Apache NiFi 3

NiFi System Properties

Date of Publish: 2020-04-28

P

Hortonworks

https://docs.cloudera.com/

https://docs.cloudera.com/

Contents

Y = T o e = = 3
Upgrade RECOMMENAALIONS.........coitieiiiieteriete sttt sttt st b e s eb e ekt se bbbt s b e st se e e et et st e e ebeneebeneas 3
COrE PrOPEITIES. ... ecueeeuerteie ettt sttt ettt sttt b e h et s et eb s e b et e bt e b e e e b e e e b e e b e s A e s e b e n e bt aeeb e e e bt b eb e e eb e e e bt b e nennens 3
SEAE MANAGEIMENT. ...t e et h e bt bt R e e Rt s et e R e R e s e se e b e e se e e ens e e e e enenrenneene s 5
H2 SEINGS. ettt bbb bt et e bt bbb e R e R R e b e R ARt R R E et Rt bbb 5
FIOWRFITE REDOSITONYc.civiueetieetereete sttt sttt et b e b e bt e st eeh e a s b b e bt e e bt e bt eeb e s b e bt s b e st b et b enennenes 6
Write Ahead FIOWFITE REPOSITONY......cuciiiiiriiiiiereeie sttt st ettt se et b e b 6
Encrypted Write Ahead FlowFile REPOSITOrY PrOPETIES........ccovveirieirieirieresieresie e 7
VOlatil€ FIOWFIIE REDOSITONY......ceitiiiterietereetereete ettt et b s b e b s e bt se et b et b et b et e b e st e b e neebeseebeneas 7
ROCKSDB FIOWFI € REDOSITONY......ccveueitiirtieeteseete st sttt sttt sttt s b e et se et se b se b sbe st b et be e sbe e ebe e 8
SWAD IMBNAGEIMENT. ...ttt r e et h e et e bt R e R e b e R e R e s e e e e e R e e e ne e e e e e e neen e nenneerenr s 10
CONEENE REPOSITONY ...ttt ettt ettt ettt b et bbb £ e st s e bt b e he b e st b et e b e e e b et e b e s e bt b e bt et e ne b et 10
File System Content REPOSITONY PrOPEITIES........ciiieuirieeirieierieisie ittt 11
Encrypted File System Content REPOSITOrY Properties.........covireeirieirieireerieesiesesees e 12
Volatile Content REPOSITONY PrOPEITIES........ccueirieirieirieirieeriees sttt srne 12
PrOVENGNCE REDOSITONY......eiuiuiieeiirteiesteeete st se ettt sttt e bt a s b et bt e b et b e st e b e seebeseebeseebesee bt saenesbe e sbe e ebe e ebe e 12
Write Ahead Provenance REPOSITOrY PrOPEITIES.........ccoiiiiririiriee st reeie sttt sre e sbe b seene e 13
Encrypted Write Ahead Provenance REPOSITONY Properties..... ..ot 15
Persistent Provenance REPOSITOrY ProPertiEs.........coooi ittt 16
Volatile Provenance REPOSITOrY ProPErtiES.........cociieiriiieriiirireesiees ettt 17
COmMPONENt SEAEUS REPOSITONYciveuerteietereetereete sttt sttt st sttt sttt b et b e st sb e se b seebese bt s b e st sbe st s b et sbe e be e b 17
SITE L0 SO PrOPEITIES. ... cvieeteeet ettt bbbttt b et bt b e b b e bt bbb bt b e b e s b e e benes 18
Site to Site Routing Properties for REVEISE PrOXIES........ccciieeriiirieirieeseses ettt 19

Site {0 Site ProtOCOI SEQUENCE........ccuiriieireeterietereei ettt sttt s b e et e bbbt st e st e b e e b e e ebe e 19

Reverse ProxXy CONfiQUIAIONS.........ccceirieuerieiirieiriet ettt b ettt b e 20

Site to Site and Reverse Proxy EXAMPIES........cociriiriiinere ettt 20
WVED PrOPEITIES. ...ttt bbb bbbt b et bbbt e bt e b et b b e bt bt e e nnenes 24
SECUITY PrOPEITIES.eeetieetireeteste ettt b ettt h et b et h e b et bt e bt s bbbt s e e bt b e st b en et e et e s nb et en e s ens 25
[dentity MapPINg PrOPEITIES.......couiriiirieierieie ettt ettt e b e e b e bbbt bbbt bt sttt 26
ClUSLEr COMIMON PrOPEITIES......c.eiveueiteeetereetese et sttt sttt sttt sttt b et b e s et e se et e se ek e seebeseebessesesbenesbe e ebe e ebeneebeneas 27
ClUSEEr NOGE PrOPEITIES......cvieetiieiereeeertei sttt ettt ettt s et b e b e b et b e eb e s e bbbt s e e st e et b e e b e e nn e e enn 27
ZOOK EEPE PrOPEITIES.....cuiectieeteieeterte ettt bbb e bbbt bbb et e b et b et e b e b e e e 28
K EIDEIOS PrOPEITIES. ... ettt et et b et bbb et b et b st b e b e ettt se st st 29
ANBIYEICS PIOPEITIES. ..ottt sttt sttt bbb s e b s e bt s e bbbt s bt n b et b et s b et et et et e e e 29

CUSEOM PrOPEITIES. ...ttt sttt sttt sttt b et r et b ettt b e st b e s e b e s e e bt s e e bt s e e Rt s b e Rt e b e st b et e b et e b et e b et e b e e e b e e ebe e 30

Apache NiFi

System Properties

System Properties

The nifi.propertiesfile in the conf directory isthe main configuration file for controlling how NiFi runs. This section
provides an overview of the propertiesin this file and their setting options.

E Note: Valuesfor periods of time and data sizes must include the unit of measure, for example 10 secs" or

"10 MB", not simply "10".

Upgrade Recommendations

The contents of the nifi.properties file are relatively stable but can change from version to version. It is aways a good
idea to review this file when upgrading and pay attention to any changes.

Consider configuring items below marked with an asterisk (*) in such away that upgrading will be easier. For
example, change the default directory configurations to locations outside the main root installation. In thisway,
these items can remain in their configured location through an upgrade, allowing NiFi to find all the repositories and
configuration files and pick up where it left off as soon as the old version is stopped and the new version is started.
Furthermore, the administrator may reuse this nifi.properties file and any other configuration files without having to
re-configure them each time an upgrade takes place. See Upgrading NiFi for more details.

Core Properties

Thefirst section of the nifi.propertiesfile is for the Core Properties. These properties apply to the core framework as a

whole.

Property

Description

nifi.flow.configuration.file*

The location of the flow configuration file (i.e., thefile that contains
what is currently displayed on the NiFi graph). The default valueis ./
conf/flow.xml.gz.

nifi.flow.configuration.archive.enabl ed*

Specifies whether NiFi creates a backup copy of the flow automatically
when the flow is updated. The default valueistrue.

nifi.flow.configuration.archive.dir*

The location of the archive directory where backup copies of

the flow.xml are saved. The default value is ./conf/archive. NiFi
removes old archive filesto limit disk usage based on archived

file lifespan, total size, and number of files, as specified with
nifi.flow.configuration.archive.max.time, max.storage and max.count
properties respectively. If none of these limitation for archiving is
specified, NiFi uses default conditions, that is 30 days for max.time
and 500 MB for max.storage. This cleanup mechanism takes into
account only automatically created archived flow.xml files. If

there are other files or directoriesin this archive directory, NiFi

will ignore them. Automatically created archives have filename

with SO 8601 format timestamp prefix followed by <original-
filename>. That is <year><month><day>T<hour><minute><second>
+<timezone offset>_<original filename>. For example,
20160706T160719+0900_flow.xml.gz. NiFi checks filenames when it
cleans archive directory. If you would like to keep a particular archive
in this directory without worrying about NiFi deleting it, you can do so
by copying it with a different filename pattern.

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#upgrading_nifi

Apache NiFi

System Properties

nifi.flow.configuration.archive.max.time*

The lifespan of archived flow.xml files. NiFi will delete expired
archive files when it updates flow.xml if this property is specified.
Expiration is determined based on current system time and the last
modified timestamp of an archived flow.xml. If no archive limitation is
specified in nifi.properties, NiFi removes archives older than 30 days.

nifi.flow.configuration.archive.max.storage*

Thetotal data size allowed for the archived flow.xml files. NiFi will
delete the oldest archive files until the total archived file size becomes
less than this configuration value, if this property is specified. If no
archive limitation is specified in nifi.properties, NiFi uses 500 MB for
this.

nifi.flow.configuration.archive.max.count*

The number of archive files allowed. NiFi will delete the oldest archive
files so that only N latest archives can be kept, if this property is
specified.

nifi.flowcontroller.autoResumeState

Indicates whether -upon restart- the components on the NiFi graph
should return to their |ast state. The default value is true.

nifi.flowcontroller.graceful .shutdown.period

Indicates the shutdown period. The default valueis 10 secs.

nifi.flowservice.writedel ay.interval

When many changes are made to the flow.xml, this property specifies
how long to wait before writing out the changes, so as to batch the
changes into asingle write. The default value is 500 ms.

nifi.administrative.yield.duration

If a component allows an unexpected exception to escape, it

is considered abug. As aresult, the framework will pause (or
administratively yield) the component for this amount of time. Thisis
done so that the component does not use up massive amounts of system
resources, sinceit is known to have problems in the existing state. The
default value is 30 secs.

nifi.bored.yield.duration

When a component has no work to do (i.e., is "bored"), thisisthe
amount of time it will wait before checking to seeiif it has new datato
work on. Thisway, it does not use up CPU resources by checking for
new work too often. When setting this property, be aware that it could
add extra latency for components that do not constantly have work to
do, asonce they go into this"bored" state, they will wait this amount of
time before checking for more work. The default valueis 10 ms.

nifi.queue.backpressure.count

When drawing a new connection between two components, thisisthe
default value for that connection's back pressure object threshold. The
default is 10000 and the value must be an integer.

nifi.queue.backpressure.size

When drawing a new connection between two components, thisisthe
default value for that connection's back pressure data size threshold.
The default is 1 GB and the value must be a data size including the unit
of measure.

nifi.authorizer.configuration.file*

Thisisthe location of the file that specifies how authorizers are
defined. The default valueis ./conf/authorizers.xml.

nifi.login.identity.provider.configuration.file*

Thisisthe location of the file that specifies how username/

password authentication is performed. Thisfileisonly considered if
nifi.security.user.login.identity.provider is configured with a provider
identifier. The default value is ./conf/login-identity-providers.xml.

nifi.templates.directory*

Thisisthe location of the directory where flow templates are saved (for
backward compatibility only). Templates are stored in the flow.xml.gz
starting with NiFi 1.0. The template directory can be used to (bulk)
import templates into the flow.xml.gz automatically on NiFi startup.
The default value is ./conf/templates.

nifi.ui.banner.text

Thisis banner text that may be configured to display at the top of the
User Interface. It is blank by default.

nifi.ui.autorefresh.interval

Theinterval at which the User Interface auto-refreshes. The default
valueis 30 secs.

Apache NiFi System Properties

nifi.nar.library.directory The location of the nar library. The default valueis ./lib and probably
should be left asisNOTE: Additiond library directories can be
specified by using the nifi.nar.library.directory. prefix with unique
suffixes and separate paths as values. For example, to provide two
additional library locations, a user could also specify additional
properties with keys of:nifi.nar.library.directory.libl=/narg/libl
nifi.nar.library.directory.lib2=/narsg/lib2 Providing three total locations,
including nifi.nar.library.directory.

nifi.nar.working.directory The location of the nar working directory. The default valueis ./work/
nar and probably should be left asis.

nifi.documentation.working.directory The documentation working directory. The default value is ./work/
docs/components and probably should be left asis.

nifi.processor.scheduling.timeout Timeto wait for a Processor's life-cycle operation (@OnScheduled
and @OnUnscheduled) to finish before other life-cycle operation (e.g.,
stop) could beinvoked. The default valueis 1 min.

State M anagement

The State Management section of the Properties file provides a mechanism for configuring local and cluster-wide
mechanisms for components to persist state.

See the State Management section for more information on how thisis used.

Property Description

nifi.state.management.configuration.file The XML file that contains configuration for the local and cluster-wide
State Providers. The default value is ./conf/state-management.xml.

nifi.state.management.provider.local The ID of the Local State Provider to use. This value must match the
value of theid element of one of the local-provider elementsin the
state-management.xml file.

nifi.state.management.provider.cluster The ID of the Cluster State Provider to use. This value must match the
value of theid element of one of the cluster-provider elementsin the
state-management.xml file. Thisvalueisignored if not clustered but is
required for nodesin a cluster.

nifi.state.management.embedded.zookeeper .start Specifies whether or not thisinstance of NiFi should start an
embedded ZooK eeper Server. Thisis used in conjunction with the
ZooK eeperStateProvider.

nifi.state.management.embedded.zookeeper. properties Specifies a properties file that contains the configuration

for the embedded ZooK eeper Server that is started (if the
nifi.state.management.embedded.zookeeper.start property is set to true)

H2 Settings
The H2 Settings section defines the settings for the H2 database, which keeps track of user access and flow controller
history.
Property Description
nifi.database.directory* The location of the H2 database directory. The default valueis ./
database repository.

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#state_management

Apache NiFi System Properties

nifi.h2.url.append This property specifies additional arguments to add to
the connection string for the H2 database. The default
value should be used and should not be changed. It is:
;LOCK_TIMEOUT=25000;WRITE_DELAY=0;AUTO_SERVER=FALSE.

FlowFile Repository

The FlowFile repository keeps track of the attributes and current state of each FlowFile in the system. By defaullt, this
repository isinstalled in the same root installation directory as all the other repositories; however, it is advisable to
configure it on a separate drive if available.

There are currently three implementations of the FlowFile Repository, which are detailed below.

Property Description

nifi.flowfile.repository.implementation The FlowFile Repository implementation. The default valueis
org.apache.nifi.controller.repository.WriteAheadF owFileRepository.
The other current options are
org.apache.nifi.controller.repository.V ol atileFl owFileRepository and
org.apache.nifi.controller.repository.RocksDBFlowFileRepository.

Note: Switching repository implementations should only be done on an instance with zero queued FlowFiles,
and should only be done with caution.

Write Ahead FlowFile Repository

WriteAheadFlowFileRepository is the default implementation. It persists FlowFilesto disk, and can optionally be
configured to synchronize all changesto disk. Thisis very expensive and can significantly reduce NiFi performance.
However, if it isfalse, there could be the potential for datalossif either there is a sudden power loss or the operating
system crashes. The default value is false.

Property Description

nifi.flowfile.repository.wal.implementation If the repository implementation is configured to use the
WriteAheadFlowFileRepository, this property can be used to specify
which implementation of the Write-Ahead Log should be used. The
default value is org.apache.nifi.wali.Sequential AccessWriteAheadl og.
This version of the write-ahead log was added in version 1.6.0 of
Apache NiFi and was developed in order to address an issue that
exists in the older implementation. In the event of power loss or

an operating system crash, the old implementation was susceptible

to recovering FlowFiles incorrectly. This could potentially lead

to the wrong attributes or content being assigned to a FlowFile

upon restart, following the power loss or OS crash. However, one

can still choose to opt into using the previous implementation and
accept that risk, if desired (for example, if the new implementation
were to exhibit some unexpected error). To do so, set the value

of this property to org.wali.Minimal LockingWriteAheadL og.

Another available implementation is
org.apache.nifi.wali.EncryptedSequential AccessWriteAheadL og. If the
value of this property is changed, upon restart, NiFi will still recover
the records written using the previously configured repository and
delete the files written by the previously configured implementation.

nifi.flowfile.repository.directory* The location of the FlowFile Repository. The default valueis ./
flowfile_repository.

nifi.flowfile.repository.partitions The number of partitions. The default value is 256.

Apache NiFi

System Properties

nifi.flowfile.repository.checkpoint.interval

The FlowFile Repository checkpoint interval. The default valueis 2
mins.

nifi.flowfile.repository.always.sync

If set to true, any change to the repository will be synchronized to the
disk, meaning that NiFi will ask the operating system not to cache the
information. Thisis very expensive and can significantly reduce NiFi
performance. However, if it isfalse, there could be the potential for
datalossif either thereis a sudden power loss or the operating system
crashes. The default value isfalse.

Encrypted Write Ahead FlowFile Repository Properties

All of the properties defined above (see Write Ahead FlowFile Repository) still apply. Only encryption-specific
properties are listed here. See Encrypted FlowFile Repository in the User Guide for more information.

Note: Unlike the encrypted content and provenance repositories, the repository implementation does not

E change here, only the underlying write-ahead log implementation. This allows for cleaner separation and
more flexibility in implementation selection. The property that should be changed to enable encryption is
nifi.flowfile.repository.wal.implementation.

Property

Description

nifi.flowfile.repository.encryption.key.provider.implementation Thisisthe fully-qualified class name of the key provider. A key

provider isthe datastore interface for accessing the encryption

key to protect the content claims. There are currently two
implementations- StaticK eyProvider which reads akey directly from
nifi.properties, and FileBasedK eyProvider which reads n many keys
from an encrypted file. The interface is extensible, and HSM-backed or
other providers are expected in the future.

nifi.flowfile.repository.encryption.key.provider.location The path to the key definition resource (empty for StaticKeyProvider,

Jkeys.nkp or similar path for FileBasedK eyProvider). For future
providers like an HSM, this may be a connection string or URL.

nifi.flowfile.repository.encryption.key.id

The active key ID to use for encryption (e.g. Keyl).

nifi.flowfile.repository.encryption.key

The key to use for StaticKeyProvider. The key format is hex-encoded
(0123456789A BCDEFFEDCBA 98765432100123456789ABCDEFFED[CBA 9876543210,
but can aso be encrypted using the ./encrypt-config.sh tool in NiFi
Toolkit (see the Encrypt-Config Tool section in the NiFi Toolkit Guide
for more information).

nifi.flowfile.repository.encryption.key.id.*

Allows for additional keys to be specified for

the StaticKeyProvider. For example, the line
nifi.flowfile.repository.encryption.key.id.Key2=012...210 would
provide an available key Key?2.

The simplest configuration is below:

nifi.flowfile.repository.
nifi.flowfile.repository.
nifi.flowfile.repository.
nifi.flowfile.repository.
nifi.flowfile.repository.
nifi.flowfile.repository.

Volatile FlowFile Repository

i mpl enent at i on=or g. apache. nifi.controller.repository. WiteAhea
wal . i npl enent ati on=or g. apache. ni fi.wal i.EncryptedSequenti al Acc
encryption. key. provi der. i npl enent at i on=or g. apache. ni fi.securit\
encryption. key. provi der. | ocation=

encryption. key. i d=Key1l

encryption. key=0123456789ABCDEFFEDCBA98765432100123456789ABCDEI

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#write-ahead-flowfile-repository
https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#encrypted-flowfile
https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#encrypt_config_tool
https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html

Apache NiFi System Properties

Thisimplementation stores FlowFiles in memory instead of on disk. It will result in dataloss in the event of power/
machine failure or arestart of NiFi. To use thisimplementation, set nifi.flowfile.repository.implementation to
org.apache.nifi.controller.repository.V ol atil eFl owFileRepository.

RocksDB FlowFile Repository

Thisimplementation makes use of the RocksDB key-value store. It uses periodic synchronization to ensure that
no created or received datais lost (as long as nifi.flowfile.repository.rocksdb.accept.data.loss is set false). In the
event of afailure (e.g. power loss), work done on FlowFiles through the system (i.e. routing and transformation)
may still be lost. Specifically, the record of these actions may be lost, reverting the affected FlowFiles to
aprevious, valid state. From there, they will resume their path through the flow as normal. This guarantee
comes at the expense of a delay on operations that add new data to the system. This delay is configurable (as
nifi.flowfile.repository.rocksdb.sync.period), and can be tuned to the individual system.

The configuration parameters for this repository fall in to two categories, "NiFi-centric" and "RocksDB-centric". The
NiFi-centric settings have to do with the operations of the FlowFile Repository and its interaction with NiFi. The
RocksDB-centric settings directly correlate to settings on the underlying RocksDB repo. More information on these
settings can be found in the RocksDB documentation: https:.//github.com/facebook/rocksdb/wiki/RocksJava-Basics.

Note: Windows users will need to ensure "Microsoft Visual C++ 2015 Redistributable” isinstalled for
IS this repository to work. See the following link for more details. https://github.com/facebook/rocksdb/wiki/

RocksJava-Basi csttmaven-windows.

To use thisimplementation, set nifi.flowfile.repository.implementation to
org.apache.nifi.controller.repository.RocksDBFlowFileRepository.

NiFi-centric Configuration Properties:

Property

Description

nifi.flowfile.repository.directory

The location of the FlowFile Repository. The default valueis™./
flowfile_repository".

nifi.flowfile.repository.rocksdb.sync.warning.period

How often to log warnings if unable to sync. The default value is 30
seconds.

nifi.flowfile.repository.rocksdb.claim.cleanup.period

How often to mark content claims destructible (so they can be removed
from the content repo). The default value is 30 seconds.

nifi.flowfile.repository.rocksdb.deserialization.threads

How many threads to use on startup restoring the FlowFile state. The
default valueis 16.

nifi.flowfile.repository.rocksdb.deserialization.buffer.size

Size of the buffer to use on startup restoring the FlowFile state. The
default value is 1000.

nifi.flowfile.repository.rocksdb.sync.period

Frequency at which to force async to disk. Thisisthe

maximum period a data creation operation may block if
nifi.flowfile.repository.rocksdb.accept.data.loss is false. The default
vaueis 10 milliseconds.

nifi.flowfile.repository.rocksdb.accept.data.l oss

Whether to accept the loss of received / created data. Setting this true
increases throughput if loss of data is acceptable. The default valueis
false.

nifi.flowfile.repository.rocksdb.enable.stall.stop

Whether to enable the stall / stop of writes to the repository based on
configured limits. Enabling this feature allows the system to protect
itself by restricting (delaying or denying) operations that increase the
total FlowFile count on the node to prevent the system from being
overwhelmed. The default valueisfalse.

nifi.flowfile.repository.rocksdb.stall.period

The period of time to stall when the specified criteria are encountered.
The default value is 100 milliseconds.

https://github.com/facebook/rocksdb/wiki/RocksJava-Basics

Apache NiFi

System Properties

nifi.flowfile.repository.rocksdb.stall.flowfile.count

The FlowFile count at which to begin stalling writes to the repo. The
default value is 800000.

nifi.flowfile.repository.rocksdb.stall.heap.usage.percent

The heap usage at which to begin stalling writes to the repo. The
default value is 95%.

nifi.flowfile.repository.rocksdb.stop.flowfile.count

The FlowFile count at which to begin stopping the creation of new
FlowFiles. The default value is 1100000.

nifi.flowfile.repository.rocksdb.stop.heap.usage.percent

The heap usage at which to begin stopping the creation of new
FlowFiles. The default value is 99.9%.

nifi.flowfile.repository.rocksdb.remove.orphaned.flowfiles.on.startup

Whether to allow the repository to remove FlowFiles it cannot
identify on startup. Asthisis often the result of a configuration or
synchronization error, it is disabled by default. This should only be
enabled if you are absolutely certain you want to lose the datain
question. The default valueis false.

nifi.flowfile.repository.rocksdb.enable.recovery.mode

Whether to enable "recovery mode". This limits the number of
FlowFiles loaded into the graph at atime, while not actually removing
any FlowFiles (or content) from the system. This alows for the
recovery of a system that is encountering OutOfMemory errors or
similar on startup. This should not be enabled unless necessary to
recover a system, and should be disabled as soon as that has been
accomplished.

WARNING: While in recovery mode, do not make modifications to
the graph. Changes to the graph may result in the inability to restore
further FlowFiles from the repository. The default valueis false.

nifi.flowfile.repository.rocksdb.recovery.mode.flowfile.count

The number of FlowFilesto load into the graph when in "recovery
mode". As FlowFiles |eave the system, additional FlowFileswill be
loaded up to thislimit. This setting does not prevent FlowFiles from
coming into the system via normal means. The default value is 5000.

RocksDB-centric Configuration Properties:

Property

Description

nifi.flowfile.repository.rocksdb.parallel.threads

The number of threads to use for flush and compaction.

A good valueis the number of cores. See RockDB

DBOptions.setl ncreaseParallelism() for more information. The default
vaueis8.

nifi.flowfile.repository.rocksdb.max.write.buffer.number

The maximum number of write buffers that are built up in memory.
See RockDB ColumnFamilyOptions.setMaxWriteBufferNumber() /
max_write_buffer_number for more information. The default valueis
4,

nifi.flowfile.repository.rocksdb.write.buffer.size

The amount of data to build up in memory before converting to a
sorted on disk file. Larger values increase performance, especially
during bulk loads. Up to max_write_buffer_number write buffers
may be held in memory at the same time, so you may wish to
adjust this parameter to control memory usage. See RockDB
ColumnFamilyOptions.setWriteBufferSize() / write_buffer_size for
more information. The default valueis 256 MB.

nifi.flowfile.repository.rocksdb.level .0.slowdown.writes.trigger

A soft limit on number of level-0 files. Writes are slowed at

this point. A values less than 0 means no write slow down will

be triggered by the number of filesin level-0. See RocksDB
ColumnFamilyOptions.setL evel 0SlowdownWritesTrigger() /
level0_slowdown_writes trigger for more information. The default
vaueis 20.

Apache NiFi System Properties

nifi.flowfile.repository.rocksdb.level.0.stop.writes.trigger The maximum number of level-0 files. Writes

will be stopped at this point. See RocksDB
ColumnFamilyOptions.setL evel 0StopWritesTrigger() /
levelO_stop_writes_trigger for more information. The default valueis
40.

nifi.flowfile.repository.rocksdb.del ayed.write.bytes.per.second The limited write rate to the DB if slowdown is triggered. RocksDB
may decide to slow down more if the compaction gets behind
further. See RocksDB DBOptions.setDelayedWriteRate() for more
information. The default valueis 16 MB.

nifi.flowfile.repository.rocksdb.max.background.flushes Specifies the maximum number of concurrent background flush
jobs. See RocksDB DBOptions.setM axBackgroundFlushes() /
max_background_flushes for more information. The default valueis 1.

nifi.flowfile.repository.rocksdb.max.background.compactions Specifies the maximum number of concurrent background compaction
jobs. See RocksDB DBOptions.setM axBackgroundCompactions() /
max_background_compactions for more information. The default value
isl

nifi.flowfile.repository.rocksdb.min.write.buffer.number.to.merge The minimum number of write buffersto merge

together before writing to storage. See RocksDB
ColumnFamilyOptions.setMinWriteBufferNumberToMerge() /
min_write_buffer_number_to_merge for more information. The default
vaueis 1.

nifi.flowfile.repository.rocksdb.stat.dump.period The period at which to dump rocksdb.stats to the log. See RocksDB
DBOptions.setStatsDumpPeriodSec() / stats_ dump_period_sec for
more information. The default value is 600 sec.

Swap M anagement

NiFi keeps FlowFile information in memory (the VM) but during surges of incoming data, the FlowFile information
can start to take up so much of the VM that system performance suffers. To counteract this effect, NiFi "swaps' the
FlowFile information to disk temporarily until more VM space becomes available again. These properties govern
how that process occurs.

Property Description

nifi.swap.manager.implementation The Swap Manager implementation. The default valueis
org.apache.nifi.controller.FileSystemSwapM anager and should not be
changed.

nifi.queue.swap.threshold The queue threshold at which NiFi starts to swap FlowFile information

to disk. The default value is 20000.

nifi.swap.in.period The swap in period. The default valueis 5 sec.

nifi.swap.in.threads The number of threads to use for swapping in. The default valueis 1.
nifi.swap.out.period The swap out period. The default valueis 5 sec.

nifi.swap.out.threads The number of threads to use for swapping out. The default value is 4.

Content Repository

The Content Repository holds the content for all the FlowFilesin the system. By default, it isinstalled in the same
root installation directory as all the other repositories; however, administrators will likely want to configure it on a
separate driveif available. If nothing else, it is best if the Content Repository is not on the same drive as the FlowFile
Repository. In dataflows that handle alarge amount of data, the Content Repository could fill up adisk and the

10

Apache NiFi

System Properties

FlowFile Repository, if also on that disk, could become corrupt. To avoid this situation, configure these repositories

on different drives.

Property

Description

nifi.content.repository.implementation

The Content Repository implementation. The default value

is org.apache.nifi.controller.repository.FileSystemRepository
and should only be changed with caution. To store flowfile
content in memory instead of on disk (at therisk of dataloss

in the event of power/machine failure), set this property to
org.apache.nifi.controller.repository.V ol atileContentRepository.

File System Content Repository Properties

Property

Description

nifi.content.repository.implementation

The Content Repository implementation. The default value

is org.apache.nifi.controller.repository.FileSystemRepository
and should only be changed with caution. To store flowfile
content in memory instead of on disk (at therisk of dataloss

in the event of power/machine failure), set this property to
org.apache.nifi.controller.repository.V ol atileContentRepository.

nifi.content.claim.max.appendable.size

The maximum size for a content claim. The default valueis 1 MB.

nifi.content.claim.max.flow.files

The maximum number of FlowFiles to assign to one content claim. The
default value is 100.

nifi.content.repository.directory.default*

The location of the Content Repository. The default valueis ./
content_repository.NOTE: Multiple content repositories can be
specified by using the nifi.content.repository.directory. prefix

with unique suffixes and separate paths as values. For example,

to provide two additional locations to act as part of the content
repository, auser could also specify additional properties with

keys of :nifi.content.repository.directory.content1=/repos/content1
nifi.content.repository.directory.content2=/repos/content2 Providing
three total locations, including nifi.content.repository.directory.default.

nifi.content.repository.archive.max.retention.period

If archiving is enabled (see nifi.content.repository.archive.enabled
below), then this property specifies the maximum amount of time to
keep the archived data. The default valueis 12 hours.

nifi.content.repository.archive.max.usage.percentage

If archiving is enabled (see nifi.content.repository.archive.enabled
below), then this property must have a value that indicates the content
repository disk usage percentage at which archived data begins to be
removed. If the archive is empty and content repository disk usage

is above this percentage, then archiving is temporarily disabled.
Archiving will resume when disk usage is below this percentage. The
default value is 50%.

nifi.content.repository.archive.enabled

To enable content archiving, set thisto true and specify avalue for the
nifi.content.repository.archive.max.usage.percentage property above.
Content archiving enables the provenance Ul to view or replay content
that is no longer in adataflow queue. By default, archiving is enabled.

nifi.content.repository.aways.sync

If set to true, any change to the repository will be synchronized to the
disk, meaning that NiFi will ask the operating system not to cache the
information. Thisis very expensive and can significantly reduce NiFi
performance. However, if it isfalse, there could be the potential for
datalossif either there is a sudden power loss or the operating system
crashes. The default value isfalse.

nifi.content.viewer.url

The URL for aweb-based content viewer if oneis available. It is blank
by defauilt.

11

Apache NiFi System Properties

Encrypted File System Content Repository Properties

All of the properties defined above (see File System Content Repository Properties) still apply. Only encryption-
specific properties are listed here. See Encrypted Content Repository in the User Guide for more information.

Property Description

nifi.content.repository.encryption.key.provider.implementation Thisisthe fully-qualified class name of the key provider. A key
provider isthe datastore interface for accessing the encryption

key to protect the content claims. There are currently two
implementations - StaticK eyProvider which reads a key directly from
nifi.properties, and FileBasedK eyProvider which reads n many keys
from an encrypted file. The interface is extensible, and HSM-backed or
other providers are expected in the future.

nifi.content.repository.encryption.key.provider.location The path to the key definition resource (empty for StaticKeyProvider,
Jkeys.nkp or similar path for FileBasedK eyProvider). For future
providers like an HSM, this may be a connection string or URL.

nifi.content.repository.encryption.key.id The active key 1D to use for encryption (e.g. Key1).

nifi.content.repository.encryption.key The key to use for StaticKeyProvider. The key format is hex-encoded
(0123456789ABCDEFFEDCBA 98765432100123456789ABCDEFFED[CBA 9876543210
but can also be encrypted using the ./encrypt-config.sh tool in NiFi
Toolkit (see the Encrypt-Config Tool section in the NiFi Toolkit Guide
for more information).

nifi.content.repository.encryption.key.id.* Allows for additional keys to be specified for

the StaticKeyProvider. For example, the line
nifi.content.repository.encryption.key.id.Key2=012...210 would
provide an available key Key2.

The simplest configuration is below:

nifi.content.repository.inplenmentation=org.apache.nifi.controller.repository.crypto. Encr
nifi.content.repository.encryption.key. provider.inplenmentation=org.apache.nifi.security.
nifi.content.repository.encryption.key. provider.|ocation=
nifi.content.repository.encryption.key.id=Keyl

nifi.content.repository.encryption. key=0123456789ABCDEFFEDCBA98765432100123456789ABCDEF!

Volatile Content Repository Properties

Property Description

nifi.volatile.content.repository.max.size The Content Repository maximum size in memory. The default value
is100 MB.

nifi.volatile.content.repository.block.size The Content Repository block size. The default valueis 32 KB.

Provenance Repository

The Provenance Repository contains the information related to Data Provenance. The next four sections are for
Provenance Repository properties.

Property Description

12

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#file-system-content-repository-properties
https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#encrypted-content
https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#encrypt_config_tool
https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html

Apache NiFi System Properties

nifi.provenance.repository.implementation The Provenance Repository implementation. The default valueis
org.apache.nifi.provenance.WriteA headProvenanceRepository.

Three additional repositories are available aswell. To store
provenance events in memory instead of on disk (in which

case all eventswill belost on restart, and events will be

evicted in afirst-in-first-out order), set this property to
org.apache.nifi.provenance.VolatileProvenanceRepository. This leaves
a configurable number of Provenance Eventsin the Java heap, so the
number of eventsthat can be retained is very limited.

A third and fourth option are available:
org.apache.nifi.provenance.Persi stentProvenanceRepository and
org.apache.nifi.provenance.EncryptedWriteA headProvenanceRepository].
The PersistentProvenanceRepository was originally written with the
simple goa of persisting Provenance Events as they are generated

and providing the ability to iterate over those events sequentially.
Later, it was desired to be able to compress the data so that more

data could be stored. After that, the ability to index and query the

data was added. As requirements evolved over time, the repository
kept changing without any major redesigns. When used in a

NiFi instance that is responsible for processing large volumes of

small FlowFiles, the PersistentProvenanceRepository can quickly
become a bottleneck. The WriteAheadProvenanceRepository

was then written to provide the same capabilities as the
PersistentProvenanceRepository while providing far better
performance. The WriteAheadProvenanceRepository was added
inversion 1.2.0 of NiFi. Since then, it has proven to be very stable
and robust and as such was made the default implementation. The
PersistentProvenanceRepository is now considered deprecated and
should no longer be used. If administering an instance of NiFi that

is currently using the PersistentProvenanceRepository, it is highly
recommended to upgrade to the WriteA headProvenanceRepository.
Doing so is as simple as changing the implementation property value
from org.apache.nifi.provenance.PersistentProvenanceRepository

to org.apache.nifi.provenance.WriteA headProvenanceRepository.
Because the Provenance Repository is backward compatible, there will
be no loss of data or functionality.

The EncryptedWriteA headProvenanceRepository builds upon the
WriteAheadProvenanceRepository and ensures that datais encrypted at
rest.

NOTE: The WriteAheadProvenanceRepository will make use of
the Provenance data stored by the PersistentProvenanceRepository.
However, the PersistentProvenanceRepository may not be able to
read the data written by the WriteAheadProvenanceRepository.
Therefore, once the Provenance Repository is changed to use the
WriteAheadProvenanceRepository, it cannot be changed back to
the PersistentProvenanceRepository without deleting the datain the
Provenance Repository.

Write Ahead Provenance Repository Properties

Property Description

nifi.provenance.repository.directory.default* The location of the Provenance Repository. The default valueis ./
provenance_repository.NOTE: Multiple provenance repositories

can be specified by using the nifi.provenance.repository.directory.
prefix with unique suffixes and separate paths as values. For example,
to provide two additional locations to act as part of the provenance
repository, auser could also specify additional properties with

keys of :nifi.provenance.repository.directory.provenancel=/repos/
provenancel nifi.provenance.repository.directory.provenance2=/
repos/provenance?2 Providing three total locations, including
nifi.provenance.repository.directory.default.

13

Apache NiFi System Properties

nifi.provenance.repository.max.storage.time The maximum amount of time to keep data provenance information.
The default value is 24 hours.

nifi.provenance.repository.max.storage.size The maximum amount of data provenance information to store

at atime. The default value is 1 GB. The Data Provenance
capability can consume a great deal of storage space because

so much datais kept. For production environments, values of

1-2 TB or more is not uncommon. The repository will write to
asingle"event file" (or set of "event files" if multiple storage
locations are defined, as described above) for some period of

time (defined by the nifi.provenance.repository.rollover.time and
nifi.provenance.repository.rollover.size properties). Datais always
aged off onefileat atime, soit is not advisable to writeto asingle
"event file" for atremendous amount of time, asit will prevent old data
from aging off as smoothly.

nifi.provenance.repository.rollover.time The amount of time to wait before rolling over the "event file" that the
repository iswriting to.

nifi.provenance.repository.rollover.size The amount of datato write to asingle "event file." The default value
is 100 MB. For production environments where a very large amount of
Data Provenance is generated, avalue of 1 GB is also very reasonable.

nifi.provenance.repository.query.threads The number of threads to use for Provenance Repository queries. The
default valueis 2.

nifi.provenance.repository.index.threads The number of threads to use for indexing Provenance events so that
they are searchable. The default valueis 2. For flows that operate on
avery high number of FlowFiles, the indexing of Provenance events
could become a bottleneck. If this happens, increasing the value of this
property may increase the rate at which the Provenance Repository is
able to process these records, resulting in better overall throughput. It
isadvisableto use at least 1 thread per storage location (i.e., if there
are 3 storage locations, at least 3 threads should be used). For high
throughput environments, where more CPU and disk 1/0 is available,
it may make sense to increase this value significantly. Typically going
beyond 2-4 threads per storage location is not valuable. However, this
can be tuned depending on the CPU resources available compared to
the /O resources.

nifi.provenance.repository.compress.on.rollover Indicates whether to compress the provenance information when an
"event file" isrolled over. The default value istrue.

nifi.provenance.repository.aways.sync If set to true, any change to the repository will be synchronized to the
disk, meaning that NiFi will ask the operating system not to cache the
information. Thisis very expensive and can significantly reduce NiFi
performance. However, if it isfalse, there could be the potential for
datalossif either thereis a sudden power loss or the operating system
crashes. The default value isfalse.

nifi.provenance.repository.indexed.fields Thisisacomma-separated list of the fields that should be indexed and
made searchable. Fields that are not indexed will not be searchable.
Valid fields are: EventType, FlowFileUUID, Filename, TransitURI,
Processor D, Alternatel dentifierURI, Relationship, Details. The default
vaueis: EventType, FlowFileUUID, Filename, ProcessorID.

nifi.provenance.repository.indexed.attributes Thisis acomma-separated list of FlowFile Attributes that should
be indexed and made searchable. It is blank by default. But some
good examples to consider are filename and mime.type as well as any
custom attributes you might use which are valuable for your use case.

14

Apache NiFi System Properties

nifi.provenance.repository.index.shard.size The repository uses Apache Lucene to performing indexing and
searching capabilities. This value indicates how large a Lucene Index
should become before the Repository starts writing to a new Index.
Large values for the shard size will result in more Java heap usage
when searching the Provenance Repository but should provide better
performance. The default value is 500 MB. However, thisis due to the
fact that defaults are tuned for very small environments where most
users begin to use NiFi. For production environments, it is advisable
to change thisvalue to 4 to 8 GB. Once all Provenance Eventsin the
index have been aged off from the "event files," the index will be
destroyed as well.

NOTE: This value should be smaller than (no more than half of) the
nifi.provenance.repository.max.storage.size property.

nifi.provenance.repository.max.attribute.length Indicates the maximum length that a FlowFile attribute can be when
retrieving a Provenance Event from the repository. If the length of
any attribute exceeds this value, it will be truncated when the event is
retrieved. The default value is 65536.

nifi.provenance.repository.concurrent.merge.threads Apache Lucene creates several "segments" in an Index. These
segments are periodically merged together in order to provide faster
querying. This property specifies the maximum number of threads that
are allowed to be used for each of the storage directories. The default
vaueis 2. For high throughput environments, it is advisable to set the
number of index threads larger than the number of merge threads *
the number of storage locations. For example, if there are 2 storage
locations and the number of index threads is set to 8, then the number
of merge threads should likely be less than 4. While it is not critical
that this be done, setting the number of merge threads larger than

this can result in all index threads being used to merge, which would
cause the NiFi flow to periodically pause while indexing is happening,
resulting in some data being processed with much higher latency than
other data

nifi.provenance.repository.warm.cache.frequency Each time that a Provenance query is run, the query must first search
the Apache Luceneindices (at least, in most cases - there are some
queries that are run often and the results are cached to avoid searching
the Lucene indices). When a Lucene index is opened for the first time,
it can be very expensive and take several seconds. Thisis compounded
by having many different indices, and can result in a Provenance query
taking much longer. After the index has been opened, the Operating
System's disk cache will typically hold onto enough data to make re-
opening the index much faster - at least for a period of time, until the
disk cache evictsthis data. If thisvalueis set, NiFi will periodically
open each Lucene index and then closeit, in order to "warm" the cache.
Thiswill result in far faster queries when the Provenance Repository is
large. Aswith al great things, though, it comes with a cost. Warming
the cache does take some CPU resources, but more importantly it will
evict other data from the Operating System disk cache and will result
in reading (potentially a great deal of) data from the disk. This can
result in lower NiFi performance. However, if NiFi isrunningin an
environment where CPU and disk are not fully utilized, this feature
can result in far faster Provenance queries. The default value for this
property is blank (i.e. disabled).

Encrypted Write Ahead Provenance Repository Properties

All of the properties defined above (see Write Ahead Repository Properties) still apply. Only encryption-specific
properties are listed here. See Encrypted Provenance Repository in the User Guide for more information.

Property Description

15

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#write-ahead-provenance-repository-properties
https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#encrypted-provenance

Apache NiFi

System Properties

nifi.provenance.repository.debug.frequency

Controls the number of events processed between DEBUG statements
documenting the performance metrics of the repository. Thisvalue
isonly used when DEBUG level statements are enabled in the log
configuration.

nifi.provenance.repository.encryption.key.provider.implementation

Thisisthe fully-qualified class name of the key provider. A key
provider isthe datastore interface for accessing the encryption

key to protect the provenance events. There are currently two
implementations - StaticK eyProvider which reads akey directly from
nifi.properties, and FileBasedK eyProvider which reads n many keys
from an encrypted file. The interface is extensible, and HSM-backed or
other providers are expected in the future.

nifi.provenance.repository.encryption.key.provider.location

The path to the key definition resource (empty for StaticKeyProvider,
Jkeys.nkp or similar path for FileBasedK eyProvider). For future
providers like an HSM, this may be a connection string or URL.

nifi.provenance.repository.encryption.key.id

The active key 1D to use for encryption (e.g. Key1).

nifi.provenance.repository.encryption.key

The key to use for StaticKeyProvider. The key format is hex-encoded
(0123456789A BCDEFFEDCBA 98765432100123456789ABCDEFFED
but can aso be encrypted using the ./encrypt-config.sh tool in NiFi
Toolkit (see the Encrypt-Config Tool section in the NiFi Toolkit Guide
for more information).

CBA9876543210

nifi.provenance.repository.encryption.key.id.*

Allows for additional keys to be specified for

the StaticKeyProvider. For example, the line
nifi.provenance.repository.encryption.key.id.Key2=012...210 would
provide an available key Key2.

The simplest configuration is below:

nifi.
nifi.
nifi.
nifi.
nifi.
nifi.

provenance
provenance
provenance
provenance
provenance
provenance

.repository.
.repository.
.repository.
.repository.
.repository.
.repository.

i npl enent at i on=or g. apache. ni fi . provenance. Encrypt edW it eAhea
debug. frequency=100
encryption. key. provi der. i npl ement ati on=or g. apache. nifi.securi
encryption. key. provi der. | ocati on=
encryption. key. i d=Key1l

encryption. key=0123456789ABCDEFFEDCBA98765432100123456789ABCI

Persistent Provenance Repository Properties

Property

Description

nifi.provenance.repository.directory.defaul t*

The location of the Provenance Repository. The default valueis ./
provenance_repository.NOTE: Multiple provenance repositories

can be specified by using the nifi.provenance.repository.directory.
prefix with unique suffixes and separate paths as values. For example,
to provide two additional locations to act as part of the provenance
repository, a user could also specify additional properties with

keys of :nifi.provenance.repository.directory.provenancel=/repos/
provenancel nifi.provenance.repository.directory.provenance2=/
repos/provenance?2 Providing three total locations, including
nifi.provenance.repository.directory.default.

nifi.provenance.repository.max.storage.time

The maximum amount of time to keep data provenance information.
The default value is 24 hours.

nifi.provenance.repository.max.storage.size

The maximum amount of data provenance information to store at a
time. The default valueis 1 GB.

nifi.provenance.repository.rollover.time

The amount of time to wait before rolling over the latest data
provenance information so that it is available in the User Interface. The
default value is 30 secs.

16

https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#encrypt_config_tool
https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html

Apache NiFi System Properties

nifi.provenance.repository.rollover.size The amount of information to roll over at atime. The default valueis
100 MB.
nifi.provenance.repository.query .threads The number of threads to use for Provenance Repository queries. The

default valueis 2.

nifi.provenance.repository.index.threads The number of threads to use for indexing Provenance events so that
they are searchable. The default valueis 2. For flows that operate on
avery high number of FlowFiles, theindexing of Provenance events
could become a bottleneck. If thisis the case, a bulletin will appear,
indicating that "The rate of the dataflow is exceeding the provenance
recording rate. Slowing down flow to accommodate.” If this happens,
increasing the value of this property may increase the rate at which the
Provenance Repository is able to process these records, resulting in
better overall throughput.

nifi.provenance.repository.compress.on.rollover Indicates whether to compress the provenance information when
rolling it over. The default valueistrue.

nifi.provenance.repository.aways.sync If set to true, any change to the repository will be synchronized to the
disk, meaning that NiFi will ask the operating system not to cache the
information. Thisis very expensive and can significantly reduce NiFi
performance. However, if it isfalse, there could be the potential for
datalossif either thereis asudden power loss or the operating system
crashes. The default value isfalse.

nifi.provenance.repository.journal .count The number of journal files that should be used to seridize
Provenance Event data. Increasing this value will allow more tasks to
simultaneously update the repository but will result in more expensive
merging of the journal files later. This value should ideally be equal

to the number of threads that are expected to update the repository
simultaneously, but 16 tends to work well in must environments. The
default valueis 16.

nifi.provenance.repository.indexed.fields Thisisacomma-separated list of the fields that should be indexed and
made searchable. Fields that are not indexed will not be searchable.
Valid fields are: EventType, FlowFileUUID, Filename, TransitURI,
ProcessorID, Alternatel dentifierURI, Relationship, Details. The default
valueis: EventType, FlowFileUUID, Filename, ProcessorID.

nifi.provenance.repository.indexed.attributes Thisis acomma-separated list of FlowFile Attributes that should be
indexed and made searchable. It is blank by default. But some good
examplesto consider are filename, uuid, and mime.type as well as any
custom attritubes you might use which are valuable for your use case.

nifi.provenance.repository.index.shard.size Large values for the shard size will result in more Java heap usage
when searching the Provenance Repository but should provide better
performance. The default value is 500 MB.

nifi.provenance.repository.max.attribute.length Indicates the maximum length that a FlowFile attribute can be when
retrieving a Provenance Event from the repository. If the length of
any attribute exceeds this value, it will be truncated when the event is
retrieved. The default value is 65536.

Volatile Provenance Repository Properties

Property Description
nifi.provenance.repository.buffer.size The Provenance Repository buffer size. The default value is 200000
provenance events.

Component Status Repository

17

Apache NiFi System Properties

The Component Status Repository contains the information for the Component Status History tool in the User
Interface. These properties govern how that tool works.

The buffer.size and snapshot.frequency work together to determine the amount of historical datato retain. Asan
example to configure two days worth of historical data with a data point snapshot occurring every 5 minutes you
would configure snapshot.frequency to be "5 mins' and the buffer.size to be "576". To further explain this example
for every 60 minutes there are 12 (60 / 5) snapshot windows for that time period. To keep that data for 48 hours (12 *
48) you end up with a buffer size of 576.

Property Description

nifi.components.status.repository.implementation The Component Status Repository

implementation. The default valueis
org.apache.nifi.controller.status.history.V ol atileComponent StatusReposifory
and should not be changed.

nifi.components.status.repository.buffer.size Specifies the buffer size for the Component Status Repository. The
default value is 1440.

nifi.components.status.snapshot.frequency This value indicates how often to present a snapshot of the components'
status history. The default valueis 1 min.

Siteto Site Properties

These properties govern how this instance of NiFi communicates with remote instances of NiFi when Remote
Process Groups are configured in the dataflow. Remote Process Groups can choose transport protocol from RAW
and HTTP. Properties named with nifi.remote.input.socket.* are RAW transport protocol specific. Similarly,
nifi.remote.input.http.* are HT TP transport protocol specific properties.

Property Description

nifi.remote.input.host The host name that will be given out to clients to connect to this NiFi
instance for Site-to-Site communication. By default, it isthe value from
InetAddress.getL ocal Host().getHostName(). On UNIX-like operating
systems, thisistypically the output from the hosthame command.

nifi.remote.input.secure Thisindicates whether communication between this instance of NiFi
and remote NiFi instances should be secure. By default, it is set to
false. In order for secure site-to-site to work, set the property to true.
Many other Security Properties must also be configured.

nifi.remote.input.socket.port The remote input socket port for Site-to-Site communication. By
default, it is blank, but it must have avalue in order to use RAW socket
as transport protocol for Site-to-Site.

nifi.remote.input.http.enabled Specifies whether HTTP Site-to-Site should be enabled on this host.
By default, it is set to true. Whether a Site-to-Site client usesHTTP or
HTTPS s determined by nifi.remote.input.secure. If it is set to true,
then requests are sent as HTTPS to nifi.web.https.port. If set to false,
HTTP reguests are sent to nifi.web.http.port.

nifi.remote.input.http.transaction.ttl Specifies how long a transaction can stay alive on the server. By
default, it is set to 30 secs. If a Site-to-Site client hasn't proceeded to
the next action after this period of time, the transaction is discarded
from the remote NiFi instance. For example, when aclient creates a
transaction but doesn't send or receive flow files, or when aclient sends
or receives flow files but doesn't confirm that transaction.

18

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#security_properties

Apache NiFi System Properties

nifi.remote.contents.cache.expiration Specifies how long NiFi should cache information about a remote NiFi
instance when communicating via Site-to-Site. By default, NiFi will
cache the responses from the remote system for 30 secs. This alows
NiFi to avoid constantly making HT TP requests to the remote system,
which is particularly important when this instance of NiFi has many
instances of Remote Process Groups.

Siteto Site Routing Propertiesfor Reverse Proxies

Site-to-Site requires peer-to-peer communication between a client and aremote NiFi node. E.g. if aremote NiFi
cluster has 3 nodes (nifi0, nifil and nifi2) then client requests have to be reachable to each of those remote nodes.

If aNiFi cluster is planned to receive/transfer data from/to Site-to-Site clients over the internet or a company firewall,
areverse proxy server can be deployed in front of the NiFi cluster nodes as a gateway to route client requests to
upstream NiFi nodes, to reduce number of servers and ports those have to be exposed.

In such environment, the same NiFi cluster would also be expected to be accessed by Site-to-Site clients within the
same network. Sending FlowFilesto itself for load distribution among NiFi cluster nodes can be atypical example. In
this case, client requests should be routed directly to a node without going through the reverse proxy.

In order to support such deployments, remote NiFi clusters need to expose its Site-to-Site endpoints dynamically
based on client request contexts. Following properties configure how peers should be exposed to clients. A routing
definition consists of 4 properties, when, hostname, port, and secure, grouped by protocol and name. Multiple routing
definitions can be configured. protocol represents Site-to-Site transport protocol, i.e. RAW or HTTP.

Property Description

nifi.remote.route.{ protocol} .{ name} .when Boolean value, true or false. Controls whether the routing definition for
this name should be used.

nifi.remote.route.{ protocol} .{ name} .hostname Specify hostname that will be introduced to Site-to-Site clients for

further communications.

nifi.remote.route.{ protocol} .{ name} .port Specify port number that will be introduced to Site-to-Site clients for
further communications.

nifi.remote.route.{ protocol} .{ name} .secure Boolean value, true or false. Specify whether the remote peer should be
accessed via secure protocol. Defaults to false.

All of above routing properties can use NiFi Expression Language to compute target peer description from request
context. Available variables are:

Variable name Description

s2s.{ sourceltarget} .hostname Hostname of the source where the request came from, and the original
target.

s2s.{ sourceltarget} .port Same as above, for ports. Source port may not be useful asitisjust a

client side TCP port.

s2s.{ sourceltarget} .secure Same as above, for secure or not.
s2s.protocol The name of Site-to-Site protocol being used, RAW or HTTP.
s2s.request The name of current request type, SiteToSiteDetail or Peers. See Site-

to-Site protocol sequence below for detail.

HTTP request headers HTTP reguest header values can be referred by its name.

Siteto Site protocol sequence

19

Apache NiFi

System Properties

Configuring these properties correctly would require some understandings on Site-to-Site protocol sequence.

1. A clientinitiates Site-to-Site protocol by sending aHTTP(S) request to the specified remote URL to get remote
cluster Site-to-Site information. Specifically, to /nifi-api/site-to-site’. Thisrequest is called SiteToSiteDetail.

2. A remote NiFi node responds with its input and output ports, and TCP port numbers for RAW and TCP transport
protocols.

3. The client sends another request to get remote peers using the TCP port number returned at #2. From this request,
raw socket communication is used for RAW transport protocol, while HTTP keeps using HTTP(S). Thisrequest is
called Peers.

4. A remote NiFi node responds with list of available remote peers containing hostname, port, secure and workload

such as the number of queued FlowFiles. From this point, further communication is done between the client and

the remote NiFi node.

The client decides which peer to transfer data from/to, based on workload information.

The client sends a request to create a transaction to a remote NiFi node.

The remote NiFi node accepts the transaction.

Datais sent to the target peer. Multiple Data packets can be sent in batch manner.

When there is no more data to send, or reached to batch limit, the transaction is confirmed on both end by

calculating CRC32 hash of sent data.

10. The transaction is committed on both end.

© o NG

Rever se Proxy Configurations

Most reverse proxy software implement HTTP and TCP proxy mode. For NiFi RAW Site-to-Site protocol, both
HTTP and TCP proxy configurations are required, and at least 2 ports needed to be opened. NiFi HTTP Site-to-Site
protocol can minimize the required number of open ports at the reverse proxy to 1.

Setting correct HTTP headers at reverse proxies are crucial for NiFi to work correctly, not only routing requests but
also authorize client requests. See also Proxy Configuration for details.

There are two types of requests-to-NiFi-node mapping techniques those can be applied at reverse proxy servers. One
is'Server name to Node' and the other is 'Port number to Node'.

With 'Server name to Node', the same port can be used to route requests to different upstream NiFi nodes based on the
reguested server name (e.g. nifi0.example.com, nifil.example.com). Host name resol ution should be configured to
map different host names to the same reverse proxy address, that can be done by adding /etc/hosts file or DNS server
entries. Also, if clientsto reverse proxy uses HTTPS, reverse proxy server certificate should have wildcard common
name or SAN to be accessed by different host names.

Some reverse proxy technologies do not support server name routing rules, in such case, use 'Port number to Node'
technique. 'Port number to Node' mapping requires N open port at areverse proxy for aNiFi cluster consists of N
nodes.

Refer to the following examples for actual configurations.

Siteto Site and Rever se Proxy Examples

Here are some example reverse proxy and NiFi setupsto illustrate what configuration files ook like.

Client1 in the following diagrams represents a client that does not have direct access to NiFi nodes, and it accesses
through the reverse proxy, while Client2 has direct access.

In this example, Nginx is used as areverse proxy.

Example 1: RAW - Server name to Node mapping

20

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#proxy_configuration

Apache NiFi System Properties

1. Clientl initiates Site-to-Site protocol, the request is routed to one of upstream NiFi nodes. The NiFi node
computes Site-to-Site port for RAW. By the routing rule examplel in nifi.properties shown below, port 10443 is
returned.

2. Clientl asks peersto nifi.example.com: 10443, the request is routed to nifi0:8081. The NiFi node computes
available peers, by examplel routing rule, nifi0:8081 is converted to nifi0.example.com: 10443, so are nifil and
nifi2. Asaresult, nifi0.example.com:10443, nifil.example.com:10443 and nifi2.example.com: 10443 are returned.

3. Clientl decidesto use nifi2.example.com: 10443 for further communication.

4. On the other hand, Client2 has two URIsfor Site-to-Site bootstrap URIs, and initiates the protocol using one of
them. The examplel routing does not match this for this request, and port 8081 is returned.

5. Client2 asks peers from nifi1:8081. The examplel does not match, so the original nifi0:8081, nifi1:8081 and
nifi2:8081 are returned as they are.

6. Client2 decides to use nifi2:8081 for further communication.

Routing rule examplel defined in nifi.properties (all nodes have the same routing configuration):

S2S Routing for RAW using server nane to node

ni fi.renote. route.raw exanpl el. when=\

${ X- ProxyHost : equal s(' ni fi.exanpl e.conm): or(\

${s2s. source. host nane: equal s(' ni fi.exanpl e.conm): or(\

${s2s. sour ce. host nane: equal s(' 192. 168.99. 100')})})}

nifi.renote.route.raw exanpl el. host nane=${s2s.t arget . host nane}. exanpl e. com
nifi.renote.route.raw exanpl el. port=10443

ni fi.renote. route.raw exanpl el. secure=true

nginx.conf :

http {

upstreamnifi {
server nifi0:8443;
server nifil:8443;
server nifi2:8443;

}

Use dnsmasq so that hostnanes such as 'nifi0'" can be resolved by /etc/
host s
resol ver 127.0.0. 1;

server {
listen 443 ssli
server_nane nifi.exanpl e.com
ssl _certificate /etc/nginx/nginx.crt;
ssl _certificate_key /etc/nginx/nginx.key;

proxy_ssl _certificate /etc/nginx/nginx.crt;
proxy_ssl _certificate_key /etc/nginx/nginx.key;
proxy_ssl _trusted certificate /etc/nginx/nifi-cert.pem

| ocation / {
proxy_pass https://nifi;
proxy_set header X-ProxySchene https;

21

Apache NiFi System Properties

proxy_set header X-ProxyHost ngi nx. exanpl e.com

proxy_set header X-ProxyPort 17590;

proxy_set header X-ProxyContextPath /;

proxy_set header X-ProxiedEntitiesChain $ssl_client_s _dn;

}

stream {

map $ssl _preread_server _nane $nifi {
ni fi 0. exanpl e.com nifiO;
nifil. exanple.comnifilil;
nifi?2.exanple.comnifi?2;
default nifiO;

}

resol ver 127.0.0. 1;
server {

listen 10443;
proxy_pass $nifi:8081;

Example 2: RAW - Port number to Node mapping

The example2 routing maps original host names (nifiO, nifil and nifi2) to different proxy ports (10443, 10444 and
10445) using equals and ifElse expressions.

Routing rule example2 defined in nifi.properties (all nodes have the same routing configuration):

S2S Routing for RAW using port nunber to node
nifi.renote.route.raw exanpl e2. when=\

${ X- ProxyHost : equal s(' ni fi.exanpl e.conm): or(\

${s2s. source. host nane: equal s(' ni fi.exanple.com): or(\
${s2s. sour ce. host nane: equal s(' 192. 168.99. 100')})})}
nifi.renote.route.raw exanpl e2. host name=ni fi . exanpl e. com
nifi.renote.route.raw exanpl e2. port =\

${s2s.target. hostnane: equal s('nifi0'):ifEl se(' 10443 ,\
${s2s.target. hostnane: equal s('nifil):ifEl se(' 10444 ,\
${s2s.target. host nanme: equal s(' nifi2'):ifEl se(' 10445 ,\
"undefined')})})}

nifi.renote.route.raw exanpl e2. secure=true

nginx.conf ;

http {
Sane as exanple 1.
}

stream {

22

Apache NiFi System Properties

map $ssl _preread_server _nanme $nifi {
nifi0.exanple.comnifiO
nifil. exanple.comnifilil;
nifi2. exanple.comnifi?2
default nifiO;

}
resol ver 127.0.0. 1;
server {
listen 10443;
proxy_pass nifi0:8081;
server {
listen 10444,
proxy_pass nifi 1:8081;
server {
listen 10445;

proxy_pass nifi2:8081;

Example 3: HTTP - Server name to Node mapping

Routing rule example3 defined in nifi.properties (all nodes have the same routing configuration):

S2S Routing for HITP

ni fi.renote.route. http. exanpl e3. when=${ X- Pr oxyHost : cont ai ns("' . exanpl e. coni) }
nifi.renote.route. http. exanpl e3. host name=${s2s. t ar get . host nane}. exanpl e. com
nifi.renote.route. http. exanpl e3. port =443
nifi.renote.route. http.exanpl e3. secure=true

nginx.conf :

http {
upstream nifi _cluster {
server nifi0:8443
server nifil:8443
server nifi2:8443

}

If target node is not specified, use one fromcluster
map $http_host $nifi {

ni fi 0. exanpl e. com 443 "ni fi 0: 8443"

nifil. exanple.com 443 "nifi1l:8443"

nifi2. exanple.com443 "nifi 2: 8443"

default "nifi_cluster";

}
resol ver 127.0.0.1;

23

Apache NiFi

System Properties

server {
listen 443 ssl;

server _nane ~"(.+\.exanple\.com $;
ssl _certificate /etc/nginx/nginx.crt;
ssl _certificate_key /etc/nginx/nginx.key;

proxy_ssl _certificate /etc/nginx/nginx.crt;
proxy_ssl _certificate_key /etc/nginx/nginx.key;
proxy_ssl trusted certificate /etc/nginx/nifi-cert.pem

| ocation / {
proxy_pass https
proxy_set header
proxy_set header
proxy_set header
proxy_set header
proxy_set header

Web Properties

A/ $nifi;
X- ProxySchenme https;
X- ProxyHost $1;
X- ProxyPort 443;
X- ProxyCont ext Path /;
X- Proxi edEntitiesChain $ssl_client_s_dn;

These properties pertain to the web-based User I nterface.

Property

Description

nifi.web.war.directory

Thisisthe location of the web war directory. The default valueis J/lib.

nifi.web.http.host

The HTTP host. It is blank by default.

nifi.web.http.port

The HTTP port. The default value is 8080.

nifi.web.http.port.forwarding

The port which forwards incoming HTTP requests to
nifi.web.http.host. This property is designed to be used with 'port
forwarding', when NiFi has to be started by a non-root user for better
security, yet it needs to be accessed vialow port to go through a
firewall. For example, to expose NiFi viaHTTP protocol on port 80,
but actually listening on port 8080, you need to configure OS level port
forwarding such as iptables (Linux/Unix) or pfctl (OS X) that redirects
requests from 80 to 8080. Then set nifi.web.http.port as 8080, and
nifi.web.http.port.forwarding as 80. It is blank by default.

nifi.web.http.network.interface*

The name of the network interface to which NiFi should bind for
HTTP reguests. It is blank by default. NOTE: Multiple network
interfaces can be specified by using the nifi.web.http.network.interface.
prefix with unique suffixes and separate network interface

names as values. For example, to provide two additional

network interfaces, a user could also specify additional

properties with keys of :nifi.web.http.network.interface.ethO=ethO
nifi.web.http.network.interface.ethl=eth1 Providing three total network
interfaces, including nifi.web.http.network.interface.defauilt.

nifi.web.https.host

The HTTPS host. It is blank by default.

nifi.web.https.port

The HTTPS port. It is blank by default. When configuring NiFi to run
securely, this port should be configured.

nifi.web.https.port.forwarding

Same as nifi.web.http.port.forwarding, but with HTTPS for secure
communication. It is blank by default.

24

Apache NiFi System Properties

nifi.web.https.network.interface* The name of the network interface to which NiFi should

bind for HTTPS requests. It is blank by default. NOTE:

Multiple network interfaces can be specified by using the
nifi.web.https.network.interface. prefix with unique suffixes and
separate network interface names as values. For example, to provide
two additional network interfaces, a user could also specify additional
properties with keys of:nifi.web.https.network.interface.ethO=ethO
nifi.web.https.network.interface.eth1=eth1 Providing three total
network interfaces, including nifi.web.https.network.interface.default.

nifi.web.jetty.working.directory The location of the Jetty working directory. The default valueis ./work/
jetty.

nifi.web.jetty.threads The number of Jetty threads. The default value is 200.

nifi.web.max.header.size The maximum size allowed for request and response headers. The

default valueis 16 KB.

nifi.web.proxy.host A comma separated list of allowed HTTP Host header valuesto
consider when NiFi is running securely and will be receiving requests
to adifferent host[:port] than it is bound to. For example, when
running in a Docker container or behind a proxy (e.g. localhost: 18443,
proxyhost:443). By default, this value is blank meaning NiFi should
only allow requests sent to the host[:port] that NiFi is bound to.

nifi.web.proxy.context.path A comma separated list of allowed HTTP X-ProxyContextPath, X-
Forwarded-Context, or X-Forwarded-Prefix header values to consider.
By default, this value is blank meaning all requests containing a proxy
context path are rejected. Configuring this property would alow
requests where the proxy path is contained in this listing.

Security Properties

These properties pertain to various security featuresin NiFi. Many of these properties are covered in more detail in
the Security Properties documentation.

Property Description

nifi.sensitive.props.key Thisisthe password used to encrypt any sensitive property values that
are configured in processors. By default, it is blank, but the system
administrator should provide avaluefor it. It can be a string of any
length, although the recommended minimum length is 10 characters.
Be aware that once this password is set and one or more sensitive
processor properties have been configured, this password should not be
changed.

nifi.sensitive.props.algorithm The algorithm used to encrypt sensitive properties. The default valueis
PBEWITHMD5AND256BITAES-CBC-OPENSSL.

nifi.sensitive.props.provider The sensitive property provider. The default valueis BC.

nifi.sensitive.props.additional .keys The comma separated list of propertiesin nifi.properties to encrypt in
addition to the default sensitive properties (see the Encrypt-Config-
Tool documentation).

nifi.security.keystore* The full path and name of the keystore. It is blank by default.
nifi.security keystoreType The keystore type. It is blank by default.
nifi.security.keystorePasswd The keystore password. It is blank by default.
nifi.security.keyPasswd The key password. It is blank by default.
nifi.security.truststore* Thefull path and name of the truststore. It is blank by default.

25

Apache NiFi System Properties

nifi.security.truststoreType The truststore type. It is blank by default.
nifi.security.truststorePasswd The truststore password. It is blank by default.
nifi.security.user.authorizer Specifies which of the configured Authorizersin the authorizers.xml

fileto use. By defaullt, it is set to file-provider.

nifi.security.user.login.identity.provider This indicates what type of login identity provider to use. The
default value is blank, can be set to the identifier from aprovider in
thefile specified in nifi.login.identity.provider.configuration.file.
Setting this property will trigger NiFi to support username/password
authentication.

nifi.security.ocsp.responder.url Thisisthe URL for the Online Certificate Status Protocol (OCSP)
responder if oneisbeing used. It is blank by default.

nifi.security.ocsp.responder.certificate Thisisthe location of the OCSP responder certificate if oneis being
used. It is blank by default.

| dentity Mapping Properties

These properties can be utilized to normalize user identities. When implemented, identities authenticated by different
identity providers (certificates, LDAP, Kerberos) are treated the sameinternally in NiFi. Asaresult, duplicate users
are avoided and user-specific configurations such as authorizations only need to be setup once per user.

The following examples demonstrate normalizing DNs from certificates and principals from Kerberos:

nifi.security.identity.mpping.pattern.dn="CN=(.*?), OU(.*?), O=(.*?),
L=(.*?), ST=(.*?), C(.*?)$

nifi.security.identity.nmapping.val ue. dn=$1@2

nifi.security.identity.nmapping.transform dn=NONE

nifi.security.identity.mapping. pattern.kerb="(.*?)/instance@.*?)$

nifi.security.identity.mapping.val ue. ker b=$1@2

nifi.security.identity.mapping.transform ker b=NONE

The last segment of each property is an identifier used to associate the pattern with the replacement value. When a
user makes arequest to NiFi, their identity is checked to seeif it matches each of those patternsin lexicographical
order. For the first one that matches, the replacement specified in the nifi.security.identity.mapping.val ue.xxxx
property is used. So alogin with CN=localhost, OU=Apache NiFi, O=Apache, L=Santa Monica, ST=CA, C=US
matches the DN mapping pattern above and the DN mapping value $1@$2 is applied. The user is normalized to
localhost@A pache NiFi.

In addition to mapping, atransform may be applied. The supported versions are NONE (no transform applied),
LOWER (identity lowercased), and UPPER (identity uppercased). If not specified, the default value is NONE.

Note: These mappings are also applied to the "Initial Admin Identity", "Cluster Node Identity", and any
E legacy usersin the authorizers.xml file as well as users imported from LDAP (See Authorizers.xml Setup).

Group names can a so be mapped. The following example will accept the existing group name but will lowercaseiit.
This may be helpful when used in conjunction with an external authorizer.

ni fi.security.group. mappi ng. pattern.anygroup="(.*)$
ni fi.security.group. mappi ng. val ue. anygr oup=%$1
nifi.security.group. mappi ng.transform anygr oup=LONER

Note: These mappings are applied to any legacy groups referenced in the authorizers.xml aswell as groups
B imported from LDAP.

26

Apache NiFi

System Properties

Cluster Common Properties

When setting up a NiFi cluster, these properties should be configured the same way on all nodes.

Property

Description

nifi.cluster.protocol.heartbeat.interval

Theinterval at which nodes should emit heartbeats to the Cluster
Coordinator. The default valueis 5 sec.

nifi.cluster.protocol.is.secure

Thisindicates whether cluster communications are secure. The default
valueisfase

Cluster Node Properties

Configure these properties for cluster nodes.

Property

Description

nifi.cluster.is.node

Set thisto true if the instance is anode in acluster. The default valueis
false.

nifi.cluster.node.address

The fully qualified address of the node. It is blank by default.

nifi.cluster.node.protocol .port

The node's protocol port. It isblank by default.

nifi.cluster.node.protocol .threads

The number of threads that should be used to communicate with other
nodesin the cluster. This property defaultsto 10, but for large clusters,
this value may need to be larger.

nifi.cluster.node.protocol.max.threads

The maximum number of threads that should be used to communicate
with other nodesin the cluster. This property defaultsto 50.

nifi.cluster.node.event.history.size

When the state of anode in the cluster is changed, an event is
generated and can be viewed in the Cluster page. This value indicates
how many events to keep in memory for each node. The default value
is25.

nifi.cluster.node.connection.timeout

When connecting to another node in the cluster, specifies how long
this node should wait before considering the connection afailure. The
default valueis 5 secs.

nifi.cluster.node.read.timeout

When communicating with another node in the cluster, specifies how
long this node should wait to receive information from the remote node
before considering the communication with the node afailure. The
default valueis 5 secs.

nifi.cluster.node.max.concurrent.requests

The maximum number of outstanding web requests that can be
replicated to nodes in the cluster. If this number of requestsis
exceeded, the embedded Jetty server will return a"409: Conflict"
response. This property defaults to 100.

nifi.cluster.firewall file

The location of the node firewall file. Thisis afile that may be used to
list al the nodes that are allowed to connect to the cluster. It provides
an additional layer of security. Thisvaueis blank by default, meaning
that no firewall fileis to be used.

nifi.cluster.flow.election.max.wait.time

Specifies the amount of time to wait before electing a Flow as the
"correct" Flow. If the number of Nodes that have voted is equal to

the number specified by the nifi.cluster.flow.election.max.candidates
property, the cluster will not wait thislong. The default valueis 5 mins.
Note that the time starts as soon as the first vote is cast.

27

Apache NiFi System Properties

nifi.cluster.flow.el ection.max.candidates Specifies the number of Nodes required in the cluster to cause early
election of Flows. This allows the Nodesin the cluster to avoid having
to wait along time before starting processing if we reach at least this
number of nodesin the cluster.

nifi.cluster.load.balance.port Specifies the port to listen on for incoming connections for load
balancing data across the cluster. The default value is 6342.

nifi.cluster.load.balance.host Specifies the hostname to listen on for incoming connections for load
balancing data across the cluster. If not specified, will default to the
vaue used by the nifi.cluster.node.address property.

nifi.cluster.load.balance.connections.per.node The maximum number of connections to create between this node
and each other node in the cluster. For example, if there are 5 nodes
in the cluster and this value is set to 4, there will be up to 20 socket
connections established for |oad-balancing purposes (5 x 4 = 20). The
default valueis 4.

nifi.cluster.load.balance.max.thread.count The maximum number of threads to use for transferring data from

this node to other nodes in the cluster. While a given thread can only
write to asingle socket at atime, asingle thread is capable of servicing
multiple connections simultaneously because a given connection may
not be available for reading/writing at any given time. The default
valueis 8-i.e., up to 8 threads will be responsible for transferring data
to other nodes, regardless of how many nodes are in the cluster.

NOTE: Increasing this value will allow additional threadsto be

used for communicating with other nodes in the cluster and writing
the data to the Content and FlowFile Repositories. However, if

this property is set to a value greater than the number of nodes

in the cluster multiplied by the number of connections per node
(nifi.cluster.load.balance.connections.per.node), then no further benefit
will be gained and resources will be wasted.

nifi.cluster.load.balance.comms.timeout When communicating with another node, if this amount of time elapses
without making any progress when reading from or writing to a socket,
then a TimeoutException will be thrown. Thiswill then result in

the data either being retried or sent to another node in the cluster,
depending on the configured Load Balancing Strategy. The default
vaueis 30 sec.

ZooK eeper Properties

NiFi depends on Apache ZooK eeper for determining which node in the cluster should play the role of Primary Node
and which node should play the role of Cluster Coordinator. These properties must be configured in order for NiFi to

join acluster.

Property Description

nifi.zookeeper.connect.string The Connect String that is needed to connect to Apache ZooK eeper.
Thisisacomma-separated list of hostname:port pairs. For example,
localhost:2181,localhost: 2182, ocalhost:2183. This should contain alist
of al ZooKeeper instances in the ZooK eeper quorum. This property
must be specified to join a cluster and has no default value.

nifi.zookeeper.connect.timeout How long to wait when connecting to ZooK eeper before considering
the connection afailure. The default value is 3 secs.

nifi.zookeeper.session.timeout How long to wait after losing a connection to ZooK eeper before the
session is expired. The default value is 3 secs.

28

Apache NiFi System Properties

nifi.zookeeper.root.node The root ZNode that should be used in ZooK eeper. ZooK eeper
provides a directory-like structure for storing data. Each 'directory’ in
this structure is referred to as a ZNode. This denotes the root ZNode,
or 'directory’, that should be used for storing data. The default value
is/root. Thisisimportant to set correctly, as which cluster the NiFi
instance attempts to join is determined by which ZooK eeper instance it
connects to and the ZooK eeper Root Node that is specified.

Kerberos Properties

Property Description

nifi.kerberos.krb5.file* The location of the krb5file, if used. It is blank by default. At thistime,
only asingle krb5 file is allowed to be specified per NiFi instance,

so this property is configured here to support SPNEGO and service
principals rather than in individual Processors. If necessary the krb5
file can support multiple realms. Example: /etc/krb5.conf

nifi.kerberos.service.principal* The name of the NiFi Kerberos service principa, if used. Itis
blank by default. Note that this property isfor NiFi to authenticate
asaclient other systems. Example: nifi/nifi.example.com or nifi/
nifi.example.com@EXAMPLE.COM

nifi .kerberos.service.keytab.location* Thefile path of the NiFi Kerberos keytab, if used. It isblank by
default. Note that this property isfor NiFi to authenticate as a client
other systems. Example: /etc/nifi.keytab

nifi.kerberos.spnego.principal* The name of the NiFi Kerberos service principal, if used. Itis
blank by default. Note that this property is used to authenticate
NiFi users. Example: HTTP/nifi.example.com or HTTP/
nifi.example.com@EXAMPLE.COM

nifi.kerberos.spnego.keytab.location* Thefile path of the NiFi Kerberos keytab, if used. It is blank by
default. Note that this property is used to authenticate NiFi users.
Example: /etc/http-nifi.keytab

nifi.kerberos.spengo.authentication.expiration* The expiration duration of a successful Kerberos user authentication, if
used. The default value is 12 hours.

Analytics Properties

These properties determine the behavior of the internal NiFi predictive analytics capability, such as backpressure
prediction, and should be configured the same way on all nodes.

Property Description

nifi.analytics.predict.enabled Thisindicates whether prediction should be enabled for the cluster. The
default isfalse.

nifi.analytics.predict.interval Thetime interval for which analytical predictions (e.g. queue

saturation) should be made. The default valueis 3 mins.

nifi.analytics.query.interval Thetimeinterval to query for past observations (e.g. the last 3 minutes
of snapshots). The default valueis 5 mins. NOTE: This value should be
at least 3 times greater than nifi.components.status.snapshot.frequency
to ensure enough observations are retrieved for predictions.

nifi.analytics.connection.model .implementation The implementation class for the status analytics model
used to make connection predictions. The default valueis
org.apache.nifi.controller.status.analytics.models.OrdinaryL eastSquares.

29

Apache NiFi System Properties

nifi.analytics.connection.model.score.name The name of the scoring type that should be used to evaluate the model.
The default value is rSquared.

nifi.analytics.connection.model.score.threshold The threshold for the scoring value (where model score should be
above given threshold). The default value is .90.

Custom Properties

To configure custom properties for use with NiFi's Expression Language:
» Create the custom property. Ensure that:

« Each custom property contains a distinct property value, so that it is not overridden by existing environment
properties, system properties, or FlowFile attributes.
< Each nodein aclustered environment is configured with the same custom properties.
« Update nifi.variable.registry.properties with the location of the custom property file(s):

Property Description

nifi.variable.registry.properties Thisisacomma-separated list of file location paths for one or more
custom property files.

« Restart your NiFi instance(s) for the updates to be picked up.

Custom properties can also be configured in the NiFi Ul. See the Variables Window section in the User Guide for
more information.

30

https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Variables_Window

	Contents
	System Properties
	Upgrade Recommendations
	Core Properties
	State Management
	H2 Settings
	FlowFile Repository
	Write Ahead FlowFile Repository
	Encrypted Write Ahead FlowFile Repository Properties
	Volatile FlowFile Repository
	RocksDB FlowFile Repository
	Swap Management
	Content Repository
	File System Content Repository Properties
	Encrypted File System Content Repository Properties
	Volatile Content Repository Properties
	Provenance Repository
	Write Ahead Provenance Repository Properties
	Encrypted Write Ahead Provenance Repository Properties
	Persistent Provenance Repository Properties
	Volatile Provenance Repository Properties
	Component Status Repository
	Site to Site Properties
	Site to Site Routing Properties for Reverse Proxies
	Site to Site protocol sequence
	Reverse Proxy Configurations
	Site to Site and Reverse Proxy Examples
	Example 1: RAW - Server name to Node mapping
	Example 2: RAW - Port number to Node mapping
	Example 3: HTTP - Server name to Node mapping

	Web Properties
	Security Properties
	Identity Mapping Properties
	Cluster Common Properties
	Cluster Node Properties
	ZooKeeper Properties
	Kerberos Properties
	Analytics Properties
	Custom Properties

