
Apache NiFi 3

Apache NiFi Overview
Date of Publish: 2019-05-15

https://docs.hortonworks.com/

https://docs.hortonworks.com/

Contents

What is Apache NiFi?.. 3

The core concepts of NiFi..3

NiFi Architecture.. 4

Performance Expectations and Characteristics of NiFi..6

High Level Overview of Key NiFi Features...7

Apache NiFi What is Apache NiFi?

What is Apache NiFi?

Put simply NiFi was built to automate the flow of data between systems. While the term 'dataflow' is used in a variety
of contexts, we use it here to mean the automated and managed flow of information between systems. This problem
space has been around ever since enterprises had more than one system, where some of the systems created data
and some of the systems consumed data. The problems and solution patterns that emerged have been discussed and
articulated extensively. A comprehensive and readily consumed form is found in the Enterprise Integration Patterns.

Some of the high-level challenges of dataflow include:

Systems fail Networks fail, disks fail, software crashes, people make
mistakes.

Data access exceeds capacity to consume Sometimes a given data source can outpace some part of
the processing or delivery chain - it only takes one weak-
link to have an issue.

Boundary conditions are mere suggestions You will invariably get data that is too big, too small, too
fast, too slow, corrupt, wrong, or in the wrong format.

It is often not possible to come even close to replicating
production environments in the lab.

What is noise one day becomes signal the next Priorities of an organization change - rapidly. Enabling
new flows and changing existing ones must be fast.

Systems evolve at different rates The protocols and formats used by a given system can
change anytime and often irrespective of the systems
around them. Dataflow exists to connect what is
essentially a massively distributed system of components
that are loosely or not-at-all designed to work together.

Compliance and security Laws, regulations, and policies change. Business to
business agreements change. System to system and
system to user interactions must be secure, trusted,
accountable.

Continuous improvement occurs in production

Over the years dataflow has been one of those necessary evils in an architecture. Now though there are a number of
active and rapidly evolving movements making dataflow a lot more interesting and a lot more vital to the success of
a given enterprise. These include things like; Service Oriented Architecture (SOA), the rise of the API, Internet of
Things, and Big Data. In addition, the level of rigor necessary for compliance, privacy, and security is constantly on
the rise. Even still with all of these new concepts coming about, the patterns and needs of dataflow are still largely
the same. The primary differences then are the scope of complexity, the rate of change necessary to adapt, and that at
scale the edge case becomes common occurrence. NiFi is built to help tackle these modern dataflow challenges.

The core concepts of NiFi

NiFi's fundamental design concepts closely relate to the main ideas of Flow Based Programming. Here are some of
the main NiFi concepts and how they map to FBP:

3

Apache NiFi NiFi Architecture

NiFi Term FBP Term Description

FlowFile Information Packet A FlowFile represents each object moving
through the system and for each one, NiFi
keeps track of a map of key/value pair
attribute strings and its associated content of
zero or more bytes.

FlowFile Processor Black Box Processors actually perform the work. In EIP
terms a processor is doing some combination
of data routing, transformation, or mediation
between systems. Processors have access to
attributes of a given FlowFile and its content
stream. Processors can operate on zero or
more FlowFiles in a given unit of work and
either commit that work or rollback.

Connection Bounded Buffer Connections provide the actual linkage
between processors. These act as queues
and allow various processes to interact at
differing rates. These queues can be prioritized
dynamically and can have upper bounds on
load, which enable back pressure.

Flow Controller Scheduler The Flow Controller maintains the knowledge
of how processes connect and manages the
threads and allocations thereof which all
processes use. The Flow Controller acts as the
broker facilitating the exchange of FlowFiles
between processors.

Process Group subnet A Process Group is a specific set of processes
and their connections, which can receive data
via input ports and send data out via output
ports. In this manner, process groups allow
creation of entirely new components simply by
composition of other components.

This design model, also similar to SEDA, provides many beneficial consequences that help NiFi to be a very effective
platform for building powerful and scalable dataflows. A few of these benefits include:

• Lends well to visual creation and management of directed graphs of processors
• Is inherently asynchronous which allows for very high throughput and natural buffering even as processing and

flow rates fluctuate
• Provides a highly concurrent model without a developer having to worry about the typical complexities of

concurrency
• Promotes the development of cohesive and loosely coupled components which can then be reused in other

contexts and promotes testable units
• The resource constrained connections make critical functions such as back-pressure and pressure release very

natural and intuitive
• Error handling becomes as natural as the happy-path rather than a coarse grained catch-all
• The points at which data enters and exits the system as well as how it flows through are well understood and

easily tracked

NiFi Architecture

4

Apache NiFi NiFi Architecture

NiFi executes within a JVM on a host operating system. The primary components of NiFi on the JVM are as follows:

Web Server The purpose of the web server is to host NiFi's HTTP-
based command and control API.

Flow Controller The flow controller is the brains of the operation. It
provides threads for extensions to run on, and manages
the schedule of when extensions receive resources to
execute.

Extensions There are various types of NiFi extensions which are
described in other documents. The key point here is that
extensions operate and execute within the JVM.

FlowFile Repository The FlowFile Repository is where NiFi keeps track of
the state of what it knows about a given FlowFile that
is presently active in the flow. The implementation of
the repository is pluggable. The default approach is a
persistent Write-Ahead Log located on a specified disk
partition.

Content Repository The Content Repository is where the actual content bytes
of a given FlowFile live. The implementation of the
repository is pluggable. The default approach is a fairly
simple mechanism, which stores blocks of data in the
file system. More than one file system storage location
can be specified so as to get different physical partitions
engaged to reduce contention on any single volume.

Provenance Repository The Provenance Repository is where all provenance
event data is stored. The repository construct is pluggable
with the default implementation being to use one or more

5

Apache NiFi Performance Expectations and Characteristics of NiFi

physical disk volumes. Within each location event data is
indexed and searchable.

NiFi is also able to operate within a cluster.

Starting with the NiFi 1.0 release, a Zero-Master Clustering paradigm is employed. Each node in a NiFi cluster
performs the same tasks on the data, but each operates on a different set of data. Apache ZooKeeper elects a single
node as the Cluster Coordinator, and failover is handled automatically by ZooKeeper. All cluster nodes report
heartbeat and status information to the Cluster Coordinator. The Cluster Coordinator is responsible for disconnecting
and connecting nodes. Additionally, every cluster has one Primary Node, also elected by ZooKeeper. As a DataFlow
manager, you can interact with the NiFi cluster through the user interface (UI) of any node. Any change you make is
replicated to all nodes in the cluster, allowing for multiple entry points.

Performance Expectations and Characteristics of NiFi

NiFi is designed to fully leverage the capabilities of the underlying host system on which it is operating. This
maximization of resources is particularly strong with regard to CPU and disk. For additional details, see the best
practices and configuration tips in the Administration Guide.

For IO The throughput or latency one can expect to see varies
greatly, depending on how the system is configured.
Given that there are pluggable approaches to most
of the major NiFi subsystems, performance depends
on the implementation. But, for something concrete
and broadly applicable, consider the out-of-the-box
default implementations. These are all persistent with
guaranteed delivery and do so using local disk. So being
conservative, assume roughly 50 MB per second read/
write rate on modest disks or RAID volumes within
a typical server. NiFi for a large class of dataflows
then should be able to efficiently reach 100 MB per
second or more of throughput. That is because linear
growth is expected for each physical partition and
content repository added to NiFi. This will bottleneck at
some point on the FlowFile repository and provenance
repository. We plan to provide a benchmarking and

6

Apache NiFi High Level Overview of Key NiFi Features

performance test template to include in the build, which
allows users to easily test their system and to identify
where bottlenecks are, and at which point they might
become a factor. This template should also make it easy
for system administrators to make changes and to verify
the impact.

For CPU The Flow Controller acts as the engine dictating when
a particular processor is given a thread to execute.
Processors are written to return the thread as soon as they
are done executing a task. The Flow Controller can be
given a configuration value indicating available threads
for the various thread pools it maintains. The ideal
number of threads to use depends on the host system
resources in terms of numbers of cores, whether that
system is running other services as well, and the nature
of the processing in the flow. For typical IO-heavy flows,
it is reasonable to make many dozens of threads to be
available.

For RAM NiFi lives within the JVM and is thus limited to the
memory space it is afforded by the JVM. JVM garbage
collection becomes a very important factor to both
restricting the total practical heap size, as well as
optimizing how well the application runs over time. NiFi
jobs can be I/O intensive when reading the same content
regularly. Configure a large enough disk to optimize
performance.

High Level Overview of Key NiFi Features

This sections provides a 20,000 foot view of NiFi's cornerstone fundamentals, so that you can understand the Apache
NiFi big picture, and some of its the most interesting features. The key features categories include flow management,
ease of use, security, extensible architecture, and flexible scaling model.

Flow Management

Ease of Use

Security

Extensible Architecture

Flexible Scaling Model

Guaranteed Delivery

Data Buffering w/ Back
Pressure and Pressure
Release

Prioritized Queuing

Flow Specific QoS
(latency v throughput,
loss tolerance, etc.)

A core philosophy of NiFi
has been that even at very
high scale, guaranteed
delivery is a must. This is
achieved through effective
use of a purpose-built
persistent write-ahead log
and content repository.
Together they are designed
in such a way as to allow
for very high transaction
rates, effective load-
spreading, copy-on-write,
and play to the strengths
of traditional disk read/
writes.

7

Apache NiFi High Level Overview of Key NiFi Features

NiFi supports buffering of
all queued data as well as
the ability to provide back
pressure as those queues
reach specified limits or to
age off data as it reaches a
specified age (its value has
perished).

NiFi allows the setting of
one or more prioritization
schemes for how data is
retrieved from a queue.
The default is oldest first,
but there are times when
data should be pulled
newest first, largest first,
or some other custom
scheme.

There are points of a
dataflow where the data is
absolutely critical and it is
loss intolerant. There are
also times when it must be
processed and delivered
within seconds to be of
any value. NiFi enables the
fine-grained flow specific
configuration of these
concerns.

Visual Command and
Control

Flow Templates

Data Provenance

Recovery / Recording
a rolling buffer of fine-
grained history

Dataflows can become
quite complex. Being able
to visualize those flows
and express them visually
can help greatly to reduce
that complexity and to
identify areas that need
to be simplified. NiFi
enables not only the visual
establishment of dataflows
but it does so in real-time.
Rather than being 'design
and deploy' it is much
more like molding clay.
If you make a change to
the dataflow that change
immediately takes effect.
Changes are fine-grained
and isolated to the affected
components. You don't
need to stop an entire
flow or set of flows just
to make some specific
modification.

8

Apache NiFi High Level Overview of Key NiFi Features

Dataflows tend to be
highly pattern oriented and
while there are often many
different ways to solve a
problem, it helps greatly to
be able to share those best
practices. Templates allow
subject matter experts to
build and publish their
flow designs and for others
to benefit and collaborate
on them.

NiFi automatically
records, indexes,
and makes available
provenance data as objects
flow through the system
even across fan-in, fan-
out, transformations, and
more. This information
becomes extremely critical
in supporting compliance,
troubleshooting,
optimization, and other
scenarios.

NiFi's content repository is
designed to act as a rolling
buffer of history. Data is
removed only as it ages off
the content repository or
as space is needed. This
combined with the data
provenance capability
makes for an incredibly
useful basis to enable
click-to-content, download
of content, and replay, all
at a specific point in an
object's lifecycle which
can even span generations.

System to System

User to System

Multi-tenant
Authorization

A dataflow is only as
good as it is secure.
NiFi at every point in a
dataflow offers secure
exchange through the
use of protocols with
encryption such as 2-way
SSL. In addition NiFi
enables the flow to encrypt
and decrypt content and
use shared-keys or other
mechanisms on either side

9

Apache NiFi High Level Overview of Key NiFi Features

of the sender/recipient
equation.

NiFi enables 2-Way
SSL authentication
and provides pluggable
authorization so that it can
properly control a user's
access and at particular
levels (read-only, dataflow
manager, admin). If a user
enters a sensitive property
like a password into the
flow, it is immediately
encrypted server side and
never again exposed on
the client side even in its
encrypted form.

The authority level of a
given dataflow applies
to each component,
allowing the admin user
to have fine grained level
of access control. This
means each NiFi cluster
is capable of handling
the requirements of one
or more organizations.
Compared to isolated
topologies, multi-tenant
authorization enables a
self-service model for
dataflow management,
allowing each team
or organization to
manage flows with a full
awareness of the rest of the
flow, to which they do not
have access.

Extension

Classloader Isolation

Site-to-Site
Communication Protocol

NiFi is at its core built
for extension and as
such it is a platform on
which dataflow processes
can execute and interact
in a predictable and
repeatable manner. Points
of extension include:
processors, Controller
Services, Reporting Tasks,
Prioritizers, and Customer
User Interfaces.

For any component-
based system, dependency
problems can quickly

10

Apache NiFi High Level Overview of Key NiFi Features

occur. NiFi addresses
this by providing a
custom class loader
model, ensuring that
each extension bundle is
exposed to a very limited
set of dependencies. As a
result, extensions can be
built with little concern
for whether they might
conflict with another
extension. The concept of
these extension bundles
is called 'NiFi Archives'
and is discussed in greater
detail in the Developer's
Guide.

The preferred
communication protocol
between NiFi instances
is the NiFi Site-to-Site
(S2S) Protocol. S2S makes
it easy to transfer data
from one NiFi instance to
another easily, efficiently,
and securely. NiFi client
libraries can be easily
built and bundled into
other applications or
devices to communicate
back to NiFi via S2S.
Both the socket based
protocol and HTTP(S)
protocol are supported
in S2S as the underlying
transport protocol, making
it possible to embed a
proxy server into the S2S
communication.

Scale-out (Clustering)

Scale-up & down
NiFi is designed to scale-
out through the use of
clustering many nodes
together as described
above. If a single node
is provisioned and
configured to handle
hundreds of MB per
second, then a modest
cluster could be configured
to handle GB per second.
This then brings about
interesting challenges
of load balancing and
fail-over between NiFi

11

Apache NiFi High Level Overview of Key NiFi Features

and the systems from
which it gets data. Use
of asynchronous queuing
based protocols like
messaging services, Kafka,
etc., can help. Use of
NiFi's 'site-to-site' feature
is also very effective
as it is a protocol that
allows NiFi and a client
(including another NiFi
cluster) to talk to each
other, share information
about loading, and to
exchange data on specific
authorized ports.

NiFi is also designed to
scale-up and down in a
very flexible manner.
In terms of increasing
throughput from the
standpoint of the NiFi
framework, it is possible
to increase the number
of concurrent tasks on
the processor under the
Scheduling tab when
configuring. This allows
more processes to execute
simultaneously, providing
greater throughput. On the
other side of the spectrum,
you can perfectly scale
NiFi down to be suitable to
run on edge devices where
a small footprint is desired
due to limited hardware
resources. To specifically
solve the first mile data
collection challenge and
edge use cases, you can
find more details here:
https://cwiki.apache.org/
confluence/display/NIFI/
MiNiFi regarding a child
project effort of Apache
NiFi, MiNiFi (pronounced
"minify", [min-uh-fahy]).

12

https://cwiki.apache.org/confluence/display/NIFI/MiNiFi
https://cwiki.apache.org/confluence/display/NIFI/MiNiFi
https://cwiki.apache.org/confluence/display/NIFI/MiNiFi

	Contents
	What is Apache NiFi?
	The core concepts of NiFi
	NiFi Architecture
	Performance Expectations and Characteristics of NiFi
	High Level Overview of Key NiFi Features

