Apache Storm 3

Using Apache Storm to Move Data
Date of Publish: 2020-12-15

Py

Hortonworks

https://docs.cloudera.com/

https://docs.cloudera.com/

Contents

Moving Data Into and Out of Apache Storm Using Spouts and Bolts................ 3
INgESting Data from KafKaL........cccouiiiiee bbb 3
KafkaSpout Integration: Core SEOrM APIS.......coi i e 3
KafkaSpout Integration: TrHAENt APIS.......cco e e 7
Tuning KafkaSpout PerfOrMaNCE...........cocireirieirieiriertees ettt snenas 7
Configuring Kafka for Use with the Storm-Kafka CONNECLON............covirirerenenee e 8
Configuring KafkaSpout to Connect 1o HBase 0r HiVe..........ocoirineneereree e 8
INQEStiNG Data fromM HDFS.........coiiiiiieieteee ettt bbbt b et b et b et b e b e bbbt neenis 9
ConfiguIiNg HDFS SPOUL........cucitiiitirietereeteseet sttt b e b e b e eb s eb e n b eens 9

HDFS SPOUL EXAIMPIE. ...ttt et s e st b et bbbt 10
SreamMing Daa 10 KEFKEL.vevireeiiieeirieeree bbb bbbt b et 11
KafkaBolt Integration: Core StOMM APIS.......coiiriierieeereere et ere e 11
KafkaBolt INtegration: TrOENt APIS. ..ottt 12
WItING DA 0 HDFS.......oeiiieie e bbbt b et bbbttt nb e 14
SIOrM-HDFS: COre SEOMM APIS. ...t er e nesresn s 14
SLOMM-HDFS: THAENT APIS ...t b e e b e s be e s e 16
WIIING DA IO HBESE......cueictiieeeieeie ettt ettt b et b et b et b et b e e b e b e 16
WIIING DALA L0 HIVE... ottt et b et st b et b et b e ne b e ebeseebeneebe e 17
COrE-SIONMM APIS ...ttt h e bR Rt et bR e R e n e e e e n s 17
THIENE APIS ..ottt b e bt e b se bt s e e bt s e bt se et e b et e b et e b et ebeseebeneebeneebe e 20
Configuring ConNECtOrs fOr @ SECUMNE ClUSLEN.........ciiiirieietire ettt s b s ebe i 21
Configuring KafkaSpout for a Secure Kafka CIUSLEN ..o 21
Configuring Storm-HDFS fOr @ SECUIrE CIUSEEN........coiiiiieiiee e 21
Configuring Storm-HBase for @ SECUrE ClUSEN.........cvriirieiree ettt 23

Configuring Storm-Hive fOr @ SECUIe CIUSLEN..........ciuiiiiirirereee et 24

Apache Storm Moving Data Into and Out of Apache Storm Using Spouts and Bolts

Moving Data Into and Out of Apache Storm Using Spouts and
Bolts

This chapter focuses on moving datainto and out of Apache Storm through the use of spouts and bolts. Spouts read
data from external sources to ingest data into atopology. Bolts consume input streams and process the data, emit new
streams, or send results to persistent storage. This chapter focuses on bolts that move data from Storm to external
SOUrces.

The following spouts are available in HDP 2.5:

» Kafkaspout based on Kafka 0.7.x/0.8.x, plus a new Kafka consumer spout available as atechnical preview (not
for production use)

« HDFS
e EventHubs
» Kinesis (technical preview)

The following bolts are availablein HDP 2.5:

» Kafka

« HDFS

e EventHubs

e HBase

e Hive

» JDBC (supports Phoenix)
e Solr

e Cassandra

¢ MongoDB

» ElasticSearch
¢ Redis

e OpenTSDB (technical preview)

Supported connectors are located at /usr/lib/storm/contrib. Each contains a .jar file containing the connector's
packaged classes and dependencies, and another .jar file with javadoc reference documentation.

This chapter describes how to use the Kafka spout, HDFS spout, Kafka bolt, Storm-HDFS connector, and Storm-
HBase connector APIs.

| ngesting Data from Kafka

KafkaSpout reads from Kafkatopics. To do so, it needs to connect to the Kafka broker, locate the topic from which
it will read, and store consumer offset information (using the ZooK eeper root and consumer group ID). If afailure
occurs, KafkaSpout can use the offset to continue reading messages from the point where the operation failed.

The storm-kafka components include a core Storm spout and a fully transactional Trident spout. Storm-Kafka spouts
provide the following key features:

» 'Exactly once' tuple processing with the Trident API
« Dynamic discovery of Kafka brokers and partitions

Y ou should use the Trident API unless your application requires sub-second latency.

KafkaSpout Integration: Core Storm APIs
The core-storm API represents a Kafka spout with the KafkaSpout class.

Apache Storm

Moving Data Into and Out of Apache Storm Using Spouts and Bolts

To initialize KafkaSpout, define a SpoutConfig subclass instance of the KafkaConfig class, representing configuration
information needed to ingest data from a Kafka cluster. KafkaSpout requires an instance of the BrokerHosts interface.

BrokerHosts Interface

The BrokerHost interface maps Kafka brokers to topic partitions. Constructors for KafkaSpout (and, for the Trident
API, TridentK afkaConfig) require an implementation of the BrokerHosts interface.

The storm-kafka component provides two implementations of BrokerHosts, ZkHosts and StaticHosts:

» UseZkHosts if you want to track broker-to-partition mapping dynamically.This class uses Kafka's ZooK eeper
entries to track mapping.

Y ou can instantiate an object as follows:

public ZkHosts(String brokerZkStr, String brokerZkPath)
public ZkHosts(String brokerZkStr)

where;

» brokerZkStr isthe IP:port address for the ZooK eeper host; for example, localhost:2181.

« brokerZkPath isthe root directory under which topics and partition information are stored. By default this
is/brokers, which is the default used by Kafka

By default, broker-partition mapping refreshes every 60 seconds. If you want to change the refresh frequency, set
host.refreshFreqSecs to your chosen value.

« Use StaticHosts for static broker-to-partition mapping. To construct an instance of this class, you must first
construct an instance of Global Partitionlnformation; for example:

Br oker brokerForPartition0 = new Broker ("l ocal host");//I| ocal host: 9092

Br oker brokerForPartitionl = new Broker ("l ocal host", 9092);//

| ocal host: 9092 but we specified the port explicitly

Br oker brokerForPartition2 = new Broker ("l ocal host:9092");//1 ocal host: 9092
specified as one string.

d obal Partitionlnformation partitionlnfo = new
d obal Partitionlnformation();

partitionlnfo.add(0, brokerForPartitionQ)//mpping formpartition O to
br oker For PartitionO

partitionlnfo.add(1l, brokerForPartitionl)//mpping formpartition 1 to
br oker For Partitionl

partitionlnfo.add(2, brokerForPartition2)//mpping formpartition 2 to
br oker ForPartition2

StaticHosts hosts = new StaticHosts(partitionlnfo);

KafkaConfig Class and SpoutConfig Subclass
Next, define a SpoutConfig subclass instance of the KafkaConfig class.

KafkaConfig contains several fields used to configure the behavior of a Kafka spout in a Storm topology; Spoutconfig
extends KafkaConfig, supporting additional fields for ZooK eeper connection info and for controlling behavior
specific to KafkaSpout.

KafkaConfig implements the following constructors, each of which requires an implementation of the BrokerHosts
interface:

publ i ¢ Kaf kaConfi g(BrokerHosts hosts, String topic)
publ i ¢ Kaf kaConfi g(BrokerHosts hosts, String topic, String clientld)

KafkaConfig Parameters

hosts One or more hosts that are K afka ZooK eeper broker
nodes (see "BrokerHosts Interface™).

Apache Storm Moving Data Into and Out of Apache Storm Using Spouts and Bolts
topic Name of the Kafka topic that KafkaSpout will consume
from.
clientld

KafkaConfig Fields

fetchSizeBytes

socketTimeoutM s

buffer SizeBytes

scheme

ignoreZK Offsets

Optional parameter used as part of the ZooK eeper path,
specifying where the spout's current offset is stored.

Number of bytesto attempt to fetch in one request to a
Kafka server. The default is IMB.

Number of milliseconds to wait before a socket fails
an operation with atimeout. The default valueis 10
seconds.

Buffer size (in bytes) for network regquests. The default is
1IMB.

The interface that specifies how a ByteBuffer from a
Kafkatopic is transformed into a Storm tuple.

The default, MultiScheme, returns atuple and no
additional processing.

The API provides many implementations of the Scheme
class, including:

« storm.kafka.StringScheme

« storm.kafka.KeyValueSchemeAsMultiScheme
o storm.kafka StringK eyVaueScheme

» storm.kafka.KeyValueSchemeAsMultiScheme

i Important:

In Apache Storm versions prior to 1.0,

Multi Scheme methods accepted a byte[]
parameter instead of a ByteBuffer. In Storm
version 1.0, MultiScheme and related scheme
APIs changed; they now accept a ByteBuffer
instead of a byte]].

As aresult, Kafka spouts built with Storm
versions earlier than 1.0 do not work with Storm
versions 1.0 and later. When running topologies
with Storm version 1.0 and later, ensure that
your version of storm-kafkaisat least 1.0.
Rebuild pre-1.0 shaded topology .jar files that
bundle storm-kafka classes with storm-kafka
version 1.0 before running them in clusters with
Storm 1.0 and later.

To force the spout to ignore any consumer state
information stored in ZooK eeper, set ignoreZkOffsets
to true. If true, the spout always begins reading from the
offset defined by startOffsetTime.

Apache Storm Moving Data Into and Out of Apache Storm Using Spouts and Bolts

startOffsetTime Controls whether streaming for a topic starts from the
beginning of the topic or whether only new messages are
streamed. The following are valid values:

o kafka.api.OffsetRequest.EarliestTime() starts
streaming from the beginning of the topic

o kafkaapi.OffsetRequest.L atestTime() streams only
new messages

maxOffsetBehind Specifies how long a spout attempts to retry the
processing of afailed tuple. If afailing tuple's offset is
less than maxOffsetBehind, the spout stops retrying the
tuple. The default isLONG.MAX_VALUE.

useStar tOffset TimeOfOffsetOutOfRange Controls whether a spout streams messages from the
beginning of atopic when the spout throws an exception
for an out-of-range offset. The default valueistrue.

metricsTimeBucketSizel nSecs Controls the time interval at which Storm reports spout-
related metrics. The default is 60 seconds.

Instantiate SpoutConfig as follows:

publ i ¢ Spout Confi g(BrokerHosts hosts, String topic, String zkRoot, String
nodel d)

SpoutConfig Parameters

hosts One or more hosts that are Kafka ZooK eeper broker
nodes (see "BrokerHosts Interface™).

topic Name of the Kafka topic that K afkaSpout will consume
from.

zkroot Root directory in ZooK eeper under which KafkaSpout

consumer offsets are stored. The default is /brokers.

nodeld ZooK eeper node under which KafkaSpout stores offsets
for each topic-partition. The node ID must be unique for
each Topology. The topology uses this path to recover
in failure scenarios, or when there is maintenance that
requires killing the topology.

zkroot and nodeld are used to construct the ZooK eeper path where Storm stores the Kafka offset. Y ou can find offsets
at zkroot+"/"+nodeld.

To start processing messages from where the last operation left off, use the same zkroot and nodeld. To start from the
beginning of the Kafkatopic, set KafkaConfig.ignoreZK Offsets to true.

Example

The following example illustrates the use of the KafkaSpout class and related interfaces:

Br oker Host s hosts = new ZkHost s(zkConnStri ng);
Spout Confi g spout Config = new Spout Confi g(hosts, topicNane, "/" + zkrootDir,
node) ;
spout Confi g. scheme = new ScheneAsMul ti Schene(new StringSchene());

Apache Storm Moving Data Into and Out of Apache Storm Using Spouts and Bolts

Kaf kaSpout kaf kaSpout = new Kaf kaSpout (spout Confi g);

KafkaSpout Integration: Trident APIs
The Trident API represents a Kafka spout with the OpaqueTridentK afkaSpout class.

To initialize OpaqueTridentK afkaSpout, define a TridentK afkaConfig subclass instance of the KafkaConfig class,
representing configuration information needed to ingest data from a Kafka cluster.

KafkaConfig Class and TridentK afkaConfig Subclass

Both the core-storm and Trident APIs use KafkaConfig, which contains several parameters and fields used to
configure the behavior of a Kafka spout in a Storm topology.

Instantiate a TridentK afkaConfig subclass instance of the KafkaConfig class. Use one of the following constructors,
each of which requires an implementation of the BrokerHosts interface.

public Trident Kaf kaConfi g(Br oker Hosts hosts, String topic)
public Trident Kaf kaConfi g(Br oker Hosts hosts, String topic, String id)

TridentKafkaConfig Parameters

hosts One or more hosts that are K afka ZooK eeper broker
nodes (see "BrokerHosts Interface™).

topic Name of the K afka topic.

clientid Unique identifier for this spout.

Example

The following example illustrates the use of the OpaqueTridentK afkaSpout class and related interfaces:

Tri dent Topol ogy topol ogy = new Tri dent Topol ogy();

Br oker Hosts zk = new ZkHosts("I ocal host");

Tri dent Kaf kaConfi g spout Conf = new Tri dent Kaf kaConfi g(zk, "test-topic");
spout Conf . schene = new ScheneAsMuil ti Schene(new StringSchene());
OpaqueTr i dent Kaf kaSpout spout = new OpaqueTri dent Kaf kaSpout (spout Conf) ;

i Important:

In Apache Storm versions prior to 1.0, MultiScheme methods accepted a byte[] parameter instead of a
ByteBuffer. In Storm version 1.0, MultiScheme and related scheme APIs changed; they now accept a
ByteBuffer instead of a byte][].

As aresult, Kafka spouts built with Storm versions earlier than 1.0 do not work with Storm versions 1.0 and
later. When running topol ogies with Storm version 1.0 and later, ensure that your version of storm-kafkais at
least 1.0. Rebuild pre-1.0 shaded topology .jar files that bundle storm-kafka classes with storm-kafka version
1.0 before running them in clusters with Storm 1.0 and later.

Tuning KafkaSpout Performance
KafkaSpout provides two internal parameters to control performance:

» offset.commit.period.ms specifies the period of time (in milliseconds) after which the spout commits to Kafka. To
set this parameter, use the KafkaSpoutConfig set method setOff sstCommitPeriodMs.

* max.uncommitted.offsets defines the maximum number of polled offsets (records) that can be pending commit
before another poll can take place. When this limit is reached, no more offsets can be polled until the next
succesful commit sets the number of pending offsets below the threshold. To set this parameter, use the
KafkaSpoutConfig set method setM axUncommittedOffsets.

https://github.com/apache/storm/blob/1.0.x-branch/external/storm-kafka-client/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutConfig.java
https://github.com/apache/storm/blob/1.0.x-branch/external/storm-kafka-client/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutConfig.java#L189-L193
https://github.com/apache/storm/blob/1.0.x-branch/external/storm-kafka-client/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutConfig.java
https://github.com/apache/storm/blob/1.0.x-branch/external/storm-kafka-client/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutConfig.java#L211-L217

Apache Storm

Moving Data Into and Out of Apache Storm Using Spouts and Bolts

Note that these two parameters trade off memory versus time:

* When offset.commit.period.ms s set to alow value, the spout commits to Kafka more often. When the spout is
committing to Kafka, it is not fetching new records nor processing new tuples.

» When max.uncommitted.offsets increases, the memory footprint increases. Each offset uses eight bytes of
memory, which means that a value of 10000000 (10MB) uses about 80MB of memory.

It is possible to achieve good performance with alow commit period and small memory footprint (a small value for
max.uncommitted.offsets), as well as with alarger commit period and larger memory footprint. However, you should
avoid using large values for offset.commit.period.ms with alow value for max.uncommitted.offsets.

Kafka consumer configuration parameters can also have an impact on the KafkaSpout performance. The following
Kafka parameters are most likely to have the strongest impact on KafkaSpout performance:

» The Kafka Consumer poll timeout specifies the time (in milliseconds) spent polling if datais not available. To set
this parameter, use the KafkaSpoutConfig set method setPoll TimeoutMs.

« Kafkaconsumer parameter fetch.min.bytes specifies the minimum amount of data the server returns for afetch
request. If the minimum amount is not available, the request waits until the minimum amount accumulates before
answering the request.

» Kafkaconsumer parameter fetch.max.wait.ms specifies the maximum amount of time the server will wait before
answering afetch request, when thereis not sufficient datato satisfy fetch.min.bytes.

i Important:

For HDP 2.5.0 clusters in production use, you should override the default values of KafkaSpout parameters
offset.commit.period and max.uncommitted.offsets, and Kafka consumer parameter poll.timeout.ms, as
follows:

e Set poll.timeout.ms to 200.
e Set offset.commit.period.ms to 30000 (30 seconds).
e Set max.uncommitted.offsets to 20000000 (ten million).

Performance a so depends on the structure of your Kafka cluster, the distribution of the data, and the availability of
data to poll.

Log Level Performance |mpact

Storm supports several logging levels, including Trace, Debug, Info, Warn, and Error. Trace-level logging has a
significant impact on performance, and should be avoided in production. The amount of log messages is proportional
to the number of records fetched from Kafka, so alot of messages are printed when Trace-level logging is enabled.

Trace-level logging is most useful for debugging pre-production environments under mild load. For debugging,
if necessary, you can throttle how many messages are polled from Kafka by setting the max.partition.fetch.bytes
parameter to alow number that is larger than than the largest single message stored in Kafka.

Logs with Debug level will have slightly less performance impact than Trace-level logs, but still generate alot of
messages. This setting can be useful for assessing whether the Kafka spout is properly tuned.

Configuring Kafka for Use with the Storm-Kafka Connector

Before using the storm-kafka connector, you must modify your Apache Kafka configuration: add a zookeeper.connect
property, with hosthames and port numbers of HDP ZooK egper nodes, to the Kafka server.propertiesfile.

Configuring KafkaSpout to Connect to HBase or Hive

Before connecting to HBase or Hive, add the following exclusions to your POM file for the curator framework:

<excl usi on>
<gr oupl d>or g. apache. cur at or </ gr oupl d>
<artifactld>curator-client</artifactld>
</ excl usi on>
<excl usi on>
<gr oupl d>or g. apache. cur at or </ gr oupl d>
<artifactld>curator-recipes</artifactld>

8

http://kafka.apache.org/documentation.html#consumerconfigs
http://kafka.apache.org/0100/javadoc/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html
https://github.com/apache/storm/blob/1.0.x-branch/external/storm-kafka-client/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutConfig.java
https://github.com/apache/storm/blob/1.0.x-branch/external/storm-kafka-client/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutConfig.java#L180-L184

Apache Storm

Moving Data Into and Out of Apache Storm Using Spouts and Bolts

</ excl usi on>
<excl usi on>
<gr oupl d>or g. apache. cur at or </ gr oupl d>
<artifactld>apache-curator</artifactld>
</ excl usi on>

I ngesting Data from HDFS

The HDFS spout actively monitors a specified HDFS directory and consumes any new files that appear in the
directory, feeding data from HDFS to Storm.

i Important:

HDFS spout assumes that files visible in the monitored directory are not actively being updated. Only after a
fileis completely written should it be made visible to the spout. Following are two approaches for ensuring
this:

« Write the file to another directory. When the write operation is finished, move the file to the monitored
directory.

¢ Createthefilein the monitored directory with an ".ignore' suffix; HDFS spout ignores files with an
“ignore' suffix. When the write operation is finished, rename the file to omit the suffix.

When the spout is actively consuming afile, it renames the file with an .inprogress suffix. After consuming all
contents in the file, the file is moved to a configurable done directory and the .inprogress suffix is dropped.

Concurrency

If multiple spout instances are used in the topology, each instance consumes a different file. Synchronization among
spout instances relies on lock files created in a subdirectory called .lock (by default) under the monitored directory.
A file with the same name as the file being consumed (without the .inprogress suffix) is created in the lock directory.
Once the fileis completely consumed, the corresponding lock file is del eted.

Recovery from failure

Periodically, the spout records information about how much of the file has been consumed in the lock file. If the spout
instance crashes or thereisaforcekill of topology, another spout can take over the file and resume from the location
recorded in the lock file.

Certain error conditions (such as a spout crash) can leave residual lock files. Such a stale lock file indicates that the
corresponding input file has not been completely processed. When detected, ownership of such stale lock files will be
transferred to another spout.

The hdfsspout.lock.timeout.sec property specifies the duration of inactivity after which lock files should be
considered stale. The default timeout is five minutes. For lock file ownership transfer to succeed, the HDFS lease on
the file (from the previous lock owner) should have expired. Spouts scan for stale lock files before selecting the next
file for consumption.

Lock on .lock Directory

HDFS spout instances create a DIRLOCK file in the .lock directory to coordinate certain accesses to the .lock
directory itself. A spout will try to create it when it needs access to the .|ock directory, and then delete it when done.
In error conditions such as atopology crash, force kill, or untimely death of a spout, this file may not be deleted.
Future instances of the spout will eventually recover the file once the DIRLOCK file becomes stale due to inactivity
for hdfsspout.lock.timeout.sec seconds.

API Support

HDFS spout supports core Storm, but does not currently support Trident.

Configuring HDFS Spout

The following member functions are required for HdfsSpout:

Apache Storm

Moving Data Into and Out of Apache Storm Using Spouts and Bolts

.setReader Type() Specifies which file reader to use:

* Toread sequencefiles, set thisto 'seq.

e Toread text files, set thisto 'text'.

e |f you want to use a custom file
reader class that implementsinterface
org.apache.storm.hdfs.spout.FileReader, set thisto
the fully qualified class name.

withOutputFields() Specifies names of output fields for the spout. The
number of fields depends upon the reader being used.

For convenience, built-in reader types expose a static
member called defaultFields that can be used for setting
this.

SetHdfsUri() Specifies the HDFS URI for HDFS NameNode; for
example: hdfs://namenodehost:8020.

setSour ceDir () Specifies the HDFS directory from which to read files;
for example, /datalinputdir.

.setAr chiveDir () Specifies the HDFS directory to move afile after thefile
is completely processed; for example, /data/done.
If this directory does not exigt, it will be created
automatically.

-setBadFilesDir () Specifies adirectory to move afileif thereis an error
parsing the contents of the file; for example, /data/
badfiles.

If this directory does not exist it will be created
automatically.

For additional configuration settings, see Apache HDFS spout Configuration Settings.

HDFS Spout Example

The following example creates an HDFS spout that reads text files from HDFS path hdfs://local host:54310/source.

/1 Instantiate spout to read text files
Hdf sSpout t ext Reader Spout = newHdf sSpout (). set Reader Type("text")

. W t hQut put Fi el ds(Text Fi | eReader . def aul t Fi el ds)
.setHdf sUri ("hdfs://

| ocal host: 54310") // reqd
.set SourceDir("/data/in")

/'l reqd

.set ArchiveDir("/data/done")
/1 reqd

.setBadFi |l esDir("/data/ badfiles");
/1 required

/1 1f using Kerberos

HashMap hdf sSetti ngs = new HashMap();

hdf sSet ti ngs. put ("hdfs. keytab.file", "/path/to/keytab");

hdf sSet ti ngs. put (" hdf s. kerberos. pri nci pal ", "user @XAVPLE. cont') ;

10

https://github.com/apache/storm/tree/master/external/storm-hdfs#configuration-settings

Apache Storm

Moving Data Into and Out of Apache Storm Using Spouts and Bolts

t ext Reader Spout . set Hdf sCl i ent Setti ngs(hdf sSetti ngs);

/1l Create topol ogy
Topol ogyBui | der buil der = new Topol ogyBui | der () ;
bui | der . set Spout (" hdf sspout”, textReader Spout, SPOUT_NUM ;

/1 Set up bolts and wire up topol ogy
/1 Submit topology with config
Config conf = new Config();

St or nSubmi tter. subm t Topol ogyW t hPr ogr essBar ("t opol ogyNane", conf,
bui | der. creat eTopol ogy());

A sample topology HdfsSpoutTopology is provided in the storm-starter module.

Streaming Data to Kafka

Storm provides a Kafka Bolt for both the core-storm and Trident APIs that publish data to Kafka topics.
Use the following procedure to add a Storm component to your topology that writes data to a Kafka cluster:

1. Instantiate a Kafka Bolt.

2. Configure the Kafka Bolt with a Tuple-to-Message mapper.
3. Configure the Kafka Bolt with a Kafka Topic Selector.

4. Configure the Kafka Bolt with Kafka Producer properties.

The following code samples illustrate the construction of asimple Kafka bolt.

KafkaBolt Integration: Core Storm APIs

To use KafkaBolt, create an instance of org.apache.storm.kafka.bolt.KafkaBolt and attach it as a component to your
topology.

The following example shows construction of a Kafka bolt using core Storm APIs, followed by details about the
code:

Topol ogyBui | der bui |l der = new Topol ogyBui | der () ;

Fields fields = new Fiel ds("key", "nessage");
Fi xedBat chSpout spout = new Fi xedBat chSpout (fi el ds, 4,
new Val ues("stornt, "1"),

new Val ues("trident”, "1"),
new Val ues("needs", "1"),
new Val ues("j avadoc", "1")

)

spout . set Cycl e(true);

bui | der. set Spout ("spout", spout, 5);

|/ set producer properties.

Properties props = new Properties();

props. put ("boot strap. servers", "l ocal host: 9092");
props. put ("acks", "1");

props. put ("key. serializer",

"org. apache. kaf ka. conmon. seri al i zati on. Stri ngSeri ali zer");
props. put ("val ue. seri alizer",

"org. apache. kaf ka. common. seri al i zation. StringSerializer");

Kaf kaBolt bolt = new Kaf kaBol t ()

. Wi t hProducer Properti es(props)

. W t hTopi cSel ect or (new Def aul t Topi cSel ector ("test"))

.wi t hTupl eToKaf kaMapper (new Fi el dNaneBasedTupl eToKaf kaMapper ()) ;

bui | der. setBol t ("forwardToKaf ka", bolt, 8).shuffleG ouping("spout");

11

Apache Storm

Moving Data Into and Out of Apache Storm Using Spouts and Bolts

1

Config conf = new Config();

St or nSubmi tter. subm t Topol ogy("kaf kabol t Test", conf,

bui | der . cr eat eTopol ogy());

Instantiate a KafkaBolt.
The core-storm API uses the storm.kafka.bolt.KafkaBolt class to instantiate a Kafka Bolt:

Kaf kaBolt bolt = new Kaf kaBolt ();
Configure the KafkaBolt with a Tuple-to-Message Mapper.

The KafkaBolt maps Storm tuples to Kafka messages. By default, KafkaBolt looks for fields named "key" and
"message." Storm provides the storm.kafka.trident. mapper.FieldNameBased TupleToK afkaM apper class to
support this default behavior and provide backward compatibility. The classis used by both the core-storm and
Trident APIs.

Kaf kaBolt bolt = new Kaf kaBol t ()
. Wi t hTri dent Tupl eToKaf kaMapper (new Fi el dNanmeBasedTupl eToKaf kaMapper ()) ;

Configure the Kafka Bolt with a Kafka Topic Selector.

E Note:
To ignore amessage, return NULL from the getTopics() method.

Kaf kaBolt bolt = new Kaf kaBolt ().w t hTupl eToKaf kaMapper (new
Fi el dNameBasedTupl eToKaf kaMapper ())
. W t hTopi cSel ect or (new Def aul t Topi cSel ector());

If you need to write to multiple Kafka topics, you can write your own implementation of the KafkaT opicSel ector
interface .

Configure the Kafka Bolt with Kafka Producer properties.

Y ou can specify producer propertiesin your Storm topology by calling KafkaBolt.withProducerProperties(). See
the Apache Producer Configs documentation for more information.

KafkaBolt Integration: Trident APIs

To use KafkaBolt, create an instance of org.apache.storm.kafka.trident. TridentState and
org.apache.storm.kafka.trident. TridentStateFactory, and attach them to your topology.

The following example shows construction of a Kafka bolt using Trident APIs, followed by details about the code:

Fields fields = new Fields("word", "count");
Fi xedBat chSpout spout = new Fi xedBat chSpout (fi el ds, 4,

new Val ues("storni, "1"),
new Val ues("trident", "1"),
new Val ues("needs", "1"),
new Val ues("j avadoc", "1")
)

spout . set Cycl e(true);

Tri dent Topol ogy topol ogy = new Tri dent Topol ogy();
Stream stream = topol ogy. newstrean("spout 1", spout);

/] set producer properties.
Properties props = new Properties();
props. put ("boot strap. servers", "l ocal host: 9092");

12

http://kafka.apache.org/documentation.html#producerconfigs

Apache Storm Moving Data Into and Out of Apache Storm Using Spouts and Bolts

props. put ("acks", "1");
props. put ("key. serializer",

"or g. apache. kaf ka. conmon. seri al i zati on. StringSerializer");
props. put ("val ue. seri ali zer",

"org. apache. kaf ka. conmon. seri al i zati on. Stri ngSeri alizer");

Tri dent Kaf kaSt at eFactory stateFactory = new Tri dent Kaf kaSt at eFact ory()
. Wi t hProducer Properti es(props)
. Wi t hKaf kaTopi cSel ect or (new Def aul t Topi cSel ector ("test"))
. W t hTri dent Tupl eToKaf kaMapper (new
Fi el dNanmeBasedTupl eToKaf kavapper ("word", "count"));
stream partitionPersist(stateFactory, fields, new Trident Kaf kaUpdater(), new
Fields());

Config conf = new Config();
St or nSubmi tter. subni t Topol ogy(" kaf kaTri dent Test", conf, topol ogy. build());

1. Instantiate a KafkaBolt.

The Trident APl uses acombination of the storm.kafka.trident. TridentStateFactory and
storm.kafka.trident. TridentK af kaStateFactory classes.

Tri dent Topol ogy topol ogy = new Tri dent Topol ogy();
Stream stream = topol ogy. newSt r ean(" spout ") ;
Tri dent Kaf kaSt at eFactory stateFactory = new Tri dent Kaf kaSt at eFactory();
stream partitionPersist(stateFactory, fields, new TridentKaf kaUpdater (),
new Fi el ds());

2. Configure the KafkaBolt with a Tuple-to-Message Mapper.

The KafkaBolt must map Storm tuples to Kafka messages. By default, KafkaBolt looks for fields named "key"
and "message." Storm provides the storm.kafka.trident.mapper.FieldNameBased TupleT oK afkaM apper class to
support this default behavior and provide backward compatibility. The classis used by both the core-storm and
Trident APIs.

Tri dent Kaf kaSt at eFact ory stateFactory = new Tri dent Kaf kaSt at eFact ory()
. W t hTri dent Tupl eToKaf kaMapper (new
Fi el dNameBasedTupl eToKaf kaMapper ("word", "count"));

Y ou must specify the field names for the Storm tuple key and the Kafka message for any implementation of the
TridentKafkaState in the Trident API. Thisinterface does not provide a default constructor.

However, some Kafka bolts may reguire more than two fields. Y ou can write your own implementation of the
TupleToKafkaMapper and TridentTupleT oK afkaMapper interfaces to customize the mapping of Storm tuples to
Kafka messages. Both interfaces define two methods:

K get KeyFronirupl e(Tupl e/ Tri dent Tupl e tupl e);

V get MessageFronmTupl e(Tupl e/ Tri dent Tupl e tupl e);
3. Configure the KafkaBolt with a Kafka Topic Selector.

B Note:
To ignore amessage, return NULL from the getTopics() method.

Tri dent Kaf kaSt at eFact ory stateFactory = new Tri dent Kaf kaSt at eFact ory()
. wi t hKaf kaTopi cSel ect or (new Def aul t Topi cSel ector ("test"))
.wi t hTri dent Tupl eToKaf kaMapper (new
Fi el dNameBasedTupl eToKaf kaMapper ("word", "count"));

13

Apache Storm Moving Data Into and Out of Apache Storm Using Spouts and Bolts

If you need to write to multiple Kafka topics, you can write your own implementation of the KafkaT opicSel ector
interface; for example:

public interface KafkaTopicSel ector {
String get Topi cs(Tupl e/ Tri dent Tupl e tupl e);
}

4. Configure the KafkaBolt with Kafka Producer properties.

Y ou can specify producer propertiesin your Storm topology by calling
TridentK afkaStateFactory.withProducerProperties(). See the Apache Producer Configs documentation for more
information.

Writing Datato HDFS

The storm-hdfs connector supports core Storm and Trident APIs. Y ou should use the trident API unless your
application requires sub-second latency.

Storm-HDFS: Core Storm APIs

The primary classes of the storm-hdfs connector are HdfsBolt and SequenceFileBolt, both located in the
org.apache.storm.hdfs.bolt package. Use the HdfsBolt class to write text datato HDFS and the SequenceFileBolt
classto write binary data.

For more information about the HdfsBolt class, refer to the Apache Storm HdfsBolt documentation.
Specify the following information when instantiating the bolt:
HdfsBolt Methods

withFsUr| Specifies the target HDFS URL and port number.

withRecordFor mat Specifies the delimiter that indicates a boundary
between data records. Storm developers can
customize by writing their own implementation of the
org.apache.storm.hdfs.format.RecordFormat interface.
Use the provided org.apache.storm.hdfs.format.
DelimitedRecordFormat class as a convenience class for
writing delimited text data with delimiters such as tabs,
comma-separated values, and pipes. The storm-hdfs bolt
uses the RecordFormat implementation to convert tuples
to byte arrays, so this method can be used with both text
and binary data.

withRotationPolicy Specifies when to stop writing to adata file and
begin writing to another. Storm devel opers can
customize by writing their own implementation of the
org.apache.storm.hdfs.rotation.FileSizeRotationSi zePolicy
interface.

withSyncPolicy Specifies how frequently to flush buffered data to the
HDFS filesystem. This action enables other HDFS
clientsto read the synchronized data, even as the Storm
client continues to write data. Storm developers can
customize by writing their own implementation of the
org.apache.storm.hdfs.sync.SyncPolicy interface.

14

http://kafka.apache.org/documentation.html#producerconfigs
https://github.com/apache/storm/tree/master/external/storm-hdfs#hdfs-bolt

Apache Storm Moving Data Into and Out of Apache Storm Using Spouts and Bolts

withFileNameFor mat Specifies the name of the data file. Storm developers
can customize by writing their own interface of
the org.apache.storm.hdfs.format.FileNameFormat
interface. The provided
org.apache.storm.hdfs.format.DefaultFileNameFormat
creates file names with the following naming format:
{ prefix} -{ componentl d} -{ taskl d} -{ rotationNum} -
{timestamp} -{ extension}.

Example: MyBolt-5-7-1390579837830.txt.

Example: Cluster Without High Availability ("HA™)

The following example writes pipe-delimited files to the HDFS path hdfs://localhost:8020/foo. After every 1,000
tuplesit will synchronize with the filesystem, making the data visible to other HDFS clients. It will rotate the files
when they reach 5 MB in size.

Note that the HdfsBolt isinstantiated with an HDFS URL and port number.

“Tjava

/1 use "|" instead of "," for field delinmter

RecordFornmat fornmat = new Del i nitedRecordFor mat ()
.withFieldDelimter("|");

/1 Synchronize the filesystem after every 1000 tupl es
SyncPol i cy syncPolicy = new Count SyncPol i cy(1000);

/!l Rotate data files when they reach 5 MB
Fil eRotationPolicy rotationPolicy = new Fil eSi zeRot ati onPol i cy(5. Of,
Units. MB);

/1l Use default, Stormgenerated file nanes
Fi | eNameFor mat fil eNaneFornmat = new Def aul t Fi | eNaneFor mat ()
.wWithPath("/fool");

/1 Instantiate the Hdf sBolt

Hdf sBolt bolt = new Hdf sBol t ()
.wWi thFsUrl ("hdfs://| ocal host: 8020")
. W t hFi | eNameFor nat (fil eNaneFor mat)
. Wi t hRecor dFor nat (f or nat)
. Wi thRot ati onPol i cy(rotationPolicy)
.wW t hSyncPol i cy(syncPol i cy);

Example: HA-Enabled Cluster
The following example shows how to modify the previous example for an HA-enabled cluster.

Here the HdfsBolt is instantiated with a nameservice ID, instead of using an HDFS URL and port number.

Hdf sBolt bolt = new Hdf sBolt ()
. W t hFsURL(" hdfs:// nmyNaneservi cel D")
. Wi t hFi | eNanmeFor mat (fi | eNanmef or mat)
. W t hRecor dFor mat (f or mat)
. W t hRot ati onPol i cy(rotationPolicy)
. W t hSyncPol i cy(syncPolicy);

15

Apache Storm Moving Data Into and Out of Apache Storm Using Spouts and Bolts

To obtain the nameservice ID, check the df s.nameservices property in your hdfs-sitexml file; nnhain the following
example:

<property>
<nane>df s. naneser vi ces</ nane>
<val ue>nnha</ val ue>

</ property>

Storm-HDFS: Trident APIs

The Trident APl implements a StateFactory class with an API that resembl es the methods from the storm-code AP,
as shown in the following code sample:

Fi el ds hdfsFields = new Fields("fieldl", "field2");

Fi | eNameFor mat fil eNaneFormat = new Def aul t Fi | eNaneFor mat ()
.withPrefix("trident")
. W t hExtension(".txt")
.withPath("/trident");

Recor dFormat recordFornmat = new Del i mi t edRecor dFor mat ()
. Wi t hFi el ds(hdf sFi el ds);

Fil eRotationPolicy rotationPolicy = new Fil eSi zeRot ati onPol i cy(5. Of,
Fi | eSi zeRot ati onPol i cy. Units. MB);

Hdf sSt at e. Opti ons options = new Hdf sSt at e. Hif sFi | eOpti ons()
. W t hFi | eNameFor nat (fi |l eNaneFor mat)
. Wi t hRecor dFor mat (r ecor dFor nat)
.wi t hRot ati onPol i cy(rotationPolicy)
W thFsUrl ("hdfs://1ocal host: 8020");

StateFactory factory = new Hdf sStateFactory().w t hOpti ons(options);

TridentState state = stream partitionPersist(factory, hdfsFields, new
Hdf sUpdat er (), new Fields());

See the javadoc for the Trident API, included with the storm-hdfs connector, for more information.
Limitations

Directory and file names changes are limited to a prepackaged file name format based on a timestamp.

Writing Data to HBase

The storm-hbase connector enables Storm devel opers to collect several PUTS in a single operation and write to
multiple HBase column families and counter columns. A PUT is an HBase operation that inserts datainto asingle
HBase cell.

Use the HBase client's write buffer to automatically batch: hbase.client.write.buffer.

The primary interface in the storm-hbase connector is the org.apache.storm.hbase.bolt.mapper.HBaseM apper
interface. However, the default implementation, SimpleHBaseM apper, writes a single column family. Storm
developers can implement the HBaseM apper interface themselves or extend SimpleHBaseM apper if they want to
change or override this behavior.

SimpleHBaseM apper Methods

16

Apache Storm Moving Data Into and Out of Apache Storm Using Spouts and Bolts

withRowK eyField Specifies the row key for the target HBase row. A row
key uniquely identifiesarow in HBase

withColumnFields Specifies the target HBase column.

withCounter Fields Specifies the target HBase counter.

withColumnFamily Specifies the target HBase column family.

Example

The following example specifies the '‘word' tuple as the row key, adds an HBase column for the tuple ‘word' field,
adds an HBase counter column for the tuple ‘count’ field, and writes data to the 'cf' column family.

Si mpl eHBaseMapper mapper = new Si npl eHBaseMapper ()
. Wi t hRowKeyFi el d("word")
. W t hCol unmFi el ds(new Fi el ds("word"))
. W t hCount er Fi el ds(new Fi el ds("count"))
. Wi thCol umFami | y("cf");

Writing Data to Hive

Core Storm and Trident APIs support streaming data directly to Apache Hive using Hive transactions. Data
committed in atransaction is immediately available to Hive queries from other Hive clients. Y ou can stream data to
existing table partitions, or configure the streaming Hive bolt to dynamically create desired table partitions.

Use the following steps to perform this procedure:

1. Instantiate an implementation of the HiveMapper Interface.
2. Instantiate a HiveOptions class with the HiveMapper implementation.
3. Instantiate a HiveBolt with the HiveOptions class.

Note:
B Currently, data may be streamed only into bucketed tables using the ORC file format.

Core-storm APIs
The following example constructs a Kafka bolt using core Storm APIs:

Del i m t edRecor dHi veMapper mapper = new Del i mit edRecor dH veMapper ()
. W t hCol unmFi el ds(new Fi el ds(col Nanes)) ;

H veQptions hiveQOptions = new

H veOpti ons(et aSt or eURI , dbNan®e, t bl Nane, mapper) ;

Hi veBol t hiveBolt = new Hi veBol t (hiveOpti ons);

1. Instantiate an Implementation of HiveMapper Interface.

The storm-hive streaming bolt uses the HiveMapper interface to map the names of tuple fields to the
names of Hive table columns. Storm provides two implementations: DelimitedRecordHiveM apper and
JsonRecordHiveM apper. Both implementations take the same arguments.

Table 1. HiveM apper Arguments

Argument Data Type Description

withColumnFields org.apache.storm.tuple.Fields The name of the tuple fields that you want to
map to table column names.

17

Apache Storm Moving Data Into and Out of Apache Storm Using Spouts and Bolts

Argument Data Type Description

withPartitionFields org.apache.storm.tuple.Fields The name of the tuple fields that you want to
map to table partitions.

withTimeAsPartitionField String Requests that table partitions be created with
names set to system time. Developers can
specify any Java-supported date format, such
as"YYYY/MM/DD".

The following sample code illustrates how to use DelimitedRecordHiveM apper:

DeI i m tedRecor dHi veMapper napper = new Del i mi t edRecor dHi veMapper ()
. W t hCol unmFi el ds(new Fi el ds(col Nanes))
.withPartitionFi el ds(new Fi el ds(part Nanes));

Del i m t edRecor dHi veMapper mapper = new Del i mit edRecor dHi veMapper ()
. W t hCol unmFi el ds(new Fi el ds(col Nanes))
.W thTi meAsPartitionField("YYYY MM DD");

2. Instantiate a HiveOptions Class with the HiveMapper Implementation. The HiveOptions class configures
transactions used by Hive to ingest the streaming data:

H veOpti ons hiveOpti ons = new
H veQpti ons(et aSt or eURl , dbNan®e, t bl Name, mapper)
. W t hTxnsPer Bat ch(10)
. W t hBat chSi ze(1000)
.wi t hl dl eTi meout (10) ;

The following table describes al configuration properties for the HiveOptions class.

Table 2: HiveOptions Class Configuration Properties

HiveOptions Configuration Property Data Type Description

metaStoreURI String Hive Metastore URI. Storm devel opers can
find thisvalue in hive-sitexml.

dbName String Database name

tbIName String Table name

mapper Mapper Two properties that start with

"org.apache.storm.hive.bolt.":
mapper.DelimitedRecordHiveM apper

mapperJsonRecordHiveM apper

18

Apache Storm Moving Data Into and Out of Apache Storm Using Spouts and Bolts

HiveOptions Configuration Property Data Type Description

withTxnsPerBatch Integer Configures the number of desired
transactions per transaction batch. Data
from all transactionsin asingle batch form
asingle compaction file. Storm devel opers
use this property in conjunction with the
withBatchSize property to control the size of
compaction files. The default value is 100.

Hive stores data in base files that cannot be
updated by HDFS. Instead, Hive creates a
set of deltafiles for each transaction that
alters atable or partition and stores them

in a separate delta directory. Occasionally,
Hive compacts, or merges, the base and delta
files. Hive performs all compactionsin the
background without affecting concurrent
reads and writes of other Hive clients.

withMaxOpenConnections Integer Specifies the maximum number of open
connections. Each connection isto asingle
Hive table partition. The default valueis
500. When Hive reaches this threshold,
anidle connection is terminated for each
new connection request. A connection is
considered idle if no datais written to the
table partition to which the connectionis
made.

withBatchSize Integer Specifies the maximum number of Storm
tuples written to Hive in asingle Hive
transaction. The default value is 15000
tuples.

withCall Timeout Integer Specifies theinterval in seconds between
consecutive heartbeats sent to Hive. Hive
uses heartbeats to prevent expiration of
unused transactions. Set thisvalueto O to
disable heartbeats. The default value is 240.

withAutoCreatePartitions Boolean Indicates whether HiveBolt should
automatically create the necessary Hive
partitions needed to store streaming data. The
default value istrue.

withK erberosPrinicipal String Kerberos user principal for accessing a
secured Hiveinstallation.

withKerberosK eytab String Kerberos keytab for accessing a secured
Hive installation.

3. Instantiate the HiveBolt with the HiveOptions class:

HiQeBoIt hi veBolt = new Hi veBol t (hi veOpti ons);

4. Before building your topology code, add the following dependency to your topology pom.xml file:

<dependency>
<gr oupl d>or g. apache. htt pconponent s</ gr oupl d>
<artifactld>httpclient</artifactld>
<versi on>4. 3. 3</versi on>

</ dependency>

19

Apache Storm Moving Data Into and Out of Apache Storm Using Spouts and Bolts

Trident APIs
The following example shows construction of a Kafka bolt using core Storm APIs, followed by details about the
code:

Del i m t edRecor dHi veMapper napper = new Del i nmi t edRecor dHi veMapper ()
. W t hCol unmFi el ds(new Fi el ds(col Nanes))
. Wi thTi neAsPartitionFiel d("YYYY MM DD");

H veOpti ons hiveOpti ons = new
H veOpti ons(et aSt or eURl , dbNan®e, t bl Nanme, mapper)
. Wi t hTxnsPer Bat ch(10)
. W t hBat chSi ze(1000)
.wi t hl dl eTi neout (10)

StateFactory factory = new HiveStateFactory().w thOpti ons(hiveOptions);

TridentState state = stream partitionPersist(factory, hiveFields, new
H veUpdat er (),

new Fi el ds());

1. Instantiate an Implementation of HiveMapper Interface

The storm-hive streaming bolt uses the HiveMapper interface to map the names of tuple fields to the
names of Hive table columns. Storm provides two implementations. DelimitedRecordHiveM apper and
JsonRecordHiveM apper. Both implementations take the same arguments.

Table 3: HiveM apper Arguments

Argument Data Type Description

withColumnFields org.apache.storm.tuple.Fields The name of the tuple fields that you want to
map to table column names.

withPartitionFields org.apache.storm.tuple.Fields The name of the tuple fields that you want to
map to table partitions.

withTimeAsPartitionField String Requests that table partitions be created with
names set to system time. Developers can
specify any Java-supported date format, such
as"YYYY/MM/DD".

The following sample code illustrates how to use DelimitedRecordHiveM apper:

DeI i m tedRecor dHi veMapper napper = new Del i m t edRecor dHi veMapper ()
. Wi t hCol umkFi el ds(new Fi el ds(col Nanes))
.withPartitionFi el ds(new Fi el ds(part Nanmes));

Del i m t edRecor dHi veMapper mapper = new Del i mit edRecor dHi veMapper ()
. W t hCol unmFi el ds(new Fi el ds(col Nanes))
.W thTi meAsPartitionField("YYYY MM DD");

2. Instantiate a HiveOptions class with the HiveM apper Implementation

Use the HiveOptions class to configure the transactions used by Hive to ingest the streaming data, asillustrated in
the following code sample.

H veOpti ons hiveOptions = new
H veQpti ons(et aSt or eURl , dbNan®e, t bl Name, mapper)
. W t hTxnsPer Bat ch(10)
. W t hBat chSi ze(1000)

20

Apache Storm Moving Data Into and Out of Apache Storm Using Spouts and Bolts

. Wit hldl eTi meout (10) ;

See "HiveOptions Class Configuration Properties’ for alist of configuration properties for the HiveOptions class.
3. Instantiate the HiveBolt with the HiveOptions class:

StateFactory factory = new Hi veStateFactory().w thOpti ons(hiveOptions);

TridentState state = stream partitionPersist(factory, hiveFields, new
H veUpdat er (),

new Fi el ds());

4, Before building your topology code, add the following dependency to your topology pom.xml file:

<dependency>
<gr oupl d>or g. apache. htt pconponent s</ gr oupl d>
<artifactld>httpclient</artifactld>
<ver si on>4. 3. 3</ ver si on>

</ dependency>

Configuring Connectorsfor a Secure Cluster

If your topology uses KafkaSpout, Storm-HDFS, Storm-HBase, or Storm-Hive to access components on a Kerberos-
enabled cluster, complete the associated configuration steps listed in this subsection.

Configuring KafkaSpout for a Secure Kafka Cluster
To connect to a Kerberized Kafka topic:

Procedure

1. Code: Add spoutConfig.securityProtocol=PLAINTEXTSASL to your Kafka Spout configuration.

2. Configuration: Add a KafkaClient section (excerpted from /usr/hdp/current/kafka-broker/config/kafka_jaas.conf)
to /usr/hdp/current/storm-supervisor/conf/storm_jaas.conf:

Kaf kad i ent {
com sun. securi ty. aut h. nodul e. Kr b5Logi nMbdul e required
useKeyTab=t r ue
keyTab="/et c/security/ keytabs/stornusr.service. keyt ab"
st or eKey=true
useTi cket Cache=f al se
servi ceNane="kaf ka"
princi pal =" st or nusr/ host . nane @G2XAMPLE. COM';

b
3. Setup: Add aKafka ACL for the topic. For example:

bin/kafka-acls.sh --authorizer kafka.security.auth.SimpleAcl Authorizer --authorizer-properties
zookeeper.connect=local host: 2181 --add --allow-principal user:stormusr --allow-hosts * --operations Read --topic
TEST

Configuring Storm-HDFSfor a Secure Cluster
To use the storm-hdfs connector in topologies that run on secure clusters:

Procedure

1. Provide your own Kerberos keytab and principal name to the connectors. The Config object that you pass into the
topology must contain the storm keytab file and principal name.

21

Apache Storm

Moving Data Into and Out of Apache Storm Using Spouts and Bolts

2. Specify an HdfsBolt configKey, using the method HdfsBolt.withConfigKey("somekey"). The value map of this

key should have the following two properties:

hdfs.keytab.file: "<path-to-keytab>"

hdfs.kerberos.principal: "<principal>@<host>"

where

<path-to-keytab> specifies the path to the keytab file on the supervisor hosts
<principal>@<host> specifies the user and domain; for example, storm-admin@EXAMPLE.com.

For example:

Config config = new Config();
config. put(Hdf sSecurityUtil.STORM KEYTAB _FI LE KEY, "$keytab");
config. put (Hdf sSecurityUil.STORM USER NAME KEY, "$principal");

St or nSubmi tter. subm t Topol ogy(" $t opol ogyNane", confi g,
bui | der. creat eTopol ogy());

On worker hosts the bolt/trident-state code will use the keytab file and principal to authenticate with the
NameNode. Make sure that all workers have the keytab file, stored in the same location.

Note:
E For more information about the HdfsBolt class, refer to the Apache Storm HdfsBolt APl documentation.

. Distribute the keytab file that the Bolt is using in the Config object, to all supervisor nodes. Thisisthe keytab

that is being used to authenticate to HDFS, typically the Storm service keytab, storm. The user ID that the Storm
worker is running under should have accessto it.

On an Ambari-managed cluster thisis /etc/security/keytabs/storm.service keytab (the "path-to-keytab"), where the
worker runs under storm.

. If you set supervisor.run.worker.as.user to true, make sure that the user that the workers are running under

(typically the storm keytab) has read access on those keytabs. Thisisamanual step; an admin needsto go to each
supervisor node and run chmod to give file system permissions to the users on these keytab files.

Note:
E Y ou do not need to create separate keytabs or principals; the general guideline isto create a principal and
keytab for each group of users that requires the same access to these resources, and use that single keytab.

All of these connectors accept topology configurations. Y ou can specify the keytab location on the host and the
principal through which the connector will login to that system.

. Configure the connector(s). Here is a sample configuration for the Storm-HDFS connector (see Writing Data to

HDFS for amore extensive example):

Hdf sBolt bolt = new Hdf sBolt ()
.wWithFsUrl ("hdfs://I ocal host: 8020")
. Wi t hFi | eNameFor mat (fi |l eNaneFor mat)
. W t hRecor dFor mat (f or mat)
.w t hRot ati onPol i cy(rotationPolicy)
. Wi t hSyncPol i cy(syncPolicy);
. W t hConf i gKey("hdfs. config");

Map<String, Cbject> map = new HashMap<Stri ng, Obj ect >();
map. put ("hdfs. keytab.file","/etc/security/keytabs/storm service. keytab");
map. put (" hdf s. ker ber os. pri nci pal ", " st or M@EST. HORTONWORKS. COM') ;

Config config = new Config();
config. put ("hdfs.config", map);

22

https://storm.apache.org/releases/1.2.3/javadocs/org/apache/storm/hdfs/bolt/HdfsBolt.html
https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.1.5/storm-moving-data/content/writing_data_to_hdfs.html
https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.1.5/storm-moving-data/content/writing_data_to_hdfs.html

Apache Storm

Moving Data Into and Out of Apache Storm Using Spouts and Bolts

St or nBubnmi tt er . submi t Topol ogy(" $t opol ogyNane", confi g, bui | der. creat eTopol ogy());

f Important:

For the Storm-HDFS connector, you must package hdfs-site.xml and core-site.xml (from your cluster
configuration) in the topology .jar file.

In addition, include any configuration files for HDP components used in your Storm topology, such as
hive-site.xml and hbase-sitexml. This fulfills the requirement that all related configuration files appear in
the CLASSPATH of your Storm topology at runtime.

Configuring Storm-HBase for a Secure Cluster
To use the storm-hbase connector in topologies that run on secure clusters:

Procedure

1

2.

Provide your own Kerberos keytab and principal name to the connectors. The Config object that you passinto the
topology must contain the storm keytab file and principal name.

Specify an HBaseBolt configK ey, using the method HBaseBolt.withConfigK ey("somekey"). The value map of
this key should have the following two properties:

storm.keytab.file: "<path-to-keytab-file>"

storm.kerberos.principal: " <principal>@<host>"

For example:

Config config = new Config();
config. put (HBaseSecurityUil.STORM KEYTAB FI LE_KEY, "$keytab");
confi g. put (HBaseSecurityUil.STORM USER NAME KEY, "$principal");

St or nSubni t t er. submi t Topol ogy (" $t opol ogyNane", confi g,
bui | der. creat eTopol ogy());

On worker hosts the bolt/trident-state code will use the keytab file and principal to authenticate with the
NameNode. Make sure that all workers have the keytab file, stored in the same location.

B Note:
For more information about the HBaseBolt class, refer to the Apache Storm HBaseBolt AP
documentation.

Distribute the keytab file that the Bolt is using in the Config object, to all supervisor nodes. This is the keytab
that is being used to authenticate to HBase, typically the Storm service keytab, storm. The user ID that the Storm
worker is running under should have accessto it.

Note:
E Y ou do not need to create separate keytabs or principals; the general guideline isto create a principal and
keytab for each group of users that requires the same access to these resources, and use that single keytab.

All of these connectors accept topology configurations. Y ou can specify the keytab location on the host and the
principal through which the connector will login to that system.

If you set supervisor.run.worker.as.user to true, make sure that the user that the workers are running under
(typically the storm keytab) has read access on those keytabs. Thisisamanual step; an admin needsto go to each
supervisor node and run chmod to give file system permissions to the users on these keytab files.

Note:
B Y ou do not need to create separate keytabs or principals; the general guideline isto create a principal and
keytab for each group of usersthat requires the same access to these resources, and use that single keytab.

All of these connectors accept topology configurations. Y ou can specify the keytab location on the host and the
principa through which the connector will login to that system.

23

https://storm.apache.org/releases/1.2.3/javadocs/org/apache/storm/hbase/bolt/HBaseBolt.html
https://storm.apache.org/releases/1.2.3/javadocs/org/apache/storm/hbase/bolt/HBaseBolt.html

Apache Storm Moving Data Into and Out of Apache Storm Using Spouts and Bolts

5. Configure the connector(s). Here is a sample configuration for the Storm-HBase connector:

HBaseBolt hbase = new HBaseBol t ("Wr dCount",
mapper) . wi t hConf i gKey("hbase. confi g");

Map<String, Object> mapHbase = new HashMap<Stri ng, Obj ect >();
mapHbase. put ("storm keytab.file","/etc/security/keytabs/
storm servi ce. keyt ab") ;

mapHbase. put (" st orm ker beros. pri nci pal ", " st or M@EST. HORTONWORKS. COM') ;

Config config = new Config();
confi g. put ("hbase. confi g", napHbase) ;

St or nBubmi tt er. submi t Topol ogy(" $t opol ogyNane", confi g, bui | der. creat eTopol ogy());

What to do next

For the Storm-HBase connector, you must package hdfs-site.xml, core-site.xml, and hbase-site.xml (from your cluster
configuration) in the topology .jar file.

In addition, include any other configuration files for HDP components used in your Storm topology, such as hive-
sitexml. Thisfulfills the requirement that all related configuration files appear in the CLASSPATH of your Storm
topology at runtime.

Configuring Storm-Hive for a Secure Cluster

The Storm-Hive connector accepts configuration settings as part of the HiveOptions class. For more information
about the HiveBolt and HiveOptions classes, see the Apache Storm HiveOptions and HiveBolt APl documentation.

About thistask
There are two required settings for accessing secure Hive:

Procedure

1. withKerberosPrincipal, the Kerberos principal for accessing Hive:

public H veOptions w thKerberosPrincipal (String kerberosPrincipal)

2. withKerberosK eytab, the Kerberos keytab for accessing Hive:

public H veOptions w thKerberosKeytab(String kerberosKeyt ab)

24

https://storm.apache.org/releases/1.2.3/javadocs/org/apache/storm/hive/common/HiveOptions.html
https://storm.apache.org/releases/1.2.3/javadocs/org/apache/storm/hive/bolt/HiveBolt.html

	Contents
	Moving Data Into and Out of Apache Storm Using Spouts and Bolts
	Ingesting Data from Kafka
	KafkaSpout Integration: Core Storm APIs
	KafkaSpout Integration: Trident APIs
	Tuning KafkaSpout Performance
	Configuring Kafka for Use with the Storm-Kafka Connector
	Configuring KafkaSpout to Connect to HBase or Hive

	Ingesting Data from HDFS
	Configuring HDFS Spout
	HDFS Spout Example

	Streaming Data to Kafka
	KafkaBolt Integration: Core Storm APIs
	KafkaBolt Integration: Trident APIs

	Writing Data to HDFS
	Storm-HDFS: Core Storm APIs
	Storm-HDFS: Trident APIs

	Writing Data to HBase
	Writing Data to Hive
	Core-storm APIs
	Trident APIs

	Configuring Connectors for a Secure Cluster
	Configuring KafkaSpout for a Secure Kafka Cluster
	Configuring Storm-HDFS for a Secure Cluster
	Configuring Storm-HBase for a Secure Cluster
	Configuring Storm-Hive for a Secure Cluster

