Apache NiFi 3

NiFI State M anagement
Date of Publish: 2019-03-15

P

Hortonworks

https://docs.hor tonwor ks.com/

https://docs.hortonworks.com/

Contents

SEALE M ANAGEIMENT.......oii e e e s r e e nr e e e e enneeas 3
ConfigUING SEALE PrOVIAEIS.......ccveiiieiiteieeriete sttt e b e bttt s b et bt bt sttt
EMDEA0Ed ZOOK EEDEr SEIVET......c.iiiieiieeesteeete ettt b et b et b et b et b e e b e se b se b se b e sb b e sbe st s b e e sbe e ebeneas
ZOOK EEPEr ACCESS COMLIOL.......ceiuiieieiitiiet ittt b et b et b et b et b e e ettt st nrne
SECUMNG ZOOK EEDES ...ttt ettt b et b e st b e st b e e b e s e b e s e bt s e bt e b e ae b et e bRt b et e b et e b et e b e st e b e seebe e s e

Kerberizing Embedded ZOOK EEDEr SEIVEN........coi ittt
Kerberizing NiFi's ZOOKEEPEr ClIENt........ccuiiiiiiriirier et
Troubleshooting Kerberos Configuralion............cuoeereirieirieeriesiesieses e

Apache NiFi State Management

State M anagement

NiFi provides a mechanism for Processors, Reporting Tasks, Controller Services, and the framework itself to

persist state. This alows a Processor, for example, to resume from the place where it left off after NiFi is restarted.
Additionally, it allows for a Processor to store some piece of information so that the Processor can access that
information from all of the different nodes in the cluster. This allows one node to pick up where another node left off,
or to coordinate across al of the nodesin acluster.

Configuring State Providers

When a component decides to store or retrieve state, it does so by providing a " Scope" - either Node-local or Cluster-
wide. The mechanism that is used to store and retrieve this state is then determined based on this Scope, as well asthe
configured State Providers. The nifi.properties file contains three different properties that are relevant to configuring

these State Providers.

Property Description

nifi.state.management.configuration.file Thefirst isthe property that specifies an external XML file that is used
for configuring the local and/or cluster-wide State Providers. This
XML file may contain configurations for multiple providers

nifi.state.management.provider.local The property that provides the identifier of the local State Provider
configured in this XML file

nifi.state.management.provider.cluster Similarly, the property provides the identifier of the cluster-wide State
Provider configured in this XML file.

This XML file consists of atop-level state-management element, which has one or more local-provider and zero

or more cluster-provider elements. Each of these elements then contains an id element that is used to specify the
identifier that can be referenced in the nifi.propertiesfile, as well as a class element that specifies the fully-qualified
class name to use in order to instantiate the State Provider. Finally, each of these elements may have zero or more
property elements. Each property element has an attribute, name that is the name of the property that the State
Provider supports. The textual content of the property element is the value of the property.

Once these State Providers have been configured in the state-management.xml file (or whatever fileis configured),
those Providers may be referenced by their identifiers.

By default, the Local State Provider is configured to be a WriteAheadL ocal StateProvider that persists the datato the
$NIFI_HOME/state/local directory. The default Cluster State Provider is configured to be a ZooK eeperStateProvider.
The default ZooK eeper-based provider must have its Connect String property populated before it can be used. It

is also advisable, if multiple NiFi instances will use the same ZooK eeper instance, that the value of the Root Node
property be changed. For instance, one might set the value to /nifi/<team name>/production. A Connect String

takes the form of comma separated <host>:<port> tuples, such as my-zk-server1:2181,my-zk-server2:2181,my-zk-
server3:2181. In the event a port is not specified for any of the hosts, the ZooK eeper default of 2181 is assumed.

When adding data to ZooK eeper, there are two options for Access Control: Open and CreatorOnly. If the Access
Control property is set to Open, then anyoneis allowed to log into ZooKeeper and have full permissions to see,
change, delete, or administer the data. If CreatorOnly is specified, then only the user that created the datais alowed
to read, change, delete, or administer the data. In order to use the CreatorOnly option, NiFi must provide some form
of authentication.

If NiFi is configured to run in a standalone mode, the cluster-provider element need not be populated in the state-
management.xml file and will actually beignored if they are populated. However, the local-provider element must
always be present and populated. Additionaly, if NiFi isrun in a cluster, each node must also have the cluster-
provider element present and properly configured. Otherwise, NiFi will fail to startup.

Apache NiFi

State Management

While there are not many properties that need to be configured for these providers, they were externalized into a
separate state-management.xml file, rather than being configured via the nifi.properties file, simply because different
implementations may require different properties, and it is easier to maintain and understand the configuration in

an XML-based file such as this, than to mix the properties of the Provider in with all of the other NiFi framework-
specific properties.

It should be noted that if Processors and other components save state using the Clustered scope, the Local State
Provider will be used if the instance is a standalone instance (not in a cluster) or is disconnected from the cluster. This
also meansthat if a standalone instance is migrated to become a cluster, then that state will no longer be available, as
the component will begin using the Clustered State Provider instead of the Local State Provider.

Embedded ZooK eeper Server

As mentioned above, the default State Provider for cluster-wide state is the ZooK eeperStateProvider. At the time of
thiswriting, thisis the only State Provider that exists for handling cluster-wide state. What this meansisthat NiFi has
dependencies on ZooK eeper in order to behave as a cluster. However, there are many environmentsin which NiFi is
deployed where there is no existing ZooK eeper ensemble being maintained. In order to avoid the burden of forcing
administrators to also maintain a separate ZooK eeper instance, NiFi provides the option of starting an embedded
ZooK eeper server.

Property Description

nifi.state.management.embedded.zookeeper.start Specifies whether or not this instance of NiFi should run an embedded
ZooK eeper server

nifi.state.management.embedded.zookeeper.properties Propertiesfile that provides the ZooK eeper propertiesto useif
nifi.state.management.embedded.zookeeper.start is set to true

This can be accomplished by setting the nifi.state.management.embedded.zookeeper.start property in nifi.properties
to true on those nodes that should run the embedded ZooK eeper server. Generally, it is advisable to run ZooK eeper
on either 3 or 5 nodes. Running on fewer than 3 nodes provides less durability in the face of failure. Running on
more than 5 nodes generally produces more network traffic than is necessary. Additionally, running ZooKeeper on 4
nodes provides no more benefit than running on 3 nodes, ZooK eeper requires a majority of nodes be active in order
to function. However, it is up to the administrator to determine the number of nodes most appropriate to the particular
deployment of NiFi.

If the nifi.state.management.embedded.zookeeper.start property is set to true, the
nifi.state.management.embedded.zookeeper.properties property in nifi.properties al'so becomes relevant.

This specifies the ZooK eeper propertiesfile to use. At a minimum, this properties file needs to be popul ated

with thelist of ZooKeeper servers. The servers are specified as propertiesin the form of server.1, server.2,

to server.n. Each of these serversis configured as <hostname>:<quorum port>[:<leader election port>]. For
example, myhost:2888:3888. This list of nodes should be the same nodes in the NiFi cluster that have the
nifi.state.management.embedded.zookeeper.start property set to true. Also note that because ZooK eeper will be
listening on these ports, the firewall may need to be configured to open these ports for incoming traffic, at least
between nodesin the cluster. Additionally, the port to listen on for client connections must be opened in the firewall.
The default value for thisis 2181 but can be configured via the clientPort property in the zookeeper.properties file.

When using an embedded ZooK eeper, the ./conf/zookeeper.properties file has a property named dataDir. By defaullt,
thisvalue is set to ./state/zookeeper. If more than one NiFi node is running an embedded ZooK eeper, it isimportant to
tell the server which oneit is. Thisis accomplished by creating a file named myid and placing it in ZooK eeper's data
directory. The contents of this file should be the index of the server as specific by the server.<number>. So for one of
the ZooK eeper servers, we will accomplish this by performing the following commands:

cd $N FI _HOVE
nkdir state
nkdi r st ate/zookeeper
echo 1 > state/zookeeper/nyid

Apache NiFi

State Management

For the next NiFi Node that will run ZooK eeper, we can accomplish this by performing the following commands:

cd $N FI _HOMVE
nkdir state
nkdi r st ate/zookeeper
echo 2 > state/zookeeper/nyid

And so on.

For more information on the properties used to administer ZooK eeper, see the https://zookeeper.apache.org/doc/
current/zookeeperAdmin.html.

ZooK eeper Access Control

ZooK eeper provides Access Control to its data viaan Access Control List (ACL) mechanism. When data is written
to ZooKeeper, NiFi will provide an ACL that indicates that any user is alowed to have full permissions to the data,
or an ACL that indicates that only the user that created the datais allowed to access the data. Which ACL isused
depends on the value of the Access Control property for the ZooK eeperStateProvider.

In order to use an ACL that indicates that only the Creator is allowed to access the data, we need to tell ZooK eeper
who the Creator is. There are two mechanisms for accomplishing this. The first mechanism isto provide
authentication using Kerberos.

The second option is to use a user name and password. Thisis configured by specifying a value for the Username
and avalue for the Password properties for the ZooK eeper StateProvider. The important thing to keep in mind

here, though, is that ZooKeeper will pass around the password in plain text. This means that using a user name

and password should not be used unless ZooK eeper is running on localhost as a one-instance cluster, or if
communications with ZooK eeper occur only over encrypted communications, such asa VPN or an SSL connection.
ZooK eeper will be providing support for SSL connectionsin version 3.5.0.

Securing ZooK eeper

When NiFi communicates with ZooK eeper, all communications, by default, are non-secure, and anyone who logs into
ZooK eeper is able to view and manipulate al of the NiFi state that is stored in ZooK eeper. To prevent this, we can
use Kerberos to manage the authentication. At this time, ZooK eeper does not provide support for encryption via SSL.
Support for SSL in ZooKeeper is being actively developed and is expected to be available in the 3.5.x release version.

In order to secure the communications, we need to ensure that both the client and the server support the same
configuration. Instructions for configuring the NiFi ZooK eeper client and embedded ZooK eeper server to use
Kerberos are provided below.

If Kerberosis not already setup in your environment, you can find information on installing and setting up
aKerberos Server at https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/
Managing_Smart_Cards/Configuring_a Kerberos 5 Server.html. This guide assumes that Kerberos already has been
installed in the environment in which NiFi is running.

Note, the following procedures for kerberizing an Embedded ZooK eeper server in your NiFi Node and kerberizing a
ZooKeeper NiFi client will require that Kerberos client libraries be installed. Thisis accomplished in Fedora-based
Linux distributions via:

yum install krb5-workstation

https://zookeeper.apache.org/doc/current/zookeeperAdmin.html
https://zookeeper.apache.org/doc/current/zookeeperAdmin.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Managing_Smart_Cards/Configuring_a_Kerberos_5_Server.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Managing_Smart_Cards/Configuring_a_Kerberos_5_Server.html

Apache NiFi State Management

Once thisis complete, the /etc/krb5.conf will need to be configured appropriately for your organization's Kerberos
environment.

Kerberizing Embedded ZooK eeper Server

The krb5.conf file on the systems with the embedded zookeeper servers should be identical to the one on the system
where the krb5kdc service is running. When using the embedded ZooK eeper server, we may choose to secure the
server by using Kerberos. All nodes configured to launch an embedded ZooK eeper and using Kerberos should follow
these steps. When using the embedded ZooK eeper server, we may choose to secure the server by using Kerberos. All
nodes configured to launch an embedded ZooK eeper and using Kerberos should follow these steps.

In order to use Kerberos, we first need to generate a Kerberos Principal for our ZooK eeper servers. The following
command is run on the server where the krb5kdc service is running. Thisis accomplished via the kadmin tool:

kadnmi n: addprinc "zookeeper/ nyHost . exanpl e. com@XAMPLE. COM'

Here, we are creating a Principal with the primary zookeeper/myHost.example.com, using the realm
EXAMPLE.COM. We need to use a Principa whose name is <service name>/<instance name>. In this case, the
service is zookeeper and the instance name is myHost.example.com (the fully qualified name of our host).

Next, we will need to create a KeyTab for this Principal, this command is run on the server with the NiFi instance
with an embedded zookeeper server:

kadm n: xst -k zookeeper-server. keytab zookeeper/
myHost . exanpl e. com@&XAMPLE. COM

Thiswill create afilein the current directory named zookeeper-server.keytab. We can now copy that file into the
$NIFI_HOME/conf/ directory. We should ensure that only the user that will be running NiFi is allowed to read this
file.

We will need to repeat the above steps for each of the instances of NiFi that will be running the embedded ZooK eeper
server, being sure to replace myHost.example.com with myHost2.example.com, or whatever fully qualified hostname
the ZooK eeper server will be run on.

Now that we have our KeyTab for each of the serversthat will be running NiFi, we will need to configure NiFi's
embedded ZooK eeper server to use this configuration. ZooK eeper uses the Java Authentication and Authorization
Service (JAAS), so we need to create a JAAS-compatible file In the $NIFI_ HOME/conf/ directory, create afile
named zookeeper-jaas.conf (thisfile will already exist if the Client has already been configured to authenticate via
Kerberos. That's okay, just add to the file). We will add to this file, the following snippet:

Server {
com sun. security. aut h. nodul e. Kr b5Logi nMbdul e required
useKeyTab=t r ue
keyTab="./conf/ zookeeper-server. keyt ab"
st or eKey=true
useTi cket Cache=f al se
princi pal =" zookeeper/ myHost . exanpl e. com@&XAMPLE. COM';
¥

Be sureto replace the value of principal above with the appropriate Principal, including the fully qualified domain
name of the server.

Apache NiFi State Management

Next, we need to tell NiFi to use thisas our JAAS configuration. Thisis done by setting aJVM System Property,
so we will edit the conf/bootstrap.conf file. If the Client has already been configured to use Kerberos, thisis not
necessary, as it was done above. Otherwise, we will add the following line to our bootstrap.conf file:

java. arg. 15=-Dj ava. security. aut h. | ogi n. confi g=./conf/ zookeeper -
j aas. conf

Note: Thisadditional linein the file doesn't have to be number 15, it just has to be added to the
bootstrap.conf file. Use whatever number is appropriate for your configuration.

We will want to initialize our Kerberos ticket by running the following command:

kinit -kt zookeeper-server.keytab "zookeeper/
nyHost . exanpl e. com@XAMPLE. COM'

Again, be sure to replace the Principal with the appropriate value, including your realm and your fully qualified
hostname.

Finally, we need to tell the Kerberos server to use the SASL Authentication Provider. To do this, we edit the
$NIFI_HOME/conf/zookeeper.properties file and add the following lines:

aut hProvi der. 1=or g. apache. zookeeper. server. aut h. SASLAut henti cat i onProvi der
ker ber os. renoveHost FronPri nci pal =true

ker ber os. renoveReal nFr onPri nci pal =t r ue
j aasLogi nRenew=3600000
requi red i ent Aut hSchene=sasl

The kerberos.removeHostFromPrincipal and the kerberos.removeReal mFromPrincipal properties are

used to normalize the user principal name before comparing an identity to acls applied on a Znode.

By default the full principal is used however setting the kerberos.removeHostFromPrincipal and the
kerberos.removeRealmFromPrincipal properties to true will instruct Zookeeper to remove the host and the realm from
thelogged in user's identity for comparison. In cases where NiFi nodes (within the same cluster) use principals that
have different host(s)/realm(s) values, these kerberos properties can be configured to ensure that the nodes' identity
will be normalized and that the nodes will have appropriate access to shared Znodes in Zookeeper.

Thelast lineis optional but specifiesthat clients MUST use Kerberos to communicate with our ZooK eeper instance.

Now, we can start NiFi, and the embedded ZooK eeper server will use Kerberos as the authentication mechanism.
Kerberizing NiFi's ZooK egper Client

Note: The NiFi nodes running the embedded zookeeper server will also need to follow the below procedure
E since they will also be acting as aclient at the same time.

The preferred mechanism for authenticating users with ZooK eeper isto use Kerberos. In order to use Kerberos to
authenticate, we must configure afew system properties, so that the ZooK eeper client knows who the user is and

where the KeyTab fileis. All nodes configured to store cluster-wide state using ZooK eeperStateProvider and using
Kerberos should follow these steps.

First, we must create the Principal that we will use when communicating with ZooK eeper. Thisis generally done via
the kadmin tool:

Apache NiFi

State Management

kadmi n: addprinc "nifi @GEXAMPLE. COM'

A Kerberos Principal is made up of three parts: the primary, the instance, and the realm. Here, we are creating a
Principal with the primary nifi, no instance, and the reAlm EXAMPLE.COM. The primary (nifi, in this case) isthe
identifier that will be used to identify the user when authenticating via Kerberos.

After we have created our Principal, we will need to create a KeyTab for the Principal:
kadm n: xst -k nifi.keytab nifi @EXAMPLE. COM

This keytab file can be copied to the other NiFi nodes with embedded zookeeper servers.

Thiswill create afilein the current directory named nifi.keytab. We can now copy that file into the $NIFI_ HOME/
conf/ directory. We should ensure that only the user that will be running NiFi is allowed to read thisfile.

Next, we need to configure NiFi to use this KeyTab for authentication. Since ZooK eeper uses the Java Authentication
and Authorization Service (JAAS), we need to create a JAAS-compatiblefile. In the SNIFI_HOME/conf/ directory,
create afile named zookeeper-jaas.conf and add to it the following snippet:

Cient {
com sun. security. aut h. nodul e. Kr b5Logi nMbdul e required
useKeyTab=t rue
keyTab="./conf/nifi.keytab"
st or eKey=true
useTi cket Cache=f al se
princi pal ="ni fi @&XAMPLE. COM';
I

We then need to tell NiFi to use this as our JAAS configuration. Thisis done by setting aJVM System Property, so
we will edit the conf/bootstrap.conf file. We add the following line anywhere in thisfile in order to tell the NiFi VM
to use this configuration:

j ava. arg. 15=-Dj ava. security. aut h. | ogi n. confi g=./conf/ zookeeper -
j aas. conf

Finally we need to update nifi.properties to ensure that NiFi knows to apply SASL specific ACLs for the Znodes it
will create in Zookeeper for cluster management. To enable this, in the $NIFI_HOME/conf/nifi.properties file and
edit the following properties as shown below:

ni fi.zookeeper. aut h. type=sasl
ni fi.zookeeper. kerberos. renoveHost FronPri nci pal =true
ni fi.zookeeper. ker beros. renoveReal nFronPri nci pal =true

Note: The kerberos.removeHostFromPrincipal and kerberos.removeRealmFromPrincipal should be
E consistent with what is set in Zookeeper configuration.

We can initialize our Kerberos ticket by running the following command:

kinit -kt nifi.keytab nifi @EXAMPLE. COM

Apache NiFi State Management

Now, when we start NiFi, it will use Kerberos to authentication as the nifi user when communicating with
ZooK eeper.

Troubleshooting K er beros Configuration

When using Kerberos, it isimport to use fully-qualified domain names and not use localhost. Please ensure that the
fully qualified hosthame of each server is used in the following locations:

« conf/zookeeper.properties file should use FQDN for server.1, server.2, ..., server.N values.
« The Connect String property of the ZooK eeperStateProvider
e The/etc/hosts file should also resolve the FQDN to an IP address that is not 127.0.0.1.

Failure to do so, may result in errors similar to the following:

2016-01-08 16: 08: 57, 888 ERROR [pool - 26-t hr ead- 1-

SendThread(| ocal host: 2181)] o. a. zookeeper. cli ent. ZooKeeper Sasl C i ent
An error: (java.security.PrivilegedActi onExcepti on:
j avax. security. sasl. Sasl Exception: GSS initiate failed [Caused by
GSSException: No valid credentials provided (Mechanism|evel: Server
not found in Kerberos database (7) - LOOKI NG UP_SERVER)]) occurred when
eval uati ng Zookeeper Quorum Menber's received SASL token. Zookeeper Ci ent
will go to AUTH FAI LED st ate.

If there are problems communicating or authenticating with Kerberos, this http://docs.oracle.com/javase/7/docs/
technotes/guides/security/jgss/tutorial s/ Troubl eshooting.html may be of value.

One of the most important notes in the above Troubleshooting guide is the mechanism for turning on Debug output
for Kerberos. Thisis done by setting the sun.security.krb5.debug environment variable. In NiFi, thisis accomplished
by adding the following line to the $NIFI_HOM E/conf/bootstrap.conf file:

j ava. arg. 16=- Dsun. security. kr b5. debug=t r ue

Thiswill cause the debug output to be written to the NiFi Bootstrap log file. By default, thisis located at
$NIFI_HOME/logs/nifi-bootstrap.log. This output can be rather verbose but provides extremely valuable information
for troubleshooting Kerberos failures.

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/tutorials/Troubleshooting.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/tutorials/Troubleshooting.html

	Contents
	State Management
	Configuring State Providers
	Embedded ZooKeeper Server
	ZooKeeper Access Control
	Securing ZooKeeper
	Kerberizing Embedded ZooKeeper Server
	Kerberizing NiFi's ZooKeeper Client
	Troubleshooting Kerberos Configuration

