Apache NiFi 3

Using DataFlow Provenance Tools
Date of Publish: 2019-05-15

Py

Hortonworks

https://docs.hor tonwor ks.com/

https://docs.hortonworks.com/

Contents

Data PrOVENANCE........coiiiiiii ettt st e e s san e e e e e nre e e s enneeas 3
PrOVENANCE EVENTS.... .o e e s s e s sa e s e e r e e r e e e reens 3
SEAICNING FOI EVENES.... .ottt b bbbt bbbt b et b et b e e b e e b e 4
DELAIS OF B EVENL.....oeiiiiiiiieeiet ettt bt bbbt b e bbbt bbbt b et b e 6
REPIGYING 8 FIOWFITE.......ootieieeeteeee ettt ettt b et b et b e e b e se ke ne b e se b e seenenneneas 8
ViIiEeWiNg FIOWFITE LINEBOE.......ceoiiireite ettt et et b et bt bbbttt 9

FINO PAIENES. ...ttt bbbt b bbbt b et bt 10
EXPANTiNG @N EVENL.....ccuiiiiiiiiee ettt bbbt 11
Write Ahead ProvenanCe REPOSITONY.........uoiuerieuirieiirieirieierteestee sttt be st be et se s e ss e b s es s s enessenes 12
Backwards COmPALiDilITY........co.eireirieiiere e e 12
Older EXiStiNG NIFi VEISION......c.oiuiiiieiirieirieestereete ettt sttt e bbb b e b e b e b seene e 12
BOOLSIIB.CONT ...ttt b et bbbt e b e bbbt bt bbbt b 12
SYSLEIM PrOPEITIES. ...ttt sttt sttt b et e b s e b se bt s e e bt s e e st sb et b et e b et ek e neebeseebeseebeseene e 12
Encrypted Provenance CONSIAEIAtIONS...........ccuireriiriirieeneeeseete ettt r e e n e s beseene e 13
Encrypted ProvenanCe REPOSITONYccuiiiriiiriiriiiereeteseete st st st sse st se st ebese b seebeseebesaeseseenesnenens 13
WVNBE 1S 112, ettt ettt btttk s e et e b st e b e b et e e b e Rt s et e b eb e ne et b e e et nne 13
HOW QOBS T WOPK?....ceeeeeeeete ettt et s bbbt b ettt 13
Writing and Reading EVENt RECOITS.........couoiiiriiiiieirieicere et 14

(20 10= o 1= RS U1 15

Apache NiFi Data Provenance

Data Provenance

While monitoring a dataflow, users often need away to determine what happened to a particular data object
(FlowFile). NiFi's Data Provenance page provides that information. Because NiFi records and indexes data
provenance details as objects flow through the system, users may perform searches, conduct troubleshooting and
evaluate things like dataflow compliance and optimization in real time. By default, NiFi updates thisinformation
every five minutes, but that is configurable.

To access the Data Provenance page, select "Data Provenance” from the Global Menu. This opens a dialog window
that allows the user to see the most recent Data Provenance information available, search the information for specific
items, and filter the search results. It is also possible to open additional dialog windows to see event details, replay
data at any point within the dataflow, and see a graphical representation of the data's lineage, or path through the
flow. (These features are described in depth below.)

When authorization is enabled, accessessing Data Provenance information requires the 'query provenance' Global
Policy aswell asthe 'view provenance' Component Policy for the component which generated the event. In addition,
access to event details which include FlowFile attributes and content require the 'view the data’ Component Policy for
the component which generated the event.

B x
NiFi Data Provenance
Event Type

Displaying 1,000 of 1,000

Oldest event available: 07/14/2016 20:56:52 UT! Showing the most recent 1,000 of 1,000+ events, please refine the search.
Filter by compongfit name v Q

FlowFile Uuid
L1} 07/29/2016 00:14:.. ATTRIBUTES_MODI.. 91ae19fa-5797-45.. 1.11 KB EvaluateJsonPath EvaluateJsonPath nifi-05.eng hortonw... | Jb—
[i} 07/29/2016 00:14:.. ATTRIBUTES_MODI.. bec29546-bbd0-43.. 1.11KB EvaluateJsonPath EvaluateJsonPath nifi-05.eng hortonw._. | fb—
[i] 07/29/2016 00:14:.. ATTRIBUTES_MODI.. 9fdc3b69-6cef-40a.. 1.11KB EvaluateJsonPath et E— nifi-05.eng.hortonw... | Jb—
o 07/2 UTES_MODL. 38bb2021-1f07-de.. | 1.11KB EvaluateJsonPath FlowFile nibedirengherenmelp b —
o Provenancle UTES_MODI. f31d3aa0-40b7-46.. 1.11K8 EvaluateJsonparn| Lin€age Graph | e oo ot oronw.. | fo—
Event Details

L1} UTES_MODI..| 7d12c959-6952-41.. 1.11KB EvaluateJsonPath EvaluateJsonPath nifi-05.eng hortonw... | Jb—
L1} 07/29/2016 00:14:.. ATTRIBUTES_MODI.. 93f31b5c-be89-49e. 1.11KB EvaluateJsonPath EvaluateJsonPath nifi-05.eng hortonw... | Jb—
[i} 07/29/2016 00:14:.. ATTRIBUTES_MODI.. aleSabad-bdde-de. 1.11KB EvaluateJsonPath nifi-05.eng hortonw... | Jb—
(] 07/29/2016 00:14.. | ATTRIBUTES_MODL. cf2095¢8-052a-47.. 1.11KB EvaluateJsonPath | GO TO ArTOW | mbifidbangehastonve=lif, —
Li] 07/29/2016 00:14:. ATTRIBUTES_MODI.. c0db8381-6c13-42.. 1.11KB EvaluateJsonPath nifi-05.eng.hortonw... Jb—
L] 07/29/2016 00:14:.. = ATTRIBUTES_MODI.. 9da3e06d-971546.. 1.11KB EvaluateJsonPath EvaluateJsonPath nifi-05.eng hortonw... | Jb—
Li} 07/29/2016 00:14:.. | ATTRIBUTES_MODI.. 18247e64-41b3-41.. 1.11 KB EvaluateJsonPath EvaluateJsonPath nifi-05.eng.hortonw... | fb—

& Last updated: 00:14:35 UTC

Provenance Events

Each point in a dataflow where a FlowFile is processed in some way is considered a'provenance event'. Various types
of provenance events occur, depending on the dataflow design. For example, when data is brought into the flow, a
RECEIVE event occurs, and when datais sent out of the flow, a SEND event occurs. Other types of processing events
may occur, such asif the datais cloned (CLONE event), routed (ROUTE event), modified (CONTENT_MODIFIED
or ATTRIBUTES MODIFIED event), split (FORK event), combined with other data objects (JOIN event), and
ultimately removed from the flow (DROP event).

The provenance event types are:

Apache NiFi Data Provenance

Provenance Event Description

ADDINFO Indicates a provenance event when additiona information such asa
new linkage to anew URI or UUID is added

ATTRIBUTES_MODIFIED Indicates that a FlowFil€e's attributes were modified in some way
CLONE Indicates that a FlowFileis an exact duplicate of its parent FlowFile
CONTENT_MODIFIED Indicates that a FlowFile's content was modified in some way
CREATE Indicates that a FlowFile was generated from data that was not received

from aremote system or external process

DOWNLOAD Indicates that the contents of a FlowFile were downloaded by a user or
external entity

DROP Indicates a provenance event for the conclusion of an object'slife for
some reason other than object expiration

EXPIRE Indicates a provenance event for the conclusion of an object'slife due
to the object not being processed in atimely manner

FETCH Indicates that the contents of a FlowFile were overwritten using the
contents of some external resource

FORK Indicates that one or more FlowFiles were derived from a parent
FlowFile
JOIN Indicates that a single FlowFile is derived from joining together

multiple parent FlowFiles

RECEIVE Indicates a provenance event for receiving data from an external
process

REPLAY Indicates a provenance event for replaying a FlowFile

ROUTE Indicates that a FlowFile was routed to a specified relationship and
provides information about why the FlowFile was routed to this
relationship

SEND Indicates a provenance event for sending data to an external process

UNKNOWN Indicates that the type of provenance event is unknown because the
user who is attempting to access the event is not authorized to know the
type

Sear ching for Events

One of the most common tasks performed in the Data Provenance page is a search for a given FlowFile to determine
what happened to it. To do this, click the Search button in the upper-right corner of the Data Provenance page. This
opens a dialog window with parameters that the user can define for the search. The parameters include the processing
event of interest, distinguishing characteristics about the FlowFile or the component that produced the event, the
timeframe within which to search, and the size of the FlowFile.

Apache NiFi

Data Provenance

Fields

Event Type
FlowFile UUID
Filename
Component 1D
Relationship
twitter.msg
language
Start date @
07/28/2016

End date @
07/28/2016

Minimum file size @

Search location

cluster

Start time (UTC) @
00:00:00

End time (UTC) @
23:59:59

Maximum file size @

For example, to determine if a particular FlowFile was received, search for an Event Type of "RECEIVE" and include

an identifier for the FlowFile, such asits uuid or filename. The asterisk (*) may be used as awildcard for any number
of characters. So, to determine whether a FlowFile with "ABC" anywhere in its filename was received at any time on
Jan. 6, 2015, the search shown in the following image could be performed:

Apache NiFi

Data Provenance

Details of an Event

Fields

Event Type
FlowFile UUID
Filename
Component 1D
Relationship
twitter.msg
language
Start date @
07/28/2016

End date @
07/28/2016

Minimum file size @

Search location

cluster

RECEIVE

ABC

Start time (UTC) @
00:00:00

End time (UTC) @
23:59:59

Maximum file size @

CAMNCEL

In the far-left column of the Data Provenance page, thereisaView Details icon for each event
i

Clicking this button opens a dialog window with three tabs: Details, Attributes, and Content.

SEARCH

Apache NiFi

Data Provenance

Provenance Event
DETAILS ATTRIBUTES COMTENT
Time Parent FlowFiles (0)

07/29/2016 00:58:44.829 UTC

Mo parents
Event Duration
Mo value set Child FlowFiles (0)
Lineage Duration Mo children
00:00:00.203

Type
ATTRIBUTES_MODIFIED

FlowFile Uuid
62d2161f-0b2a-4b2a-a552-ab617bef3811

File Size
1.1KB

Component Id
7bhadf68-2861-3a12-aac6-60f12e11e215

Component Name
EvaluateJsonPath

Component Type

The Details tab shows various details about the event, such as when it occurred, what type of event it was, and the
component that produced the event. The information that is displayed will vary according to the event type. This
tab also shows information about the FlowFile that was processed. In addition to the FlowFile's UUID, whichis
displayed on the |eft side of the Details tab, the UUIDs of any parent or children FlowFilesthat are related to that
FlowFile are displayed on the right side of the Details tab.

The Attributes tab shows the attributes that exist on the FlowFile as of that point in the flow. In order to see only the
attributes that were modified as aresult of the processing event, the user may select the checkbox next to "Only show
modified" in the upper-right corner of the Attributes tab.

Apache NiFi

Data Provenance

Provenance Event

DETAILS ATTRIBUTES

CONTENT

Attribute Values

eventType
ATTRIBUTES_MODIFIED

Mo value previously set

filename
6320498487869637

newsize
1119

Mo value previously set

oldSize
1119

Mo value previously set

path
J

reporting.task.transaction.id
fc9fad99-89f0-4978-a3aa-571bb8bB851b

uuid
62d2161f-0b2a-4b2a-a552-ab617bef3811

Replaying a FlowFile

O Show medified attributes only

A DFM may need to inspect a FlowFile's content at some point in the dataflow to ensure that it is being processed

as expected. And if it is not being processed properly, the DFM may need to make adjustments to the dataflow and
replay the FlowFile again. The Content tab of the View Details dialog window is where the DFM can do these things.
The Content tab shows information about the FlowFile's content, such asits location in the Content Repository and its
size. In addition, it is here that the user may click the Download button to download a copy of the FlowFile's content
asit existed at this point in the flow. The user may also click the Submit button to replay the FlowFile at this point

in the flow. Upon clicking Submit, the FlowFile is sent to the connection feeding the component that produced this
processing event.

Apache NiFi

Data Provenance

Provenance Event

DETAILS ATTRIBUTES

Input Claim

Container
default

Section
918

Identifier
1469753924663-275350

Offset
108834

Size
1.1KB

3 DOWNLOAD @ VIEW

Replay

Connection Id

88970033-a406-33a2-b679-711d04deda3s

Viewing FlowFile Lineage

CONTENT

Output Claim

Container
default

Section
918

Identifier

1469753924663-275350

Dffset
108834

Size
1.1KB

3 DOWNLOAD

@ VIEW

It is often useful to see a graphical representation of the lineage or path a FlowFile took
within the dataflow. To see a FlowFile's lineage, click on the "Show Lineage" icon (

gb

) in the far-right column of the Data Provenance table. This opens a graph displaying the FlowFile (

)

) and the various processing events that have occurred. The selected event will be highlighted in red. It is possible to
right-click or double-click on any event to see that event's details. To see how the lineage evolved over time, click
the dlider at the bottom-left of the window and move it to the left to see the state of the lineage at earlier stagesin the

dataflow.

Apache NiFi Data Provenance

| Pop out —p B8 x l
|
[

NiFi Data Provenance

-
Download an —

image of the graph
. Return to
RO Event List

Event whose graph ———p @/TTreures
was selected

SEND

DROP

11/16/2016 17:04:09.941 EST

Find Parents

Sometimes, a user may need to track down the original FlowFile that another FlowFile was spawned from. For
example, when a FORK or CLONE event occurs, NiFi keeps track of the parent FlowFile that produced other
FlowFiles, and it is possible to find that parent FlowFile in the Lineage. Right-click on the event in the lineage graph
and select "Find parents' from the context menu.

€ View details

fveer]

Expand
& Collapse

ROUTE

DROP

Once "Find parents" is selected, the graph is re-drawn to show the parent FlowFile and its lineage as well as the child
and its lineage.

10

Apache NiFi

Data Provenance

RECEIVE

.q_ Child

ATTRIBUTES
MODIFIED

ROUTE

DROP

Expanding an Event

In the same way that it is useful to find a parent FlowFile, the user may also want to determine what children were
spawned from a given FlowFile. To do this, right-click on the event in the lineage graph and select "Expand" from the

context menu.

EQEE
€ View details

I\ Find parents

& Collapse

ROUTE

DROP

Once "Expand" is selected, the graph is re-drawn to show the children and their lineage.

11

Apache NiFi Data Provenance

CREATE

. ATTRIBUTES . ATTRIBUTES . ATTRIBUTES . ATTRIBUTES . ATTRIBUTES . ATTRIBUTES . ATTRIBUTES . ATTRIBUTES . ATTRIBUTES . ATTRIBUTES . ATTRIBUTES . ATTRIBUTES . ATTRIBUTES
MODIFIED MODIFIED MODIFIED MODIFIED MODIFIED MODIFIED MODIFIED MODIFIED MODIFIED MODIFIED MODIFIED MODIFIED MODIFIED

(Oroute (Oroute (Oroute (Oroute (Oroute (Oroute (Oroute (Oroute (Oroute (Oroute (Oroute (Oroute (OrouTe

(Opror (Opror (Ooror (Ooror (Opror (Ooror (Ooror (OoroP (Ooror (orop ()oroP (Ooror (ororP

Write Ahead Provenance Repository

By default, the Provenance Repository isimplemented in a Persistent Provenance configuration. In Apache
NiFi 1.2.0, the Write Ahead configuration was introduced to provide the same capabilities as Persistent
Provenance, but with far better performance. Migrating to the Write Ahead configuration is easy to accomplish.
Simply change the setting for the nifi.provenance.repository.implementation system property in the
nifi.properties file from the default value of org.apache.nifi.provenance.PersistentProvenanceRepository to
org.apache.nifi.provenance.WriteA headProvenanceRepository and restart NiFi.

However, to increase the chances of a successful migration consider the following factors and recommended actions.

Backwar ds Compatibility

The WriteAheadProvenanceRepository can use the Provenance data stored by the PersistentProvenanceRepository.
However, the PersistentProvenanceRepository may not be able to read the data written by the
WriteAheadProvenanceRepository. Therefore, once the Provenance Repository is changed to use the
WriteAheadProvenanceRepository, it cannot be changed back to the PersistentProvenanceRepository without first
deleting the data in the Provenance Repository. It is therefore recommended that before changing the implementation
to Write Ahead, ensure your version of NiFi is stable, in case an issue arises that requires the need to roll back to a
previous version of NiFi that did not support the WriteA headProvenanceRepository.

Older Existing NiFi Version

If you are upgrading from an older version of NiFi to 1.2.0 or later, it is recommended that you do not change the
provenance configuration to Write Ahead until you confirm your flows and environment are stablein 1.2.0 first. This
reduces the number of variablesin your upgrade and can simplify the debugging processif any issues arise.

Bootstrap.conf

While better performance is achieved with the G1 garbage collector, Java 8 bugs may surface more frequently in the
Write Ahead configuration. It is recommended that the following line is commented out in the bootstrap.conf filein
the conf directory:

j ava. arg. 13=- XX: +UseG1GC

System Properties

Many of the same system properties are supported by both the Persistent and Write Ahead configurations, however
the default values have been chosen for a Persistent Provenance configuration. The following exceptions and
recommendations should be noted when changing to a Write Ahead configuration:

 nifi.provenance.repository.journal.count is not relevant to a Write Ahead configuration

12

Apache NiFi

Data Provenance

 nifi.provenance.repository.concurrent.merge.threads and nifi.provenance.repository.warm.cache.frequency are
new properties. The default values of 2 for threads and blank for frequency (i.e. disabled) should remain for most
installations.

» Change the settings for nifi.provenance.repository.max.storage.time (default value of 24 hours) and
nifi.provenance.repository.max.storage.size (default value of 1 GB) to values more suitable for your production
environment

» Change nifi.provenance.repository.index.shard.size from the default value of 500 MB to 4 GB

« Change nifi.provenance.repository.index.threads from the default value of 2 to either 4 or 8 as the Write Ahead
repository enables this to scale better

« |If processing a high volume of events, change nifi.provenance.repository.rollover.time from a default of 30 secsto
1 min and nifi.provenance.repository.rollover.size from the default of 100 MB to 1 GB

Once these property changes have been made, restart NiFi.

Encrypted Provenance Consider ations

The above migration recommendations for WriteAheadProvenanceRepository also apply to the encrypted version of
the configuration, EncryptedWriteA headProvenanceRepository.

The next section has more information about implementing an Encrypted Provenance Repository.

Encrypted Provenance Repository

While OS-level access control can offer some security over the provenance data written to the disk in arepository,
there are scenarios where the data may be sensitive, compliance and regulatory requirements exist, or NiFi is running
on hardware not under the direct control of the organization (cloud, etc.). In this case, the provenance repository
alowsfor al datato be encrypted before being persisted to the disk.

The current implementation of the encrypted provenance repository intercepts the record writer and reader

of WriteAheadProvenanceRepository, which offers significant performance improvements over the legacy
PersistentProvenanceRepository and uses the AES/GCM algorithm, which isfairly performant on commodity
hardware. In most scenarios, the added cost will not be significant (unnoticable on a flow with hundreds of
provenance events per second, moderately noticable on a flow with thousands - tens of thousands of events

per second). However, administrators should perform their own risk assessment and performance analysis and
decide how to move forward. Switching back and forth between encrypted/unencrypted implementations is not
recommended at thistime.

What isit?

The EncryptedWriteA headProvenanceRepository is a new implementation of the provenance repository which
encrypts all event record information before it iswritten to the repository. This allows for storage on systems where
OS-level access controls are not sufficient to protect the data while still allowing querying and access to the data
through the NiF UI/API.

How doesit work?

The WriteAheadProvenanceRepository was introduced in NiFi 1.2.0 and provided a refactored and much

faster provenance repository implementation than the previous PersistentProvenanceRepository. The encrypted
version wraps that implementation with arecord writer and reader which encrypt and decrypt the serialized bytes
respectively.

The fully qualified class org.apache.nifi.provenance.EncryptedWriteA headProvenanceRepository is specified as the
provenance repository implementation in nifi.properties as the value of nifi.provenance.repository.implementation. In
addition, encrypted write ahead provenance repository properties must be populated to allow successful initialization.

StaticK eyProvider

13

Apache NiFi

Data Provenance

The StaticKeyProvider implementation defines keys directly in nifi.properties. Individual keys are provided in
hexadecimal encoding. The keys can also be encrypted like any other sensitive property in nifi.properties using the
encrypted-config tool in the NiFi Toolkit.

The following configuration section would result in akey provider with two available keys, "Key1" (active) and
"AnotherKey".

ni fi.provenance.repository. encryption. key. provi der. i npl enent ati on=or g. apache. ni fi

ni fi.provenance. repository.encryption. key. i d=Keyl

. Securi

ni fi.provenance. repository.encryption. key=0123456789ABCDEFFEDCBA98765432100123456789ABCI
ni fi.provenance.repository.encryption. key. i d. Anot her Key=0101010101010101010101010101010:

FileBasedK eyProvider
The FileBasedK eyProvider implementation reads from an encrypted definition file of the format:

key1=NGCpDpxBZNNODBodz0p1SDbTj C2FG5kplpCndUKJI xxt cMS06GCAf M Tyy 1nmPeKOxz Lut 3DRX
+51j 6PCObSznA==

key2=GYxPbMVDbnr aXs09eGQJudAMbj TvVYpO5Xt | mkAg4JY4r | bnHO VUUI 6CeCF 7ZW

+hH42j t PgNVOpSkk Q@HWY/ v Q==

key3=SFellxuz7J89Y/| Q7YbJPOLO/ YKZRFL/

VUxJgEHxxI Xpd/ 8ELA7WWN59K1KTr 3BURCc FP5YGhwr SKf r 40E4VI g==

key4=kZpr f cTSTHEOUUOU3j MkZf rt i VR eqWmbdku3bQcUJ/

+UToecNB5| zOVEMBChy EXppy XXC35WA6 GEXFK6 PMKw==

key5=c6Fzf nKn7vUR7xql 2NFpZ+f EKBf SU7+1NvRw

+XWPRU39IMONWIk5gvoy OCdFR1kUgeg46j r N5dGxXk13s RgEOGETQ==

Each line defines akey 1D and then the Base64-encoded cipher text of a 16 byte IV and wrapped AES-128, AES-192,
or AES-256 key depending on the JCE policies available. The individual keys are wrapped by AES/GCM encryption
using the master key defined by nifi.bootstrap.sensitive.key in conf/bootstrap.conf.

Key Rotation

Simply update nifi.properties to reference a new key 1D in nifi.provenance.repository.encryption.key.id.
Previoudly-encrypted events can still be decrypted aslong as that key is till available in the key definition file or
nifi.provenance.repository.encryption.key.id.<OldK eyl D> as the key ID is serialized al ongside the encrypted record.

Writing and Reading Event Records

Once the repository isinitialized, all provenance event record write operations are serialized according to the
configured schema writer (EventldFirstSchemaRecordWriter by default for WriteAheadProvenanceRepository) to
abyte[]. Those bytes are then encrypted using an implementation of ProvenanceEventEncryptor (the only current
implementation is AES/GCM/NoPadding) and the encryption metadata (keyld, algorithm, version, 1V) is serialized
and prepended. The complete byte[] is then written to the repository on disk as normal.

14

Apache NiFi

Data Provenance

@

10720
10752
10784
10816
10848
10880
10912
10944
10976
11008
11040
11072
11104
11136
11168
11200
11232
11264
11296
11328
11360
11392
11424
11456
11488
11520
11552

FBUOSLAD
72002D6F
63727970
70686572
76612F6C
056B6579
74001141
54E00200
79317400
C6D9E40B
38CB1BEA
74384728
665CCA9B
961049E7
B392A6B9
695F4237
78AD5171
A83C6CaF
27952E97
E2FDD786
00020000
726F7665
C9611FED
6F726974
42797465
6E71007E
75720002

Signed Int big

DULLDOILSd EEESBAUL
72672E61 70616368
74696F6E 4D657461
42797465 4C656E67
616E672F 53747269
49647100 7E00014C
45532F47 434D2F4AE
00787000 00001064
02763138 B71255E8
1A493ACB C11DD677
0Q9E92BB5 3FEF2343
DC2207BA 6C38(C84C
4F7614C3 535D9053
DFD554FF 87QEA4CQ
1B3221F2 23AE5B89
028291DC D2644890
21384968 B17D0OC68
©@356A5DF ©03D3DB1B
3FA21FF7 CACC518C
926CEBB2 E1011759
028B01AC ED@0@573
6E616E63 652E456E
02000549 00106369
686D7400 124C6A61
73740002 5B424C00
00017870 0000019E
SR4?2ACF3 17FRAGAR
(select some data)

BSUUYABD LOELUUVY
652E6E69 66692E70
64617461 F1CD9BC1
74684C00 09616C67
6E673B5B 00076976
00077665 7273696F
6F506164 64696E67
0D11B@B4 B6DAC39%6
107038EF 822BE655
CDB@30C4 3EB1ESFF
6F9B1CC5 B86F964C
024F10D0 C7666E9D
1989EA6D 7936B277
B41C7A4D CD11CAE7
5459BCF4 D30F9B19
09481B0B 5AQ7C441
32E7F967 ACOEG9OFE
2D3725AD 57C75573
9F6E7C94 E276DB11
3D580AAC 751CD631
72002D6F 72672E61
63727970 74696F6E
70686572 42797465
76612F6C 616E672F
056B6579 49647100
74001141 45532F47
S4FQN200 AA7R7ANA

0.prov

VOU10000
726F7665
C9611FED
6F726974
42797465
6E71007E
75720002
6550344A
FB187773
99A9%6D7F
9ECD947E
6CE3DDDB
F@515548
EEE3D875
576263BB
D@93B6DC
7C538338
F61384E2
89B771A8
85C79451
70616368
4D657461
4C656E67
53747269
7E00014C
434D2F4E
20021 0RC

ULO4ULAL
6E616E63
02000549
686D7400
73740002
00017870
5B42ACF3
64B0OA374
ABC47419
C4EB94E3
A@BOFB97
F448EE4E
363E47DF
ED3849F8
2A77EF73
AQDB116B
3B97B1DE
4D1A4569
A3870B53
COF6BO1E
652E6E69
64617461
74684C00
6E673B5B
00077665
6F506164
317CECDA

0 out of 26385 bytes

(=077 7oYg0)
652E456E
00106369
124C6A61
5B424C00
00000177
17F80608
00044B65
A16EC6CD
51955A6C
A8075329
4A34A557
7CED90@B8
E972CFE2
EQOFQ8AE
3CB1FACE
58C588FE
69B3BBA6
DE618B02
41BA0000
66692E70
F1CD9BC1
09616C67
00076976
7273696F
64696E67
9115FADF

e el ca. o LA a .. S
r -org.apache.nifi.provenance.En
cryptionMetadata..... a . I ci
pherByteLengthL algorithmt Lja
va/lang/String;[ivBytest [BL
keyIdg ~ L versiongq ~ xp w
t AES/GCM/NoPaddingur [B.. .
T. Xxp d eP4]d..t Ke

ylt v18. U. p8..+.U. ws..t .n..
e Il w..0>. ... m....Q.Z1
8. . .+.72.#Co. ..0o.L...~..... S)
t8GC." .18.L 0 ..fn.1....H.NJ4.W

f\..0v .S].S ..my6.w.QUH6>G. ...
R AP 4 I u.8I..r..
L2V # [LTY... . Wbc.*w.s.
i_B7dH. H Z .A...... k<...
x.Qq!8Ih.} h2..g. i.1S.8;...X...
<l V.. .. -7%.W.Us. ..M Eii...

..... ... Y=X .u .1...Q... A.
sr -org.apache.nifi.p

rovenance.EncryptionMetadata. ...

.a . I cipherBytelLengthL alg

orithmt Ljava/lang/String;[1iv

Bytest [BL keyIdq ~ L versio

ng ~ xp .t AES/GCM/NoPadding
T

ur R xn 11

5

On record read, the processiis reversed. The encryption metadatais parsed and used to decrypt the serialized bytes,
which are then deserialized into a ProvenanceEventRecord object. The delegation to the normal schema record writer/
reader allows for "random-access' (i.e. immediate seek without decryption of unnecessary records).

Within the NiFi UI/API, there is no detectabl e difference between an encrypted and unencrypted provenance
repository. The Provenance Query operations work as expected with no change to the process.

Potential | ssues

When switching between implementation "families’ (i.e. VolatileProvenanceRepository or

PersistentProvenanceRepository to EncryptedWriteAheadProvenanceRepository), the existing repository must
be cleared from the file system before starting NiFi. A terminal command like localhost:$NIFI_HOME $ rm -rf
provenance_repository/ is sufficient.

» Switching between unencrypted and encrypted repositories

» |If auser has an existing repository (WriteAheadProvenanceRepository only - not
Persi stentProvenanceRepository) that is not encrypted and switches their configuration to use an encrypted
repository, the application writes an error to the log but starts up. However, previous events are not accessible
through the provenance query interface and new events will overwrite the existing events. The same behavior
occursif auser switches from an encrypted repository to an unencrypted repository. Automatic roll-over isa
future effort (https://issues.apache.org/jiralbrowse/NIFI-3722) but NiFi is not intended for long-term storage of
provenance events so the impact should be minimal. There are two scenarios for roll-over:

« Encrypted # unencrypted - if the previous repository implementation was encrypted, these events should be
handled seamlessly as long as the key provider available still has the keys used to encrypt the events (see
Key Rotation)
* Unencrypted # encrypted - if the previous repository implementation was unencrypted, these events should
be handled seamlesdly as the previously recorded events simply need to be read with a plaintext schema
record reader and then written back with the encrypted record writer
« Thereisalso afuture effort to provide a standalone tool in NiFi Toolkit to encrypt/decrypt an existing
provenance repository to make the transition easier. The trandation process could take along time depending

15

https://issues.apache.org/jira/browse/NIFI-3722

Apache NiFi

Data Provenance

on the size of the existing repository, and being able to perform this task outside of application startup would
be valuable (https://issues.apache.org/jira/lbrowse/NIFI-3723).
Multiple repositories- No additional effort or testing has been applied to multiple repositories at thistime. It is
possible/likely issues will occur with repositories on different physical devices. Thereis no option to provide a
heterogenous environment (i.e. one encrypted, one plaintext repository).
Corruption - when adisk isfilled or corrupted, there have been reported i ssues with the repository becoming
corrupted and recovery steps are necessary. Thisislikely to continue to be an issue with the encrypted repository,
athough still limited in scope to individual records (i.e. an entire repository file won't be irrecoverable due to the
encryption).

16

https://issues.apache.org/jira/browse/NIFI-3723

	Contents
	Data Provenance
	Provenance Events
	Searching for Events
	Details of an Event
	Replaying a FlowFile
	Viewing FlowFile Lineage
	Find Parents
	Expanding an Event

	Write Ahead Provenance Repository
	Backwards Compatibility
	Older Existing NiFi Version
	Bootstrap.conf
	System Properties
	Encrypted Provenance Considerations

	Encrypted Provenance Repository
	What is it?
	How does it work?
	StaticKeyProvider
	FileBasedKeyProvider
	Key Rotation

	Writing and Reading Event Records
	Potential Issues

