Apache NiFi 3

Managing a Data Flow
Date of Publish: 2020-04-28

P

Hortonworks

https://docs.cloudera.com/

https://docs.cloudera.com/

Contents

Command and Control of the DataFIOW............ccceeiiineeneeeeeee e 3
SEATING @ COMPONENL.e.eetieeterietereet sttt r et bt b e e bt re bt se st ss e s e seeae e b ea e e b e e e b e e eb e s eb e st es e b e bt s b enenbene s enesnenes 3
SLOPPING B COMPONENL. ...ttt sttt sttt sttt ettt b ettt b et et se et e seebese e bt sa e bt s b e st sbe Rt s b e st e be e s b et et e neebeneebe e ebenees 3
Enabling/Disabling & COMPOMNENL..........cuieirieirieesteeeteseete sttt st st e bt se st ss et b e sbeseebeseebeseebeseebeseebeseeneseenens 4
Remote Process GroUp TraNSMISSION.......coeeierierereeie ettt et sttt sttt st st se st s sbesesbeseebeseebe b esesbe e sbe e sbeneseens 4

(o A/ Lo (UF= o g A I =0 1S 0 T Lo 4

Encrypted Content REPOSITONY........cccieiieiiiecie ettt st e e 6
LT g S SR PP ST ST TST 7
HOW OBS It WOIK?......ooeeeietciis ettt b et b et nnerer e nnas 7

IS 0 =Y 1Y/ o (= 7
FilEBaSEAK Y PIOVIAES.......ccuiieieseeieieee ettt st st e e e s e s e e e resbesaestesbesteseeneente e eneeneeneennnsens 7
L=,V 2 (0] - 1o T 8
Writing and Reading Content ClaiMS..........ccuciririiiesisese et seesaeae et sre e s aeseeae e e e e eseeneeneerenes 8
POLENTIAl ISSUES.....c.evereiiesiteeee sttt b st e Rt e R bt e e R Rt se R bt ne s pen s 8

Encrypted FIOWFiIle REPOSITONY.......cooiiiiiiiie e 9
WINBE 1S 112, ettt bbbt b e b b £ bkt e £ bR e E bk e e e b b et b bRt e bt ne s 9
HOW QOBS I WOTK?....eeeee ettt bbb s e b e b bt b et bt e bt s b e n e nn s 9

SEAE CK Y PIOVITES ...ttt ettt ae b bt s bt s b e b e s b e se et e eese e e ent e e e e eneenenneerens 10
FilEBaSEAK Y PIOVITES.......c ettt ettt ae b bt sae s b e b e e b e b e se e e e ne e e e e 10

(=Y 201 = 1 o o ST 10

Writing and REaAING FIOWFITES...... ..ot s b et e b bt ene s 10
POLENTIBI TSSUBS.......c.eeteeetieetere ettt bbbt s Rt bbbt b et b e b e n b r et n e 11
Experimental WarNiNG.......occveoeeiieeiieiie st sae e e sae e snee s e sneeenseens 12

Apache NiFi Command and Control of the DataFlow

Command and Control of the DataFlow

When a component is added to the NiFi canvas, it isin the Stopped state. In order to cause the component to be
triggered, the component must be started. Once started, the component can be stopped at any time. From a Stopped
state, the component can be configured, started, or disabled.

Starting a Component

In order to start a component, the following conditions must be met:

* The component's configuration must be valid.

» All defined Relationships for the component must be connected to another component or auto-terminated.

* The component must be stopped.

* The component must be enabled.

« The component must have no active tasks. For more information about active tasks, see the "Anatomy of ..."
sections under Monitoring of DataF ow.

Components can be started by selecting all of the components to start and then clicking the " Start” button (

>

) in the Operate Palette or by right-clicking a single component and choosing Start from the context menu.

If starting a Process Group, all components within that Process Group (including child Process Groups) will be
started, with the exception of those components that are invalid or disabled.

Once started, the status indicator of a Processor will change to a Play symbol (

Stopping a Component

A component can be stopped any time that it is running. A component is stopped by right-clicking on the
component and clicking Stop from the context menu, or by selecting the component and clicking the " Stop" button (

) in the Operate Palette.

If aProcess Group is stopped, all of the components within the Process Group (including child Process Groups) will
be stopped.

Once stopped, the status indicator of a component will change to the Stop symbol (

).

Stopping a component does not interrupt its currently running tasks. Rather, it stops scheduling new tasks to be
performed. The number of active tasksis shown in the top-right corner of the Processor (See Anatomy of a Processor
for more information).

https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#monitoring
https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#processor_anatomy

Apache NiFi Command and Control of the DataFlow

Enabling/Disabling a Component

When a component is enabled, it is able to be started. Users may choose to disable components when they are part
of adataflow that is till being assembled, for example. Typically, if acomponent is not intended to be run, the
component is disabled, rather than being left in the Stopped state. This helps to distinguish between components
that are intentionally not running and those that may have been stopped temporarily (for instance, to change the
component's configuration) and inadvertently were never restarted.

When it is desirable to re-enable a component, it can be enabled by selecting the component and clicking the "Enable”
button

.?

(
) in the Operate Palette. Thisis available only when the selected component or components are disabled.

Alternatively, a component can be enabled by checking the checkbox next to the "Enabled" option in the Settings tab
of the Processor configuration dialog or the configuration dialog for a Port.

Once enabled, the component's status indicator will change to either Invalid (
) or Stopped (

), depending on whether or not the component is valid.

A component is then disabled by selecting the component and clicking the "Disable" button (

%
) in the Operate Palette, or by clearing the checkbox next to the "Enabled" option in the Settings tab of the Processor
configuration dialog or the configuration dialog for a Port.

Only Ports and Processors can be enabled and disabled.

Remote Process Group Transmission

Remote Process Groups provide a mechanism for sending data to or retrieving data
from aremote instance of NiFi. When a Remote Process Group (RPG) is added to
the canvas, it is added with the Transmission Disabled, asindicated by theicon (

ey
&

) in the top-left corner. When Transmission is Disabled, it can be enabled by right-clicking on the RPG and
clicking the "Enable transmission" menu item. Thiswill cause al ports for which there is a Connection to
begin transmitting data. Thiswill cause the status indicator to then change to the Transmission Enabled icon (

).

If there are problems communi cating with the Remote Process Group, a Warning indicator (

) may instead be present in the top-left corner. Hovering over this Warning indicator with the mouse will provide
more information about the problem.

Individual Port Transmission

Apache NiFi Command and Control of the DataFlow

There are times when the DFM may want to either enable or disable transmission for only a specific port within the
Remote Process Group. This can be accomplished by right-clicking on the Remote Process Group and choosing the
"Manage remote ports' menu item. This provides a configuration dialog from which ports can be configured:

Remote Process Group Ports

Name URLs

NiFi Flow http://localhost:8080/nifi, http://localhost:8081/nifi
Input1 Output]

D . »

Concurrent Tasks @ Compressed P Concurrent Tasks @ Compressed
1 No 1 Yes
Batch Settings @ Batch Settings @
Count Size Duration Count Size Duration
10 10 KB 10 sec Mo value set Mo value set Mo value set
Input2 Output2
Concurrent Tasks @ Compressed Concurrent Tasks @ Compressed
1 No 1 Mo
Batch Settings @ Batch Settings @
Count Size Duration Count Size Duration
Mo value set No value set No value set Mo value set Mo value set Mo value set

The left-hand side lists al of the Input Ports that the remote instance of NiFi allows data to be sent to. The right-hand
sidelistsal of the Output Ports from which thisinstanceis ableto pull data. If the remote instance is using secure
communications (the URL of the NiFi instance begins with https./, rather than http://), any ports that the remote
instance has not made available to this instance will not be shown.

Note: If aport that is expected to be shown is not shown in this dialog, ensure that the instance has proper
permissions and that the Remote Process Group's flow is current. This can be checked by closing the Remote
Process Group Ports dialog and looking at the bottom-left corner of the Remote Process Group. The date

and time when the flow was last refreshed is displayed. If the flow appears to be outdated, it can be updated
by right-clicking on the Remote Process Group and selecting "Refresh remote”. (See Anatomy of a Remote
Process Group for more information).

Each port is shown with its Name, its Description, configured number of Concurrent Tasks, and whether or not data
sent to this port will be Compressed. Additionally, the port's configured Batch Settings (Count, Size and Duration) are
displayed. To the left of thisinformation is atoggle switch to turn the port on or off. Ports that have no connections
attached to them are grayed out:

Apache NiFi Encrypted Content Repository

Remote Process Group Ports

Name URLs
NiFi Flow Currently Transmitting http://localhost:8080/nifi, http://localhost:8081/nifi
putl Output]
D . »
Concurrent Tasks @ Compressed P Concurrent Tasks @ Compressed
1 No 1 Yes
Batch Settings @ /‘ Batch Settings @
Count Size Duration Count Size Duration
10 10 KB 10 sec Edit Mo value set Mo value set Mo value set
Input2 Output2
Concurrent Tasks @ Compressed Concurrent Tasks @ Compressed
1 No 1 Mo
Batch Settings @ Batch Settings @
Count Size Duration Count Size Duration
Mo value set No value set No value set Mo value set Mo value set Mo value set
Not Connected

The on/off toggle switch provides a mechanism to enable and disable transmission for
each port in the Remote Process Group independently. Those ports that are connected
but are not currently transmitting can be configured by clicking the pencil icon

(f)

below the on/off toggle switch. Clicking thisicon will alow the DFM to change the number of Concurrent Tasks,
whether or not compression should be used when transmitting data to or from this port, and Batch Settings.

For an Input Port, the batch settings control how NiFi sends data to the remote input port in atransaction. NiFi will
transfer flow files, asthey are queued in incoming relationships, until any of the limits (Count, Size, Duration) is met.
If none of the settings are configured, a 500 milliseconds batch duration is used by default.

For an Output Port, the batch settings tells the remote NiFi how NiFi prefers to receive data from the remote output
port in atransaction. The remote NiFi will use the specified settings (Count, Size, Duration) to control the transfer of
flow files. If none of the settings are configured, a5 seconds batch duration is used by default.

Encrypted Content Repository

While OS-level access control can offer some security over the flowfile content data written to the disk in a
repository, there are scenarios where the data may be sensitive, compliance and regulatory requirements exist, or
NiFi isrunning on hardware not under the direct control of the organization (cloud, etc.). In this case, the content
repository alows for all datato be encrypted before being persisted to the disk. For more information on the internal
workings of the content repository, see NiFi In-Depth - Content Repository.

https://nifi.apache.org/docs/nifi-docs/html/nifi-in-depth.html#content-repository

Apache NiFi Encrypted Content Repository

What isit?

The EncryptedFileSystemRepository is a new implementation of the content repository which encrypts al content
data beforeit iswritten to the repository. This allows for storage on systems where OS-level access controls are not
sufficient to protect the data while still allowing querying and access to the data through the NiFi UI/API.

How doesit work?

The FileSystemRepository was introduced in NiFi 0.2.1 and provided the only persistent content repository
implementation. The encrypted version wraps that implementation with functionality to return to the Session (usually
StandardProcessSession) a special OutputStream/InputStream which encrypt and decrypt the serialized bytes
respectively. Thisallows al components to continue interacting with the content repository interface in the same way
as before and continue operating on content data in a streaming manner, without requiring any changes to handle the
data protection.

The fully qualified class org.apache.nifi.content.EncryptedFileSystemRepository is specified as the content repository
implementation in nifi.properties as the value of nifi.content.repository.implementation. In addition, new properties
must be populated to allow successful initialization.

StaticK eyProvider

The StaticKeyProvider implementation defines keys directly in nifi.properties. Individual keys are provided in
hexadecimal encoding. The keys can also be encrypted like any other sensitive property in nifi.properties using the ./
encrypt-config.sh tool in the NiFi Toolkit.

The following configuration section would result in akey provider with two available keys, "Key1" (active) and
"AnotherKey".

nifi.content.repository.encryption.key. provider.inplenentation=org.apache. nifi.security.
nifi.content.repository.encryption.key.id=Keyl

nifi.content.repository.encryption. key=0123456789ABCDEFFEDCBA98765432100123456789ABCDEF!
nifi.content.repository.encryption.key.id. Anot her Key=0101010101010101010101010101010101(¢

FileBasedK eyProvider

The FileBasedK eyProvider implementation reads from an encrypted definition file of the format:

key1=NGCCpDpxBZNNODBodz0p1SDbTj C2FG5kp1pCrrdUKJ I xxt cMS06GCAf M Tyy 1nmPeKOxz Lut 3DRX
+51j 6PCObSznA==

key2=GYxPbMVDbnr aXxs09e QJudAMbj TvVYpO5Xt | mrkAg4JY4r | bnHO VUUI 6CeCF 7ZW

+hHA2j t PgNV@pSkk QHWY/ vQ==

key3=SFellxuz7J89Y/| Q7YbJPOLO/ YKZRFL/

VUxJgEHx x| Xpd/ 8ELA7WWN59K1KTr 3BURCc FP5YGmwr SKf r 4CE4VI g==

key4=kZprf cTSTH6OUUOU3j MkZf rt i VR/ eqWmbdku3bQcUJ/

+UToecNB5I zOVEMBChy EXppy XXC35WA6 GEXFK6 PMKw==

key5=c6Fzf nKn7UR7xql 2NFpZ+f EKBf SU7+1NvRw

+XVWR U39MONW k5gvoy OCdFR1k Ugeg46j r N5dGXk 13s RQEOGETQ==

Each line defines akey 1D and then the Base64-encoded cipher text of a 16 byte IV and wrapped AES-128, AES-192,
or AES-256 key depending on the JCE policies available. The individual keys are wrapped by AES/GCM encryption
using the master key defined by nifi.bootstrap.sensitive.key in conf/bootstrap.conf.

Data Protection vs. Key Protection

Even though the flowfile content is encrypted using AES/CTR to handle streaming data, if using the Config Encrypt
Tool or FileBasedK eyProvider, those keys will be protected using AES/GCM to provide authenticated encryption
over the key material.

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#encrypted-file-system-content-repository-properties
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#encrypt-config_tool
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#encrypt-config_tool

Apache NiFi

Encrypted Content Repository

Key Rotation

Simply update nifi.properties to reference anew key ID in nifi.content.repository.encryption.key.id. Previously-
encrypted content claims can till be decrypted as long as that key is still available in the key definition file or

nifi.content.repository.encryption.key.id.<OldK eyl D> as the key ID is serialized alongside the encrypted content.

Writing and Reading Content Claims

Oncethe repository isinitialized, all content claim write operations are serialized

using RepositoryObjectStreamEncryptor (the only currently existing implementation is
RepositoryObjectAESCTRENcryptor) to an OutputStream. The actual implementation is
EncryptedContentRepositoryOutputStream, which encrypts the data written by the component via
StandardProcessSession inline and the encryption metadata (keyld, algorithm, version, 1V) is serialized and
prepended. The complete OutputStream is then written to the repository on disk as normal.

O
235476
235512
235548
235584
235620
235656
235692
235728
235764
235800
235836
235872
235908
235944
235980
236016
236052
236088
236124
236160
236196
236232
236268
236304
236340
236376
236412
236448
236484
236520
236556
236592

UTF-8

45A676BE
@B4FA4AD
B75B1E87
811957A5
©43BFIDQ
069C6B4E
38318592
4D9B8F96
F85B9A9A
8CD3EDGA
A47102CE
BF4BF557
BDOGEAEC
8480E439
ABOF92B6
6D7DD879
13EE834E
674EC77B
54A495D6
8A865F91
199534D3
70616368
6D696EG7
466F7267
2E526570
4328584E
72697468
7400025B
FFFFFF74
E0020000

On content claim read, the processis reversed. The encryption metadata (RepositoryObjectEncryptionM etadata) is

9BOB6FFB 02362410 383EC20D A3F7D291

88092BE9 97CFAQ22
29F16A3E 4D869375
431CB@C3 6CD1525A
C3AF5BA3 EACOASA7
533819D8 998275BE
725AA965 @D1793BC
EDF212B5 @@1ADA13
79B4C7C3 79AD58A8
13118098 43BECB3A
65C6C5B3 98DA6292
5766B6A2 B6CD26B6
5382C6BF AC81D069
C1B4BDF8 CDA290D5
2(C8D5F1B 0C@8592A
CAFF7AAD C6671E4D
S5B1F@BE6 DAC65404
9AE9AAEF 3892B434
BB780B2D 7F95AD2E
D@8533FD 309049EF
AC768E30 717FC82C
A26DE78A 70A3C766
652E6E69 66692E73
456E6372 79707469
2E617061 6368652E
6F736974 6F72794F
DFDF0802 00054900
6D740012 4C6A6176
42400005 6B657949
00114145 532F4354
78700000 00104207

39162128
45306174
2198591
53175F46
2DAC5998
428E59A3
4B5359B8
36277CB9
8DC1EQ15
E2893607
9FCB2B7A
333A1CC2
F8B1B398
8ABC59BB
EDBF9BB2
9ADBG4FB
6401898E
51B751B2
289B7405
8CD8A1BA
0AD29620
2AB31CCA

258EA2E7
CF782A76
71BBFE1B
87AD86DO
F1B3F5A8
937922F7
E2BB2238
4400DA18
C2051E63
A2E1E3B8
4A@D3D44
B9639D7A
E43C67E7
CA44C50F
9F21CF49
FA54(D18
7F93D1BC
CEAB9375
41ADEB3A
A336BC9A
Q72E7F72
65637572 6974792E
6F6E4D65 74616461
6E696669 2E736563
626A6563 74456E63
10636970 68657242
612F6C61 6E672F53
6471007E 00024C00
522FAE6F 50616464
611FD7A6 81A8ESEA

_ 1571258689385-93
39505A8C 03611832 30134F27
4D184807 8685CA61 34D1FSSE
E9891CD6 535DE430 6937D6CD
47EC48DB A6180448 EEC9736D
2883FED7 @A375BB6 C462E571
624154D3 F6OFDE9C FBC3AFAG
F4ACOSFO B7634170 A514A6DB
E64D1B3E 24FESFAQ SC4EQE31
18487315 D3E14B28 7(358478
83891419 FD155819 132CEE4E
1FSFOAF7 D94870B7 7FB28ACL
95A6CEA7 1672B302 4941A0A9
FODO2842 @A909F49 D7AAF742
4696EAF4 73A9D73E 6DIE2DCD
AF946BES 6926A7C6 F718AE89
D20036DC 42A351D7 F43EB274
7A4839D9 1104A7AD CFO0QOC3
BC3AB1BD FF5C0066 2E765297
6B783E9D D5(02187 7D4A562C
3E1A35B8 @D20D823 306F3C62
99B82DSE 140ABAE 26889916
380000AC ED00OS73 72003F6F
7265706F 7369746F 72792E53
74611846 6982894D 442C0200
75726974 792E7265 706F7369
72797074 696F6EAD 65746164
7974654C 656E6774 634C0009
7472696E 673B5B00 07697642
07766572 73696F6E 71007E0Q
696E6775 72000258 42ACF317
FFB8FFA4 9C117400 024B3174

0x18ES8F out of 0x39C30 bytes

BFCE3366
EQD784A7
BC80510B
21FECF7E
016E4734
821C6BCF
27A5DBDD
AF533CEA
551143E8
350EC48F
S5ES5A74FD
B7967D9C
S56A5BA75
46C97ACo
BE9A7107
BBE166EF
306579A7
37A0D5B2
646E8679
58FA382D
D3988EQA
72672E61
74726561
00787200
746F7279
6174619F
616C676F
79746573
027870FF
F8060854
00027631

. 0.6%8.9 I(9PZ. a
E.v.. +...."%...EQatM H ...
o TN o WSV 6 6 00 6 oS,
..1.RZq.. S _FG.H.. H..

cAp.

o0 50 Ks ..KCIS.xU C.
.. ..€C..:. ¢c..6.. . X ,N5 ..

.#@o<bX. 8-

comA &L L
A4 .m..p..f . r*. .8 sr ?org.a
pache.nifi.security.repository.Strea
mingEncryptionMetadata Fi..MD, xr
Forg.apache.nifi.security.repository
.RepositoryObjectEncryptionMetadata.
C(XN. . I cipherByteLengthL algo
rithmt Ljava/lang/String;[1ivBytes
t [BL keyIdg ~ L versiong ~ Xxp.
...t AES/CTR/NoPaddingur [B.. . T
xp B a © [KlE Wil

parsed and used to decrypt the serialized bytes, which are then deserialized into a CipherlnputStream object. The

delegation to the normal repository file system interaction allows for "random-access’ (i.e. immediate seek without

decryption of unnecessary content claims).

Within the NiFi UI/API, there is no detectabl e difference between an encrypted and unencrypted content repository.

The Provenance Query operations to view content work as expected with no change to the process.

Potential | ssues

« Switching between unencrypted and encrypted repositories

8

Apache NiFi Encrypted FlowFile Repository

» If auser has an existing repository (FileSystemRepository) that is not encrypted and switches their
configuration to use an encrypted repository, the application writes an error to the log but starts up. However,
previous content claims are not accessible through the provenance query interface and new content claims will
overwrite the existing claims. The same behavior occursif a user switches from an encrypted repository to an
unencrypted repository. Automatic roll-over is afuture effort (https://issues.apache.org/jira/browse/NIFI-6783)
but NiFi is not intended for long-term storage of content claims so the impact should be minimal. There are
two scenarios for roll-over:

» Encrypted # unencrypted - if the previous repository implementation was encrypted, these claims should be
handled seamlessly as long as the key provider available still has the keys used to encrypt the claims (see
Key Rotation.)

» Unencrypted # encrypted - if the previous repository implementation was unencrypted, these claims should
be handled seamlesdly as the previously written claims simply need to be read with a plaintext InputStream
and then be written back with the EncryptedContentRepositoryOutputStream

e Thereisalso afuture effort to provide a standalone tool in NiFi Toolkit to encrypt/decrypt an existing content
repository to make the transition easier. The translation process could take along time depending on the size
of the existing repository, and being able to perform this task outside of application startup would be valuable

(https://issues.apache.org/jiralbrowse/NIFI-6783).

e Multiplerepositories- No additional effort or testing has been applied to multiple repositories at thistime. It is
possible/likely issues will occur with repositories on different physical devices. Thereis no option to provide a
heterogenous environment (i.e. one encrypted, one plaintext repository).

« Corruption - when adisk isfilled or corrupted, there have been reported issues with the repository becoming
corrupted and recovery steps are necessary. Thisislikely to continue to be an issue with the encrypted repository,
although still limited in scope to individua claims (i.e. an entire repository file won't be irrecoverable due to the
encryption). Some testing has been performed on scenarios where disk space is exhausted. While the flow can
no longer write additional content claims to the repository in that case, the NiFi application continues to function
properly, and successfully written content claims are still available via the Provenance Query operations. Stopping
NiFi and removing the content repository (or moving it to alarger disk) resolves the issue.

Encrypted FlowFile Repository

While OS-level access control can offer some security over the flowfile attribute and content claim data written to
the disk in arepository, there are scenarios where the data may be sensitive, compliance and regulatory requirements
exist, or NiFi is running on hardware not under the direct control of the organization (cloud, etc.). In this case, the
flowfile repository allows for all datato be encrypted before being persisted to the disk. For more information on the
internal workings of the flowfile repository, see NiFi In-Depth - FlowFile Repository.

What isit?

The EncryptedSequential AccessWriteAheadL og is a new implementation of the flowfile write-ahead log which
encrypts al flowfile attribute data before it is written to the repository. This alows for storage on systems where OS-
level access controls are not sufficient to protect the data while still allowing querying and access to the data through
the NiFi UI/API.

How doesit work?

The Sequential AccessWriteAheadl og was introduced in NiFi 1.6.0 and provided a faster flowfile repository
implementation. The encrypted version wraps that implementation with functionality to transparently encrypt and
decrypt the serialized RepositoryRecord objects during file system interaction. During all writesto disk (swapping,
snapshotting, journaling, and checkpointing), the flowfile containers are serialized to bytes based on a schema, and
this serialized form is encrypted before writing. This allows the snapshot handler to continue interacting with the

9

https://issues.apache.org/jira/browse/NIFI-6783
https://issues.apache.org/jira/browse/NIFI-6783
https://nifi.apache.org/docs/nifi-docs/html/nifi-in-depth.html#flowfile-repository

Apache NiFi Encrypted FlowFile Repository

flowfile repository interface in the same way as before and continue operating on flowfile datain a random access
manner, without requiring any changes to handle the data protection.

The fully qualified class org.apache.nifi.wali.EncryptedSequential AccessWriteAheadlL og is

specified as the flowfile repository write-ahead log implementation in nifi.properties as the value of
nifi.flowfile.repository.wal.implementation. In addition, new properties must be populated to allow successful
initialization.

StaticK eyProvider

The StaticK eyProvider implementation defines keys directly in nifi.properties. Individual keys are provided in
hexadecimal encoding. The keys can also be encrypted like any other sensitive property in nifi.properties using the ./
encrypt-config.sh tool in the NiFi Toolkit.

The following configuration section would result in akey provider with two available keys, "Key1" (active) and

"AnotherKey".
nifi.flowfile.repository.encryption. key. provider.inplenentation=org.apache.nnifi.security
nifi.flowfile.repository.encryption.key.id=Keyl
nifi.flowfile.repository.encryption. key=0123456789ABCDEFFEDCBA98765432100123456789ABCDE!
nifi.flowfile.repository.encryption.key.id.Anot her Key=010101010101010101010101010101010:

FileBasedK eyProvider

The FileBasedK eyProvider implementation reads from an encrypted definition file of the format:

key1=NGCpDpxBZNNODBodz0p1SDbTj C2FG5kplpCndUKJI xxt cMS06GCAf M Tyy 1nmPeKOxz Lut 3DRX
+51j 6PCObSznA==

key2=GYxPbMVDbnr aXs09eGQJudAMbj TvVYpO5Xt | mkAg4JY4r | bnHO VUUI 60CeCF 7ZW

+hHA42j t PgNVOpSkk Q@HWY/ v Q==

key3=SFellxuz7J89Y/| Q7YbJPOLO/ YKZRFL/

VUxJgEHxxI Xpd/ 8ELA7WWN59K1KTr 3BURCc FP5YGhwr SKf r 40E4VI g==

key4=kZpr f cTSTHEOQUUOU3j MkZf rt i VR eqWmbdku3bQcUJ/

+UToecNB5| zOVEMBChy EXppy XXC35WA6 GEXFK6 PMKw==

key5=c6Fzf nKnivUR7xql 2NFpZ+f EKBf SU7+1NvRw

+XWPRU39IMONWIk5gvoy OCdFR1kUgeg46j r N5dGXk13s RgEOGETQ==

Each line defines akey 1D and then the Base64-encoded cipher text of a 16 byte IV and wrapped AES-128, AES-192,
or AES-256 key depending on the JCE policies available. The individual keys are wrapped by AES/GCM encryption
using the master key defined by nifi.bootstrap.sensitive.key in conf/bootstrap.conf.

Key Rotation

Simply update nifi.properties to reference a new key ID in nifi.flowfile.repository.encryption.key.id. Previously-
encrypted flowfile records can till be decrypted aslong as that key is still available in the key definition file or
nifi.flowfile.repository.encryption.key.id.<OldKeyl D> as the key ID is serialized alongside the encrypted record.

Writing and Reading FlowFiles

Oncethe repository isinitialized, all flowfile record write operations are serialized

using RepositoryObjectBlockEncryptor (the only currently existing implementation is
RepositoryObjectAESGCM Encryptor) to the provided DataOutputStream. The original stream is swapped

with atemporary wrapped stream, which encrypts the data written by the wrapped serializer/deserializer via
EncryptedSchemaRepositoryRecordSerde inline and the encryption metadata (keyld, algorithm, version, 1V,
cipherByteL ength) is serialized and prepended. The complete length and encrypted bytes are then written to the
original DataOutputStream on disk as normal.

10

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#encrypted-write-ahead-flowfile-repository-properties
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#encrypt-config_tool
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#encrypt-config_tool

Apache NiFi

Encrypted FlowFile Repository

11748
11792
11836
11880
11924
11968
12012
12056
12100
12144
12188
12232
12276
12320
12364
12408
12452
12496
12540
12584
12628
12672
12716
12760
12804
12848

Signed Int

On flowfile record read, the processis reversed. The encryption metadata (RepositoryObjectEncryptionM etadata) is

Olourna

0A695616 FDACCB9A BB1242F5 ZSSEBAAO 207B1D86 ZA620000 0224ACED 00057372 00416F72 672E6170 61636865
2E6E6966 692E7365 63757269 74792E72 65706F73 69746F72 792E626C 6F636B2E 426C6F63 6B456E63 72797074
696F6E4D 65746164 61746136 (69C49D5 97A81F02 00007872 Q0466F72 672E6170 61636865 2E6E6966 692E7365
63757269 74792E72 65706F73 69746F72 792E5265 70Q6F7369 746F7279 4F626A65 6374456E 63727970 74696F6E
4D657461 64617461 9F432858 4EDFDFO8 02000549 00106369 70686572 42797465 4C656E67 74684(00 09616(67
6F726974 686D7400 124C6A61 76612F6C 616E672F 53747269 6E673BSB 00076976 42797465 73740002 5B424C00
056B6579 49647100 7E00024C 00077665 7273696F 6E71007E 00027870 000000D1 74001141 45532F47 434D2FAE
6F506164 64696E67 75720002 5B42ACF3 17F80608 54E00200 00737000 00001062 8C410DO8 (4027564 DAEGAGE6
992A7F74 00024B31 74000276 3141E990 4557ECC2 58154479 B1AQ755B D123610E BD39023E ASF212F7 DAB42ED8
6BAG2EAB 7D1179F5 A39DEFSA B9BCF174 4379AE7D 32E7F183 QA846B56 46F74AF1 FIC441DA 592B9539 7A991CE7

CF84BF19 QEAFA3C5 14B6BF83 CF067577 885(34C2 02090697 CD43EFCF ABOOF859 F4463464 8BFGE29A 92BD863C|| . ..

9766E76C A4AQDOA7 @D2808A1 BEA11DE9 D426D8C3 001112A3 8D8BFIB3 6AFACO64 FFDAD759 1A223954 B701719A
1999(031 D13125B2 57A16737 24318CA6 AS547FA98 12(B79E2 F603811A 826E0943 F1SEADS7 938A70FE 1D05967C

A4DDOQOO 0224ACED 00057372 00416F72 672E6170 61636865 2E6E6966 692E7365 63757269 74792E72 65706F73 || .

69746F72 792E626C 6F636B2E 426(6F63 6B456E63 72797074 696F6E4D 65746164 61746136 (69C49D5 97A81F02
00007872 Q0466F72 672E6170 61636865 2E6E6966 692E7365 63757269 74792E72 65706F73 69746F72 792E5265
706F7369 746F7279 4F626A65 6374456E 63727970 74696F6E 4D657461 64617461 9F432858 4EDFDFO8 02000549
00106369 70686572 42797465 4(656E67 74684(00 09616(67 6F726974 686D7400 124C6A61 76612F6C 616E672F
53747269 6E673B5B 00076976 42797465 73740002 5B424C00 056B6579 49647100 7EQ0024C 00077665 7273696F
6E71007E 00027870 000000D1 74001141 45532F47 434D2FAE 6F506164 64696E67 75720002 SB42ACF3 17F80608
54E00200 00787000 000010C6 8ADFO6C7 ES64EF65 1E4S51B2E AB38DE74 00024B31 74000276 3161(B12 5454606F
24A497A1 FB67CF78 36DA4CF7 9CC2E4EB 2A7438C2 SOF415AE 42FB8649 F5066D26 616B226D (B288CSE 3137QE2B

B120656D 388407BD CCA28585 B66F26BA 370A3FED 5488EB94 28839DBO 9D@OESCC 3E870411 4173939A E28DFIAD

36A9219C 62835DCA AESDD2EA 79069A62 2222D571 B86DD755 BE434913 345CQEA2 9270796B 32DDFD28 2894523D
049D7B3B AS5C0214A FGES@98A 703B4022 OF8BFBEL BCCIC35B 4665511F 3F5E1914 DCS91E24 FE75979C E7F02705
4BOEE4Q9 9B926647 1D8723FQ 3744A280 6824FE32 0SAA2630 498A7F

le, hex | OXEDAC

0x2 bytes selected at offset Ox1CBE out of 0x324B bytes

e

iv

Bofdooo & &0 Soo GF Aorg apache
.nifi.security.repository.block.BlockEncrypt
ionMetadata6..I... xr Forg.apache.nifi.se
curity.repository.RepositoryObjectEncryption
Metadata.CCXN. . I cipherBytelLengthL alg

orithmt Ljava/lang/String;[ivBytest [BL
keyIdqg ~ L versiong ~ xp .t AES/GCM/N
oPaddingur [B.. . T. Xxp b.A . ud...f
o B [ElE VA ol o8 (o oEefld) o8 Eoo o000
k...} y....Z...tCy.}2... .kVF.J...A.Y+.9z. .
....... uw.\4. 50@o00 ooliloooo0003

P P D G ..&.. j..d...Y "9T. q.
ok, 1% w. g7$l Voo o ol Go®ollso@s ol
$.. sr Aorg apache nifi.security.repos

1tory block.BlockEncryptionMetadata6..I...
xr Forg.apache.nifi.security.repository.Re
positoryObjectEncryptionMetadata.C(XN. . I
cipherBytelLengthL algorithmt Ljava/lang/
String;[1ivBytest [BL keyIdq ~ L versio
ng ~ xp .t AES/GCM/NoPaddingur [B.. .
o xpd.e E ..8.t Kit vla. TT o
$....9.x6.L..... *t8.P. .B..I. m&ak"m.(.A17 +
5 6500000 o&.7 ?‘T...(‘ 56 oo
.q.m.U.CI 4\ ..pyk2..((.R=
5 o [FeQ ?A .Y $.u...."
K. ..fG .#. 7D .h$.2 .g0I.

parsed and used to decrypt the serialized bytes, which are then deserialized into a Datal nputStream object.

During swaps and recoveries, the flowfile records are deserialized and reserialized, so if the active key has been

changed,
Within the NiFi UI/API, there is no detectable difference between an encrypted and unencrypted flowfile repository.

the flowfile records will be re-encrypted with the new active key.

All framework interactions with flowfiles work as expected with no change to the process.

Potential |

SSUes

« Switching between unencrypted and encrypted repositories

» |f auser has an existing write-ahead repository (WriteAheadFlowFileRepository) that is not encrypted (uses

the Sequential AccessWriteAheadL og) and switches their configuration to use an encrypted repository, the
application handles this and all flowfile records will be recovered on startup. Future writes (including re-
serialization of these same flowfiles) will be encrypted. If auser switches from an encrypted repository
to an unencrypted repository, the flowfiles cannot be recovered, and it is recommended to delete the
existing flowfile repository before switching in this direction. Automatic roll-over isafuture effort (https://

issues.apache.org/jira/lbrowse/NIFI-6994) but NiFi is not intended for long-term storage of flowfile records so

the impact should be minimal. There are two scenarios for roll-over:

» Thereisalso afuture effort to provide a standalone tool in NiFi Toolkit to encrypt/decrypt an existing flowfile
repository to make the transition easier. The trangation process could take along time depending on the size
of the existing repository, and being able to perform this task outside of application startup would be valuable

Encrypted # unencrypted - if the previous repository implementation was encrypted, these records should

be handled seamlessly as long as the key provider available still has the keys used to encrypt the claims

(see Key Rotation.)

Unencrypted # encrypted - currently handled seamlesssly for Sequential AccessWriteAheadl og but there

are other initial implementations which could be handled

(https://issues.apache.org/jiralbrowse/NI1FI-6994).

e Multiple repositories- No additional effort or testing has been applied to multiple repositories at this time. Current

implementations of the flowfile repository allow only for one repository, though it can reside across multiple

volumes and partitions. It is possible/likely issues will occur with repositories on different physical devices. There

is no option to provide a heterogenous environment (i.e. one encrypted, one plaintext partition/directory).

11

https://issues.apache.org/jira/browse/NIFI-6994
https://issues.apache.org/jira/browse/NIFI-6994
https://issues.apache.org/jira/browse/NIFI-6994

Apache NiFi

Experimental Warning

« Corruption - when adisk isfilled or corrupted, there have been reported issues with the repository becoming
corrupted and recovery steps are necessary. Thisislikely to continue to be an issue with the encrypted repository,
although still limited in scope to individual records (i.e. an entire repository file won't be irrecoverable dueto
the encryption). It isimportant for the continued operation of NiFi to ensure that the disk storing the flowfile
repository does not run out of available space.

Experimental Warning

While al Apache licensed code is provided "on an "AS1S' BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied” (see https://www.apache.org/licenses/LI CENSE-2.0), some features of
Apache NiFi may be marked experimental. Experimental features may:

» have undergone less extensive testing than is normal for standard NiFi features

» interact with unstable external dependencies

« be subject to change (any exposed APIs should not be considered covered under the minor rel ease backward
compatibility guidelines of https://semver.org)

e potentially cause dataloss

* not be directly supported by the community in the event issues arise

Every attempt is made to provide more detailed and specific information around the nature of the experimental
warning on a per-feature basis. Questions around specific experimental features should be directed to the
dev@nifi.apache.org.

Other Management Features

In addition to the Summary Page, Data Provenance Page, Template Management Page, and Bulletin Board

Page, there are other tools in the Global Menu (see NiFi User Interface) that are useful to the DFM. Select

Flow Configuration History to view all the changes that have been made to the dataflow. The history can aid in
troubleshooting, such as if arecent change to the dataflow has caused a problem and needs to be fixed. The DFM
can see what changes have been made and adjust the flow as needed to fix the problem. While NiFi does not have an
"undo" feature, the DFM can make new changes to the dataflow that will fix the problem.

Two other toolsin the Global Menu are Controller Settings and Users. The Controller Settings page provides the
ability to change the name of the NiFi instance, add comments describing the NiFi instance, and set the maximum
number of threads that are available to the application. It aso provides tabs where DFMs may add and configure
Controller Services and Reporting Tasks. The Users page is used to manage user access, which is described in the
System Administrator’s Guide.

12

https://www.apache.org/licenses/LICENSE-2.0
https://semver.org
https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#User_Interface
https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Controller_Services
https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Reporting_Tasks
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html

	Contents
	Command and Control of the DataFlow
	Starting a Component
	Stopping a Component
	Enabling/Disabling a Component
	Remote Process Group Transmission
	Individual Port Transmission

	Encrypted Content Repository
	What is it?
	How does it work?
	StaticKeyProvider
	FileBasedKeyProvider
	Key Rotation

	Writing and Reading Content Claims
	Potential Issues

	Encrypted FlowFile Repository
	What is it?
	How does it work?
	StaticKeyProvider
	FileBasedKeyProvider
	Key Rotation

	Writing and Reading FlowFiles
	Potential Issues

	Experimental Warning
	Other Management Features

