Data Access 3

Integrating Hive and Kafka

Date of Publish: 2019-05-15

P

Hortonworks

https://docs.hor tonwor ks.com/

https://docs.hortonworks.com/

Contents

Apache Hive-Kafka iNntegration............ccevieeiieiee e 3
Create a table for @ KafKa SITEAIM.. ..o bbbt
QUENYING KEFKA QBLAL.eeeteeeiercte bbbt b et b et b et b e e b b

Query live data from KEFKaL.........coeiiieeee bbb
Perform ETL by ingesting data from Kafka into HiVe...........ccoiiiirinicere s
WIING 0AE8 L0 KBFKAL. ...ttt bbbt bbbt

Write transformed Hive data to KafKaL...... ..o e
Set consumer and producer properties as table ProPErties........ oo
Kafka storage handler and table Properties...... ..ot

Data Access Apache Hive-Kafka integration

Apache Hive-K afka integration

As an Apache Hive user, you can connect to, analyze, and transform data in Apache Kafka from Hive. Y ou can
offload data from Kafka to the Hive warehouse. Using Hive-Kafka integration, you can perform actions on real-time
data and incorporate streamed data into your application.

Y ou connect to Kafka data from Hive by creating an external table that maps to a Kafkatopic. The table definition
includes areference to a Kafka storage handler that connects to Kafka. On the external table, Hive-Kafka integration
supports ad hoc queries, such as questions about data changesin the stream over a period of time. Y ou can transform
Kafka datain the following ways:

e Perform data masking

« Join dimension tables or any stream

« Aggregate data

« Change the SerDe encoding of the original stream
» Create apersistent stream in a Kafkatopic

Y ou can achieve data offloading by controlling its position in the stream. The Hive-Kafka connector supports the
following serialization and deserialization formats:

» JsonSerDe (default)
e OpenCSVSerde
¢ AvroSerDe

Related Information
Apache Kafka Documentation

Create atablefor a Kafka stream

Y ou can create an external tablein Apache Hive that represents an Apache Kafka stream to query real-time datain
Kafka. You use a storage handler and table properties that map the Hive database to a Kafka topic and broker. If the
Kafka datais not in JSON format, you alter the table to specify a serializer-deserializer for another format.

Procedure

1. Get the name of the Kafka topic you want to query to use as a table property.
For example: "kafka.topic" = "wiki-hive-topic"

2. Construct the Kafka broker connection string.
For example: "kafka.bootstrap.servers'="kafka.hostname.com:9092"

3. Create an external table named kafka_table by using 'org.apache.hadoop.hive kafka.K afkaStorageHandler', as
shown in the following example:

CREATE EXTERNAL TABLE kaf ka_tabl e
("tinestanp™ tinestanp , " page string, ~newPage bool ean,
added int, deleted bigint, delta double)
STORED BY ' or g. apache. hadoop. hi ve. kaf ka. Kaf kaSt or ageHand| er"
TBLPROPERTI ES
("kaf ka.topic" = "test-topic",
"kaf ka. boot strap. servers"="1 ocal host: 9092");

4, If the default JSON serializer-deserializer isincompatible with your data, choose another format in one of the
following ways:

https://kafka.apache.org/0110/documentation.html

Data Access

Apache Hive-Kafka integration

« Alter the table to use another supported serializer-deserializer. For example, if your dataisin Avro format, use
the Kafke serializer-deserializer for Avro:

ALTER TABLE kaf ka_t abl e SET TBLPROPERTI ES
("kaf ka. serde. cl ass"="or g. apache. hadoop. hi ve. serde2. avro. AvroSer De") ;

« Create an external table that specifies the table in another format. For example, create a table named that
specifies the Avro format in the table definition:

CREATE EXTERNAL TABLE kafka_t_avro
("timestanp® tinestanp , “page’ string, "~ newPage bool ean,
added int, deleted bigint, delta double)
STORED BY ' or g. apache. hadoop. hi ve. kaf ka. Kaf kaSt or ageHandl er"
TBLPROPERTI ES
("kafka.topic" = "test-topic",
"kaf ka. boot st rap. servers"="| ocal host : 9092"
-- STORE AS AVRO | N KAFKA
"kaf ka. serde. cl ass"="or g. apache. hadoop. hi ve. serde2. avro. Avr oSer De") ;

Related Information
Apache Kafka Documentation

Querying Kafka data

Y ou can get useful information, including Kafka record metadata from atable of Kafka data by using typical Hive
queries.

Each Kafka record consists of a user payload key (byte[]) and value (byte]]), plus the following metadata fields:

e Partitionint32
« Offsetint64
e Timestamp int64

The Hive row represents the dual composition of Kafka data:

* The user payload serialized in the value byte array
» The metadata: key byte array, partition, offset, and timestamp fields

value byte [] key byte [] Record metadata
| | |

I 1
luser_cr typel, ... user_cn typen,]_key binary , __partition Int, __offset bigint, __timestamp

In the Hive representation of the Kafka record, the key byte array is called __key and is of type binary. Y ou can cast
__key at query time. Hive appends __key to the last column derived from value byte array, and appends the partition,
offset, and timestamp to __key columns that are named accordingly.

Related Information
Apache Kafka Documentation

Query live data from Kafka

Y ou can get useful information from a table of Kafka data by running typical queries, such as counting the number of
records streamed within an interval of time or defining aview of streamed data over a period of time.

Before you begin
Thistask requires Kafka 0.11 or later to support time-based lookups and prevent full stream scans.

About thistask
Thistask assumes you created a table named kafka table for a Kafka stream.

https://kafka.apache.org/0110/documentation.html
https://kafka.apache.org/0110/documentation.html

Data Access

Apache Hive-Kafka integration

Procedure

1

List the table properties and all the partition or offset information for the topic.
DESCRIBE EXTENDED kafka_table;

Count the number of Kafka records that have timestamps within the past 10 minutes.

SELECT COUNT(*) FROM kafka_tabl e
VWHERE = tinmestanp > 1000 * to_unix_tinestanp(CURRENT_TI MESTAMP -
interval '10° M NUTES);

Such atime-based seek requires Kafka 0.11 or later, which has a Kafka broker that supports time-based |ookups;
otherwise, this query leads to afull stream scan.

Define aview of data consumed within the past 15 minutes and mask specific columns.

CREATE VIEW | ast _15 m nutes_of kafka_ table AS SELECT "tinestanp’, " user’,
del t a,
ADDED FROM kaf ka_t abl e
VWHERE ° _tinestanp’ > 1000 * to_unix_tinmestanp(CURRENT Tl MESTAMP -
interval '15" M NUTES) ;

Create adimension table.

CREATE TABLE user_table (“user®™ string, first_nane’ string , age int,
gender string, conments string) STORED as ORC ;

Join the view of the stream over the past 15 minutesto user_table, group by gender, and compute aggregates over
metrics from fact table and dimension tables.

SELECT SUM added) AS added, SUM del eted) AS del eted, AVE delta) AS delta,
AVE age) AS avg _age , gender
FROM | ast 15 m nutes_of kafka_table
JO N user _table ON "last_15 minutes_of kafka table . user® =
“user _table . user’
GROUP BY gender LIMT 10;

Perform aclassical user retention analysis over the Kafka stream consisting of a stream-to-stream join that runs
adhoc queries on aview defined over the past 15 minutes.

-- Stream join over the view itself

-- Assunming I15min wiki is a view of the last 15 m nutes

SELECT COUNT(DI STINCT activity. user) AS active_users,

COUNT(DI STI NCT future_activity. user) AS retained users

FROM | 15mi n_wi ki AS activity

LEFT JON I 15m n_wi ki AS future_activity ON activity. user’ =
future_activity. user’

AND activity. tinestanp™ = future_activity. tinmestanp™ - interval '5'
m nutes ;

-- Streamto-streamjoin

-- Assunming wi ki_kafka_hive is the entire stream

SELECT fl oor _hour(activity. tinmestanp), COUNT(DI STINCT activity. user’)
AS active_users,

COUNT(DI STI NCT future_activity. user’) as retained users

FROM wi ki _kaf ka_hive AS activity

LEFT JO N w ki _kafka_hive AS future_ activity ON activity. user =
future_activity. user’

AND activity. tinestanp™ = future_activity. timestanp® - interval '1'
hour

GROUP BY fl oor_hour(activity. tinestanp’);

Data Access Apache Hive-Kafka integration

Related Information
Apache Kafka Documentation
Write transformed Hive datato Kafka

Perform ETL by ingesting data from Kafka into Hive

Y ou can extract, transform, and load a Kafka record into Hive in a single transaction.

Procedure

1. Create atable to represent source Kafka record offsets.

CREATE TABLE kafka table offsets(partition_id int, max_offset bigint,
insert _time tinmestanp);

2. Initidize the table.

| NSERT OVERWRI TE TABLE kaf ka_t abl e_of fsets

SELECT °_ partition, mn(__offset’) - 1, CURRENT_TI MESTAMP
FROM wi ki _kaf ka_hi ve

GROUP BY °_ partition, CURRENT_ Tl MESTAMP;

3. Create the destination table.

CREATE TABLE orc_kafka_ table (partition_id int, koffset bigint, ktinestanp
bi gi nt,
“tinmestanp® tinmestanp , " page string, “user string, “diffurl® string,
“isrobot® bool ean, added int, deleted int, delta bigint
) STORED AS ORC

4, Insert Kafka datainto the ORC table.

FROM wi ki _kaf ka _hive ktable JO N kafka_table offsets offset table
ON (ktable.” partition = offset table.partition_id

AND ktable.” offset™ > offset table.nax _offset)
| NSERT | NTO TABLE orc_kaf ka_tabl e
SELECT °_ partition, °~_ offset’, °_timestanp’,
“timestanp, " page, ‘user , “diffurl’, “isrobot’, added , deleted ,
delta

| NSERT OVERWRI TE TABLE kaf ka_tabl e of fsets
SELECT °_ partition, max(__offset’), CURRENT_TI MESTAMP
GROUP BY °_ _partition, CURRENT_TI MESTAMP;

5. Check theinsertion.
SELECT MAX(koffset”) FROM orc_kafka table LIMT 10;

SELECT COUNT(*) AS c FROM orc_kafka table
GROUP BY partition_id, koffset HAVING c > 1;

6. Repeat step 4 periodically until al the datais|loaded into Hive.

Writing data to Kafka

Y ou can extract, transform, and load a Hive table to a Kafka topic for real-time streaming of alarge volume of Hive
data. Y ou need some understanding of write semantics and the metadata columns required for writing data to Kafka.

https://kafka.apache.org/0110/documentation.html

Data Access Apache Hive-Kafka integration

Write semantics
The Hive-Kafka connector supports the following write semantics:

e At least once (default)
» Exactly once

At least once (default) The default semantic. At least once is the most common
write semantic used by streaming engines. The internal
Kafka producer retries on errors. If amessage is not
delivered, the exception israised to the task level, which
causes arestart, and more retries. The At least once
semantic leads to one of the following conclusions:

« |f the job succeeds, each record is guaranteed to be
delivered at least once.

« If thejob fails, some of the records might be lost and
some might not be sent.

In this case, you can retry the query, which eventually
leads to the delivery of each record at least once.

Exactly once Following the exactly once semantic, the Hive job
ensuresthat either every record is delivered exactly once,
or nothing is delivered. Y ou can use only Kafka brokers
supporting the Transaction API (0.11.0.x or later).

To use this semantic, you must set the table property
"kafka.write.semantic'="EXACTLY_ONCE".

M etadata columns

In addition to the user row payload, the insert statement must include values for the following extra columns:

__key Although you can set the value of this metadata
column to null, using a meaningful key valueto avoid
unbalanced partitions is recommended. Any binary value
isvalid.

__partition Use null unless you want to route the record to a
particular partition. Using a nonexistent partition value
resultsin an error.

__ offset Y ou cannot set this value, which isfixed at -1.

__timestamp Y ou can set this value to ameaningful timestamp,
represented as the number of milliseconds since epoch.
Optionally, you can set this value to null or -1, which
means that the Kafka broker strategy sets the timestamp
column.

Related Information
Apache Kafka Documentation

Writetransformed Hive data to Kafka

Y ou can change streaming data and include the changes in a stream. Y ou extract a Kafkainput topic, transform the
record in Hive, and load a Hive table back into a Kafka record.

https://kafka.apache.org/0110/documentation.html

Data Access Apache Hive-Kafka integration

About thistask

This task assumes that you already queried live data from Kafka. When you transform the record in the Hive
execution engine, you compute a moving average over awindow of one minute. The resulting record that you write
back to another Kafka topic is named moving_avg_wiki_kafka hive.

Procedure

1. Create an external table to represent the Hive data that you want to load into Kafka.

CREATE EXTERNAL TABLE novi ng_avg wi ki _kaf ka_hi ve
(" channel © string, ~nanmespace’ string, page string, “tinestanp
timestanp , avg_delta double)
STORED BY ' or g. apache. hadoop. hi ve. kaf ka. Kaf kaSt or ageHandl| er"'
TBLPROPERTI ES
("kafka.topic" = "noving_avg_w ki _kaf ka_hi ve",
"kaf ka. boot st rap. server s"="kaf ka. host nane. com 9092",
-- STORE AS AVRO | N KAFKA

2. Insert datathat you select from the Kafka topic back into the Kafka record.

I NSERT | NTO TABLE novi ng_avg w ki _kaf ka_hi ve
SELECT "channel *, "~ nanespace’, " page , tinestanp’,
AVG@ del ta) OVER (ORDER BY "tinmestanp’ ASC ROANsS BETWEEN 60 PRECEDI NG AND
CURRENT ROW AS avg_del ta,
null AS °_ key', null AS " partition, -1 AS "~_ offset”, to_epoch_mlli
(CURRENT _TI MESTAMP) AS ~ _tinestanp
FROM | 15mi n_wi ki ;
The timestamps of the selected data are converted to milliseconds since epoch for clarity.

Related I nformation
Query live data from Kafka

Set consumer and producer propertiesastable properties

Y ou can use Kafka consumer and producer properties in the TBLPROPERTIES clause of aHive query. By prefixing
the key with kafka.consumer or kafka.producer, you can set the table properties.

Procedure
For example, if you want to inject 5000 poll records into the Kafka consumer, use the following syntax.

ALTER TABLE kaf ka_t abl e SET TBLPROPERTI ES

Kafka storage handler and table properties

Y ou use the Kafka storage handler and table properties to specify the query connection and configuration.

Kafka storage handler

Y ou specify ‘org.apache.hadoop.hive.kafka K afkaStorageHandler' in queries to connect to, and transform a Kafka
topic into, a Hive table. In the definition of an external table, the storage handler creates aview over asingle Kafka

Data Access Apache Hive-Kafka integration

topic. For example, to use the storage handler to connect to atopic, the following table definition specifies the storage
handler and required table properties: the topic name and broker connection string.

CREATE EXTERNAL TABLE kafka_t abl e
(“tinestanp” tinestanp , "page string, ~newPage bool ean,
added int, deleted bigint, delta double)
STORED BY ' or g. apache. hadoop. hi ve. kaf ka. Kaf kaSt or ageHand| er"
TBLPROPERTI ES
("kafka.topic" = "test-topic",
"kaf ka. boot st rap. servers"="1| ocal host: 9092");

Y ou set the following table properties forwith the Kafka storage handler:
kafka.topic The Kafka topic to connect to

kafka.bootstrap.servers The broker connection string

Storage handler-based optimizations
The storage handler can optimize reads using afilter push-down when you execute a query such as the following
time-based lookup supported on Kafka 0.11 or later:

SELECT COUNT(*) FROM kafka_tabl e
WHERE ~ tinestanp™ > 1000 * to_uni x_tinest anp(CURRENT Tl MESTAMP -
interval '10° M NUTES) ;

The Kafka consumer supports seeking on the stream based on an offset, which the storage handler leverages to push
down filters over metadata columns. The storage handler in the example above performs seeks based on the Kafka
record __timestamp to read only recently arrived data.

Thefollowing logical operators and predicate operators are supported in the WHERE clause:

Logical operators. OR, AND

Predicate operators: <, <=, >=, >, =

The storage handler reader optimizes seeks by performing partition pruning to go directly to a particular partition
offset used in the WHERE clause:

SELECT COUNT(*) FROM kafka_tabl e
VWHERE (°_ offset’ < 10 AND °_ offset™ > 3 AND °_ partition = 0)

OR (" __partitionn = 0 AND ~__offset”™ < 105 AND " _ offset”™ > 99)
OR (*__offset™ = 109);

The storage handler scans partition 0 only, and then read only records between offset 4 and 109.

Kafka metadata

In addition to the user-defined payload schema, the Kafka storage handler appends to the table some additional
columns, which you can use to query the Kafka metadata fields:

__key Kafkarecord key (byte array)
__Ppartition Kafkarecord partition identifier (int 32)
__ offset Kafka record offset (int 64)
__timestamp Kafkarecord timestamp (int 64)

The partition identifier, record offset, and record timestamp plus a key-value pair constitute a Kafka record. Because
the key-value is a 2-byte array, you must use SerDe classes to transform the array into a set of columns.

Data Access Apache Hive-Kafka integration

Table Properties

Y ou use certain properties in the TBLPROPERTIES clause of a Hive query that specifies the Kafka storage handler.

Property Description Required Default
kafka.topic Kafkatopic name to map thetable | Yes null

to
kafka.bootstrap.servers Table property indicating the Yes null

Kafka broker connection string

kafka.serde.class Serializer and Deserializer class No org.apache.hadoop.hive.serde2.Jsor|SerDe
implementation

hive.kafka.poll.timeout.ms Parameter indicating Kafka No 5000 (5 Seconds)
Consumer poll timeout period in
milliseconds. (Thisisindependent
of internal Kafka consumer
timeouts.)

hive.kafkamax.retries Number of retries for Kafka No 6
metadata fetch operations

hive.kafka.metadata.poll.timeout.mg Number of milliseconds before No 30000 (30 Seconds)
consumer timeout on fetching
Kafkametadata

kafka.write.semantic Writer semantic with No AT _LEAST_ONCE

allowed values of NONE,
AT_LEAST ONCE,
EXACTLY_ONCE

10

	Contents
	Apache Hive-Kafka integration
	Create a table for a Kafka stream
	Querying Kafka data
	Query live data from Kafka

	Perform ETL by ingesting data from Kafka into Hive
	Writing data to Kafka
	Write transformed Hive data to Kafka

	Set consumer and producer properties as table properties
	Kafka storage handler and table properties

