
Security 3

Deploying SAM Applications in a Secure Cluster
Date of Publish: 2019-05-15

https://docs.hortonworks.com/

https://docs.hortonworks.com/

Contents

Deploying SAM Applications in a Secure Cluster.. 3
Connecting to a Secure Service that Supports Delegation Tokens..3
Connecting to Secure Kafka...4
Securing SAM – An End-to-End Workflow... 5

Understanding the End-to-End Workflow... 5

Security Deploying SAM Applications in a Secure Cluster

Deploying SAM Applications in a Secure Cluster

In a secure/kerberized env, SAM will deploy an application to kerberized Storm cluster and that app has to talk
to secure services (e.g.: Secure Kafka, HBase, HDFS, Hive, etc..). Deploying secure streaming apps that talks to
secure services has been traditionally very difficult to configure. SAM makes it considerably easier to deploy secure
streaming apps.

Connecting to a Secure Service that Supports Delegation Tokens
SAM uses delegation tokens when possible, when talking to secure streaming services. The concept of delegation
token is introduced to avoid frequent authentication checks against Kerberos(AD/MIT). After the initial
authentication against Namenode using Kerberos, subsequent authentication are done without a Kerberos service
ticket(TGT). Once the client authentication with Kerberos for Namenode is successful, the client receives a delegation
token from the Namenode. This token has an expiration and max issue date but can be reviewed.

A delegation token is secret key shared with the Storm/NameNode/HBase which provides a mechanism for Storm/
NameNode/HBase to impersonate a user to perform an operation. Delegation tokens are supported for the following
services: Storm, HDFS, Hive, HBase.

You can use Storm’s Nimbus service to get delegation tokens on behalf of the topology submitter user. Nimbus can
get HDFS, HBase and other delegation tokens associated with the user who submitted the topology and can push it to
the users stream application. This decreases operational/deployment complexity because you do not have to distribute
keytabs to all possible key tabs.

Example

If your application is going to interact with secure HBase, your bolts/states needs to be authenticated by HBase.
Typically, you are required to have storm.keytab.file on all the potential worker hosts. If you have multiple topologies
on a cluster, each with different user, you will have to create multiple keytabs and distribute it to all workers.

With SAM, you can configure Nimbus to automatically get delegation tokens on behalf of the topology submitter
user. To do this in SAM, you can configure a single principal and keytab in SAM for a given application and this
principal is used by Nimbus to impersonate the user/app. The only requirement is that the keytab for this principal
must reside on the host where Nimbus is located. To configure this single principal that will be used by Nimbus to
impersonate the user/app when connecting to secure big data services like HBase, HDFS, Hive, do the following:

Steps

1. Click into your stream application, and then click Edit.
2. Click the Configure icon

()
located on top right of the stream application.

3. Select the Security tab.
4. Select the principal and Keytab path. SAM automatically populates all the principal and key tabs located on the

Nimbus Host to make this easier. Then click Ok.

3

Security Deploying SAM Applications in a Secure Cluster

Result

When user X deploys the application, Nimbus uses the principal and the keytab configured above to impersonate user
X when interacting with the big data services in the application.

Connecting to Secure Kafka
Kafka does not support delegation tokens. You must configure the Kafka source/sink processor with the principal and
keytab used to authenticate the stream applications with Kafka. Use these steps to configure SAM to communication
with a secure Kafka service.

1. Double click on the Kafka source/sink component on the canvas.
2. Select the Security tab.
3. Configure the Kerberos client principal, Kerberos keytab file, and the Kafka service name. The client principal

and keytab selected must exist on all the worker nodes in the cluster. Using the storm-<cluster-name> principal
is recommended because Ambari creates that keytab on each worker node when running the Ambari Kerberos
Wizard . Set the Kafka service name to “kafka”.

4

Security Deploying SAM Applications in a Secure Cluster

Securing SAM – An End-to-End Workflow
To help understand how all of this fits together, let's walk through a use case to see how SAM to deploys applications
in a secure cluster.

The use case details are the following:

• An organization has a secure HDF/HDP cluster and all cluster services have been Kerberize.
• User gvetticaden is a developer and part of the release engineering team, builds a streaming application that

includes of the following capabilities:

• Creating streams from a set of Kafka topics from a secure Kafka Broker.
• Doing analytics on the stream.
• Persisting different events to following secure data stores: HDFS, HBase, Hive

• User gvetticaden wants to deploy the streaming application to a secure storm Service.

Understanding the End-to-End Workflow
The below image provides an explanation on how SAM functions for the above use case.

5

Security Deploying SAM Applications in a Secure Cluster

Step 1: Initial Login

User gvetticaden authenticates himself to the organization AD/KDC by doing a kinit. Typically in an organization,
the ticket is granted when the user logs into the corporate LAN.

Principal/Keytab Used to Connct: gvetticaden

Step 2: SAM Grants Access Based on Roles and Permissions

SAM looks up the roles for gvetticaden. Based on the permissions associated with the roles, SAM gives gvetticaden
access to specific features.

Step 3a: Build and Deploy a Streaming Application

User gvetticaden builds the streaming analytics application and deploys it. The application includes the following
capabilities:

• Creating streams from a set of Kafka topics from a secure Kafka Broker.
• Doing analytics on the stream.
• Persisting different events to following secure data stores: HDFS, HBase, Hive

Step 3b: SAM Communicates with Storm

SAM communicates with Storm Streaming Engine to deploy the stream application using the streamline principal/
keytab. SAM is functioning as a client submitting a job to Secure Storm. The internal streamline user will
impersonate gvetticaden when it talks to Storm. Hence ACLs within Ranger for Storm can be configured for
gvetticaden, the person deploying the streaming application.

Principal/Keytab Used to Connect: The streamline principal/keytab is used to connect, and user gvetticaden is
impersonated.

Step 4: Communication with Secured Big Data Services

6

Security Deploying SAM Applications in a Secure Cluster

When SAM deploys the application, it passes the application principal and keytab to Nimbus. Nimbus uses this
principal to authenticate to big data services that support tokens. The principal impersonates gvetticaden. The result
is that all Ranger ACLs for HBase, Hive, and HDFS are configured for gvetticadne, the user deploying the streaming
application.

Step 5: Communication with Secured Big Data Services that do not Support Delegation Tokens

If the application uses a Kafka Source or Sink, then the application uses the principal and keytab configured under the
Kafka component security settings.

Principal/Keytab Used to Connect:: The principal/keytab configured in Kafka are used to connect.

7

	Contents
	Deploying SAM Applications in a Secure Cluster
	Connecting to a Secure Service that Supports Delegation Tokens
	Connecting to Secure Kafka
	Securing SAM – An End-to-End Workflow
	Understanding the End-to-End Workflow

