Apache NiFi 3

Apache NiFI Security Reference

Date of Publish: 2020-04-28

Py

Hortonworks

https://docs.cloudera.com/

https://docs.cloudera.com/

Contents

SeCUrity CONfIQUIALION......ccuiiiiecie ettt sneeenreenneas 3
S €T 07 (o) T I o] (O T 3
USEr AULRENTICALTON.......ooiiiiciece e 4
Lightweight Directory Access ProtoCOl (LDAP)......coi ettt s ene s 4
KBIOEIOS. ...t R e R R e R e R nrenas 6

(07 o7 o1 1o 0] 7= F S 7

Y 7= o 1= 0)T 7
Multi-Tenant AUtNOIIZAtION.coceiiiieie e 8
PN U119 0] lrd= g @001 1o U1 ¢= 1 o o FU PP 8
AULNOTTZEISXIMI SEEUP. ..+ttt ettt h e b bt sa e e bt s b se e e b e e se e e e e et e e e neeaeeaeeresbeneees 8
FilEUSEr GIOUPPIOVIEY ...ttt et b bbbt bbb e b e e e et e e et eneenas 8

L AaPUSErGrOUPPTOVIAET ... ettt sttt sttt s he b b et bbb e b e b e e e e e e et et eneenennas 8

SNl TUSEI GrOUPPTOVIEY ...ttt sttt et b e bbb e b e e st et et e e e e e e ens 10

CoMPOSITE IMPIEMENTELIONS.......ceeeieeeeeeeeee ettt se et et seese st ebe b e besaesbesbeseeseeeas 11

Fil @A CCESSPOlI CYPIOVITEY ...ttt sttt ebeenas 11

StandardM anagEOA ULNOIIZENooeiiiiie ettt et et bttt ne s 12
FIHIEAUINOTTZEN ...ttt bbb 12

Initial Admin Identity (NewW NiFi TNSLANCE)........cocoiiiire i 13

Legacy Authorized Users (NiFi INStance Upgrade)..........coeoeeoeererenenere e 20

ClUSEEr NOGE TAENEITIES. ... ceeiveeeteeetere ettt e b e bbbt r e r e n e r e er e 21

Configuring USErS & ACCESS POLICIES........oouiiitireiie ittt b ettt s b et bbb e b e e e e e e e eneenas 22
Creating USErS @N0 GIOUPDS.....c.vceeeeeeueriereeieetestestestestesaeseesteseeseesesseseeseesesse et esessesaesaesbesbesaessesseseeseenean 23

AACCESS POLICIES.... .ttt ettt b b e bbbt et b et b 25

VIeWiNG POIICIES ON USEIS.......ooiiiiiiiieie sttt st ettt se et eaesbesae e sbe b ee 27

Access Policy Configuration EXAMPIES........cc.cieriierieieeieeeiesi sttt s sre e 29
ENcryption Configuration..........ccceecieeiieiieeiie e ecee e 42
KEY DENVELION FUNCHIONS.......ctitiietereete ettt ettt st s b e e b e sa bt e st sb et et e e sb e e eb e st ebese et e seebeneenens 42
AdUItiONal RESOUICES.......ceeuieiiiieiiietesestise e seesee ettt sreste st seestestese e senee e e e eseesesseesestesaessesteseesennsen 44

Salt ANA TV ENCOGING. ...+ttt ettt st b e s se bbbt bbbt b et bttt b e et ne b e 44

NI LBOACY vttt ettt h bbb bbbt bbbt bbb 44

OpenSSL PKCSHS V1.5 EVP_BYIESTOKEYciciiieieiieieieieieese e s 45

BCrypt, SCrypt, PBIKDFF2Z........oo ittt sr e 45

Java Cryptography Extension (JCE) Limited Strength Jurisdiction POlICIES...........ccveineiineinicree 47

Allow Insecure CryptographiC MOOES..........c.cirieuirieirieereerie ettt 48
Encrypted Passwords in Configuration Files.........cccccoevvvivievie i, 49
KOOI OS SEIVICE.....o e 49

Apache NiFi Security Configuration

Security Configuration

NiFi provides several different configuration options for security purposes. The most important properties are those
under the "security properties’ heading in the nifi.propertiesfile. In order to run securely, the following properties

must be set:

Property Name Description

nifi.security.truststorePasswd The password for the Truststore.

nifi.security.keystore Filename of the Keystore that contains the server's private key.

nifi.security.keystoreType The type of Keystore. Must be either PKCS12 or KS. JKSisthe
preferred type, PKCS12 files will be loaded with BouncyCastle
provider.

nifi.security.keystorePasswd The password for the Keystore.

nifi.security.keyPasswd The password for the certificate in the Keystore. If not set, the value of
nifi.security.keystorePasswd will be used.

nifi.security.truststore Filename of the Truststore that will be used to authorize those
connecting to NiFi. A secured instance with no Truststore will refuse
al incoming connections.

nifi.security.truststoreType The type of the Truststore. Must be either PKCS12 or JKS. KSis
the preferred type, PK CS12 files will be loaded with BouncyCastle
provider.

Once the above properties have been configured, we can enable the User Interface to be accessed over HTTPS
instead of HTTP. Thisis accomplished by setting the nifi.web.https.host and nifi.web.https.port properties.
The nifi.web.https.host property indicates which hosthame the server should run on. If it is desired that the
HTTPS interface be accessible from all network interfaces, avalue of 0.0.0.0 should be used. To alow admins
to configure the application to run only on specific network interfaces, nifi.web.http.network.interface* or
nifi.web.https.network.interface* properties can be specified.

Note: It isimportant when enabling HTTPS that the nifi.web.http.port property be unset. NiFi only supports
E running on HTTP or HTTPS, not both simultaneously.

NiFi's web server will REQUIRE certificate based client authentication for users accessing the User Interface when
not configured with an alternative authentication mechanism which would require one way SSL (for instance LDAP,
Openld Connect, etc). Enabling an alternative authentication mechanism will configure the web server to WANT
certificate base client authentication. Thiswill alow it to support users with certificates and those without that may be
logging in with credentials. See User Authentication for more details.

Now that the User Interface has been secured, we can easily secure Site-to-Site connections and inner-

cluster communications, aswell. Thisis accomplished by setting the nifi.remote.input.secure and

nifi.cluster.protocol .is.secure properties, respectively, to true. These communications will aways REQUIRE two way
SSL asthe nodes will use their configured keystore/truststore for authentication.

TLS Generation Toolkit

In order to facilitate the secure setup of NiFi, you can use the tls-toolkit command line utility to automatically
generate the required keystores, truststore, and relevant configuration files. Thisis especially useful for securing
multiple NiFi nodes, which can be atedious and error-prone process. For more information, see the TLS Toolkit
section in the NiFi Toolkit Guide. Related topics include:

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#user_authentication
https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#tls_toolkit
https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html

Apache NiFi

User Authentication

* Wildcard Certificates

» Operation Modes: Standalone and Client/Server

» Using An Existing Intermediate Certificate Authority
e Additional Certificate Commands

Usar Authentication

NiFi supports user authentication via client certificates, via username/password, via Apache Knox, or via http://
openid.net/connect.

Username/password authentication is performed by a'Login Identity Provider'. The Login Identity Provider isa
pluggable mechanism for authenticating users via their username/password. Which Login Identity Provider to useis
configured in the nifi.properties file. Currently NiFi offers username/password with Login Identity Providers options
for Lightweight Directory Access Protocol (LDAP) and Kerberos.

The nifi.login.identity.provider.configuration.file property specifies the configuration file for Login Identity
Providers. By default, this property is set to ./conf/login-identity-providers.xml.

The nifi.security.user.login.identity.provider property indicates which of the configured Login Identity Provider
should be used. By default, this property is not configured meaning that username/password must be explicitly
enabled.

During Openld Connect authentication, NiFi will redirect usersto login with the Provider before returning to NiFi.
NiFi will then call the Provider to obtain the user identity.

During Apache Knox authentication, NiFi will redirect usersto login with Apache Knox before returning to NiFi.
NiFi will verify the Apache Knox token during authentication.

Note: NiFi can only be configured for username/password, Openld Connect, or Apache Knox at agiven
E time. It does not support running each of these concurrently. NiFi will require client certificates for
authenticating users over HTTPS if none of these are configured.

A secured instance of NiFi cannot be accessed anonymously unless configured to use an Lightweight Directory
Access Protocol (LDAP) or Kerberos Login Identity Provider, which in turn must be configured to explicitly allow
anonymous access. Anonymous access is not currently possible by the default FileAuthorizer (see Authorizer
Configuration), but is afuture effort (NIFI-2730).

E Note: NiFi does not perform user authentication over HTTP. Using HTTP, all users will be granted all roles.

Lightweight Directory Access Protocol (LDAP)

Below is an example and description of configuring a Login Identity Provider that integrates with a Directory Server
to authenticate users.

Set the following in nifi.properties to enable LDAP username/password authentication:
nifi.security.user.login.identity.provider=Idap-provider
Modify login-identity-providers.xml to enable the |dap-provider. Here is the sample provided in thefile:
<pr ovi der >
<identifier>l dap-provider</identifier>
<cl ass>or g. apache. ni fi .| dap. LdapProvi der </ cl ass>
<property name="Aut hentication Strategy">START_TLS</ property>

<property name="Manager DN'></property>

4

https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#wildcard_certificates
https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#tls_operation_modes
https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#tls_intermediate_ca
https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#additional_certificate_commands
http://openid.net/connect
http://openid.net/connect
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#ldap_login_identity_provider
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#kerberos_login_identity_provider
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#ldap_login_identity_provider
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#ldap_login_identity_provider
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#kerberos_login_identity_provider
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#authorizer-configuration
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#authorizer-configuration
https://issues.apache.org/jira/browse/NIFI-2730

Apache NiFi User Authentication

<property nane="Manager Password"></property>

<property nane="TLS - Keystore"></property>

<property nane="TLS - Keystore Password"></property>
<property nane="TLS - Keystore Type"></property>
<property name="TLS - Truststore"></property>
<property name="TLS - Truststore Password"></property>
<property name="TLS - Truststore Type"></property>
<property nane="TLS - dient Auth"></property>
<property nane="TLS - Protocol "></property>

<property nane="TLS - Shutdown G acefully"></property>

<property name="Referral Strategy">FO.LON/ property>
<property name="Connect Ti neout">10 secs</property>
<property nane="Read Ti meout">10 secs</property>

<property nanme="Url"></property>
<property nanme="User Search Base"></property>
<property name="User Search Filter"></property>

<property nane="ldentity Strategy">USE DN</ property>

<property nane="Aut henti cation Expiration">12 hours</property>
</ provi der >

The Idap-provider has the following properties:

Property Name Description

Authentication Expiration The duration of how long the user authentication is valid for. If the
user never logs out, they will be required to log back in following this
duration.

Authentication Strategy How the connection to the LDAP server is authenticated. Possible

values are ANONYMOUS, SIMPLE, LDAPS, or START_TLS.

Manager DN The DN of the manager that is used to bind to the LDAP server to
search for users.

Manager Password The password of the manager that is used to bind to the LDAP server to
search for users.

TLS- Keystore Path to the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS.

TLS - Keystore Password Password for the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS.

TLS- Keystore Type Type of the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS(i.e. JKSor PKCS12).

TLS- Truststore Path to the Truststore that is used when connecting to LDAP using
LDAPSor START_TLS.

TLS- Truststore Password Password for the Truststore that is used when connecting to LDAP
using LDAPSor START_TLS.

TLS- Truststore Type Type of the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS (i.e. JKXS or PKCS12).

TLS- Client Auth Client authentication policy when connecting to LDAP using LDAPS
or START_TLS. Possible values are REQUIRED, WANT, NONE.

TLS - Protocol Protocol to use when connecting to LDAP using LDAPS or
START_TLS. (i.e. TLS, TLSv1.1, TLSv1.2, etc).

Apache NiFi User Authentication

Property Name Description

TLS- Shutdown Gracefully Specifies whether the TL S should be shut down gracefully before the
target context is closed. Defaults to false.

Referral Strategy Strategy for handling referrals. Possible values are FOLLOW,
IGNORE, THROW.

Connect Timeout Duration of connect timeout. (i.e. 10 secs).

Read Timeout Duration of read timeout. (i.e. 10 secs).

Url Space-separated list of URLs of the LDAP servers (i.e. |dap://

<hostname>:<port>).

User Search Base Base DN for searching for users (i.e.
CN=Users,DC=example,DC=com).

User Search Filter Filter for searching for users against the User Search Base. (i.e.
sAMAccountName={ 0}). The user specified nameisinserted into
{0}

Identity Strategy Strategy to identify users. Possible values are USE_DN and

USE_USERNAME. The default functionality if this property is
missing is USE_DN in order to retain backward compatibility.
USE_DN will usethe full DN of the user entry if possible.
USE_USERNAME will use the username the user logged in with.

Note: For changes to nifi.properties and login-identity-providers.xml to take effect, NiFi needsto be
B restarted. If NiFi is clustered, configuration files must be the same on all nodes.

Kerberos
Below is an example and description of configuring a Login Identity Provider that integrates with a Kerberos Key
Distribution Center (KDC) to authenticate users.

Set the following in nifi.properties to enable Kerberos username/password authentication;
nifi.security.user.login.identity.provider=kerberos-provider
Modify login-identity-providers.xml to enable the kerberos-provider. Here is the sample provided in thefile:

<pr ovi der >
<identifier>kerberos-provider</identifier>
<cl ass>or g. apache. ni fi. kerber os. Ker ber osProvi der </ cl ass>
<property nanme="Default Real m >Nl Fl . APACHE. ORG</ pr operty>
<property nane="Aut henti cation Expiration">12 hours</property>
</ provi der >

The kerberos-provider has the following properties:

Property Name Description

Authentication Expiration The duration of how long the user authentication is valid for. If the
user never logs out, they will be required to log back in following this
duration.

Default Realm Default realm to provide when user enters incomplete user principal
(i.e. NIFI.APACHE.ORG).

See also Kerberos Service documentation to allow single sign-on access via client Kerberos tickets.

Apache NiFi User Authentication

Note: For changes to nifi.properties and | ogin-identity-providers.xml to take effect, NiFi needsto be
E restarted. If NiFi is clustered, configuration files must be the same on all nodes.

Openld Connect

To enable authentication via Openld Connect the following properties must be configured in nifi.properties.

Property Name Description

nifi.security.user.oidc.claim.identifying.user Claim that identifies the user to be logged in; default is email. May
need to be requested via the nifi.security.user.oidc.additional .scopes
before usage. by the Openld Connect Provider according to the
specification. If thisvalue is HS256, HS384, or HS512, NiFi will
attempt to validate HMAC protected tokens using the specified client
secret. If thisvalue is none, NiFi will attempt to validate unsecured/
plain tokens. Other values for this algorithm will attempt to parse as an
RSA or EC agorithm to be used in conjunction with the JSON Web
Key (JWK) provided through the jwks_uri in the metadata found at the

discovery URL.

nifi.security.user.oidc.discovery.url The discovery URL for the desired Openld Connect Provider (http:/
openid.net/specs/openid-connect-discovery-1_0.html).

nifi.security.user.oidc.connect.timeout Connect timeout when communicating with the Openld Connect
Provider.

nifi.security.user.oidc.read.timeout Read timeout when communicating with the Openld Connect Provider.

nifi.security.user.oidc.client.id Theclientid for NiFi after registration with the Openld Connect
Provider.

nifi.security.user.oidc.client.secret The client secret for NiFi after registration with the Openld Connect
Provider.

nifi.security.user.oidc.preferred.jwsalgorithm The preferred algorithm for for validating identity tokens. If this value

isblank, it will default to RS256 which is required to be supported

nifi.security.user.oidc.additional .scopes Comma separated scopes that are sent to Openld Connect Provider in
addition to openid and email.

Apache Knox

To enable authentication via Apache Knox the following properties must be configured in nifi.properties.

Property Name Description

nifi.security.user.knox.audiences Optional. A comma separate listed of allowed audiences. If set, the
audience in the token must be present in this listing. The audience that
is populated in the token can be configured in Knox.

nifi.security.user.knox.url The URL for the Apache Knox login page.

nifi.security.user.knox.publicKey The path to the Apache Knox public key that will be used to verify the
signatures of the authentication tokensin the HTTP Cookie.

nifi.security.user.knox.cookieName The name of the HTTP Cookie that Apache Knox will generate after
successful login.

http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html

Apache NiFi Multi-Tenant Authorization

Multi-Tenant Authorization

After you have configured NiFi to run securely and with an authentication mechanism, you must configure who
has access to the system, and the level of their access. Y ou can do this using 'multi-tenant authorization'. Multi-
tenant authorization enables multiple groups of users (tenants) to command, control, and observe different parts of
the dataflow, with varying levels of authorization. When an authenticated user attempts to view or modify a NiFi
resource, the system checks whether the user has privileges to perform that action. These privileges are defined by
policies that you can apply system-wide or to individual components.

Authorizer Configuration

An 'authorizer' grants users the privileges to manage users and policies by creating preliminary authorizations at
startup.

Authorizers are configured using two properties in the nifi.propertiesfile:

« Thenifi.authorizer.configuration.file property specifies the configuration file where authorizers are defined. By
default, the authorizers.xml file located in the root installation conf directory is selected.

« The nifi.security.user.authorizer property indicates which of the configured authorizers in the authorizers.xml file
to use.

Authorizersxml Setup

The authorizers.xml fileis used to define and configure available authorizers. The default authorizer is

the StandardM anagedA uthorizer. The managed authorizer is comprised of a UserGroupProvider and a
AccessPolicyProvider. The users, group, and access policies will be loaded and optionally configured through these
providers. The managed authorizer will make all access decisions based on these provided users, groups, and access
policies.

During startup there is a check to ensure that there are no two users/groups with the same identity/name. This check
is executed regardless of the configured implementation. Thisis necessary because this is how users/groups are
identified and authorized during access decisions.

FileUser GroupProvider

The default UserGroupProvider is the FileUserGroupProvider, however, you can devel op additional
UserGroupProviders as extensions. The FileUserGroupProvider has the following properties:

e UsersFile- Thefile where the FileUserGroupProvider stores users and groups. By default, the users.xml in the
conf directory is chosen.

* Legacy Authorized Users File - The full path to an existing authorized-users.xml that will be automatically be
used to load the users and groups into the Users File.

e Initial User Identity - The identity of a users and systems to seed the Users File. The name of each property must
be unique, for example: "Initial User Identity A", "Initial User Identity B", "Initial User Identity C" or "Initial User
Identity 1", "Initial User Identity 2", "Initial User Identity 3"

L dapUser GroupProvider

Another option for the UserGroupProvider is the LdapUserGroupProvider. By default, this option is commented out
but can be configured in lieu of the FileUserGroupProvider. Thiswill sync users and groups from a directory server
and will present them in the NiFi Ul in read only form.

The LdapUserGroupProvider has the following properties:

8

Apache NiFi Multi-Tenant Authorization

Property Name Description

Group Member Attribute - Referenced User Attribute If blank, the value of the attribute defined in Group Member Attribute
is expected to be the full dn of the user. If not blank, this property will
define the attribute of the user Idap entry that the value of the attribute
defined in Group Member Attribute is referencing (i.e. uid). Use of
this property requires that User Search Base is also configured. (i.e.
member: cn=User 1,ou=users,o=nifi vs. memberUid: userl)

Authentication Strategy How the connection to the LDAP server is authenticated. Possible
vauesare ANONYMOUS, SIMPLE, LDAPS, or START_TLS.

Manager DN The DN of the manager that is used to bind to the LDAP server to
search for users.

Manager Password The password of the manager that is used to bind to the LDAP server to
search for users.

TLS- Keystore Path to the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS.

TLS - Keystore Password Password for the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS.

TLS- Keystore Type Type of the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS(i.e. JKSor PKCS12).

TLS- Truststore Path to the Truststore that is used when connecting to LDAP using
LDAPSor START_TLS.

TLS- Truststore Password Password for the Truststore that is used when connecting to LDAP
using LDAPS or START_TLS.

TLS- Truststore Type Type of the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS(i.e. JKSor PKCS12).

TLS- Client Auth Client authentication policy when connecting to LDAP using LDAPS
or START_TLS. Possible values are REQUIRED, WANT, NONE.

TLS - Protocol Protocol to use when connecting to LDAP using LDAPS or
START_TLS. (i.e. TLS, TLSv1.1, TLSv1.2, etc).

TLS- Shutdown Gracefully Specifies whether the TL S should be shut down gracefully before the
target context is closed. Defaults to false.

Referral Strategy Strategy for handling referrals. Possible values are FOLLOW,
IGNORE, THROW.

Connect Timeout Duration of connect timeout. (i.e. 10 secs).

Read Timeout Duration of read timeout. (i.e. 10 secs).

Url Space-separated list of URLs of the LDAP servers (i.e. |dap://

<hostname>:<port>).

Page Size Sets the page size when retrieving users and groups. If not specified, no
paging is performed.

Group Membership - Enforce Case Sensitivity Sets whether group membership decisions are case sensitive. When
auser or group isinferred (by not specifying or user or group search
base or user identity attribute or group name attribute) case sensitivity
is enforced since the value to use for the user identity or group name
would be ambiguous. Defaults to false.

Sync Interval Duration of time between syncing users and groups. (i.e. 30 mins).
Minimum allowable valueis 10 secs.

Apache NiFi Multi-Tenant Authorization

Property Name Description

User Search Base Base DN for searching for users (i.e. ou=users,o=nifi). Required to
search users.

User Object Class Object class for identifying users (i.e. person). Required if searching
users.

User Search Scope Search scope for searching users (ONE_LEVEL, OBJECT, or

SUBTREE). Required if searching users.

User Search Filter Filter for searching for users against the User Search Base (i.e.
(memberof=cn=team1,ou=groups,o=nifi)). Optional.

User Identity Attribute Attribute to use to extract user identity (i.e. cn). Optional. If not set, the
entire DN is used.

User Group Name Attribute Attribute to use to define group membership (i.e. memberof). Optional.
If not set group membership will not be calculated through the users.
Will rely on group membership being defined through Group Member
Attribute if set. The value of this property is the name of the attribute in
the user Idap entry that associates them with a group. The value of that
user attribute could be a dn or group name for instance. What value is
expected is configured in the User Group Name Attribute - Referenced
Group Attribute.

User Group Name Attribute - Referenced Group Attribute If blank, the value of the attribute defined in User Group Name
Attribute is expected to be the full dn of the group. If not blank, this
property will define the attribute of the group Idap entry that the value
of the attribute defined in User Group Name Attribute is referencing
(i.e. name). Use of this property requires that Group Search Base is
also configured.

Group Search Base Base DN for searching for groups (i.e. ou=groups,o=nifi). Required to
search groups.

Group Object Class Object class for identifying groups (i.e. groupOfNames). Required if
searching groups.

Group Search Scope Search scope for searching groups (ONE_LEVEL, OBJECT, or
SUBTREE). Required if searching groups.

Group Search Filter Filter for searching for groups against the Group Search Base.
Optional.

Group Name Attribute Attribute to use to extract group name (i.e. cn). Optional. If not set, the

entire DN is used.

Group Member Attribute Attribute to use to define group membership (i.e. member). Optional.
If not set group membership will not be calculated through the groups.
Will rely on group membership being defined through User Group
Name Attribute if set. The value of this property isthe name of the
attribute in the group Idap entry that associates them with auser. The
value of that group attribute could be a dn or memberUid for instance.
What value is expected is configured in the Group Member Attribute
- Referenced User Attribute. (i.e. member: cn=User 1,0u=users,o=nifi
vs. memberUid: userl)

Note: Any identity mapping rules specified in nifi.properties will also be applied to the user identities. Group
E names are not mapped.

ShellUser GroupProvider

The ShellUserGroupProvider fetches user and group details from Unix-like systems using shell commands.

This provider executes various shell pipelines with commands such as getent on Linux and dscl on MacOS.

10

Apache NiFi

Multi-Tenant Authorization

Supported systems may be configured to retrieve users and groups from an external source, such asLDAP or NIS.
In these cases the shell commands will return those external users and groups. This provides administrators another
mechanism to integrate user and group directory services.

The ShellUserGroupProvider has the following properties:

Property Name Description

Exclude Users Regular expression used to exclude users. Default is ", which means no
users are excluded.

Initial Refresh Delay Duration of initial delay beforefirst user and group refresh. (i.e. 10
secs). Default is5 mins.

Refresh Delay Duration of delay between each user and group refresh. (i.e. 10 secs).
Default is5 mins.

Exclude Groups Regular expression used to exclude groups. Default is*, which means
no groups are excluded.

Like LdapUserGroupProvider, the ShellUserGroupProvider is commented out in the authorizers.xml file. Refer to
that comment for usage examples.

Composite | mplementations

Another option for the UserGroupProvider are composite implementations. This means that multiple sources/
implementations can be configured and composed. For instance, an admin can configure users/groups to

be loaded from afile and adirectory server. There are two composite implementations, one that supports
multiple UserGroupProviders and one that supports multiple UserGroupProviders and a single configurable
UserGroupProvider.

The CompositeUserGroupProvider will provide support for retrieving users and groups from multiple sources. The
CompositeUserGroupProvider has the following property:

Property Name Description

User Group Provider [unique key] The identifier of user group providersto load from. The name of each
property must be unique, for example: "User Group Provider A", "User
Group Provider B", "User Group Provider C" or "User Group Provider
1", "User Group Provider 2", "User Group Provider 3"

Note: Any identity mapping rules specified in nifi.properties are not applied in thisimplementation. This
behavior would need to be applied by the base implementation.

The CompositeConfigurableUserGroupProvider will provide support for retrieving users and groups from multiple
sources. Additionally, a single configurable user group provider is required. Users from the configurable user group
provider are configurable, however users loaded from one of the User Group Provider [unique key] will not be. The
CompositeConfigurableUserGroupProvider has the following properties:

Property Name Description

User Group Provider [unique key] The identifier of user group providersto load from. The name of each
property must be unique, for example: "User Group Provider A", "User
Group Provider B*, "User Group Provider C* or "User Group Provider
1", "User Group Provider 2", "User Group Provider 3"

Configurable User Group Provider A configurable user group provider.

FileAccessPolicyProvider

The default AccessPolicyProvider is the FileAccessPolicyProvider, however, you can develop additional
AccessPolicyProvider as extensions. The FileAccessPolicyProvider has the following properties:

11

Apache NiFi Multi-Tenant Authorization

Property Name Description

Node Group The name of agroup containing NiFi cluster nodes. The typical use for
thisis when nodes are dynamically added/removed from the cluster.

User Group Provider Theidentifier for an User Group Provider defined above that will be
used to access users and groups for use in the managed access palicies.

Authorizations File The file where the FileAccessPolicyProvider will store palicies.

Initial Admin Identity The identity of aninitial admin user that will be granted access to the

Ul and given the ability to create additional users, groups, and policies.
The value of this property could be a DN when using certificates or
LDAP, or aKerberos principal. This property will only be used when
there are no other policies defined. If this property is specified then a
Legacy Authorized Users File can not be specified.

Legacy Authorized Users File The full path to an existing authorized-users.xml that will be
automatically converted to the new authorizations model. If this
property is specified then an Initial Admin Identity can not be
specified, and this property will only be used when there are no other
users, groups, and policies defined.

Node Identity The identity of aNiFi cluster node. When clustered, a property for each
node should be defined, so that every node knows about every other
node. If not clustered these properties can be ignored. The name of
each property must be unique, for example for a three node cluster:
"Node Identity A", "Node Identity B", "Node Identity C" or "Node
Identity 1", "Node Identity 2", "Node Identity 3"

= Note: Theidentities configured in the Initial Admin Identity, the Node Identity properties, or discovered in a
3 Legacy Authorized Users File must be available in the configured User Group Provider.

3 Note: Any usersin the legacy users file must be found in the configured User Group Provider.

- Note: Any identity mapping rules specified in nifi.properties will also be applied to the node identities, so the
3 values should be the unmapped identities (i.e. full DN from a certificate). Thisidentity must be found in the
configured User Group Provider.

Standar dM anagedAuthorizer

The default authorizer is the StandardM anagedA uthorizer, however, you can develop additional authorizers as
extensions. The StandardManagedA uthorizer has the following property:

Property Name Description
Access Policy Provider The identifier for an Access Policy Provider defined above.
FileAuthorizer

The FileAuthorizer has been replaced with the more granular StandardM anagedA uthorizer approach described above.
However, it is still available for backwards compatibility reasons. The FileAuthorizer has the following properties:

Property Name Description

Node Identity The identity of aNiFi cluster node. When clustered, a property for each
node should be defined, so that every node knows about every other
node. If not clustered, these properties can be ignored.

Authorizations File The file where the FileAuthorizer stores policies. By default, the
authorizations.xml in the conf directory is chosen.

12

Apache NiFi Multi-Tenant Authorization

Property Name Description

UsersFile The file where the FileAuthorizer stores users and groups. By defaullt,
the users.xml in the conf directory is chosen.

Initial Admin Identity The identity of aninitial admin user that is granted access to the Ul
and given the ability to create additional users, groups, and policies.
This property is only used when there are no other users, groups, and
policies defined.

Legacy Authorized Users File The full path to an existing authorized-users.xml that is automatically
converted to the multi-tenant authorization model. This property is only
used when there are no other users, groups, and policies defined.

Note: Any identity mapping rules specified in nifi.properties will also be applied to the initial admin identity,
Ij so the value should be the unmapped identity.

Note: Any identity mapping rules specified in nifi.properties will also be applied to the node identities, so the
E values should be the unmapped identities (i.e. full DN from a certificate).

Initial Admin Identity (New NiFi Instance)

If you are setting up a secured NiFi instance for the first time, you must manually designate an "Initial Admin
Identity" in the authorizers.xml file. Thisinitial admin user is granted access to the Ul and given the ability to create
additional users, groups, and policies. The value of this property could be a DN (when using certificates or LDAP) or
aKerberos principal. If you are the NiFi administrator, add yourself as the "Initial Admin Identity".

After you have edited and saved the authorizers.xml file, restart NiFi. The "Initial Admin Identity" user and
administrative policies are added to the users.xml and authorizations.xml files during restart. Once NiFi starts, the
"Initial Admin Identity" user is able to access the Ul and begin managing users, groups, and policies.

Note: For abrand new secure flow, providing the "Initial Admin Identity" gives that user accessto get into

B the Ul and to manage users, groups and policies. But if that user wants to start modifying the flow, they need
to grant themselves policies for the root process group. The system is unable to do this automatically because
in anew flow the UUID of the root process group is not permanent until the flow.xml.gz is generated. If the
NiFi instance is an upgrade from an existing flow.xml.gz or a 1.x instance going from unsecure to secure,
then the "Initial Admin Identity" user is automatically given the privileges to modify the flow.

Some common use cases are described below.

File-based (LDAP Authentication)
Here is an example LDAP entry using the name John Smith:

<aut hori zer s>
<user & oupPr ovi der >
<identifier>file-user-group-provider</identifier>
<cl ass>or g. apache. ni fi. aut hori zati on. Fi | eUser G oupPr ovi der </ cl ass>
<property nane="Users File">./conf/users.xm </ property>
<property nanme="Legacy Authorized Users File"></property>

<property name="Initial User Identity 1">cn=John
Smi t h, ou=peopl e, dc=exanpl e, dc=conx/ property>
</ user G oupPr ovi der >
<accessPol i cyProvi der >
<identifier>fil e-access-policy-provider</identifier>
<cl ass>or g. apache. ni fi. aut horizati on. Fi | eAccessPol i cyProvi der </

cl ass>

<property nane="User G oup Provider">file-user-group-provider</
property>

<property nane="Aut hori zations File"> /conf/authorizations.xmn </
property>

13

Apache NiFi Multi-Tenant Authorization

<property name="Initial Adm n Identity">cn=John
Smi t h, ou=peopl e, dc=exanpl e, dc=conx/ pr operty>
<property nane="Legacy Authorized Users File"></property>

<property nane="Node ldentity 1"></property>
</ accessPol i cyProvi der >
<aut hori zer >
<identifier>managed- aut hori zer</identifier>
<cl ass>or g. apache. ni fi. aut hori zati on. St andar dvanagedAut hori zer </
cl ass>
<property nane="Access Policy Provider">file-access-policy-
provi der </ property>
</ aut hori zer >
</ aut hori zer s>

File-based (K erberos Authentication)
Here is an example Kerberos entry using the name John Smith and realm NIFI.APACHE.ORG:

<aut hori zer s>
<user Gr oupPr ovi der >
<identifier>file-user-group-provider</identifier>
<cl ass>or g. apache. ni fi.aut horization. Fi |l eUser G oupPr ovi der </ cl ass>
<property nane="Users File">./conf/users.xm </ property>
<property nanme="Legacy Authorized Users File"></property>

<property nanme="Initial User ldentity 1">johnsnith@\l Fl.APACHE. ORG</
property>
</ user G oupPr ovi der >
<accessPol i cyProvi der >
<identifier>fil e-access-policy-provider</identifier>
<cl ass>org. apache. ni fi.aut horization. Fil eAccessPol i cyProvi der </

cl ass>

<property nane="User G oup Provider">file-user-group-provider</
property>

<property nane="Aut horizations File"> /conf/authorizations.xm </
property>

<property nanme="Initial Admin Identity">j ohnsm th@\l FI . APACHE. ORG</
property>

<property nane="Legacy Authorized Users File"></property>

<property nane="Node ldentity 1"></property>
</ accessPol i cyProvi der >
<aut hori zer >
<identifier>managed- aut hori zer</identifier>
<cl ass>or g. apache. ni fi. aut hori zati on. St andar dvanagedAut hori zer </
cl ass>
<property nane="Access Policy Provider">file-access-policy-
provi der </ property>
</ aut hori zer >
</ aut hori zer s>

L DAP-based Users/Groups Referencing User DN

Here is an example loading users and groups from LDAP. Group membership will be driven through the member
attribute of each group. Authorization will still use file-based access policies:

dn: cn=User 1, ou=users, o=nifi

obj ect d ass: organi zati onal Person
obj ect O ass: person

obj ect d ass: i net OrgPerson

obj ectd ass: top

14

Apache NiFi

Multi-Tenant Authorization

cn: User 1
sn: Userl
uid: userl

dn: cn=User 2, ou=users, o=nifi

obj ect ass: organi zati onal Person
obj ect d ass: person

obj ect d ass: i net OrgPerson

obj ectd ass: top

cn: User 2

sn: User2

uid: user?2

dn: cn=admi ns, ou=gr oups, o=ni fi

obj ect d ass: groupO Nanes

obj ectd ass: top

cn: adm ns

menber: cn=User 1, ou=users, o=nifi
nmenber: cn=User 2, ou=users, o=nifi

<aut hori zer s>
<user Gr oupPr ovi der >
<i denti fier>l dap-user-group-provider</identifier>

<cl ass>org. apache. ni fi .l dap.tenants. LdapUser G- oupPr ovi der </ cl ass>
<property name="Aut hentication Strategy">ANONYMOUS</ pr operty>

<property nane="Manager DN'></property>

<property nane="Manager Password"></property>

<property nanme="TLS Keyst or e" ></ property>

<property nane="TLS Keyst or e Passwor d"></ property>

<property nane="TLS Keyst ore Type"></property>

<property nane="TLS Tr ust st ore" ></ property>

<property nane="TLS Trust st ore Passwor d"></ property>

<property nanme="TLS Truststore Type"></property>

<property nane="TLS Client Auth"></property>

<property nanme="TLS Pr ot ocol " ></ property>

<property nane="TLS Shut down Graceful | y"></property>

<property nane="Referral Strategy">FO.LOM/ property>

<property nane="Connect Ti nmeout">10 secs</property>

<property nane="Read Ti meout">10 secs</property>

<property nane="Url ">l dap://I ocal host: 10389</ pr operty>

<property nane="Page Size"></property>

<property nane="Sync |nterval">30 ni ns</property>

<property nanme="G oup Menbership - Enforce Case Sensitivity">fal se</
property>

<property name="User Search Base">ou=users, o=nifi </ property>

<property nane="User Cbject C ass">person</property>

<property nane="User Search Scope">ONE_LEVEL</ property>

<property nane="User Search Filter"></property>

<property nane="User ldentity Attribute">cn</property>

<property nane="User G oup Name Attribute"></property>

<property name="User G oup Name Attribute - Referenced G oup

Attribute"></property>

<property nanme="G oup Search Base">ou=groups, o=ni fi </ property>
<property nane="G oup Obj ect C ass">groupOf Nanes</ property>
<property nane="G oup Search Scope">ONE _LEVEL</ property>
<property nane="Goup Search Filter"></property>

<property nanme="G oup Nane Attribute">cn</property>

<property nanme="G oup Menber Attri bute">nenber</property>

15

Apache NiFi

Multi-Tenant Authorization

<property name="G oup Menber Attribute - Referenced User
Attribute"></property>
</ user G oupPr ovi der >
<accessPol i cyProvi der >
<identifier>fil e-access-policy-provider</identifier>
<cl ass>or g. apache. ni fi.aut horization. Fi |l eAccessPol i cyProvi der </
cl ass>
<property nane="User G oup Provider">l dap-user-group-provider</
property>
<property nane="Aut horizations File"> /conf/authorizations.xmn </
property>
<property nanme="Initial Admn Identity">John Snith</property>
<property nane="Legacy Authorized Users File"></property>

<property nane="Node |dentity 1"></property>
</ accessPol i cyProvi der >
<aut hori zer >
<i denti fi er >managed- aut hori zer</identifier>
<cl ass>or g. apache. ni fi. aut hori zati on. St andar dvanagedAut hori zer </
cl ass>
<property nane="Access Policy Provider">file-access-policy-
provi der </ property>
</ aut hori zer>
</ aut hori zer s>

The Initial Admin Identity value would have loaded from the cn from John Smith's entry based on the User Identity
Attribute value.

L DAP-based User Groups Referencing User Attribute

Here is an example loading users and groups from LDAP. Group membership will be driven through the member uid
attribute of each group. Authorization will still use file-based access policies:

dn: uid=User 1, ou=Users, dc=l ocal
obj ect d ass: inet OrgPerson

obj ect d ass: posi xAccount

obj ect d ass: shadowAccount

uid: userl

cn: User 1

dn: uid=User 2, ou=Users, dc=l ocal
obj ect d ass: i net OrgPerson

obj ect d ass: posi xAccount

obj ect d ass: shadowAccount

ui d: user2

cn: User 2

dn: cn=Manager s, ou=G oups, dc=I ocal
obj ect d ass: posi xGroup

cn: Managers

menber Ui d: userl

menber Ui d: user2

<aut hori zer s>
<user Gr oupPr ovi der >
<i dentifier>l dap-user-group-provider</identifier>
<cl ass>org. apache. ni fi .|l dap.tenants. LdapUser Gr oupPr ovi der </ cl ass>
<property nane="Aut henti cation Strategy">ANONYMOUS</ pr operty>

<property name="Manager DN'></property>
<property nane="Manager Password"></property>

<property nane="TLS - Keystore"></property>

16

Apache NiFi

Multi-Tenant Authorization

<property nanme="TLS - Keystore Password"></property>

<property nanme="TLS Keyst ore Type"></property>

<property nane="TLS Tr ust st ore" ></ property>

<property nane="TLS Trust st ore Passwor d"></property>

<property name="TLS - Truststore Type"></property>

<property name="TLS - dient Auth"></property>

<property nanme="TLS Pr ot ocol "></ property>

<property name="TLS - Shutdown G acefully"></property>

<property nane="Referral Strategy">FO.LOM/ property>

<property nanme="Connect Ti nmeout">10 secs</property>

<property name="Read Ti neout">10 secs</property>

<property nane="Url ">l dap://I| ocal host: 10389</ pr operty>

<property nane="Page Size"></property>

<property nane="Sync |nterval">30 ni ns</property>

<property nanme="G oup Menbership - Enforce Case Sensitivity">fal se</
property>

<property name="User Search Base">ou=Users, dc=I ocal </ property>

<property nane="User Cbject C ass">posi xAccount </ property>

<property nane="User Search Scope">ONE_LEVEL</ property>

<property nane="User Search Filter"></property>

<property nane="User ldentity Attribute">cn</property>

<property nane="User G oup Name Attribute"></property>

<property name="User G oup Name Attribute - Referenced G oup
Attri bute"></property>

<property nanme="G oup Search Base">ou=G oups, dc=I| ocal </ property>
<property nanme="G oup Obj ect C ass">posi xG oup</ property>
<property nane="G oup Search Scope">ONE _LEVEL</ property>
<property nane="Goup Search Filter"></property>
<property nanme="G oup Nane Attribute">cn</property>
<property nane="G oup Menber Attri bute">nenber U d</property>
<property nanme="G oup Menber Attribute - Referenced User
Attri bute">ui d</property>

</ user G oupPr ovi der >

<accessPol i cyProvi der >
<identifier>fil e-access-policy-provider</identifier>
<cl ass>or g. apache. ni fi.aut horization. Fi |l eAccessPol i cyProvi der </

cl ass>

<property nane="User G oup Provider">| dap-user-group-provider</
property>

<property name="Aut hori zations File">./conf/authorizations.xm </
property>

<property nane="Initial Admn Identity">John Snith</property>
<property nane="Legacy Authorized Users File"></property>

<property name="Node ldentity 1"></property>
</ accessPol i cyProvi der >
<aut hori zer >
<i dentifier>nanaged- aut hori zer</identifier>
<cl ass>or g. apache. ni fi. aut hori zati on. St andar dManagedAut hori zer </
cl ass>
<property nane="Access Policy Provider">file-access-policy-
provi der </ property>
</ aut hori zer >
</ aut hori zer s>

Composite - Fileand LDAP-based User /Groups

17

Apache NiFi Multi-Tenant Authorization

Here is an example composite implementation loading users and groups from LDAP and alocal file. Group
membership will be driven through the member attribute of each group. The users from LDAP will be read only while
the users loaded from the file will be configurable in Ul.

dn: cn=User 1, ou=users, o=nifi

obj ect d ass: organi zati onal Person
obj ect O ass: person

obj ect d ass: i net OrgPerson

obj ectd ass: top

cn: User 1

sn: Userl

uid: userl

dn: cn=User 2, ou=users, o=nifi

obj ect d ass: organi zati onal Person
obj ect d ass: person

obj ect d ass: i net OrgPerson

obj ectd ass: top

cn: User 2

sn: User2

uid: user2

dn: cn=admi ns, ou=gr oups, o=ni fi

obj ect d ass: groupO Nanes

obj ectd ass: top

cn: adm ns

menber: cn=User 1, ou=users, o=nifi
menber: cn=User 2, ou=users, o=nifi

<aut hori zer s>
<user Gr oupPr ovi der >
<identifier>file-user-group-provider</identifier>
<cl ass>or g. apache. ni fi. aut horizati on. Fi | eUser G oupPr ovi der </ cl ass>
<property nane="Users File">./conf/users.xm </ property>
<property nane="Legacy Authorized Users File"></property>

<property nane="Initial User ldentity 1">cn=nifi-
nodel, ou=servers, dc=exanpl e, dc=conx/ pr operty>
<property nanme="Initial User ldentity 2">cn=nifi-
node2, ou=servers, dc=exanpl e, dc=conx/ pr operty>
</ user G oupPr ovi der >
<user Gr oupPr ovi der >
<i dentifier>l dap-user-group-provider</identifier>
<cl ass>org. apache. ni fi .l dap.tenants. LdapUser Gr oupPr ovi der </ cl ass>
<property nane="Aut hentication Strategy">ANONYMOUS</ pr operty>

<property name="Manager DN'></property>
<pr operty nane="Manager Password"></property>

<property nane="TLS - Keystore"></property>

<property nanme="TLS - Keystore Password"></property>
<property name="TLS - Keystore Type"></property>
<property name="TLS - Truststore"></property>
<property name="TLS - Truststore Password"></property>
<property nanme="TLS - Truststore Type"></property>
<property nanme="TLS - dient Auth"></property>
<property nane="TLS - Protocol "></property>

<property nane="TLS - Shutdown Gacefully"></property>

<property name="Referral Strategy">FO.LON/ property>
<property nane="Connect Ti nmeout">10 secs</property>
<property nane="Read Ti neout">10 secs</property>

18

Apache NiFi

Multi-Tenant Authorization

<property nanme="Url ">l dap://I| ocal host: 10389</ pr operty>

<property nane="Page Size"></property>

<property nane="Sync |nterval">30 ni ns</property>

<property nane="G oup Menbership - Enforce Case Sensitivity">fal se</
property>

<property name="User Search Base">ou=users, o=nifi </ property>
<property name="User Cbject C ass">person</property>
<property nane="User Search Scope">ONE _LEVEL</ property>
<property nane="User Search Filter"></property>
<property nane="User ldentity Attribute">cn</property>
<property nanme="User G oup Nane Attribute"></property>
<property name="User Goup Name Attribute - Referenced G oup
Attri bute"></property>

<property nane="G oup Search Base">ou=gr oups, o=ni fi </ property>
<property nanme="G oup Obj ect C ass">groupOf Nanes</ property>
<property nane="G oup Search Scope">ONE_LEVEL</ property>
<property nane="Goup Search Filter"></property>
<property nanme="G oup Nane Attribute">cn</property>
<property nanme="G oup Menber Attri bute">nenber</property>
<property nanme="G oup Menber Attribute - Referenced User
Attribute"></property>

</ user G oupPr ovi der >

<user Gr oupPr ovi der >
<i dentifier>conposite-user-group-provider</identifier>

<cl ass>or g. apache. ni fi. aut hori zati on. Conposi t eConfi gur abl eUser G oupPr ovi der </
cl ass>
<property nane="Confi gurable User G oup Provider">fil e-user-group-
provi der </ property>
<property nane="User G oup Provider 1">| dap-user-group-provider</
property>
</ user G oupPr ovi der >
<accessPol i cyProvi der >
<identifier>fil e-access-policy-provider</identifier>
<cl ass>org. apache. ni fi.aut horization. Fil eAccessPol i cyProvi der</
cl ass>
<property nane="User G oup Provider">conposite-user-group-provider</
property>
<property nane="Aut hori zations File"> /conf/authorizations.xm </
property>
<property name="lnitial Adm n Identity">John Sm th</property>
<property nane="Legacy Authorized Users File"></property>

<property nane="Node ldentity 1">cn=nifi-
nodel, ou=servers, dc=exanpl e, dc=conx/ property>
<property nane="Node ldentity 2">cn=nifi-
node2, ou=servers, dc=exanpl e, dc=conx/ property>
</ accessPol i cyProvi der >
<aut hori zer >
<i dentifier>nanaged- aut hori zer</identifier>
<cl ass>or g. apache. ni fi. aut hori zati on. St andar dManagedAut hori zer </
cl ass>
<property nane="Access Policy Provider">file-access-policy-
provi der </ property>
</ aut hori zer >
</ aut hori zer s>

In this example, the users and groups are loaded from LDAP but the servers are managed in alocal file. The Initial
Admin Identity value came from an attribute in a LDAP entry based on the User Identity Attribute. The Node Identity
values are established in the local file using the Initial User Identity properties.

19

Apache NiFi Multi-Tenant Authorization

L egacy Authorized Users (NiFi Instance Upgrade)

If you are upgrading from a 0.x NiFi instance, you can convert your previously configured users and roles to the
multi-tenant authorization model. In the authorizers.xml file, specify the location of your existing authorized-
usersxml file in the Legacy Authorized Users File property.

Hereis an example entry:

<aut hori zers>
<user Gr oupPr ovi der >
<identifier>file-user-group-provider</identifier>
<cl ass>or g. apache. ni fi. aut horizati on. Fi | eUser G oupPr ovi der </ cl ass>
<property name="Users File">./conf/users.xn </ property>
<property name="Legacy Authorized Users File">/Users/johnsnith/
config files/authorized-users.xm </ property>

<property nanme="Initial User ldentity 1"></property>

</ user G oupPr ovi der >

<accessPol i cyProvi der >
<identifier>file-access-policy-provider</identifier>
<cl ass>or g. apache. ni fi.aut horization. Fil eAccessPol i cyProvi der </

cl ass>

<property nanme="User G oup Provider">file-user-group-provider</
property>

<property name="Aut horizations File">./conf/authorizations.xm </
property>

<property nanme="Initial Admin Identity"></property>
<property nane="lLegacy Authorized Users File">/Users/johnsmth/
config_files/authorized-users.xm </ property>

<property name="Node ldentity 1"></property>
</ accessPol i cyProvi der >
<aut hori zer >
<i dentifier>nanaged- aut hori zer</identifier>
<cl ass>or g. apache. ni fi. aut hori zati on. St andar dManagedAut hori zer </
cl ass>
<property nane="Access Policy Provider">file-access-policy-
provi der </ property>
</ aut hori zer >
</ aut hori zer s>

After you have edited and saved the authorizers.xml file, restart NiFi. Users and roles from the authorized-users.xml
file are converted and added as identities and policiesin the users.xml and authorizations.xml files. Once the
application starts, users who previously had alegacy Administrator role can access the Ul and begin managing users,
groups, and policies.

The following tables summarize the global and component policies assigned to each legacy role if the NiFi instance
has an existing flow.xml.gz:

Global Access Policies

Admin DFM Monitor Provenance NiFi Proxy
view the Ul * * *
access the * * * *
controller - view
access the *
controller -
modify

20

Apache NiFi

Multi-Tenant Authorization

Admin

DFM

Monitor

Provenance

NiFi

Proxy

access parameter
contexts - view

access parameter
contexts - modify

query provenance

access restricted
components

access all policies
- view

access all policies
- modify

access users/user
groups - view

access users/user
groups - modify

retrieve site-to-site
details

view system
diagnostics

proxy user
requests

access counters

Component Access Policieson t

he Root Process Group

Admin

DFM

Monitor

Provenance

NiFi

Proxy

view the
component

*

*

*

modify the
component

view the data

modify the data

view provenance

For details on the individual policiesin the table, see Access Policies.

Note: NiFi failsto restart if values exist for both the Initial Admin Identity and Legacy Authorized Users File
E properties. Y ou can specify only one of these values to initialize authorizations.

Note: Do not manually edit the authorizations.xml file. Create authorizations only during initial setup and
E afterwards using the NiFi Ul.

Cluster Node Identities

If you are running NiFi in a clustered environment, you must specify the identities for each node. The authorization
policies required for the nodes to communicate are created during startup.

21

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#access-policies

Apache NiFi Multi-Tenant Authorization

For example, if you are setting up a 2 node cluster with the following DNs for each node:

cn=ni fi-1, ou=peopl e, dc=exanpl e, dc=com
ch=ni fi-2, ou=peopl e, dc=exanpl e, dc=com

<aut hori zers>
<user Gr oupPr ovi der >
<identifier>file-user-group-provider</identifier>
<cl ass>or g. apache. ni fi. aut hori zati on. Fi | eUser G oupPr ovi der </ cl ass>
<property name="Users File">./conf/users.xn </ property>
<property nane="Legacy Authorized Users File"></property>

<property nane="Initial User ldentity 1">johnsni th@\l Fl. APACHE. ORG</
property>
<property nanme="Initial User ldentity
2">cn=ni fi -1, ou=peopl e, dc=exanpl e, dc=conx/ pr operty>
<property name="lnitial User ldentity
3">cn=ni fi -2, ou=peopl e, dc=exanpl e, dc=conx/ pr operty>
</ user G oupPr ovi der >
<accessPol i cyProvi der >
<identifier>fil e-access-policy-provider</identifier>
<cl ass>or g. apache. ni fi.aut horization. Fil eAccessPol i cyProvi der </

cl ass>

<property nane="User G oup Provider">file-user-group-provider</
property>

<property nane="Aut hori zations File"> /conf/authorizations.xm </
property>

<property nanme="Initial Admin Identity">j ohnsm th@\l FI . APACHE. ORG</
property>

<property nane="Legacy Authorized Users File"></property>

<property nane="Node ldentity
1">cn=ni fi -1, ou=peopl e, dc=exanpl e, dc=conx/ pr operty>
<property nane="Node |dentity
2">cn=ni fi -2, ou=peopl e, dc=exanpl e, dc=conx/ pr operty>
</ accessPol i cyProvi der >
<aut hori zer>
<i denti fi er>managed- aut hori zer</identifier>
<cl ass>or g. apache. ni fi. aut hori zati on. St andar dvanagedAut hori zer </
cl ass>
<property nane="Access Policy Provider">file-access-policy-
provi der </ property>
</ aut hori zer >
</ aut hori zers>

Note: Inacluster, all nodes must have the same authorizations.xml and users.xml. The only exception isif
IE anode has empty authorizations.xml and user.xml files prior to joining the cluster. In this scenario, the node
inherits them from the cluster during startup.

Now that initial authorizations have been created, additional users, groups and authorizations can be created and
managed in the NiFi Ul.

Configuring Users & Access Policies

Depending on the capahilities of the configured UserGroupProvider and AccessPolicyProvider the users, groups, and
policieswill be configurable in the Ul. If the extensions are not configurable the users, groups, and policies will read-
only inthe Ul. If the configured authorizer does not use UserGroupProvider and AccessPolicyProvider the users and

policies may or may not be visible and configurable in the Ul based on the underlying implementation.

This section assumes the users, groups, and policies are configurable in the Ul and describes:

22

Apache NiFi Multi-Tenant Authorization

» How to create users and groups

* How access policies are used to define authorizations

« How to view policiesthat are set on auser

» How to configure access policies by walking through specific examples

Note: Instructions requiring interaction with the Ul assume the application is being accessed by Userl, a user
with administrator privileges, such asthe "Initial Admin Identity" user or a converted legacy admin user (see
Authorizers.xml Setup).

Creating Usersand Groups

From the Ul, select "Users" from the Global Menu. This opens adialog to create and manage users and groups.

= A — —/ g—0 o—D0 Q0Un . =, —
[x
NiFi Users .
. Displaying 1 of 1
©
Filter by user v F-

(
|\ Userl Member of: F 0 %
bt

2 Last updated: 11:45:51 EST

NiFi Flow

b

Click the Add icon

()-
To create a user, enter the 'ldentity’ information relevant to the authentication method chosen to secure your NiFi
instance. Click OK.

23

Apache NiFi Multi-Tenant Authorization

User/Group

© Individual Group

Identity

User?2|

Member of

e

To create agroup, select the "Group" radio button, enter the name of the group and select the usersto be included in
the group. Click OK.

24

Apache NiFi Multi-Tenant Authorization

User/Group

Individual) Group

Identity
Group_A

Members
Userl
User2

Y ou can manage the ability for users and groups to view or modify NiFi resources using ‘access policies. There are
two types of access policies that can be applied to aresource:

Access Policies

« View- If aview policy is created for aresource, only the users or groups that are added to that policy are able to
see the details of that resource.

» Modify - If aresource has a modify policy, only the users or groups that are added to that policy can change the
configuration of that resource.

Y ou can create and apply access policies on both global and component levels.

Global Access Policies

25

Apache NiFi

Multi-Tenant Authorization

Glaobal access policies govern the following system level authorizations:

controller including Reporting
Tasks, Controller Services,
Parameter Contexts and Nodes in
the Cluster

Policy Privilege Global Menu Selection Resour ce Descr iptor
view the Ul Allows usersto view the Ul N/A fflow
access the controller Allows usersto view/modify the | Controller Settings [controller

access parameter contexts

Allows users to view/modify
Parameter Contexts. Accessto
Parameter Contexts are inherited
from the "access the controller"
policies unless overridden.

Parameter Contexts

/parameter-contexts

query provenance

Allows usersto submit a
Provenance Search and reguest
Event Lineage

Data Provenance

/provenance

access restricted components

Allows users to create/modify
restricted components assuming
other permissions are sufficient.
The restricted components

may indicate which specific
permissions are required.
Permissions can be granted for
specific restrictions or be granted
regardless of restrictions. If
permission is granted regardless
of restrictions, the user can create/
modify all restricted components.

N/A

[restricted-components

access all policies

Allows users to view/modify the
policiesfor all components

Policies

Ipolicies

access users/user groups

Allows users to view/modify the
users and user groups

Users

tenants

retrieve site-to-site details

Allows other NiFi instancesto
retrieve Site-To-Site details

N/A

/site-to-site

view system diagnostics

Allows usersto view System
Diagnostics

Summary

/system

proxy user requests

Allows proxy machines to send
requests on the behalf of others

N/A

/proxy

access counters

Allows users to view/modify
Counters

Counters

/counters

Component Level Access Palicies

Component level access policies govern the following component level authorizations:

Policy

Privilege

Resour ce Descriptor & Action

view the component

details

Allows users to view component configuration

resource="/<component-type>/<component-
UUID>" action="R"

modify the component

configuration details

Allows users to modify component

resource="/<component-type>/<component-
UUID>" action="W"

26

Apache NiFi

Multi-Tenant Authorization

Policy

Privilege

Resour ce Descriptor & Action

operate the component

Allows users to operate components by
changing component run status (start/stop/
enable/disable), remote port transmission
status, or terminating processor threads

resource="/operation/<component-type>/
<component-UUID>" action="W"

view provenance

Allows users to view provenance events
generated by this component

resource="/provenance-data/<component-
type>/<component-UUID>" action="R"

outbound connections and submit replays
through provenance events

view the data Allows users to view metadata and content for | resource="/data/<component-type>/
this component in flowfile queues in outbound | <component-UUID>" action="R"
connections and through provenance events

modify the data Allows users to empty flowfile queuesin resource="/data/<component-type>/

<component-UUID>" action="W"

view the policies

Allows usersto view thelist of userswho can
view/modify a component

resource="/policies/<component-type>/
<component-UUID>" action="R"

modify the policies

Allows users to modify thelist of users who
can view/modify a component

resource="/policies/<component-type>/
<component-UUID>" action="W"

receive dataviasite-to-site

Allows a port to receive data from NiFi
instances

resource="/data-transfer/input-ports/<port-
UUID>" action="W"

send data via site-to-site

Allows a port to send data from NiFi instances

resource="/data-transfer/output-ports/<port-
UUID>" action="W"

Note: You can apply access policies to all component types except connections. Connection authorizations

B are inferred by the individual access policies on the source and destination components of the connection, as
well as the access policy of the process group containing the components. Thisis discussed in more detail in
the Creating a Connection and Editing a Connection examples below.

Note: In order to access List Queue or Delete Queue for a connection, a user requires permission to the "view
B the data' and "modify the data’ policies on the component. In a clustered environment, all nodes must be be
added to these policies as well, as a user request could be replicated through any node in the cluster.

Access Policy Inheritance

An administrator does not need to manually create policies for every component in the dataflow. To reduce the
amount of time admins spend on authorization management, policies are inherited from parent resource to child
resource. For example, if auser is given access to view and modify a process group, that user can also view and
modify the components in the process group. Policy inheritance enables an administrator to assign policies at one
time and have the policies apply throughout the entire dataflow.

Y ou can override an inherited policy (as described in the Moving a Processor example below). Overriding a policy
removes the inherited policy, breaking the chain of inheritance from parent to child, and creates a replacement policy
to add users as desired. Inherited policies and their users can be restored by deleting the replacement policy.

Note: "View the policies’ and "modify the policies’ component-level access policies are an exception to this
IS inherited behavior. When a user is added to either policy, they are added to the current list of administrators.
They do not override higher level administrators. For this reason, only component specific administrators
are displayed for the "view the policies’ and "modify the policies’ access policies.

Note: Y ou cannot modify the users/groups on an inherited policy. Users and groups can only be added or
IS removed from a parent policy or an override policy.

Viewing Policieson Users

From the Ul, select "Users’ from the Global Menu. This opens the NiFi Users dialog.

27

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#moving-a-processor

Apache NiFi Multi-Tenant Authorization

»
NiFi Users
Displaying 1 of 1
. Filter by user v o=
'-
User Member of: S a

View User
Policies

o

bt

2 Last updated: 11:45:51 EST

NiFi Flow

b

Select the View User Policiesicon

S

28

Apache NiFi

Multi-Tenant Authorization

B x

Fil &+
(User1 .
e
- Component policy for process group NiFi Flow read —
Component policy for process group NiFi Flow write -
Component policy for processor GetFile read -
Component policy for processor GetFile write =
L Global policy to access all policies write To
— Global policy to access all policies read
d: Global policy to access restricted components write
E Global policy to access the controller write
: Global policy to access the controller read
9 Global policy to access users/user groups read
i Global policy to access users/user groups write
t Global policy to view the user interface read
Some policies may be inherited by descendant components unless explicitly overridden.
c [e=]
NiFi Flow

User

[

The User Policies window displays the global and component level policies that have been set for the chosen user.
Select the Go Toicon

pa—
()

to navigate to that component in the canvas.

Access Policy Configuration Examples

The most effective way to understand how to create and apply access policiesis to walk through some common
examples. The following scenarios assume Userl is an administrator and User2 is a newly added user that has only
been given accessto the Ul.

Let's begin with two processors on the canvas as our starting point: GenerateFlowFile and LogAttribute.

29

Apache NiFi Multi-Tenant Authorization

52 0 = 0/0bytes @0 @ 0 >0 To A2 o i 10:06:41 EST Q

@ Navigate

Q Operate S|

y NiFi Flow

L i= Process Group

401fedad-e293-4118-9%ae-8a6d6b72b819

X > B = 3

| A GenerateFlowFile A LogAttribute
| 1 GenerateFlowFile — LogAttribute
i In 0 (0 bytes) 5 min In 0 (0 bytes) 5 min
| Read/Write 0 bytes /0 bytes 5min Read/Write 0 bytes /0 bytes 5 min
| Out 0 (0 bytes) 5min out 0 (0 bytes) 5 min
| Tasks/Time 0 /00:00:00.000 5 min Tasks/Time 0/00:00:00.000 5 min

NiFi Flow

s

Userl can add components to the dataflow and is able to move, edit and connect all processors. The details and
properties of the root process group and processors are visible to Userl.

#O = 0/0bytes ®0 @0 >0 Zo A2 s < 10:08:12 EST Q
\ /
@ Navigate Useri
&9 operate B8 Component Toolbar Active
GenerateFlowFile
> Processor

3f32a3d0-0156-1000-0000-0000712787f1
& X X > B g
4] & Woeee

T

. ~| A GenerateFlowFile |#® Configure - [~] A Loghttribute
Operate Paleﬂe Ac‘t|ve GenerateFlowFile i Status History ! LogAttribute
In 0 (0 bytes) O Upstream connections - In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes © Downstream connections Read/Write 0 bytes / 0 bytes 5 min
Out 0 (0 bytes) . Out 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 | & Usage | Tasks/Time 0/00:00:00.000 5 min
& Change color
£ Center in view
() Copy
i Delete

NiFi Flow

s

Userl wantsto maintain their current privileges to the dataflow and its components.

User2 is unable to add components to the dataflow or move, edit, or connect components. The details and properties
of the root process group and processors are hidden from User2.

30

Apache NiFi

Multi-Tenant Authorization

ni ¢

0 0/ 0 bytes

@ Navigate &3]

{:‘ Operate =]

3f32a3d0-0156-1000-0000-0000...

3f32a3d0-0156-1000-0000-000071278711

T

Operate Palette Inactive

401fedad4-e293-4118-9%ae-8a6d6b72b819

Moving a Processor

Component Toolbar Inactive

! In 0 (0 bytes)

5 Read/Write 0 bytes /0 bytes
1 Out 0 (0 bytes)
1 Tasks/Time 0/00:00:00.000

| Status History
 Upstream connections
© Downstream connections

£ Center in view

0 < 10:12:19 EST
! In 0 (0 bytes)
! Read/Write 0 bytes /0 bytes
| out 0 (0 bytes)

| Tasks/Time O /00:00:00.000

User2

foE

User2

To allow User2 to move the GenerateFl owFile processor in the dataflow and only that processor, Userl performsthe

following steps:

1. Select the GenerateFlowFile processor so that it is highlighted.
2. Select the Access Policiesicon

&,

(

from the Operate palette and the Access Policies dialog opens.

3. Sdlect "modify the component” from the policy drop-down. The "modify the component” policy that currently
exists on the processor (child) is the "modify the component” policy inherited from the root process group (parent)
on which Userl has privileges.

31

Apache NiFi Multi-Tenant Authorization

Access Policies /Override Link

Showing effective policy inherited from Process Group NiFi Flow. Override this policy.

€ n FlowFil .
—Q i E:cg::re owre view the component v
view the component 2]
y
E User1 maodify the component (-]
kil view the data o
! madify the data (2]
F receive data via site-to-site 2]
—
send data via site-to-site (2]
view the policies 2]
maodify the policies 2]

& Lastupdated: 10:17:17 EST

NiFi Flow

4. Select the Override link in the policy inheritance message. When creating the replacement policy, you are given
achoice to override with a copy of the inherited policy or an empty policy. Select the Override button to create a

copy.

Override Policy

Do you want to override with a copy of the
inherited policy or an empty policy?

© copy
) Empty

OVERRIDE

5. On the replacement policy that is created, select the Add User icon

, o+ N
Find or enter User2 in the User Identity field and select OK. With these changes, Userl maintains the ability to
move both processors on the canvas. User2 can now move the GenerateFlowFile processor but cannot move the

LogAttribute processor.

32

Apache NiFi

Multi-Tenant Authorization

Access Policies

GenerateFlowFile
~

Processor

Userl
User2

| mrm e relell

& Lastupdated: 10:21:38 EST

maodify the component v

User «

S
0 = 0/0bytes @0 S 0 >0 Ho A2 w0 2 10:43:24 EST Q el
@ Navigate e e User2
49 operate =] i & E
i LS i
3f32a3d0-0156-1000-0000-0000... i In 0 (0 bytes) S5min |
) Processor ! Read/Write 0 bytes /0 bytes Smin
3f32a3d0-0156-1000-0000-0000712787f1 i Out 0 (0 bytes) 5min '
i Tasks/Time 0/00:00:00.000 Smin |
* - R :
1l oeLeTe
allg aa E ~| A
Original position of : E
GenerateFlowFile — | | n 0 (0bytes) Smin |
i | Read/Write 0 bytes /0 bytes Smin |
Processor | out 0 (0 bytes) Smin |
| Tasks/Time 0/00:00:00.000 5min

401fedad-e293-4118-99%ae-8a6d6b72b819

Editing a Processor

In the "Moving a Processor" example above, User2 was added to the "modify the component” policy for
GenerateFlowFile. Without the ability to view the processor properties, User2 is unable to modify the processor's
configuration. In order to edit a component, a user must be on both the "view the component” and "modify the

component” policies. To implement this, Userl performs the following steps:

1. Select the GenerateFlowFile processor.

2. Select the Access Policiesicon

&,

(

from the Operate pal ette and the Access Policies dialog opens.

33

Apache NiFi Multi-Tenant Authorization

3. Select "view the component” from the policy drop-down. The view the component” policy that currently existson
the processor (child) is the "view the component” policy inherited from the root process group (parent) on which
Userl has privileges.

‘_! A = —/ g=—o g@—2 nQ0n =, = —

x
Access Policies Override Link E

Showing effective policy inherited from Process Group NiFi Flow. Override this pelicy.

€ [; GenerateFlowFile
~=J Processor

1 view the component
é: view the componem{m]
E Userl modify the component

view the data

maodify the data

view the policies

@ © © @ © © © O ¢

maodify the policies

£¢ Last updated: 10:48:29 EST

NiFi Flow

4. Select the Override link in the policy inheritance message, keep the default of Copy policy and select the Override
button.

5. Onthe override policy that is created, select the Add User icon

, a+ ,
Find or enter User2 in the User Identity field and select OK. With these changes, Userl maintains the ability to
view and edit the processors on the canvas. User2 can now view and edit the GenerateFFlowFile processor.

Apache NiFi Multi-Tenant Authorization

J Access Policies

g
g
E
3

i
@

~| GenerateFlowFile)
. Processor view the component ~ & o

Userl]
User2 o

& Last updated: 10:49:58 EST

#®o = 0/0 bytes @0 @0 >0 mo A2 ® 0 £ 10:54:56 EST Q, =l
® nNavigate | User2
~~| A GenerateFlowFile
Q Operate S| GenerateFlowFile ante
n Status Histor

GenerateFlowFile In 0 (0 bytes) i sy

) Processor Read/Write 0 bytes /0 bytes Q Upstream connections

3f32a3d0-0156-1000-0000-0000712787f1 Out 0 (0 bytes) © Downstream connections

Tasks/Time 0/00:00:00.000
o % > n e
& Change color
& o Woreme & Center in view

€3] Copy
@ Delete

. e i

Operate Palette Active !
In 0 (0 bytes) 5min |

Read/Write 0 bytes /0 bytes Smin |

Out 0 (0 bytes) 5 min E

Tasks/Time 0/00:00:00.000 5 min

401fedad-e293-4118-99ae-8a6d6b72b819

Creating a Connection

With the access policies configured as discussed in the previous two examples, Userl is able to connect
GenerateFlowFile to LogAttribute:

35

Apache NiFi

Multi-Tenant Authorization

2o = 0/0bytes @0 @ 0 >0 To A2 o < 11:05:12 EST Q
@ Navigate User1
~~| A GenerateFlowFile

0 Operate S| GenerateFlowFile

GenerateFlowFile In 0 (0 bytes) 5 min

) Processor Read/Write 0 bytes / 0 bytes 5 min

3f32a3d0-0156-1000-0000-0000712787f1 Out 0 (0 bytes) 5 min

Tasks/Time 0/00:00:00.000 5 min
L JCN X > B e -
4] o Woeere

A LogAttribute

LogAttribute QE?
In 0 (0 bytes) ° 5 min
Read/Write 0 bytes / 0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 5 min

NiFi Flow

s

User2 cannot make the connection:

o = 0/0bytes @0 @ 0 >0 no A2 0 £ 11:07:11 EST Q e
@ Navigate User2
~~| A GenerateFlowFile

{b Operate E GenerateFlowFile

GenerateFlowFile In 0 (0 bytes) 5 min

] Processor Read/Write 0 bytes / 0 bytes 5 min

3f32a3d0-0156-1000-0000-0000712787f1 Out 0 (0 bytes) 5 min

Tasks/Time 0/ 00:00:00.000 5min
o Y > m
7} o 1 oeeTe

In 0 (0 bytes)

5 min
| Read/Write 0byles/0 bytes ° Smin
| out 0/(0 bytes) Smin |
Tasks/Time 0/ 00:00:00.000 5min :

401fedad-e293-4118-99ae-8a6d6b72b819

Thisis because:

* User2 does not have modify access on the process group.

« Even though User2 has view and modify access to the source component (GenerateFlowFile), User2 does not
have an access policy on the destination component (L ogAttribute).

To allow User2 to connect GenerateFlowFile to LogAttribute, as Userl:
1. Select the root process group. The Operate pa ette is updated with details for the root process group.

36

Apache NiFi Multi-Tenant Authorization

2. Select the Access Policiesicon

&,

()
from the Operate palette and the Access Policies dialog opens.

3. Select "modify the component” from the policy drop-down.

x
_ | Access Policies
=G " ELEZE!%VLUD view the component v & o
% view the component 2]
|‘ Userl modify the con'lponent® 7] o
4 view the data 7]
‘_ modify the data o
receive data via site-to-site L2]
| send data via site-to-site 2]
view the policies [7]
medify the policies 2]
& Lastupdated: 11:10:09 EST
- L

4. Select the Add User icon

, &+ N
Find or enter User2 and select OK.

Access Policies

NiFi Flow i
== Process Group modify the component 7 & ﬂ

User1 @
User2 @

- B I"PHG)|J

= Lastupdated: 11:11:59 EST

37

Apache NiFi Multi-Tenant Authorization

By adding User2 to the "maodify the component” policy on the process group, User2 is added
to the "modify the component” policy on the LogAttribute processor by policy inheritance.
To confirm this, highlight the LogAdttribute processor and select the Access Policiesicon

(a&)
from the Operate palette:

x
Access Policies
Showing effective policy inherited from Process Group NiFi Flow. Override this policy.
~| LogAttribute '
. Prcgessor modify the component g

User1

User2

e el

& Lastupdated: 11:14:38 EST

NiFi Flow

s

With these changes, User2 can now connect the GenerateFlowFile processor to the LogAttribute processor.

0 = 0/ 0 bytes @0 0 >0] A2 % 0 Z 111712 EST Q
@ WNavigate User2
~~| A GenerateFlowFile

éb Operate B GenerateFlowFile
GenerateFlowFile In 0 (0 bytes) 5 min

) Processor Read/Write 0 bytes / 0 bytes 5 min

3f32a3d0-0156-1000-0000-0000712787f1 Out 0 (0 bytes) 5 min

Tasks/Time 0/00:00:00.000 5min
& ¥ bR = -

2] o Momere

5

im 0 (0 bytes) ° Smin |
! Read/Write 0 bytes /0 bytes Smin
| out 0 (0 bytes) Smin

i Tasks/Time 0/00:00:00.000 Smin |

401fedad-e293-4118-99ae-8a6d6b72b819

38

Apache NiFi

Multi-Tenant Authorization

#o = 0/0bytes @0 @0 »0 o A2 o £ 11:18:42 EST Q
® Navigate User2
~~| M GenerateFlowFile
{:‘ Operate B GenerateFlowFile
68c89018-0158-1000-f351-29c¢d... In 0 (0 bytes) 5min
Connection Read/Write 0 bytes / 0 bytes 5min
68¢89018-0158-1000-f351-29cd70ea03f7 Out 0 (0 bytes) 5min
Tasks/Time 0/00:00:00.000 5min
> B -
[t |Queued 0Gbyes) |

RN .
g A s

In 0 (0 bytes) Smin
| Read/Write 0 bytes/0 bytes smin |
| Out 0 (0 bytes) Smin |
| Tasks/Time 0/00:00:00.000 Smin |

401fedad-e293-4118-99%ae-8a6d6b72b819

Editing a Connection

Assume Userl or User2 adds a ReplaceText processor to the root process group:

#o = 0/0bytes @0 ® 0 >0 2 A1 * 0 < 11:34:53 EST Q
@ Navigate 02000000 @
~~| M GenerateFlowFile
@ Operate S GenerateFlowFile
NiFi Flow In 0 (0 bytes) 5 min
¥ Process Group Read/Write 0 bytes /0 bytes 5min |
401fedad-e293-4118-9%ae-Ba6d6b72b819 Out 0 (0 bytes) 5min |
Tasks/Time 0/00:00:00.000 Smin |
@ a >»m - ~—
Name success
Queued 0 (0 bytes)

|

W LogAttribute
— LogAttribute
A\ ReplaceText In 0 (0 bytes) 5 min
ReplaceText Read/Write 0 bytes / 0 bytes 5 min
n 0 (0 bytes) smin | Out 0 (0 bytes) 5 min
Read/Write 0 bytes / 0 bytes Smin | Tasks/Time 0/ 00:00:00.000 5 min |
out 0 (0 bytes) smin | '
| Tasks/Time 0/00:00:00.000 5 min
|
NiFi Flow

Userl can select and change the existing connection (between GenerateFlowFile to LogAttribute) to now connect
GenerateFlowFile to ReplaceText:

39

Apache NiFi

Multi-Tenant Authorization

#o = 0/0bytes @0 @ 0 >0 2 A1 o i 11:44:56 EST Q
@ Navigate B . Use”
~~| M GenerateFlowFile
Q Operate 8 GenerateFlowFile
o success In 0 (0 bytes) 5 min
Connection Read/Write 0 bytes / 0 bytes 5 min
68c89018-0158-1000-f351-29¢d70ea03f7 Out 0 (0 bytes) 5min
Tasks/Time 0/00:00:00.000 5 min
& > B c=-
0 peELETE
Name success
Queued 0 (0 bytes)
W LogAttribute
~— LogAttribute
A ReplaceText In 0 (0 bytes) 5 min
ReplaceText & Read/Write 0 bytes / 0 bytes 5 min
In 0 (0 bytes) 5 min Out 0 (0 bytes) 5 min
Read/Write 0 bytes /0 5 min Tasks/Time 0/ 00:00:00.000 5 min |
Out 0 (0 bytes) 5min
Tasks/Time 0/ 00:00:00.000 5 min
NiFi Flow

s

User 2 isunable to perform this action.

#o = 0/0 bytes @0 @ 0 |] H2 A1 To 11:47:08 EST Q
@ Navigate = User2
~~| M GenerateFlowFile
{: Operate S GenerateFlowFile
401fedad-e293-4118-99ae-8abd... In 0 (0 bytes) 5 min
= Process Group Read/Write 0 bytes /0 bytes Smin |
401fedad-e293-4118-99ae-Babd6b72b819 Out 0 (0 bytes) 5 min [
Tasks/Time 0/00:00:00.000 Smin |
o > B = -
[Queued 0 (0bytes) |
- |
| A : In 0 (0 bytes) 5min |
i i Read/Write 0 bytes / 0 bytes Smin |
i n 0 (0 bytes) 5 min E Out 0 (0 bytes) 5 min 5
! Read/Write O bytes /0 bytes Smin | Tasks/Time 0/00:00:00.000 5min |
{ Out 0 (0 bytes) Smin | |
i Tasks/Time 0/ 00:00:00.000 5 min i

401fedad-e293-4118-99ae-8a6d6b72b819

To allow User2 to connect GenerateFlowFile to ReplaceText, as Userl:

1. Select the root process group. The Operate palette is updated with details for the root process group.
2. Select the Access Paliciesicon

Q,

(

40

Apache NiFi Multi-Tenant Authorization

3. Select "view the component" from the policy drop-down.

x
Access Policies
=.@ [= EFLELE:%‘:;UD view the component v & o
’t view the component & (7]
|1 Userl modify the compaonent] o
4 view the data o
i maodify the data 7]
receive data via site-to-site (2]
| send data via site-to-site (2]
view the policies (7]
modify the policies o
& Lastupdated: 11:49:44 EST
d L

4. Select the Add User icon

(&+ ,
Find or enter User2 and select OK.

Access Policies

NiFi Flow -
®® Frocess Group view the component v & o

User «

@l

[‘ User1 @
4t User2 @
i

& Lastupdated: 11:51:08 EST
NiFi Flow

Being added to both the view and modify policies for the process group, User2 can now connect the
GenerateFl owFile processor to the ReplaceText processor.

41

Apache NiFi Encryption Configuration

it P aBEEBETTY =
0 0/ 0 bytes 0 0 0 2 1 0 — 11:52:08 EST / Q E

@ Navigate @ USEI’2

- GenerateFlowFile
{b Operate B Flow
success In 0 (0 bytes)
sonnectior Read/Write 0 bytes / 0 bytes
68c89018-0158-1000-f351-29cd70eal3f7 Out 0(0 bytes)
Tasks/Time 0/00:00:00.000
o > B =
1 oeceTE
Name success
Queued 0 (0 bytes)
j LogaAttribute
ReplaceText In 0 (0 bytes)
placeText @ Read/Write 0 bytes /0 bytes
In 0 (0 bytes) - Out 0 (0 bytes)
Read/Write 0 bytes /0 bvtb - Tasks/Time 0/ 00:00:00.000
Out 0 (0 bytes)
Tasks/Time 0/00:00:00.000
NiFi Flow

Encryption Configuration

This section provides an overview of the capabilities of NiFi to encrypt and decrypt data.

The EncryptContent processor allows for the encryption and decryption of data, both internal to NiFi and integrated
with external systems, such as openssl and other data sources and consumers.

Key Derivation Functions

Key Derivation Functions (KDF) are mechanisms by which human-readable information, usually a password or
other secret information, is translated into a cryptographic key suitable for data protection. For further information,
read the https://en.wikipedia.org/wiki/Key derivation_function. Currently, KDFs are ingested by CipherProvider
implementations and return afully-initialized Cipher object to be used for encryption or decryption. Due to the

use of a CipherProviderFactory, the KDFs are not customizable at thistime. Future enhancements will include

the ability to provide custom cost parameters to the KDF at initialization time. As awork-around, CipherProvider
instances can be initialized with custom cost parameters in the constructor but thisis not currently supported by the
CipherProviderFactory. Here are the KDFs currently supported by NiFi (primarily in the EncryptContent processor
for password-based encryption (PBE)) and relevant notes:

« NiFi Legacy KDF

« Theoriginal KDF used by NiFi for internal key derivation for PBE, thisis 1000 iterations of the MD5 digest
over the concatenation of the password and 8 or 16 bytes of random salt (the salt length depends on the
selected cipher block size).

e ThisKDF isdeprecated as of NiFi 0.5.0 and should only be used for backwards compatibility to decrypt data
that was previously encrypted by alegacy version of NiFi.

¢ OpenSSL PKCS#5 v1.5 EVP_BytesToKey

* ThisKDF was added in v0.4.0.

e ThisKDFisprovided for compatibility with data encrypted using OpenSSL's default PBE, known as
EVP_BytesToKey. Thisisasingle iteration of MD5 over the concatenation of the password and 8 bytes

42

https://en.wikipedia.org/wiki/Key_derivation_function

Apache NiFi

Encryption Configuration

of random ASCI| salt. OpenSSL recommends using PBKDF2 for key derivation but does not expose the
library method necessary to the command-line tool, so this KDF is still the de facto default for command-line
encryption.

Berypt

This KDF was added in v0.5.0.

https.//en.wikipedia.org/wiki/Bcrypt is an adaptive function based on the https://en.wikipedia.org/wiki/
Blowfish_(cipher) cipher. This KDF is strongly recommended as it automatically incorporates arandom 16
byte salt, configurable cost parameter (or "work factor"), and is hardened against brute-force attacks using
https.//en.wikipedia.org/wiki/General-purpose_computing_on_graphics processing_units (which share
memory between cores) by requiring accessto "large" blocks of memory during the key derivation. It isless
resistant to https://en.wikipedia.org/wiki/Field-programmable_gate array brute-force attacks where the gate
arrays have access to individual embedded RAM blocks.

Because the length of a Berypt-derived key is always 184 bits, the complete output is then fed to a SHA-512
digest and truncated to the desired key length. This provides the benefit of the avalanche effect on the
formatted input.

The recommended minimum work factor is 12 (212 key derivation rounds) (as of

2/1/2016 on commaodity hardware) and should be increased to the threshold at which

legitimate systems will encounter detrimental delays (see schedule below or use

BcryptCipherProvider Groovy Test#testDef aultConstructor Shoul dProvideStrongWorkFactor() to calcul ate safe
minimums).

The salt format is $2a$10$ABCDEFGHIJKLMNOPQRSTUYV. The salt is delimited by $ and the three
sections are as follows:

* 2a-theversion of the format. An extensive explanation can be found http://blog.ircmaxell.com/2012/12/
seven-ways-to-screw-up-berypt.html. NiFi currently uses 2afor all salts generated internally.

< 10-thework factor. Thisis actually the log2 value, so the total iteration count would be 210 in this case.

e ABCDEFGHIJKLMNOPQRSTUV - the 22 character, Base64-encoded, unpadded, raw salt value. This
decodes to a 16 byte salt used in the key derivation.

Scrypt

This KDF was added in v0.5.0.

https://en.wikipedia.org/wiki/Scrypt is an adaptive function designed in response to berypt. This KDF is
recommended as it requires relatively large amounts of memory for each derivation, making it resistant to
hardware brute-force attacks.

The recommended minimum cost is N=214, r=8, p=1 (as of 2/1/2016 on commaodity hardware).

p must be a positive integer and less than (2232 # 1) * (Hlen/MFlen) where Hlen isthe length

in octets of the digest function output (32 for SHA-256) and MFlen is the length in octets of

the mixing function output, defined asr * 128. These parameters should be increased to the

threshold at which legitimate systems will encounter detrimental delays (see schedule below or use
ScryptCipherProviderGroovy Test#testDefaul tConstructor Shoul dProvideStrongParameters() to calcul ate safe
minimums).

The salt format is $50$0101$ABCDEFGHIJKLMNOPQRSTUV. The salt is delimited by $ and the three
sections are as follows:

e S0 - theversion of the format. NiFi currently uses O for all salts generated internally.

e €0101 - the cost parameters. Thisis actually a hexadecimal encoding of N, r, p using shifts. This can be
formed/parsed using Scrypt#encodeParams() and Scrypt#parseParameters().

» Some externd libraries encode N, r, and p separately in the form $400$1$1$. A utility method is
available at ScryptCipherProvider#trand ateSalt() which will convert the external form to the internal
form.

e ABCDEFGHIJKLMNOPQRSTUV - the 12-44 character, Base64-encoded, unpadded, raw salt value. This
decodes to a 8-32 byte salt used in the key derivation.

PBKDF2

This KDF was added in v0.5.0.

43

https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Blowfish_(cipher)
https://en.wikipedia.org/wiki/Blowfish_(cipher)
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/Field-programmable_gate_array
http://blog.ircmaxell.com/2012/12/seven-ways-to-screw-up-bcrypt.html
http://blog.ircmaxell.com/2012/12/seven-ways-to-screw-up-bcrypt.html
https://en.wikipedia.org/wiki/Scrypt

Apache NiFi

Encryption Configuration

» https://en.wikipedia.org/wiki/PBKDF2 is an adaptive derivation function which uses an internal pseudorandom
function (PRF) and iteratesit many times over a password and salt (at least 16 bytes).

e ThePRF isrecommended to be HMAC/SHA-256 or HMAC/SHA-512. The use of an HMAC cryptographic
hash function mitigates alength extension attack.

e The recommended minimum number of iterations is 160,000 (as of 2/1/2016 on commaodity
hardware). This number should be doubled every two years (see schedule below or use
PBK DF2CipherProviderGroovy Test#testDefaultConstructor Shoul dProvideStrongl terationCount() to calculate
safe minimums).

e ThisKDF isnot memory-hard (can be parallelized massively with commodity hardware) but is still
recommended as sufficient by http://csrc.nist.gov/publications/ni stpubs/800-132/ni st-sp800-132.pdf and many
cryptographers (when used with a proper iteration count and HMAC cryptographic hash function).

None

e ThisKDF was added in v0.5.0.

« ThisKDF performs no operation on the input and is a marker to indicate the raw key is provided to the
cipher. The key must be provided in hexadecimal encoding and be of avalid length for the associated cipher/
agorithm.

Additional Resources

http://stackoverflow.com/a/30308723/70465

http://csrc.nist.gov/publicationg/ni stpubs/800-132/ni st-sp800-132. pdf
https://www.owasp.org/index.php/Password_Storage Cheat Sheet#Work_Factor
http://security .stackexchange.com/a/3993/16485
http://blog.ircmaxell.com/2014/03/why-i-dont-recommend-scrypt.html
http://security .stackexchange.com/al26253/16485
http://security.stackexchange.com/a/6415/16485
http://wildlyinaccurate.com/bcrypt-choosing-a-work-factor/

https.//docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/berypt/
BCrypt.html

https://www.openssl.org/docs/manl.1.1/man3/EVP_BytesToKey.html
https://wiki.openssl.org/index.php/Manua :PKCS5_PBKDF2_HMAC(3)
http://security .stackexchange.com/a/29139/16485

Salt and 1V Encoding

Initially, the EncryptContent processor had a single method of deriving the encryption key from a user-provided
password. Thisis now referred to as NiFiLegacy mode, effectively MD5 digest, 1000 iterations. In v0.4.0, another
method of deriving the key, OpenSSL PKCS#H5 v1.5 EVP_BytesToKey was added for compatibility with content
encrypted outside of NiFi using the openssl command-line tool. Both of these Key Derivation Functions (KDF) had
hard-coded digest functions and iteration counts, and the salt format was al so hard-coded. With v0.5.0, additional
KDFs are introduced with variable iteration counts, work factors, and salt formats. In addition, raw keyed encryption
was also introduced. This required the capacity to encode arbitrary salts and Initialization Vectors (1V) into the cipher
stream in order to be recovered by NiFi or afollow-on system to decrypt these messages.

For the existing KDFs, the salt format has not changed.

NiFi Legacy

Thefirst 8 or 16 bytes of the input are the salt. The salt length is determined based on the selected algorithm's cipher
block length. If the cipher block size cannot be determined (such as with a stream cipher like RC4), the default value
of 8 bytesis used. On decryption, the salt isread in and combined with the password to derive the encryption key and

https://en.wikipedia.org/wiki/PBKDF2
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
http://stackoverflow.com/a/30308723/70465
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
http://security.stackexchange.com/a/3993/16485
http://blog.ircmaxell.com/2014/03/why-i-dont-recommend-scrypt.html
http://security.stackexchange.com/a/26253/16485
http://security.stackexchange.com/a/6415/16485
http://wildlyinaccurate.com/bcrypt-choosing-a-work-factor/
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/bcrypt/BCrypt.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/bcrypt/BCrypt.html
https://www.openssl.org/docs/man1.1.1/man3/EVP_BytesToKey.html
http://security.stackexchange.com/a/29139/16485
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#key-derivation-functions

Apache NiFi Encryption Configuration

| NON | M nifi_legacy.enc
O | AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAAL|................
16| 2AA22CBB 29A0C504 9BC293D7 BI95C1CCD| | *.,.).. \ .
32| FOD3AA87 F321D639 628E93@5 94126FB5||.....!.9b.. . o.
48||
Signed Int big (select some data) =¥
48 out of 48 bytes

OpenSSL PKCSH#5 v1.5 EVP_BytesT oK ey

OpenSSL allows for salted or unsalted key derivation. * Unsalted key derivation is a security risk and is not
recommended.* If asalt is present, the first 8 bytes of the input are the ASCII string "Salted " (0x53 61 6C 74 65
64 5F 5F) and the next 8 bytes are the ASCII-encoded salt. On decryption, the salt isread in and combined with the
password to derive the encryption key and 1V. If there is no salt header, the entire input is considered to be the cipher

text.

O ® Il openssl_evp.enc
@|53616C74 ©656045F5F AABBCCDD EEFF@@11||Salted__......
16|47972607 296F80B9 9816D205 9BF899F4||G.& Do...

32 | 8EBEB8DF F37DACZ28 370DA3A6 05865894 || y.(7 .. X,
48
Signed Int big (select some data) -

16 out of 48 bytes

For new KDFs, each of which allow for non-deterministic Vs, the IV must be stored alongside the cipher text. This
isnot avulnerability, asthe IV isnot required to be secret, but simply to be unique for messages encrypted using the
same key to reduce the success of cryptographic attacks. For these KDFs, the output consists of the salt, followed

by the salt delimiter, UTF-8 string "NiFiSALT" (Ox4E 69 46 69 53 41 4C 54) and then the 1V, followed by the IV
delimiter, UTF-8 string "NiFilV" (Ox4E 69 46 69 49 56), followed by the cipher text.

Berypt, Scrypt, PBKDF2

45

Apache NiFi Encryption Configuration

| NON | M berypt.enc

0| 24326124 31322442 6B475249 6465614D||$2a$12$BkGRIdeaM
1666573948 75596E4E 4(695759 654E6946 || fWIKuYnNLiWYeNiF
3216953414C 54753778 8(CD9490D FAF430C8||iSALTu7x..I ..0.
48|4B751230 A24E6946 69495617 258B8C6C||(Ku @.NiFiIV %..1

64 | OFAFCA83 34EC13F6 5E40CC59 0610746C W4l ALYt
80| FIE@D5C1 A8001284 547889 | |..... L Tx.
Signed Int < /| big < (select some data) -4

91 out of 91 bytes

[NON | M scrypt.enc

0| 24733024 65303830 31246E33 57743566 || 50e0801$n3Wt5f
16|6C67776B 5961394A 586A4A41 67695A77 | |1gwkYa9JXjIAgizZw
32|4E694669 53414C54 C@3A7A62 @65CDC19||(NiFiSALT.:zb \.
48|@726787A AEF3A9BC 4E694669 49561636 || &xz....NiFiIV 6
64| FCCD26F5 49A@4E43 559ED7AD A@92A118||..&.I.NCU......
80| FEF2D480 0215A7F6 @C64B182 3FE4 Y I

Signed Int < /| big < (select some data) -4

94 out of 94 bytes

46

Apache NiFi Encryption Configuration

| NN M pbkdf2.enc

@|B5B1AABC FBZ2BCEA1l EF81@34A 493D9217(|..... +.... JI=.
16| 4E694669 53414C54 (C6EE4F31 C34FEA86||(NiFiSALT..01.0..
32 | 1F44B34F CECOCAC7 4E694669 495678A3|| D.O....NiFiIVx.
48| 28E5D8FB F8180@D5 4BF995A4 35136B53(((.... .K...5 kS
64 | C3DA8329 QD@5BD9® AED1320F 97E4| o) Ll u2

Signed Int big (select some data) -4

78 out of 78 bytes

Java Cryptography Extension (JCE) Limited Strength Jurisdiction Policies

Because of US export regulations, default JVMs have http://docs.oracle.com/javase/ 7/docs/technotes/gui des/security/
SunProviders.html#importlimits available to them. For example, AES operations are limited to 128 bit keys by
default. While AES-128 is cryptographically safe, this can have unintended consequences, specifically on Password-
based Encryption (PBE).

PBE is the process of deriving a cryptographic key for encryption or decryption from user-provided secret material,
usualy a password. Rather than a human remembering a (random-appearing) 32 or 64 character hexadecimal string, a
password or passphrase is used.

A number of PBE algorithms provided by NiFi impose strict limits on the length of the password due to the
underlying key length checks. Below isatable listing the maximum password length on a VM with limited
cryptographic strength.

Table 1. Table 1. Maximum Password L ength on Limited Cryptographic Strength JVM

Algorithm Max Password Length
PBEWITHMD5AND128BITAES-CBC-OPENSSL 16
PBEWITHMD5AND192BITAES-CBC-OPENSSL 16
PBEWITHMD5AND256BITAES-CBC-OPENSSL 16
PBEWITHMD5ANDDES 16
PBEWITHMD5ANDRC2 16
PBEWITHSHA1ANDRC2 16
PBEWITHSHA1ANDDES 16
PBEWITHSHAAND128BITAES-CBC-BC 7
PBEWITHSHAAND192BITAES-CBC-BC 7
PBEWITHSHAAND256BITAES-CBC-BC 7
PBEWITHSHAAND40BITRC2-CBC 7

47

http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html#importlimits
http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html#importlimits

Apache NiFi

Encryption Configuration

Algorithm Max Password L ength
PBEWITHSHAAND128BITRC2-CBC 7
PBEWITHSHAANDA40BITRC4 7
PBEWITHSHAAND128BITRC4 7
PBEWITHSHA256AND128BITAES-CBC-BC 7
PBEWITHSHA256AND192BITAES-CBC-BC 7
PBEWITHSHA256AND256BITAES-CBC-BC 7
PBEWITHSHAAND2-KEYTRIPLEDES-CBC 7
PBEWITHSHAAND3-KEY TRIPLEDES-CBC 7
PBEWITHSHAANDTWOFISH-CBC 7

Allow Insecure Cryptographic Modes

By default, the Allow Insecure Cryptographic Maodes property in EncryptContent processor settings is set to not-
allowed. Thismeansthat if a password of fewer than 10 charactersis provided, avalidation error will occur. 10
charactersis a conservative estimate and does not take into consideration full entropy calculations, patterns, etc.

Configure Processor
SETTINGS SCHEDULING
Required field

PROPERTIES

COMMENTS

Mode Encrypt

Key Derivation Function NiFi Legacy KDF
Encryption Algorithm MD5_128BAES
Allow insecure cryptographic modes Not Allowed

Password

Raw Key (hexadecimal)
Public Keyring File
Public Key User Id
Private Keyring File

Private Keyring Passphrase

O Q0O 0 0o 0 O

Property Value

CANCEL

+

APPLY

48

Apache NiFi

Encrypted Passwords in Configuration Files

On aJvM with limited strength cryptography, some PBE a gorithms limit the maximum password length to 7, and in
this caseit will not be possible to provide a"safe" password. It is recommended to install the JCE Unlimited Strength
Jurisdiction Policy filesfor the VM to mitigate thisissue.

* http://www.oracle.com/technetwork/javaljavase/downl oads/jce8-downl oad-2133166.html

If on a system where the unlimited strength policies cannot be installed, it is recommended to switch to an algorithm
that supports longer passwords (see table above).

E Note:
Allowing Weak Crypto

If it isnot possible to install the unlimited strength jurisdiction policies, the Allow Weak Crypto setting
can be changed to allowed, but thisis not recommended. Changing this setting explicitly acknowledges the
inherent risk in using weak cryptographic configurations.

It is preferable to request upstream/downstream systems to switch to https://cwiki.apache.org/confluence/display/
NIFI/Encryption+Information or use a"strong" https://cwiki.apache.org/confluence/display/NIFI/Key+Derivation
+Function+Explanations.

Encrypted Passwordsin Configuration Files

In order to facilitate the secure setup of NiFi, you can use the encrypt-config command line utility to encrypt raw
configuration values that NiFi decryptsin memory on startup. This extensible protection scheme transparently allows
NiFi to use raw values in operation, while protecting them at rest. In the future, hardware security modules (HSM)
and external secure storage mechanisms will be integrated, but for now, an AES encryption provider is the default
implementation.

Thisisachangein behavior; prior to 1.0, al configuration values were stored in plaintext on the file system. POSIX
file permissions were recommended to limit unauthorized access to these files.

If no administrator action is taken, the configuration values remain unencrypted.

For more information, see the encrypt_config Tool section in the NiFi Toolkit Guide.

K erberos Service

NiFi can be configured to use Kerberos SPNEGO (or "Kerberos Service") for authentication. In this scenario, users
will hit the REST endpoint /access/kerberos and the server will respond with a 401 status code and the challenge
response header WWW-A uthenticate: Negotiate. This communicates to the browser to use the GSS-API and |oad

the user's Kerberos ticket and provide it as a Base64-encoded header value in the subsequent request. It will be of the
form Authorization: Negotiate Y11.... NiFi will attempt to validate this ticket with the KDC. If it is successful, the
user's principal will be returned as the identity, and the flow will follow login/credential authentication, in that a JWT
will beissued in the response to prevent the unnecessary overhead of Kerberos authentication on every subsequent
reguest. If the ticket cannot be validated, it will return with the appropriate error response code. The user will then be
ableto provide their Kerberos credentials to the login form if the KerberosL oginldentityProvider has been configured.
See Kerberos login identity proverder documentation for more details.

NiFi will only respond to Kerberos SPNEGO negotiation over an HTTPS connection, as unsecured requests are never
authenticated.

The following properties must be set in nifi.properties to enable Kerberos service authentication.

Property Required Description

49

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
https://cwiki.apache.org/confluence/display/NIFI/Encryption+Information
https://cwiki.apache.org/confluence/display/NIFI/Encryption+Information
https://cwiki.apache.org/confluence/display/NIFI/Key+Derivation+Function+Explanations
https://cwiki.apache.org/confluence/display/NIFI/Key+Derivation+Function+Explanations

Apache NiFi Kerberos Service

Service Principal true The service principal used by NiFi to
communicate with the KDC

Keytab Location true Thefile path to the keytab containing the
service principal

See Kerberos Properties for complete documentation.

Notes

« Kerberosis case-sensitive in many places and the error messages (or lack thereof) may not be sufficiently
explanatory. Check the case sensitivity of the service principal in your configuration files. Convention isHTTP/
fully.qualified.domain@REALM.

» Browsers have varying levels of restriction when dealing with SPNEGO negotiations. Some will provide the local
Kerberos ticket to any domain that requests it, while others whitelist the trusted domains. See http://docs.spring.io/
autorepo/docs/spring-security-kerberos/1.0.2.BUIL D-SNAPSHOT/reference/html singl e/#browserspnegoconfig
for common browsers.

« Some browsers (legacy |E) do not support recent encryption algorithms such as AES, and are restricted to legacy
algorithms (DES). This should be noted when generating keytabs.

« The KDC must be configured and a service principa defined for NiFi and a keytab exported. Comprehensive
instructions for Kerberos server configuration and administration are beyond the scope of this document (see
http://web.mit.edu/kerberos/krb5-current/doc/admin/index.html), but an example is below:

Adding a service principal for aserver at nifi.nifi.apache.org and exporting the keytab from the KDC:

r oot @xdc: / et c/ kr b5kdc# kadm n. | ocal

Aut henti cating as principal adm n/adm n@l FI . APACHE. ORG wi t h password.
kadmi n.local: [listprincs

K/ MaNl FI . APACHE. ORG

adm n/ adnmi n@\l FI . APACHE. ORG

kadm n. |l ocal : addprinc -randkey HTTP/nifi.nifi.apache.org

WARNI NG no policy specified for HITP/nifi.nifi.apache. org@l Fl . APACHE. ORG
defaulting to no policy

Principal "HTTP/nifi.nifi.apache.org@\ FI. APACHE. ORG' creat ed.

kadmi n.local: ktadd -k /http-nifi.keytab HTTP/ nifi.nifi.apache.org

Entry for principal HTTP/nifi.nifi.apache.org with kvno 2, encryption type
des3-cbc-shal added to keytab WRFILE:/http-nifi.keytab.

Entry for principal HTTP/nifi.nifi.apache.org with kvno 2, encryption type
des-cbc-crc added to keytab WRFILE:/http-nifi.keytab.

kadmi n.local: [listprincs

HTTP/ nifi.nifi.apache. org@l Fl . APACHE. ORG

K/ M@l FI . APACHE. ORG

adm n/ adm n@\l FI . APACHE. ORG

kadmi n.local : q

root @dc: ~# ||l /http*

SPW------ 1 root root 162 Mar 14 21:43 /http-nifi.keytab
root @dc: ~#

50

http://docs.spring.io/autorepo/docs/spring-security-kerberos/1.0.2.BUILD-SNAPSHOT/reference/htmlsingle/#browserspnegoconfig
http://docs.spring.io/autorepo/docs/spring-security-kerberos/1.0.2.BUILD-SNAPSHOT/reference/htmlsingle/#browserspnegoconfig
http://web.mit.edu/kerberos/krb5-current/doc/admin/index.html

	Contents
	Security Configuration
	TLS Generation Toolkit

	User Authentication
	Lightweight Directory Access Protocol (LDAP)
	Kerberos
	OpenId Connect
	Apache Knox

	Multi-Tenant Authorization
	Authorizer Configuration
	Authorizers.xml Setup
	FileUserGroupProvider
	LdapUserGroupProvider
	ShellUserGroupProvider
	Composite Implementations
	FileAccessPolicyProvider
	StandardManagedAuthorizer
	FileAuthorizer
	Initial Admin Identity (New NiFi Instance)
	File-based (LDAP Authentication)
	File-based (Kerberos Authentication)
	LDAP-based Users/Groups Referencing User DN
	LDAP-based Users/Groups Referencing User Attribute
	Composite - File and LDAP-based Users/Groups

	Legacy Authorized Users (NiFi Instance Upgrade)
	Global Access Policies
	Component Access Policies on the Root Process Group

	Cluster Node Identities

	Configuring Users & Access Policies
	Creating Users and Groups
	Access Policies
	Global Access Policies
	Component Level Access Policies
	Access Policy Inheritance

	Viewing Policies on Users
	Access Policy Configuration Examples
	Moving a Processor
	Editing a Processor
	Creating a Connection
	Editing a Connection

	Encryption Configuration
	Key Derivation Functions
	Additional Resources

	Salt and IV Encoding
	NiFi Legacy
	OpenSSL PKCS#5 v1.5 EVP_BytesToKey
	Bcrypt, Scrypt, PBKDF2

	Java Cryptography Extension (JCE) Limited Strength Jurisdiction Policies
	Allow Insecure Cryptographic Modes

	Encrypted Passwords in Configuration Files
	Kerberos Service
	Notes

