration..40
Key Derivation Functions...40

Additional Resources.. 42
Salt and IV Encoding... 42

NiFi Legacy.. 42
OpenSSL PKCS#5 v1.5 EVP_BytesToKey...43
Bcrypt, Scrypt, PBKDF2..43

Java Cryptography Extension (JCE) Limited Strength Jurisdiction Policies...45
Allow Insecure Cryptographic Modes... 46

Kerberos Service... 47
Notes..47

Apache NiFi User Authentication

User Authentication

NiFi supports user authentication via client certificates, via username/password, via Apache Knox, or via http://
openid.net/connect.

Username/password authentication is performed by a 'Login Identity Provider'. The Login Identity Provider is a
pluggable mechanism for authenticating users via their username/password. Which Login Identity Provider to use is
configured in the nifi.properties file. Currently NiFi offers username/password with Login Identity Providers options
for ldap_login_identity_provider and kerberos_login_identity_provider.

The nifi.login.identity.provider.configuration.file property specifies the configuration file for Login Identity
Providers. By default, this property is set to ./conf/login-identity-providers.xml.

The nifi.security.user.login.identity.provider property indicates which of the configured Login Identity Provider
should be used. By default, this property is not configured meaning that username/password must be explicitly
enabled.

During OpenId Connect authentication, NiFi will redirect users to login with the Provider before returning to NiFi.
NiFi will then call the Provider to obtain the user identity.

During Apache Knox authentication, NiFi will redirect users to login with Apache Knox before returning to NiFi.
NiFi will verify the Apache Knox token during authentication.

Note: NiFi can only be configured for username/password, OpenId Connect, or Apache Knox at a given
time. It does not support running each of these concurrently. NiFi will require client certificates for
authenticating users over HTTPS if none of these are configured.

A secured instance of NiFi cannot be accessed anonymously unless configured to use an ldap_login_identity_provider
or kerberos_login_identity_provider Login Identity Provider, which in turn must be configured to explicitly allow
anonymous access. Anonymous access is not currently possible by the default FileAuthorizer, but is a future effort
(https://issues.apache.org/jira/browse/NIFI-2730).

Note: NiFi does not perform user authentication over HTTP. Using HTTP, all users will be granted all roles.

Lightweight Directory Access Protocol (LDAP)

Below is an example and description of configuring a Login Identity Provider that integrates with a Directory Server
to authenticate users.

Set the following in nifi.properties to enable LDAP username/password authentication:

nifi.security.user.login.identity.provider=ldap-provider

Modify login-identity-providers.xml to enable the ldap-provider. Here is the sample provided in the file:

<provider>
 <identifier>ldap-provider</identifier>
 <class>org.apache.nifi.ldap.LdapProvider</class>
 <property name="Authentication Strategy">START_TLS</property>

 <property name="Manager DN"></property>
 <property name="Manager Password"></property>

 <property name="TLS - Keystore"></property>
 <property name="TLS - Keystore Password"></property>
 <property name="TLS - Keystore Type"></property>

3

http://openid.net/connect
http://openid.net/connect
https://issues.apache.org/jira/browse/NIFI-2730

Apache NiFi User Authentication

 <property name="TLS - Truststore"></property>
 <property name="TLS - Truststore Password"></property>
 <property name="TLS - Truststore Type"></property>
 <property name="TLS - Client Auth"></property>
 <property name="TLS - Protocol"></property>
 <property name="TLS - Shutdown Gracefully"></property>

 <property name="Referral Strategy">FOLLOW</property>
 <property name="Connect Timeout">10 secs</property>
 <property name="Read Timeout">10 secs</property>

 <property name="Url"></property>
 <property name="User Search Base"></property>
 <property name="User Search Filter"></property>

 <property name="Identity Strategy">USE_DN</property>
 <property name="Authentication Expiration">12 hours</property>
</provider>

The ldap-provider has the following properties:

Property Name Description

Authentication Expiration The duration of how long the user authentication is valid for. If the
user never logs out, they will be required to log back in following this
duration.

Authentication Strategy How the connection to the LDAP server is authenticated. Possible
values are ANONYMOUS, SIMPLE, LDAPS, or START_TLS.

Manager DN The DN of the manager that is used to bind to the LDAP server to
search for users.

Manager Password The password of the manager that is used to bind to the LDAP server to
search for users.

TLS - Keystore Path to the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS.

TLS - Keystore Password Password for the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS.

TLS - Keystore Type Type of the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS (i.e. JKS or PKCS12).

TLS - Truststore Path to the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS.

TLS - Truststore Password Password for the Truststore that is used when connecting to LDAP
using LDAPS or START_TLS.

TLS - Truststore Type Type of the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS (i.e. JKS or PKCS12).

TLS - Client Auth Client authentication policy when connecting to LDAP using LDAPS
or START_TLS. Possible values are REQUIRED, WANT, NONE.

TLS - Protocol Protocol to use when connecting to LDAP using LDAPS or
START_TLS. (i.e. TLS, TLSv1.1, TLSv1.2, etc).

TLS - Shutdown Gracefully Specifies whether the TLS should be shut down gracefully before the
target context is closed. Defaults to false.

Referral Strategy Strategy for handling referrals. Possible values are FOLLOW,
IGNORE, THROW.

4

Apache NiFi User Authentication

Property Name Description

Connect Timeout Duration of connect timeout. (i.e. 10 secs).

Read Timeout Duration of read timeout. (i.e. 10 secs).

Url Space-separated list of URLs of the LDAP servers (i.e. ldap://
<hostname>:<port>).

User Search Base Base DN for searching for users (i.e.
CN=Users,DC=example,DC=com).

User Search Filter Filter for searching for users against the User Search Base. (i.e.
sAMAccountName={0}). The user specified name is inserted into
'{0}'.

Identity Strategy Strategy to identify users. Possible values are USE_DN and
USE_USERNAME. The default functionality if this property is
missing is USE_DN in order to retain backward compatibility.
USE_DN will use the full DN of the user entry if possible.
USE_USERNAME will use the username the user logged in with.

Note: For changes to nifi.properties and login-identity-providers.xml to take effect, NiFi needs to be
restarted. If NiFi is clustered, configuration files must be the same on all nodes.

Kerberos

Below is an example and description of configuring a Login Identity Provider that integrates with a Kerberos Key
Distribution Center (KDC) to authenticate users.

Set the following in nifi.properties to enable Kerberos username/password authentication:

nifi.security.user.login.identity.provider=kerberos-provider

Modify login-identity-providers.xml to enable the kerberos-provider. Here is the sample provided in the file:

<provider>
 <identifier>kerberos-provider</identifier>
 <class>org.apache.nifi.kerberos.KerberosProvider</class>
 <property name="Default Realm">NIFI.APACHE.ORG</property>
 <property name="Authentication Expiration">12 hours</property>
</provider>

The kerberos-provider has the following properties:

Property Name Description

Authentication Expiration The duration of how long the user authentication is valid for. If the
user never logs out, they will be required to log back in following this
duration.

Default Realm Default realm to provide when user enters incomplete user principal
(i.e. NIFI.APACHE.ORG).

Note: For changes to nifi.properties and login-identity-providers.xml to take effect, NiFi needs to be
restarted. If NiFi is clustered, configuration files must be the same on all nodes.

OpenId Connect

5

Apache NiFi Multi-Tenant Authorization

To enable authentication via OpenId Connect the following properties must be configured in nifi.properties.

Property Name Description

nifi.security.user.oidc.preferred.jwsalgorithm The preferred algorithm for for validating identity tokens. If this value
is blank, it will default to RS256 which is required to be supported
by the OpenId Connect Provider according to the specification. If
this value is HS256, HS384, or HS512, NiFi will attempt to validate
HMAC protected tokens using the specified client secret. If this
value is none, NiFi will attempt to validate unsecured/plain tokens.
Other values for this algorithm will attempt to parse as an RSA or EC
algorithm to be used in conjunction with the JSON Web Key (JWK)
provided through the jwks_uri in the metadata found at the discovery
URL.

nifi.security.user.oidc.discovery.url The discovery URL for the desired OpenId Connect Provider (http://
openid.net/specs/openid-connect-discovery-1_0.html).

nifi.security.user.oidc.connect.timeout Connect timeout when communicating with the OpenId Connect
Provider.

nifi.security.user.oidc.read.timeout Read timeout when communicating with the OpenId Connect Provider.

nifi.security.user.oidc.client.id The client id for NiFi after registration with the OpenId Connect
Provider.

nifi.security.user.oidc.client.secret The client secret for NiFi after registration with the OpenId Connect
Provider.

Apache Knox

To enable authentication via Apache Knox the following properties must be configured in nifi.properties.

Property Name Description

nifi.security.user.knox.audiences Optional. A comma separate listed of allowed audiences. If set, the
audience in the token must be present in this listing. The audience that
is populated in the token can be configured in Knox.

nifi.security.user.knox.url The URL for the Apache Knox login page.

nifi.security.user.knox.publicKey The path to the Apache Knox public key that will be used to verify the
signatures of the authentication tokens in the HTTP Cookie.

nifi.security.user.knox.cookieName The name of the HTTP Cookie that Apache Knox will generate after
successful login.

Multi-Tenant Authorization

After you have configured NiFi to run securely and with an authentication mechanism, you must configure who
has access to the system, and the level of their access. You can do this using 'multi-tenant authorization'. Multi-
tenant authorization enables multiple groups of users (tenants) to command, control, and observe different parts of
the dataflow, with varying levels of authorization. When an authenticated user attempts to view or modify a NiFi
resource, the system checks whether the user has privileges to perform that action. These privileges are defined by
policies that you can apply system-wide or to individual components.

Authorizer Configuration

6

http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html

Apache NiFi Multi-Tenant Authorization

An 'authorizer' grants users the privileges to manage users and policies by creating preliminary authorizations at
startup.

Authorizers are configured using two properties in the nifi.properties file:

• The nifi.authorizer.configuration.file property specifies the configuration file where authorizers are defined. By
default, the authorizers.xml file located in the root installation conf directory is selected.

• The nifi.security.user.authorizer property indicates which of the configured authorizers in the authorizers.xml file
to use.

Authorizers.xml Setup

The authorizers.xml file is used to define and configure available authorizers. The default authorizer is
the StandardManagedAuthorizer. The managed authorizer is comprised of a UserGroupProvider and a
AccessPolicyProvider. The users, group, and access policies will be loaded and optionally configured through these
providers. The managed authorizer will make all access decisions based on these provided users, groups, and access
policies.

During startup there is a check to ensure that there are no two users/groups with the same identity/name. This check
is executed regardless of the configured implementation. This is necessary because this is how users/groups are
identified and authorized during access decisions.

FileUserGroupProvider

The default UserGroupProvider is the FileUserGroupProvider, however, you can develop additional
UserGroupProviders as extensions. The FileUserGroupProvider has the following properties:

• Users File - The file where the FileUserGroupProvider stores users and groups. By default, the users.xml in the
conf directory is chosen.

• Legacy Authorized Users File - The full path to an existing authorized-users.xml that will be automatically be
used to load the users and groups into the Users File.

• Initial User Identity - The identity of a users and systems to seed the Users File. The name of each property must
be unique, for example: "Initial User Identity A", "Initial User Identity B", "Initial User Identity C" or "Initial User
Identity 1", "Initial User Identity 2", "Initial User Identity 3"

LdapUserGroupProvider

Another option for the UserGroupProvider is the LdapUserGroupProvider. By default, this option is commented out
but can be configured in lieu of the FileUserGroupProvider. This will sync users and groups from a directory server
and will present them in the NiFi UI in read only form.

The LdapUserGroupProvider has the following properties:

Property Name Description

Group Member Attribute - Referenced User Attribute If blank, the value of the attribute defined in Group Member Attribute
is expected to be the full dn of the user. If not blank, this property will
define the attribute of the user ldap entry that the value of the attribute
defined in Group Member Attribute is referencing (i.e. uid). Use of
this property requires that User Search Base is also configured. (i.e.
member: cn=User 1,ou=users,o=nifi vs. memberUid: user1)

Authentication Strategy How the connection to the LDAP server is authenticated. Possible
values are ANONYMOUS, SIMPLE, LDAPS, or START_TLS.

Manager DN The DN of the manager that is used to bind to the LDAP server to
search for users.

Manager Password The password of the manager that is used to bind to the LDAP server to
search for users.

7

Apache NiFi Multi-Tenant Authorization

Property Name Description

TLS - Keystore Path to the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS.

TLS - Keystore Password Password for the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS.

TLS - Keystore Type Type of the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS (i.e. JKS or PKCS12).

TLS - Truststore Path to the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS.

TLS - Truststore Password Password for the Truststore that is used when connecting to LDAP
using LDAPS or START_TLS.

TLS - Truststore Type Type of the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS (i.e. JKS or PKCS12).

TLS - Client Auth Client authentication policy when connecting to LDAP using LDAPS
or START_TLS. Possible values are REQUIRED, WANT, NONE.

TLS - Protocol Protocol to use when connecting to LDAP using LDAPS or
START_TLS. (i.e. TLS, TLSv1.1, TLSv1.2, etc).

TLS - Shutdown Gracefully Specifies whether the TLS should be shut down gracefully before the
target context is closed. Defaults to false.

Referral Strategy Strategy for handling referrals. Possible values are FOLLOW,
IGNORE, THROW.

Connect Timeout Duration of connect timeout. (i.e. 10 secs).

Read Timeout Duration of read timeout. (i.e. 10 secs).

Url Space-separated list of URLs of the LDAP servers (i.e. ldap://
<hostname>:<port>).

Page Size Sets the page size when retrieving users and groups. If not specified, no
paging is performed.

Sync Interval Duration of time between syncing users and groups. (i.e. 30 mins).
Minimum allowable value is 10 secs.

User Search Base Base DN for searching for users (i.e. ou=users,o=nifi). Required to
search users.

User Object Class Object class for identifying users (i.e. person). Required if searching
users.

User Search Scope Search scope for searching users (ONE_LEVEL, OBJECT, or
SUBTREE). Required if searching users.

User Search Filter Filter for searching for users against the User Search Base (i.e.
(memberof=cn=team1,ou=groups,o=nifi)). Optional.

User Identity Attribute Attribute to use to extract user identity (i.e. cn). Optional. If not set, the
entire DN is used.

8

Apache NiFi Multi-Tenant Authorization

Property Name Description

User Group Name Attribute Attribute to use to define group membership (i.e. memberof). Optional.
If not set group membership will not be calculated through the users.
Will rely on group membership being defined through Group Member
Attribute if set. The value of this property is the name of the attribute in
the user ldap entry that associates them with a group. The value of that
user attribute could be a dn or group name for instance. What value is
expected is configured in the User Group Name Attribute - Referenced
Group Attribute.

User Group Name Attribute - Referenced Group Attribute If blank, the value of the attribute defined in User Group Name
Attribute is expected to be the full dn of the group. If not blank, this
property will define the attribute of the group ldap entry that the value
of the attribute defined in User Group Name Attribute is referencing
(i.e. name). Use of this property requires that Group Search Base is
also configured.

Group Search Base Base DN for searching for groups (i.e. ou=groups,o=nifi). Required to
search groups.

Group Object Class Object class for identifying groups (i.e. groupOfNames). Required if
searching groups.

Group Search Scope Search scope for searching groups (ONE_LEVEL, OBJECT, or
SUBTREE). Required if searching groups.

Group Search Filter Filter for searching for groups against the Group Search Base.
Optional.

Group Name Attribute Attribute to use to extract group name (i.e. cn). Optional. If not set, the
entire DN is used.

Group Member Attribute Attribute to use to define group membership (i.e. member). Optional.
If not set group membership will not be calculated through the groups.
Will rely on group membership being defined through User Group
Name Attribute if set. The value of this property is the name of the
attribute in the group ldap entry that associates them with a user. The
value of that group attribute could be a dn or memberUid for instance.
What value is expected is configured in the Group Member Attribute
- Referenced User Attribute. (i.e. member: cn=User 1,ou=users,o=nifi
vs. memberUid: user1)

Note: Any identity mapping rules specified in nifi.properties will also be applied to the user identities. Group
names are not mapped.

Composite Implementations

Another option for the UserGroupProvider are composite implementations. This means that multiple sources/
implementations can be configured and composed. For instance, an admin can configure users/groups to
be loaded from a file and a directory server. There are two composite implementations, one that supports
multiple UserGroupProviders and one that supports multiple UserGroupProviders and a single configurable
UserGroupProvider.

The CompositeUserGroupProvider will provide support for retrieving users and groups from multiple sources. The
CompositeUserGroupProvider has the following property:

Property Name Description

User Group Provider [unique key] The identifier of user group providers to load from. The name of each
property must be unique, for example: "User Group Provider A", "User
Group Provider B", "User Group Provider C" or "User Group Provider
1", "User Group Provider 2", "User Group Provider 3"

9

Apache NiFi Multi-Tenant Authorization

Note: Any identity mapping rules specified in nifi.properties are not applied in this implementation. This
behavior would need to be applied by the base implementation.

The CompositeConfigurableUserGroupProvider will provide support for retrieving users and groups from multiple
sources. Additionally, a single configurable user group provider is required. Users from the configurable user group
provider are configurable, however users loaded from one of the User Group Provider [unique key] will not be. The
CompositeConfigurableUserGroupProvider has the following properties:

Property Name Description

User Group Provider [unique key] The identifier of user group providers to load from. The name of each
property must be unique, for example: "User Group Provider A", "User
Group Provider B", "User Group Provider C" or "User Group Provider
1", "User Group Provider 2", "User Group Provider 3"

Configurable User Group Provider A configurable user group provider.

FileAccessPolicyProvider

The default AccessPolicyProvider is the FileAccessPolicyProvider, however, you can develop additional
AccessPolicyProvider as extensions. The FileAccessPolicyProvider has the following properties:

Property Name Description

Node Group The name of a group containing NiFi cluster nodes. The typical use for
this is when nodes are dynamically added/removed from the cluster.

User Group Provider The identifier for an User Group Provider defined above that will be
used to access users and groups for use in the managed access policies.

Authorizations File The file where the FileAccessPolicyProvider will store policies.

Initial Admin Identity The identity of an initial admin user that will be granted access to the
UI and given the ability to create additional users, groups, and policies.
The value of this property could be a DN when using certificates or
LDAP, or a Kerberos principal. This property will only be used when
there are no other policies defined. If this property is specified then a
Legacy Authorized Users File can not be specified.

Legacy Authorized Users File The full path to an existing authorized-users.xml that will be
automatically converted to the new authorizations model. If this
property is specified then an Initial Admin Identity can not be
specified, and this property will only be used when there are no other
users, groups, and policies defined.

Node Identity The identity of a NiFi cluster node. When clustered, a property for each
node should be defined, so that every node knows about every other
node. If not clustered these properties can be ignored. The name of
each property must be unique, for example for a three node cluster:
"Node Identity A", "Node Identity B", "Node Identity C" or "Node
Identity 1", "Node Identity 2", "Node Identity 3"

Note: The identities configured in the Initial Admin Identity, the Node Identity properties, or discovered in a
Legacy Authorized Users File must be available in the configured User Group Provider.

Note: Any users in the legacy users file must be found in the configured User Group Provider.

Note: Any identity mapping rules specified in nifi.properties will also be applied to the node identities, so the
values should be the unmapped identities (i.e. full DN from a certificate). This identity must be found in the
configured User Group Provider.

StandardManagedAuthorizer

10

Apache NiFi Multi-Tenant Authorization

The default authorizer is the StandardManagedAuthorizer, however, you can develop additional authorizers as
extensions. The StandardManagedAuthorizer has the following property:

Property Name Description

Access Policy Provider The identifier for an Access Policy Provider defined above.

FileAuthorizer

The FileAuthorizer has been replaced with the more granular StandardManagedAuthorizer approach described above.
However, it is still available for backwards compatibility reasons. The FileAuthorizer has the following properties:

Property Name Description

Node Identity The identity of a NiFi cluster node. When clustered, a property for each
node should be defined, so that every node knows about every other
node. If not clustered, these properties can be ignored.

Authorizations File The file where the FileAuthorizer stores policies. By default, the
authorizations.xml in the conf directory is chosen.

Users File The file where the FileAuthorizer stores users and groups. By default,
the users.xml in the conf directory is chosen.

Initial Admin Identity The identity of an initial admin user that is granted access to the UI
and given the ability to create additional users, groups, and policies.
This property is only used when there are no other users, groups, and
policies defined.

Legacy Authorized Users File The full path to an existing authorized-users.xml that is automatically
converted to the multi-tenant authorization model. This property is only
used when there are no other users, groups, and policies defined.

Note: Any identity mapping rules specified in nifi.properties will also be applied to the initial admin identity,
so the value should be the unmapped identity.

Note: Any identity mapping rules specified in nifi.properties will also be applied to the node identities, so the
values should be the unmapped identities (i.e. full DN from a certificate).

Initial Admin Identity (New NiFi Instance)

If you are setting up a secured NiFi instance for the first time, you must manually designate an "Initial Admin
Identity" in the authorizers.xml file. This initial admin user is granted access to the UI and given the ability to create
additional users, groups, and policies. The value of this property could be a DN (when using certificates or LDAP) or
a Kerberos principal. If you are the NiFi administrator, add yourself as the "Initial Admin Identity".

After you have edited and saved the authorizers.xml file, restart NiFi. The "Initial Admin Identity" user and
administrative policies are added to the users.xml and authorizations.xml files during restart. Once NiFi starts, the
"Initial Admin Identity" user is able to access the UI and begin managing users, groups, and policies.

Note: For a brand new secure flow, providing the "Initial Admin Identity" gives that user access to get into
the UI and to manage users, groups and policies. But if that user wants to start modifying the flow, they need
to grant themselves policies for the root process group. The system is unable to do this automatically because
in a new flow the UUID of the root process group is not permanent until the flow.xml.gz is generated. If the
NiFi instance is an upgrade from an existing flow.xml.gz or a 1.x instance going from unsecure to secure,
then the "Initial Admin Identity" user is automatically given the privileges to modify the flow.

Some common use cases are described below.

File-based (LDAP Authentication)

11

Apache NiFi Multi-Tenant Authorization

Here is an example LDAP entry using the name John Smith:

<authorizers>
 <userGroupProvider>
 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.authorization.FileUserGroupProvider</class>
 <property name="Users File">./conf/users.xml</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Initial User Identity 1">cn=John
 Smith,ou=people,dc=example,dc=com</property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</
class>
 <property name="User Group Provider">file-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</
property>
 <property name="Initial Admin Identity">cn=John
 Smith,ou=people,dc=example,dc=com</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Node Identity 1"></property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</
class>
 <property name="Access Policy Provider">file-access-policy-
provider</property>
 </authorizer>
</authorizers>

File-based (Kerberos Authentication)

Here is an example Kerberos entry using the name John Smith and realm NIFI.APACHE.ORG:

<authorizers>
 <userGroupProvider>
 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.authorization.FileUserGroupProvider</class>
 <property name="Users File">./conf/users.xml</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Initial User Identity 1">johnsmith@NIFI.APACHE.ORG</
property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</
class>
 <property name="User Group Provider">file-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</
property>
 <property name="Initial Admin Identity">johnsmith@NIFI.APACHE.ORG</
property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Node Identity 1"></property>
 </accessPolicyProvider>

12

Apache NiFi Multi-Tenant Authorization

 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</
class>
 <property name="Access Policy Provider">file-access-policy-
provider</property>
 </authorizer>
</authorizers>

LDAP-based Users/Groups Referencing User DN

Here is an example loading users and groups from LDAP. Group membership will be driven through the member
attribute of each group. Authorization will still use file-based access policies:

dn: cn=User 1,ou=users,o=nifi
objectClass: organizationalPerson
objectClass: person
objectClass: inetOrgPerson
objectClass: top
cn: User 1
sn: User1
uid: user1

dn: cn=User 2,ou=users,o=nifi
objectClass: organizationalPerson
objectClass: person
objectClass: inetOrgPerson
objectClass: top
cn: User 2
sn: User2
uid: user2

dn: cn=admins,ou=groups,o=nifi
objectClass: groupOfNames
objectClass: top
cn: admins
member: cn=User 1,ou=users,o=nifi
member: cn=User 2,ou=users,o=nifi

<authorizers>
 <userGroupProvider>
 <identifier>ldap-user-group-provider</identifier>
 <class>org.apache.nifi.ldap.tenants.LdapUserGroupProvider</class>
 <property name="Authentication Strategy">ANONYMOUS</property>

 <property name="Manager DN"></property>
 <property name="Manager Password"></property>

 <property name="TLS - Keystore"></property>
 <property name="TLS - Keystore Password"></property>
 <property name="TLS - Keystore Type"></property>
 <property name="TLS - Truststore"></property>
 <property name="TLS - Truststore Password"></property>
 <property name="TLS - Truststore Type"></property>
 <property name="TLS - Client Auth"></property>
 <property name="TLS - Protocol"></property>
 <property name="TLS - Shutdown Gracefully"></property>

 <property name="Referral Strategy">FOLLOW</property>
 <property name="Connect Timeout">10 secs</property>
 <property name="Read Timeout">10 secs</property>

 <property name="Url">ldap://localhost:10389</property>

13

Apache NiFi Multi-Tenant Authorization

 <property name="Page Size"></property>
 <property name="Sync Interval">30 mins</property>

 <property name="User Search Base">ou=users,o=nifi</property>
 <property name="User Object Class">person</property>
 <property name="User Search Scope">ONE_LEVEL</property>
 <property name="User Search Filter"></property>
 <property name="User Identity Attribute">cn</property>
 <property name="User Group Name Attribute"></property>
 <property name="User Group Name Attribute - Referenced Group
 Attribute"></property>

 <property name="Group Search Base">ou=groups,o=nifi</property>
 <property name="Group Object Class">groupOfNames</property>
 <property name="Group Search Scope">ONE_LEVEL</property>
 <property name="Group Search Filter"></property>
 <property name="Group Name Attribute">cn</property>
 <property name="Group Member Attribute">member</property>
 <property name="Group Member Attribute - Referenced User
 Attribute"></property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</
class>
 <property name="User Group Provider">ldap-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</
property>
 <property name="Initial Admin Identity">John Smith</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Node Identity 1"></property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</
class>
 <property name="Access Policy Provider">file-access-policy-
provider</property>
 </authorizer>
</authorizers>

The Initial Admin Identity value would have loaded from the cn from John Smith's entry based on the User Identity
Attribute value.

LDAP-based Users/Groups Referencing User Attribute

Here is an example loading users and groups from LDAP. Group membership will be driven through the member uid
attribute of each group. Authorization will still use file-based access policies:

dn: uid=User 1,ou=Users,dc=local
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
uid: user1
cn: User 1

dn: uid=User 2,ou=Users,dc=local
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
uid: user2

14

Apache NiFi Multi-Tenant Authorization

cn: User 2

dn: cn=Managers,ou=Groups,dc=local
objectClass: posixGroup
cn: Managers
memberUid: user1
memberUid: user2

<authorizers>
 <userGroupProvider>
 <identifier>ldap-user-group-provider</identifier>
 <class>org.apache.nifi.ldap.tenants.LdapUserGroupProvider</class>
 <property name="Authentication Strategy">ANONYMOUS</property>

 <property name="Manager DN"></property>
 <property name="Manager Password"></property>

 <property name="TLS - Keystore"></property>
 <property name="TLS - Keystore Password"></property>
 <property name="TLS - Keystore Type"></property>
 <property name="TLS - Truststore"></property>
 <property name="TLS - Truststore Password"></property>
 <property name="TLS - Truststore Type"></property>
 <property name="TLS - Client Auth"></property>
 <property name="TLS - Protocol"></property>
 <property name="TLS - Shutdown Gracefully"></property>

 <property name="Referral Strategy">FOLLOW</property>
 <property name="Connect Timeout">10 secs</property>
 <property name="Read Timeout">10 secs</property>

 <property name="Url">ldap://localhost:10389</property>
 <property name="Page Size"></property>
 <property name="Sync Interval">30 mins</property>

 <property name="User Search Base">ou=Users,dc=local</property>
 <property name="User Object Class">posixAccount</property>
 <property name="User Search Scope">ONE_LEVEL</property>
 <property name="User Search Filter"></property>
 <property name="User Identity Attribute">cn</property>
 <property name="User Group Name Attribute"></property>
 <property name="User Group Name Attribute - Referenced Group
 Attribute"></property>

 <property name="Group Search Base">ou=Groups,dc=local</property>
 <property name="Group Object Class">posixGroup</property>
 <property name="Group Search Scope">ONE_LEVEL</property>
 <property name="Group Search Filter"></property>
 <property name="Group Name Attribute">cn</property>
 <property name="Group Member Attribute">memberUid</property>
 <property name="Group Member Attribute - Referenced User
 Attribute">uid</property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</
class>
 <property name="User Group Provider">ldap-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</
property>
 <property name="Initial Admin Identity">John Smith</property>
 <property name="Legacy Authorized Users File"></property>

15

Apache NiFi Multi-Tenant Authorization

 <property name="Node Identity 1"></property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</
class>
 <property name="Access Policy Provider">file-access-policy-
provider</property>
 </authorizer>
</authorizers>

Composite - File and LDAP-based Users/Groups

Here is an example composite implementation loading users and groups from LDAP and a local file. Group
membership will be driven through the member attribute of each group. The users from LDAP will be read only while
the users loaded from the file will be configurable in UI.

dn: cn=User 1,ou=users,o=nifi
objectClass: organizationalPerson
objectClass: person
objectClass: inetOrgPerson
objectClass: top
cn: User 1
sn: User1
uid: user1

dn: cn=User 2,ou=users,o=nifi
objectClass: organizationalPerson
objectClass: person
objectClass: inetOrgPerson
objectClass: top
cn: User 2
sn: User2
uid: user2

dn: cn=admins,ou=groups,o=nifi
objectClass: groupOfNames
objectClass: top
cn: admins
member: cn=User 1,ou=users,o=nifi
member: cn=User 2,ou=users,o=nifi

<authorizers>
 <userGroupProvider>
 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.authorization.FileUserGroupProvider</class>
 <property name="Users File">./conf/users.xml</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Initial User Identity 1">cn=nifi-
node1,ou=servers,dc=example,dc=com</property>
 <property name="Initial User Identity 2">cn=nifi-
node2,ou=servers,dc=example,dc=com</property>
 </userGroupProvider>
 <userGroupProvider>
 <identifier>ldap-user-group-provider</identifier>
 <class>org.apache.nifi.ldap.tenants.LdapUserGroupProvider</class>
 <property name="Authentication Strategy">ANONYMOUS</property>

 <property name="Manager DN"></property>
 <property name="Manager Password"></property>

 <property name="TLS - Keystore"></property>

16

Apache NiFi Multi-Tenant Authorization

 <property name="TLS - Keystore Password"></property>
 <property name="TLS - Keystore Type"></property>
 <property name="TLS - Truststore"></property>
 <property name="TLS - Truststore Password"></property>
 <property name="TLS - Truststore Type"></property>
 <property name="TLS - Client Auth"></property>
 <property name="TLS - Protocol"></property>
 <property name="TLS - Shutdown Gracefully"></property>

 <property name="Referral Strategy">FOLLOW</property>
 <property name="Connect Timeout">10 secs</property>
 <property name="Read Timeout">10 secs</property>

 <property name="Url">ldap://localhost:10389</property>
 <property name="Page Size"></property>
 <property name="Sync Interval">30 mins</property>

 <property name="User Search Base">ou=users,o=nifi</property>
 <property name="User Object Class">person</property>
 <property name="User Search Scope">ONE_LEVEL</property>
 <property name="User Search Filter"></property>
 <property name="User Identity Attribute">cn</property>
 <property name="User Group Name Attribute"></property>
 <property name="User Group Name Attribute - Referenced Group
 Attribute"></property>

 <property name="Group Search Base">ou=groups,o=nifi</property>
 <property name="Group Object Class">groupOfNames</property>
 <property name="Group Search Scope">ONE_LEVEL</property>
 <property name="Group Search Filter"></property>
 <property name="Group Name Attribute">cn</property>
 <property name="Group Member Attribute">member</property>
 <property name="Group Member Attribute - Referenced User
 Attribute"></property>
 </userGroupProvider>
 <userGroupProvider>
 <identifier>composite-user-group-provider</identifier>

 <class>org.apache.nifi.authorization.CompositeConfigurableUserGroupProvider</
class>
 <property name="Configurable User Group Provider">file-user-group-
provider</property>
 <property name="User Group Provider 1">ldap-user-group-provider</
property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</
class>
 <property name="User Group Provider">composite-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</
property>
 <property name="Initial Admin Identity">John Smith</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Node Identity 1">cn=nifi-
node1,ou=servers,dc=example,dc=com</property>
 <property name="Node Identity 2">cn=nifi-
node2,ou=servers,dc=example,dc=com</property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>

17

Apache NiFi Multi-Tenant Authorization

 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</
class>
 <property name="Access Policy Provider">file-access-policy-
provider</property>
 </authorizer>
</authorizers>

In this example, the users and groups are loaded from LDAP but the servers are managed in a local file. The Initial
Admin Identity value came from an attribute in a LDAP entry based on the User Identity Attribute. The Node Identity
values are established in the local file using the Initial User Identity properties.

Legacy Authorized Users (NiFi Instance Upgrade)

If you are upgrading from a 0.x NiFi instance, you can convert your previously configured users and roles to the
multi-tenant authorization model. In the authorizers.xml file, specify the location of your existing authorized-
users.xml file in the Legacy Authorized Users File property.

Here is an example entry:

<authorizers>
 <userGroupProvider>
 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.authorization.FileUserGroupProvider</class>
 <property name="Users File">./conf/users.xml</property>
 <property name="Legacy Authorized Users File">/Users/johnsmith/
config_files/authorized-users.xml</property>

 <property name="Initial User Identity 1"></property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</
class>
 <property name="User Group Provider">file-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</
property>
 <property name="Initial Admin Identity"></property>
 <property name="Legacy Authorized Users File">/Users/johnsmith/
config_files/authorized-users.xml</property>

 <property name="Node Identity 1"></property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</
class>
 <property name="Access Policy Provider">file-access-policy-
provider</property>
 </authorizer>
</authorizers>

After you have edited and saved the authorizers.xml file, restart NiFi. Users and roles from the authorized-users.xml
file are converted and added as identities and policies in the users.xml and authorizations.xml files. Once the
application starts, users who previously had a legacy Administrator role can access the UI and begin managing users,
groups, and policies.

The following tables summarize the global and component policies assigned to each legacy role if the NiFi instance
has an existing flow.xml.gz:

Global Access Policies

18

Apache NiFi Multi-Tenant Authorization

Admin DFM Monitor Provenance NiFi Proxy

view the UI * * *

access the
controller - view

* * * *

access the
controller -
modify

*

query provenance *

access restricted
components

*

access all policies
- view

*

access all policies
- modify

*

access users/user
groups - view

*

access users/user
groups - modify

*

retrieve site-to-site
details

*

view system
diagnostics

* *

proxy user
requests

*

access counters

Component Access Policies on the Root Process Group

Admin DFM Monitor Provenance NiFi Proxy

view the
component

* * *

modify the
component

*

view the data * * *

modify the data * *

view provenance *

Note: NiFi fails to restart if values exist for both the Initial Admin Identity and Legacy Authorized Users File
properties. You can specify only one of these values to initialize authorizations.

Note: Do not manually edit the authorizations.xml file. Create authorizations only during initial setup and
afterwards using the NiFi UI.

Cluster Node Identities

19

Apache NiFi Multi-Tenant Authorization

If you are running NiFi in a clustered environment, you must specify the identities for each node. The authorization
policies required for the nodes to communicate are created during startup.

For example, if you are setting up a 2 node cluster with the following DNs for each node:

cn=nifi-1,ou=people,dc=example,dc=com
cn=nifi-2,ou=people,dc=example,dc=com

<authorizers>
 <userGroupProvider>
 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.authorization.FileUserGroupProvider</class>
 <property name="Users File">./conf/users.xml</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Initial User Identity 1">johnsmith@NIFI.APACHE.ORG</
property>
 <property name="Initial User Identity
 2">cn=nifi-1,ou=people,dc=example,dc=com</property>
 <property name="Initial User Identity
 3">cn=nifi-2,ou=people,dc=example,dc=com</property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</
class>
 <property name="User Group Provider">file-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</
property>
 <property name="Initial Admin Identity">johnsmith@NIFI.APACHE.ORG</
property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Node Identity
 1">cn=nifi-1,ou=people,dc=example,dc=com</property>
 <property name="Node Identity
 2">cn=nifi-2,ou=people,dc=example,dc=com</property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</
class>
 <property name="Access Policy Provider">file-access-policy-
provider</property>
 </authorizer>
</authorizers>

Note: In a cluster, all nodes must have the same authorizations.xml and users.xml. The only exception is if
a node has empty authorizations.xml and user.xml files prior to joining the cluster. In this scenario, the node
inherits them from the cluster during startup.

Now that initial authorizations have been created, additional users, groups and authorizations can be created and
managed in the NiFi UI.

Configuring Users & Access Policies

Depending on the capabilities of the configured UserGroupProvider and AccessPolicyProvider the users, groups, and
policies will be configurable in the UI. If the extensions are not configurable the users, groups, and policies will read-

20

Apache NiFi Multi-Tenant Authorization

only in the UI. If the configured authorizer does not use UserGroupProvider and AccessPolicyProvider the users and
policies may or may not be visible and configurable in the UI based on the underlying implementation.

This section assumes the users, groups, and policies are configurable in the UI and describes:

• How to create users and groups
• How access policies are used to define authorizations
• How to view policies that are set on a user
• How to configure access policies by walking through specific examples

Note: Instructions requiring interaction with the UI assume the application is being accessed by User1, a user
with administrator privileges, such as the "Initial Admin Identity" user or a converted legacy admin user (see
Authorizers.xml Setup).

Creating Users and Groups

From the UI, select "Users" from the Global Menu. This opens a dialog to create and manage users and groups.

Click the Add icon

().
To create a user, enter the 'Identity' information relevant to the authentication method chosen to secure your NiFi
instance. Click OK.

21

Apache NiFi Multi-Tenant Authorization

To create a group, select the "Group" radio button, enter the name of the group and select the users to be included in
the group. Click OK.

22

Apache NiFi Multi-Tenant Authorization

Access Policies

You can manage the ability for users and groups to view or modify NiFi resources using 'access policies'. There are
two types of access policies that can be applied to a resource:

• View - If a view policy is created for a resource, only the users or groups that are added to that policy are able to
see the details of that resource.

• Modify - If a resource has a modify policy, only the users or groups that are added to that policy can change the
configuration of that resource.

You can create and apply access policies on both global and component levels.

Global Access Policies

23

Apache NiFi Multi-Tenant Authorization

Global access policies govern the following system level authorizations:

Policy Privilege Global Menu Selection Resource Descriptor

view the UI Allow users to view the UI N/A /flow

access the controller Allows users to view/modify the
controller including Reporting
Tasks, Controller Services, and
Nodes in the Cluster

Controller Settings /controller

query provenance Allows users to submit a
Provenance Search and request
Event Lineage

Data Provenance /provenance

access restricted components Allows users to create/modify
restricted components assuming
other permissions are sufficient.
The restricted components
may indicate which specific
permissions are required.
Permissions can be granted for
specific restrictions or be granted
regardless of restrictions. If
permission is granted regardless
of restrictions, the user can create/
modify all restricted components.

N/A /restricted-components

access all policies Allows users to view/modify the
policies for all components

Policies /policies

access users/user groups Allows users to view/modify the
users and user groups

Users /tenants

retrieve site-to-site details Allows other NiFi instances to
retrieve Site-To-Site details

N/A /site-to-site

view system diagnostics Allows users to view System
Diagnostics

Summary /system

proxy user requests Allows proxy machines to send
requests on the behalf of others

N/A /proxy

access counters Allows users to view/modify
Counters

Counters /counters

Component Level Access Policies

Component level access policies govern the following component level authorizations:

Policy Privilege Resource Descriptor & Action

view the component Allows users to view component configuration
details

resource="/<component-type>/<component-
UUID>" action="R"

modify the component Allows users to modify component
configuration details

resource="/<component-type>/<component-
UUID>" action="W"

operate the component Allows users to operate components by
changing component run status (start/stop/
enable/disable), remote port transmission
status, or terminating processor threads

resource="/operation/<component-type>/
<component-UUID>" action="W"

view provenance Allows users to view provenance events
generated by this component

resource="/provenance-data/<component-
type>/<component-UUID>" action="R"

24

Apache NiFi Multi-Tenant Authorization

Policy Privilege Resource Descriptor & Action

view the data Allows users to view metadata and content for
this component in flowfile queues in outbound
connections and through provenance events

resource="/data/<component-type>/
<component-UUID>" action="R"

modify the data Allows users to empty flowfile queues in
outbound connections and submit replays
through provenance events

resource="/data/<component-type>/
<component-UUID>" action="W"

view the policies Allows users to view the list of users who can
view/modify a component

resource="/policies/<component-type>/
<component-UUID>" action="R"

modify the policies Allows users to modify the list of users who
can view/modify a component

resource="/policies/<component-type>/
<component-UUID>" action="W"

receive data via site-to-site Allows a port to receive data from NiFi
instances

resource="/data-transfer/input-ports/<port-
UUID>" action="W"

send data via site-to-site Allows a port to send data from NiFi instances resource="/data-transfer/output-ports/<port-
UUID>" action="W"

Note: You can apply access policies to all component types except connections. Connection authorizations
are inferred by the individual access policies on the source and destination components of the connection, as
well as the access policy of the process group containing the components. This is discussed in more detail in
the Creating a Connection and Editing a Connection examples below.

Note: In order to access List Queue or Delete Queue for a connection, a user requires permission to the "view
the data" and "modify the data" policies on the component. In a clustered environment, all nodes must be be
added to these policies as well, as a user request could be replicated through any node in the cluster.

Access Policy Inheritance

An administrator does not need to manually create policies for every component in the dataflow. To reduce the
amount of time admins spend on authorization management, policies are inherited from parent resource to child
resource. For example, if a user is given access to view and modify a process group, that user can also view and
modify the components in the process group. Policy inheritance enables an administrator to assign policies at one
time and have the policies apply throughout the entire dataflow.

You can override an inherited policy. Overriding a policy removes the inherited policy, breaking the chain of
inheritance from parent to child, and creates a replacement policy to add users as desired. Inherited policies and their
users can be restored by deleting the replacement policy.

Note: "View the policies" and "modify the policies" component-level access policies are an exception to this
inherited behavior. When a user is added to either policy, they are added to the current list of administrators.
 They do not override higher level administrators. For this reason, only component specific administrators
are displayed for the "view the policies" and "modify the policies" access policies.

Note: You cannot modify the users/groups on an inherited policy. Users and groups can only be added or
removed from a parent policy or an override policy.

Viewing Policies on Users

From the UI, select "Users" from the Global Menu. This opens the NiFi Users dialog.

25

Apache NiFi Multi-Tenant Authorization

Select the View User Policies icon

().

26

Apache NiFi Multi-Tenant Authorization

The User Policies window displays the global and component level policies that have been set for the chosen user.
Select the Go To icon

()
to navigate to that component in the canvas.

Access Policy Configuration Examples

The most effective way to understand how to create and apply access policies is to walk through some common
examples. The following scenarios assume User1 is an administrator and User2 is a newly added user that has only
been given access to the UI.

Let's begin with two processors on the canvas as our starting point: GenerateFlowFile and LogAttribute.

27

Apache NiFi Multi-Tenant Authorization

User1 can add components to the dataflow and is able to move, edit and connect all processors. The details and
properties of the root process group and processors are visible to User1.

User1 wants to maintain their current privileges to the dataflow and its components.

User2 is unable to add components to the dataflow or move, edit, or connect components. The details and properties
of the root process group and processors are hidden from User2.

28

Apache NiFi Multi-Tenant Authorization

Moving a Processor

To allow User2 to move the GenerateFlowFile processor in the dataflow and only that processor, User1 performs the
following steps:

1. Select the GenerateFlowFile processor so that it is highlighted.
2. Select the Access Policies icon

()
from the Operate palette and the Access Policies dialog opens.

3. Select "modify the component" from the policy drop-down. The "modify the component" policy that currently
exists on the processor (child) is the "modify the component" policy inherited from the root process group (parent)
on which User1 has privileges.

29

Apache NiFi Multi-Tenant Authorization

4. Select the Override link in the policy inheritance message. When creating the replacement policy, you are given
a choice to override with a copy of the inherited policy or an empty policy. Select the Override button to create a
copy.

5. On the replacement policy that is created, select the Add User icon

().
Find or enter User2 in the User Identity field and select OK. With these changes, User1 maintains the ability to
move both processors on the canvas. User2 can now move the GenerateFlowFile processor but cannot move the
LogAttribute processor.

30

Apache NiFi Multi-Tenant Authorization

Editing a Processor

In the "Moving a Processor" example above, User2 was added to the "modify the component" policy for
GenerateFlowFile. Without the ability to view the processor properties, User2 is unable to modify the processor's
configuration. In order to edit a component, a user must be on both the "view the component" and "modify the
component" policies. To implement this, User1 performs the following steps:

1. Select the GenerateFlowFile processor.
2. Select the Access Policies icon

()
from the Operate palette and the Access Policies dialog opens.

31

Apache NiFi Multi-Tenant Authorization

3. Select "view the component" from the policy drop-down. The view the component" policy that currently exists on
the processor (child) is the "view the component" policy inherited from the root process group (parent) on which
User1 has privileges.

4. Select the Override link in the policy inheritance message, keep the default of Copy policy and select the Override
button.

5. On the override policy that is created, select the Add User icon

().
Find or enter User2 in the User Identity field and select OK. With these changes, User1 maintains the ability to
view and edit the processors on the canvas. User2 can now view and edit the GenerateFlowFile processor.

32

Apache NiFi Multi-Tenant Authorization

Creating a Connection

With the access policies configured as discussed in the previous two examples, User1 is able to connect
GenerateFlowFile to LogAttribute:

33

Apache NiFi Multi-Tenant Authorization

User2 cannot make the connection:

This is because:

• User2 does not have modify access on the process group.
• Even though User2 has view and modify access to the source component (GenerateFlowFile), User2 does not

have an access policy on the destination component (LogAttribute).

To allow User2 to connect GenerateFlowFile to LogAttribute, as User1:

1. Select the root process group. The Operate palette is updated with details for the root process group.

34

Apache NiFi Multi-Tenant Authorization

2. Select the Access Policies icon

()
from the Operate palette and the Access Policies dialog opens.

3. Select "modify the component" from the policy drop-down.

4. Select the Add User icon

().
Find or enter User2 and select OK.

35

Apache NiFi Multi-Tenant Authorization

By adding User2 to the "modify the component" policy on the process group, User2 is added
to the "modify the component" policy on the LogAttribute processor by policy inheritance.
To confirm this, highlight the LogAttribute processor and select the Access Policies icon

()
from the Operate palette:

With these changes, User2 can now connect the GenerateFlowFile processor to the LogAttribute processor.

36

Apache NiFi Multi-Tenant Authorization

Editing a Connection

Assume User1 or User2 adds a ReplaceText processor to the root process group:

User1 can select and change the existing connection (between GenerateFlowFile to LogAttribute) to now connect
GenerateFlowFile to ReplaceText:

37

Apache NiFi Multi-Tenant Authorization

User 2 is unable to perform this action.

To allow User2 to connect GenerateFlowFile to ReplaceText, as User1:

1. Select the root process group. The Operate palette is updated with details for the root process group.
2. Select the Access Policies icon

().

38

Apache NiFi Multi-Tenant Authorization

3. Select "view the component" from the policy drop-down.

4. Select the Add User icon

().
Find or enter User2 and select OK.

Being added to both the view and modify policies for the process group, User2 can now connect the
GenerateFlowFile processor to the ReplaceText processor.

39

Apache NiFi Encryption Configuration

Encryption Configuration

This section provides an overview of the capabilities of NiFi to encrypt and decrypt data.

The EncryptContent processor allows for the encryption and decryption of data, both internal to NiFi and integrated
with external systems, such as openssl and other data sources and consumers.

Key Derivation Functions

Key Derivation Functions (KDF) are mechanisms by which human-readable information, usually a password or
other secret information, is translated into a cryptographic key suitable for data protection. For further information,
read the https://en.wikipedia.org/wiki/Key_derivation_function. Currently, KDFs are ingested by CipherProvider
implementations and return a fully-initialized Cipher object to be used for encryption or decryption. Due to the
use of a CipherProviderFactory, the KDFs are not customizable at this time. Future enhancements will include
the ability to provide custom cost parameters to the KDF at initialization time. As a work-around, CipherProvider
instances can be initialized with custom cost parameters in the constructor but this is not currently supported by the
CipherProviderFactory. Here are the KDFs currently supported by NiFi (primarily in the EncryptContent processor
for password-based encryption (PBE)) and relevant notes:

• NiFi Legacy KDF

• The original KDF used by NiFi for internal key derivation for PBE, this is 1000 iterations of the MD5 digest
over the concatenation of the password and 8 or 16 bytes of random salt (the salt length depends on the
selected cipher block size).

• This KDF is deprecated as of NiFi 0.5.0 and should only be used for backwards compatibility to decrypt data
that was previously encrypted by a legacy version of NiFi.

• OpenSSL PKCS#5 v1.5 EVP_BytesToKey

• This KDF was added in v0.4.0.
• This KDF is provided for compatibility with data encrypted using OpenSSL's default PBE, known as

EVP_BytesToKey. This is a single iteration of MD5 over the concatenation of the password and 8 bytes

40

https://en.wikipedia.org/wiki/Key_derivation_function

Apache NiFi Encryption Configuration

of random ASCII salt. OpenSSL recommends using PBKDF2 for key derivation but does not expose the
library method necessary to the command-line tool, so this KDF is still the de facto default for command-line
encryption.

• Bcrypt

• This KDF was added in v0.5.0.
• https://en.wikipedia.org/wiki/Bcrypt is an adaptive function based on the https://en.wikipedia.org/wiki/

Blowfish_(cipher) cipher. This KDF is strongly recommended as it automatically incorporates a random 16
byte salt, configurable cost parameter (or "work factor"), and is hardened against brute-force attacks using
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units (which share
memory between cores) by requiring access to "large" blocks of memory during the key derivation. It is less
resistant to https://en.wikipedia.org/wiki/Field-programmable_gate_array brute-force attacks where the gate
arrays have access to individual embedded RAM blocks.

• Because the length of a Bcrypt-derived key is always 184 bits, the complete output is then fed to a SHA-512
digest and truncated to the desired key length. This provides the benefit of the avalanche effect on the
formatted input.

• The recommended minimum work factor is 12 (212 key derivation rounds) (as of
2/1/2016 on commodity hardware) and should be increased to the threshold at which
legitimate systems will encounter detrimental delays (see schedule below or use
BcryptCipherProviderGroovyTest#testDefaultConstructorShouldProvideStrongWorkFactor() to calculate safe
minimums).

• The salt format is $2a$10$ABCDEFGHIJKLMNOPQRSTUV. The salt is delimited by $ and the three
sections are as follows:

• 2a - the version of the format. An extensive explanation can be found http://blog.ircmaxell.com/2012/12/
seven-ways-to-screw-up-bcrypt.html. NiFi currently uses 2a for all salts generated internally.

• 10 - the work factor. This is actually the log2 value, so the total iteration count would be 210 in this case.
• ABCDEFGHIJKLMNOPQRSTUV - the 22 character, Base64-encoded, unpadded, raw salt value. This

decodes to a 16 byte salt used in the key derivation.
• Scrypt

• This KDF was added in v0.5.0.
• https://en.wikipedia.org/wiki/Scrypt is an adaptive function designed in response to bcrypt. This KDF is

recommended as it requires relatively large amounts of memory for each derivation, making it resistant to
hardware brute-force attacks.

• The recommended minimum cost is N=214, r=8, p=1 (as of 2/1/2016 on commodity hardware) and should be
increased to the threshold at which legitimate systems will encounter detrimental delays (see schedule below
or use ScryptCipherProviderGroovyTest#testDefaultConstructorShouldProvideStrongParameters() to calculate
safe minimums).

• The salt format is $s0$e0101$ABCDEFGHIJKLMNOPQRSTUV. The salt is delimited by $ and the three
sections are as follows:

• s0 - the version of the format. NiFi currently uses s0 for all salts generated internally.
• e0101 - the cost parameters. This is actually a hexadecimal encoding of N, r, p using shifts. This can be

formed/parsed using Scrypt#encodeParams() and Scrypt#parseParameters().

• Some external libraries encode N, r, and p separately in the form $400$1$1$. A utility method is
available at ScryptCipherProvider#translateSalt() which will convert the external form to the internal
form.

• ABCDEFGHIJKLMNOPQRSTUV - the 12-44 character, Base64-encoded, unpadded, raw salt value. This
decodes to a 8-32 byte salt used in the key derivation.

• PBKDF2

• This KDF was added in v0.5.0.
• https://en.wikipedia.org/wiki/PBKDF2 is an adaptive derivation function which uses an internal pseudorandom

function (PRF) and iterates it many times over a password and salt (at least 16 bytes).

41

https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Blowfish_(cipher)
https://en.wikipedia.org/wiki/Blowfish_(cipher)
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/Field-programmable_gate_array
http://blog.ircmaxell.com/2012/12/seven-ways-to-screw-up-bcrypt.html
http://blog.ircmaxell.com/2012/12/seven-ways-to-screw-up-bcrypt.html
https://en.wikipedia.org/wiki/Scrypt
https://en.wikipedia.org/wiki/PBKDF2

Apache NiFi Encryption Configuration

• The PRF is recommended to be HMAC/SHA-256 or HMAC/SHA-512. The use of an HMAC cryptographic
hash function mitigates a length extension attack.

• The recommended minimum number of iterations is 160,000 (as of 2/1/2016 on commodity
hardware). This number should be doubled every two years (see schedule below or use
PBKDF2CipherProviderGroovyTest#testDefaultConstructorShouldProvideStrongIterationCount() to calculate
safe minimums).

• This KDF is not memory-hard (can be parallelized massively with commodity hardware) but is still
recommended as sufficient by http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf and many
cryptographers (when used with a proper iteration count and HMAC cryptographic hash function).

• None

• This KDF was added in v0.5.0.
• This KDF performs no operation on the input and is a marker to indicate the raw key is provided to the

cipher. The key must be provided in hexadecimal encoding and be of a valid length for the associated cipher/
algorithm.

Additional Resources

• http://stackoverflow.com/a/30308723/70465
• http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
• https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet#Work_Factor
• http://security.stackexchange.com/a/3993/16485
• http://blog.ircmaxell.com/2014/03/why-i-dont-recommend-scrypt.html
• http://security.stackexchange.com/a/26253/16485
• http://security.stackexchange.com/a/6415/16485
• http://wildlyinaccurate.com/bcrypt-choosing-a-work-factor/
• https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/bcrypt/

BCrypt.html
• https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html
• http://security.stackexchange.com/a/29139/16485

Salt and IV Encoding

Initially, the EncryptContent processor had a single method of deriving the encryption key from a user-provided
password. This is now referred to as NiFiLegacy mode, effectively MD5 digest, 1000 iterations. In v0.4.0, another
method of deriving the key, OpenSSL PKCS#5 v1.5 EVP_BytesToKey was added for compatibility with content
encrypted outside of NiFi using the openssl command-line tool. Both of these key derivation functions (KDF) had
hard-coded digest functions and iteration counts, and the salt format was also hard-coded. With v0.5.0, additional
KDFs are introduced with variable iteration counts, work factors, and salt formats. In addition, raw keyed encryption
was also introduced. This required the capacity to encode arbitrary salts and Initialization Vectors (IV) into the cipher
stream in order to be recovered by NiFi or a follow-on system to decrypt these messages.

For the existing KDFs, the salt format has not changed.

NiFi Legacy

The first 8 or 16 bytes of the input are the salt. The salt length is determined based on the selected algorithm's cipher
block length. If the cipher block size cannot be determined (such as with a stream cipher like RC4), the default value
of 8 bytes is used. On decryption, the salt is read in and combined with the password to derive the encryption key and
IV.

42

http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
http://stackoverflow.com/a/30308723/70465
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet#Work_Factor
http://security.stackexchange.com/a/3993/16485
http://blog.ircmaxell.com/2014/03/why-i-dont-recommend-scrypt.html
http://security.stackexchange.com/a/26253/16485
http://security.stackexchange.com/a/6415/16485
http://wildlyinaccurate.com/bcrypt-choosing-a-work-factor/
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/bcrypt/BCrypt.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/bcrypt/BCrypt.html
https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html
http://security.stackexchange.com/a/29139/16485

Apache NiFi Encryption Configuration

OpenSSL PKCS#5 v1.5 EVP_BytesToKey

OpenSSL allows for salted or unsalted key derivation. *Unsalted key derivation is a security risk and is not
recommended.* If a salt is present, the first 8 bytes of the input are the ASCII string "Salted__" (0x53 61 6C 74 65
64 5F 5F) and the next 8 bytes are the ASCII-encoded salt. On decryption, the salt is read in and combined with the
password to derive the encryption key and IV. If there is no salt header, the entire input is considered to be the cipher
text.

For new KDFs, each of which allow for non-deterministic IVs, the IV must be stored alongside the cipher text. This
is not a vulnerability, as the IV is not required to be secret, but simply to be unique for messages encrypted using the
same key to reduce the success of cryptographic attacks. For these KDFs, the output consists of the salt, followed
by the salt delimiter, UTF-8 string "NiFiSALT" (0x4E 69 46 69 53 41 4C 54) and then the IV, followed by the IV
delimiter, UTF-8 string "NiFiIV" (0x4E 69 46 69 49 56), followed by the cipher text.

Bcrypt, Scrypt, PBKDF2

43

Apache NiFi Encryption Configuration

44

Apache NiFi Encryption Configuration

Java Cryptography Extension (JCE) Limited Strength Jurisdiction Policies

Because of US export regulations, default JVMs have http://docs.oracle.com/javase/7/docs/technotes/guides/security/
SunProviders.html#importlimits available to them. For example, AES operations are limited to 128 bit keys by
default. While AES-128 is cryptographically safe, this can have unintended consequences, specifically on Password-
based Encryption (PBE).

PBE is the process of deriving a cryptographic key for encryption or decryption from user-provided secret material,
usually a password. Rather than a human remembering a (random-appearing) 32 or 64 character hexadecimal string, a
password or passphrase is used.

A number of PBE algorithms provided by NiFi impose strict limits on the length of the password due to the
underlying key length checks. Below is a table listing the maximum password length on a JVM with limited
cryptographic strength.

Table 1: Maximum Password Length on Limited Cryptographic Strength JVM

Algorithm Max Password Length

PBEWITHMD5AND128BITAES-CBC-OPENSSL 16

PBEWITHMD5AND192BITAES-CBC-OPENSSL 16

PBEWITHMD5AND256BITAES-CBC-OPENSSL 16

PBEWITHMD5ANDDES 16

PBEWITHMD5ANDRC2 16

PBEWITHSHA1ANDRC2 16

PBEWITHSHA1ANDDES 16

PBEWITHSHAAND128BITAES-CBC-BC 7

PBEWITHSHAAND192BITAES-CBC-BC 7

PBEWITHSHAAND256BITAES-CBC-BC 7

PBEWITHSHAAND40BITRC2-CBC 7

45

http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html#importlimits
http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html#importlimits

Apache NiFi Encryption Configuration

Algorithm Max Password Length

PBEWITHSHAAND128BITRC2-CBC 7

PBEWITHSHAAND40BITRC4 7

PBEWITHSHAAND128BITRC4 7

PBEWITHSHA256AND128BITAES-CBC-BC 7

PBEWITHSHA256AND192BITAES-CBC-BC 7

PBEWITHSHA256AND256BITAES-CBC-BC 7

PBEWITHSHAAND2-KEYTRIPLEDES-CBC 7

PBEWITHSHAAND3-KEYTRIPLEDES-CBC 7

PBEWITHSHAANDTWOFISH-CBC 7

Allow Insecure Cryptographic Modes

By default, the Allow Insecure Cryptographic Modes property in EncryptContent processor settings is set to not-
allowed. This means that if a password of fewer than 10 characters is provided, a validation error will occur. 10
characters is a conservative estimate and does not take into consideration full entropy calculations, patterns, etc.

46

Apache NiFi Kerberos Service

On a JVM with limited strength cryptography, some PBE algorithms limit the maximum password length to 7, and in
this case it will not be possible to provide a "safe" password. It is recommended to install the JCE Unlimited Strength
Jurisdiction Policy files for the JVM to mitigate this issue.

• http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

If on a system where the unlimited strength policies cannot be installed, it is recommended to switch to an algorithm
that supports longer passwords (see table above).

If it is not possible to install the unlimited strength jurisdiction policies, the Allow Weak Crypto setting can be
changed to allowed, but this is not recommended. Changing this setting explicitly acknowledges the inherent risk in
using weak cryptographic configurations.

It is preferable to request upstream/downstream systems to switch to https://cwiki.apache.org/confluence/display/
NIFI/Encryption+Information or use a "strong" https://cwiki.apache.org/confluence/display/NIFI/Key+Derivation
+Function+Explanations.

Kerberos Service

NiFi can be configured to use Kerberos SPNEGO (or "Kerberos Service") for authentication. In this scenario, users
will hit the REST endpoint /access/kerberos and the server will respond with a 401 status code and the challenge
response header WWW-Authenticate: Negotiate. This communicates to the browser to use the GSS-API and load
the user's Kerberos ticket and provide it as a Base64-encoded header value in the subsequent request. It will be of the
form Authorization: Negotiate YII…. NiFi will attempt to validate this ticket with the KDC. If it is successful, the
user's principal will be returned as the identity, and the flow will follow login/credential authentication, in that a JWT
will be issued in the response to prevent the unnecessary overhead of Kerberos authentication on every subsequent
request. If the ticket cannot be validated, it will return with the appropriate error response code. The user will then be
able to provide their Kerberos credentials to the login form if the KerberosLoginIdentityProvider has been configured.

NiFi will only respond to Kerberos SPNEGO negotiation over an HTTPS connection, as unsecured requests are never
authenticated.

The following properties must be set in nifi.properties to enable Kerberos service authentication.

Property Required Description

Service Principal true The service principal used by NiFi to
communicate with the KDC

Keytab Location true The file path to the keytab containing the
service principal

Notes

• Kerberos is case-sensitive in many places and the error messages (or lack thereof) may not be sufficiently
explanatory. Check the case sensitivity of the service principal in your configuration files. Convention is HTTP/
fully.qualified.domain@REALM.

• Browsers have varying levels of restriction when dealing with SPNEGO negotiations. Some will provide the local
Kerberos ticket to any domain that requests it, while others whitelist the trusted domains. See http://docs.spring.io/
autorepo/docs/spring-security-kerberos/1.0.2.BUILD-SNAPSHOT/reference/htmlsingle/#browserspnegoconfig
for common browsers.

• Some browsers (legacy IE) do not support recent encryption algorithms such as AES, and are restricted to legacy
algorithms (DES). This should be noted when generating keytabs.

• The KDC must be configured and a service principal defined for NiFi and a keytab exported. Comprehensive
instructions for Kerberos server configuration and administration are beyond the scope of this document (see
http://web.mit.edu/kerberos/krb5-current/doc/admin/index.html), but an example is below:

47

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
https://cwiki.apache.org/confluence/display/NIFI/Encryption+Information
https://cwiki.apache.org/confluence/display/NIFI/Encryption+Information
https://cwiki.apache.org/confluence/display/NIFI/Key+Derivation+Function+Explanations
https://cwiki.apache.org/confluence/display/NIFI/Key+Derivation+Function+Explanations
http://docs.spring.io/autorepo/docs/spring-security-kerberos/1.0.2.BUILD-SNAPSHOT/reference/htmlsingle/#browserspnegoconfig
http://docs.spring.io/autorepo/docs/spring-security-kerberos/1.0.2.BUILD-SNAPSHOT/reference/htmlsingle/#browserspnegoconfig
http://web.mit.edu/kerberos/krb5-current/doc/admin/index.html

Apache NiFi Kerberos Service

Adding a service principal for a server at nifi.nifi.apache.org and exporting the keytab from the KDC:

root@kdc:/etc/krb5kdc# kadmin.local
Authenticating as principal admin/admin@NIFI.APACHE.ORG with password.
kadmin.local: listprincs
K/M@NIFI.APACHE.ORG
admin/admin@NIFI.APACHE.ORG
...
kadmin.local: addprinc -randkey HTTP/nifi.nifi.apache.org
WARNING: no policy specified for HTTP/nifi.nifi.apache.org@NIFI.APACHE.ORG;
 defaulting to no policy
Principal "HTTP/nifi.nifi.apache.org@NIFI.APACHE.ORG" created.
kadmin.local: ktadd -k /http-nifi.keytab HTTP/nifi.nifi.apache.org
Entry for principal HTTP/nifi.nifi.apache.org with kvno 2, encryption type
 des3-cbc-sha1 added to keytab WRFILE:/http-nifi.keytab.
Entry for principal HTTP/nifi.nifi.apache.org with kvno 2, encryption type
 des-cbc-crc added to keytab WRFILE:/http-nifi.keytab.
kadmin.local: listprincs
HTTP/nifi.nifi.apache.org@NIFI.APACHE.ORG
K/M@NIFI.APACHE.ORG
admin/admin@NIFI.APACHE.ORG
...
kadmin.local: q
root@kdc:~# ll /http*
-rw------- 1 root root 162 Mar 14 21:43 /http-nifi.keytab
root@kdc:~#

48

	Contents
	User Authentication
	Lightweight Directory Access Protocol (LDAP)
	Kerberos
	OpenId Connect
	Apache Knox

	Multi-Tenant Authorization
	Authorizer Configuration
	Authorizers.xml Setup
	FileUserGroupProvider
	LdapUserGroupProvider
	Composite Implementations
	FileAccessPolicyProvider
	StandardManagedAuthorizer
	FileAuthorizer
	Initial Admin Identity (New NiFi Instance)
	File-based (LDAP Authentication)
	File-based (Kerberos Authentication)
	LDAP-based Users/Groups Referencing User DN
	LDAP-based Users/Groups Referencing User Attribute
	Composite - File and LDAP-based Users/Groups

	Legacy Authorized Users (NiFi Instance Upgrade)
	Global Access Policies
	Component Access Policies on the Root Process Group

	Cluster Node Identities

	Configuring Users & Access Policies
	Creating Users and Groups
	Access Policies
	Global Access Policies
	Component Level Access Policies
	Access Policy Inheritance

	Viewing Policies on Users
	Access Policy Configuration Examples
	Moving a Processor
	Editing a Processor
	Creating a Connection
	Editing a Connection

	Encryption Configuration
	Key Derivation Functions
	Additional Resources

	Salt and IV Encoding
	NiFi Legacy
	OpenSSL PKCS#5 v1.5 EVP_BytesToKey
	Bcrypt, Scrypt, PBKDF2

	Java Cryptography Extension (JCE) Limited Strength Jurisdiction Policies
	Allow Insecure Cryptographic Modes

	Kerberos Service
	Notes

