
Copyright © 2012 The Apache Software Foundation All rights reserved.

Storage Based Authorization

Table of contents

1 Default Authorization Model of Hive..2

2 Storage-System Based Authorization Model... 2

3 Configuring Storage-System Based Authorization.. 4

4 Creating New Tables or Databases..4

5 Known Issues... 4

Storage Based Authorization

Page 2Copyright © 2012 The Apache Software Foundation All rights reserved.

1 Default Authorization Model of Hive

The default authorization model of Hive supports a traditional RDBMS style of authorization
based on users, groups and roles and granting them permissions to do operations on database
or table. It is described in more detail in Hive Authorization.

This RDBMS style of authorization is not very suitable for the typical use cases in Hadoop
because of the following differences in implementation:
1. Unlike a traditional RDBMS, Hive is not in complete control of all data underneath

it. The data is stored in a number of files, and the file system has an independent
authorization system.

2. Also unlike a traditional RDBMS which doesn’t allow other programs to access the data
directly, people tend to use other applications that read or write directly into files or
directories that get used with Hive.

This creates problem scenarios like:
1. You grant permissions to a user, but the user can’t access the database or file system

because they don’t have file system permissions.
2. You remove permissions for a user, but the user can still access the data directly through

the file system, because they have file system permissions.

2 Storage-System Based Authorization Model

The Hive community realizes that there might not be a one-size-fits-all authorization model,
so it has support for alternative authorization models to be plugged in.

In the HCatalog package, we have introduced implementation of an authorization interface
that uses the permissions of the underlying file system (or in general, the storage backend) as
the basis of permissions on each database, table or partition.

In Hive, when a file system is used for storage, there is a directory corresponding to a
database or a table. With this authorization model, the read/write permissions a user or
group has for this directory determine the permissions a user has on the database or table.
In the case of other storage systems such as HBase, the authorization of equivalent entities
in the system will be done using the system’s authorization mechanism to determine the
permissions in Hive.

For example, an alter table operation would check if the user has permissions on the table
directory before allowing the operation, even if it might not change anything on the file
system.

A user would need write access to the corresponding entity on the storage system to do any
type of action that can modify the state of the database or table. The user needs read access to
be able to do any non-modifying action on the database or table.

http://wiki.apache.org/hadoop/Hive/LanguageManual+Authorization

Storage Based Authorization

Page 3Copyright © 2012 The Apache Software Foundation All rights reserved.

When the database or table is backed by a file system that has a Unix/POSIX-style
permissions model (like HDFS), there are read(r) and write(w) permissions you can set
for the owner user, group and ‘other’. The file system’s logic for determining if a user has
permission on the directory or file will be used by Hive.

Details of HDFS permissions are given here: HDFS Permissions Guide.

2.1 Minimum Permissions

The following table shows the minimum permissions required for Hive operations under this
authorization model:

Operation Database
Read Access

Database
Write Access

Table Read Access Table Write Access

LOAD X

EXPORT X

IMPORT X

CREATE TABLE X

CREATE TABLE
AS SELECT

X X
source table

DROP TABLE X

SELECT X

ALTER TABLE X

SHOW TABLES X

Caution: Hive's current implementation of this authorization model does not prevent
malicious users from doing bad things. See the Known Issues section below.

2.2 Unused DDL for Permissions

DDL statements that manage permissions for Hive's default authorization model do not have
any effect on permissions in the storage-based model.

All GRANT and REVOKE statements for users, groups, and roles are ignored. See the
Known Issues section below.

http://hadoop.apache.org/common/docs/r1.0.2/hdfs_permissions_guide.html
authorization.html#Known+Issues
authorization.html#Known+Issues

Storage Based Authorization

Page 4Copyright © 2012 The Apache Software Foundation All rights reserved.

3 Configuring Storage-System Based Authorization

The implementation of the file-system based authorization model is available in the HCatalog
package. (Support for this is likely to be added to the Hive package in the future.) So using
this implementation requires installing the HCatalog package along with Hive.

The HCatalog jar needs to be added to the Hive classpath. You can add the following to hive-
env.sh to ensure that it gets added:

export HIVE_AUX_JARS_PATH=<path to hcatalog jar>

The following entries need to be added to hive-site.xml to enable authorization:

 <property>
 <name>hive.security.authorization.enabled</name>
 <value>true</value>
 <description>enable or disable the hive client authorization</description>
 </property>

 <property>
 <name>hive.security.authorization.manager</name>
 <value>org.apache.hcatalog.security.HdfsAuthorizationProvider</value>
 <description>the hive client authorization manager class name.
 The user defined authorization class should implement interface
 org.apache.hadoop.hive.ql.security.authorization.HiveAuthorizationProvider.
 </description>
 </property>

To disable authorization, set hive.security.authorization.enabled
to false. To use the default authorization model of Hive, don’t set the
hive.security.authorization.manager property.

4 Creating New Tables or Databases

To create new tables or databases with appropriate permissions, you can either use the Hive
command line to create the table/database and then modify the permissions using a file
system operation, or use the HCatalog command line (hcat) to create the database/table.

The HCatalog command line tool uses the same syntax as Hive, and will create the table or
database with a corresponding directory being owned by the user creating it, and a group
corresponding to the “-g” argument and permissions specified in the “-p” argument.

5 Known Issues

1. Some metadata operations (mostly read operations) do not check for authorization. See
https://issues.apache.org/jira/browse/HIVE-3009.

2. The current implementation of Hive performs the authorization checks in the client. This
means that malicious users can circumvent these checks.

https://issues.apache.org/jira/browse/HIVE-3009

Storage Based Authorization

Page 5Copyright © 2012 The Apache Software Foundation All rights reserved.

3. A different authorization provider (StorageDelegationAuthorizationProvider) needs to be
used for working with HBase tables as well. But that is not well tested.

4. Partition files and directories added by a Hive query don’t inherit permissions from the
table. This means that even if you grant permissions for a group to access a table, new
partitions will have read permissions only for the owner, if the default umask for the
cluster is configured as such. See https://issues.apache.org/jira/browse/HIVE-3094. A
separate "hdfs chmod" command will be necessary to modify the permissions.

5. Although DDL statements for managing permissions have no effect in storage-based
authorization, currently they do not return error messages. See https://issues.apache.org/
jira/browse/HIVE-3010.

https://issues.apache.org/jira/browse/HIVE-3094
https://issues.apache.org/jira/browse/HIVE-3010
https://issues.apache.org/jira/browse/HIVE-3010

	Table of contents
	1 Default Authorization Model of Hive
	2 Storage-System Based Authorization Model
	2.1 Minimum Permissions
	2.2 Unused DDL for Permissions

	3 Configuring Storage-System Based Authorization
	4 Creating New Tables or Databases
	5 Known Issues

