Hortonworks Data Platform

docs.hortonworks.com

http://docs.hortonworks.com

Hortonworks Data Platform Dec 2, 2014

Hortonworks Data Platform: Hadoop High Availability
Copyright © 2012-2015 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, Zookeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
Contact Us directly to discuss your specific needs.

@ @ Except where otherwise noted, this document is licensed under
@ Creative Commons Attribution ShareAlike 3.0 License.
BY SA

http://creativecommons.org/licenses/by-sa/3.0/legalcode

//hortonworks.com/training/
//hortonworks.com/products/hdp/
//hortonworks.com/services/
//hortonworks.com/training/
//hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Hortonworks Data Platform Dec 2, 2014

1. High Availability for Hive Metastore ...t 1
1.1. Use Cases and Failover SCENAIIOS 1
1.2. Software ConfigUIationcooeiiiiiii i 2
LI T 11 7 |] R 2
1.2.2. Update the Hive Metastoreooouiiiiiiiiiie e 3
1.2.3. Validate Configuration ... 3
2. Highly Available Reads With HBaSecccoviiiiiiiiiiiiiiiiiiiiieeeee 4
2.1. Introduction to HBase High Availability ... 5
2.2. Propagating Writes to Region RepPliCasccoouiieiiiiiiiiiieeeeee e 7
2.3. Timeline CONSISTENCY ...ceeiiiiiiiiiiiiiii ittt 9
2.4. Configuring HA Reads fOr HBASEccueiiiiiiiiiiiiiiiiiiiiieieeeeeeeeee ettt 11
2.5. Creating Highly-Available HBase Tablesuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeees 13
2.6. Querying SecoNdary REGIONSccoovieiiiiiieeeiee e 14
2.7. Monitoring Secondary Region Replicascccociiiiiiimiii s 15
3. Namenode High Availability ... 16
3.1, AFCNIEECIUIE s 16
3.2. Hardware RESOUICEScceiuiueiiieeeeeeeiiiteee e e e e e ettt e e e e e e e e ee e e e e e e e eeaneaeeeas 17
3.3. Deploy NameNode HA ClUSTENcooeeiiiiiieeieeeeee e 18
3.3.1. 1. Configure NameNode HA ClIUSTErcceiririiiririmimiiiiiiiiiieieeeeeeeeeeeee 18
3.3.2. 2. Deploy NameNode HA CIUSTEruuuueiuuieeiiiiieiiieeeeeeeeeneeeeeneneneneeene 23
3.3.3. 3. Deploy Hue with an HA CIUStErcoooeiiiiiiiiieeeeeeeee e 26
3.3.4. 4. Deploy Oozie with an HA CIUStercoooiiiiiii e 27
3.4. Operating a NameNode HA ClUSTErcooeeiieieieeeeeeeee e 28
3.5. Configure and Deploy NameNode Automatic Failoverccccoeeeen. 29
3.5.1. Prer@qUISITEScoooiiiieeiiiiee et 30
3.5.2. INSTFUCTIONS ...t e e e e e e e e e e e e e eennaaeas 31
3.5.3. Configuring Oozie Failovercooviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee 32
3.6. Appendix: Administrative Commands ..o 33
4. Resource Manager High Availability ... 35
A.1. HardWare RESOUICESuuuuuuuruiuuueutueueuenanauessuesensssnssssssssessssasssssssssssssssssssnsnes 35
4.2. Deploy ResourceManager HA CIUSTENuuuiieuimimiiiiiiiiiiiiiiinininineneneeeeenennnenees 35
4.2.1. Configure Manual or Automatic ResourceManager Failover 36
4.2.2. Deploy the ResourceManager HA CIUSteruuvviimviiiiirniiiineiiinnninnnens 39
4.2.3. Minimum Settings for Automatic ResourceManager HA Configuration
.. 40
4.2.4. Testing ResourceManager HA on a Single Nodecccooiiiiiiiiiiniiinnnnn. 41

Hortonworks Data Platform Dec 2, 2014

This document is intended for system administrators who need to configure the Hive
Metastore service for High Availability. It contains the following sections:

* Use Cases and Failover Scenarios

» Software Configuration

The following subsequent chapters address high availability with related components:
* Highly Available Reads with HBase

* Namenode High Availability

» Resource Manager High Availability

The relational database that backs the Hive metastore itself should also be

made highly available using best practices defined for the database system in
use.

This section provides information on the use cases and failover scenarios for high
availability (HA) in the Hive metastore.

Use Cases

The metastore HA solution is designed to handle metastore service failures. When a
deployed metastore service fails, it can remain unavailable for a considerable time until the
service is started again. To avoid such outages, deploy the metastore service in HA mode.

Deployment Scenarios

We recommend deploying the metastore service on multiple servers concurrently. Each
Hive metastore client reads the configuration setting in the hi ve. net astore. uri s
property to get a list of metastore servers with which it can attempt to communicate:

<property>
<nane>hi ve. net ast or e. uri s</ nane>
<val ue>thrift://$H ve_Met ast ore_Server _Host _Machi ne_FQDN</ val ue>
<descri pti on>A conma separated |list of nmetastore uris on which netastore
servi ce i s runni ng</description>
</ property>

These metastore servers store their state in a MySQL HA cluster. See the MySQL
documentation for information about configuring a MySQL HA cluster.

In the case of a secure cluster, each of the metastore servers will additionally need to have
the following configuration property in its hi ve-si t e. xm file:

ha-hive-use-and-failover.html
ha-hive-software-config.html
ch_HA-HBase.html
ch_HA-NameNode.html
ch_HA-ResourceManager.html

Hortonworks Data Platform Dec 2, 2014

<property>
<nanme>hi ve. cl ust er. del egati on. t oken. st or e. cl ass</ nane>
<val ue>or g. apache. hadoop. hi ve. thri ft. DBTokenSt or e</ val ue>
</ property>
Failover Scenario

A Hive metastore client always uses the first URI to connect with the metastore server. In
case the metastore server becomes unreachable, the client randomly picks a URI from the
list and tries to connect with it.

Complete the following tasks to configure a Hive HA solution:
1. Install HDP
2. Update the Hive Metastore

3. Validate configuration

Use the following instructions to install HDP on your cluster hardware. Ensure that you
specify the virtual machine that you configured in the section, "Use Cases and Failover
Scenarios" as your NameNode.

1. Download the Apache Ambari repository using the instructions provided in "Ambari
Repositories" section of the Ambari 1.7.0 Documentation Suite.

=

2. Edit the <mast er-i nst al | - machi ne-f or - Hi ve- Met ast ore>/ et c/ hi ve/
conf.server/ hive-site.xm configuration file to add the following properties:

Do not start the Ambari server until you have configured the relevant
templates as outlined in the following steps.

* Provide the URI for the client to contact the metastore server. The following property
can have a comma separated list when your cluster has multiple Hive metastore
servers.

<property>
<nane>hi ve. net astore. uri s </ name>
<val ue>thrift://$H ve_Met ast ore_Server_Host _Machi ne_FQDN</ val ue>
<description>URl for client to contact netastore server</description>
</ property>

 Configure the Hive cluster delegation token storage class.

<property>
<nane>hi ve. cl ust er. del egati on. t oken. st ore. cl ass</ nane>
<val ue>or g. apache. hadoop. hi ve. thri ft. DBTokenSt or e</ val ue>
</ property>

ha-hive-use-and-failover.html
ha-hive-use-and-failover.html
http://docs.hortonworks.com/HDPDocuments/Ambari-1.7.0.0/Ambari_Doc_Suite/ADS_v170.html#ref-09233f42-77cb-48b7-82b1-c05edf7a5131
http://docs.hortonworks.com/HDPDocuments/Ambari-1.7.0.0/Ambari_Doc_Suite/ADS_v170.html#ref-09233f42-77cb-48b7-82b1-c05edf7a5131

Hortonworks Data Platform Dec 2, 2014

¢ Complete the HDP installation.

» Continue the Ambari installation process using the instructions provided in "Install,
Configure and Deploy an HDP Cluster" section of the Ambari 1.7.0 Documentation
Suite.

* Complete the Ambari installation. Ensure that the installation is successful.

HDP components configured for HA must use a NameService rather than a NameNode.
Use the following instructions to update the Hive metastore to reference the NameService
rather than a Name Node.

E

1. Open a command prompt on the machine hosting the Hive metastore.

Hadoop administrators also use the following procedure to update the Hive
metastore with the new URI for a node in a Hadoop cluster. For example,
administrators sometimes rename an existing node as their cluster grows.

2. Set the Hl VE_CONF_DI R environment variable:

export H VE_CONF_DI R=/ et c/ hi ve/ conf. server

3. Execute the following command to retrieve a list of URIs for the filesystem roots,
including the location of the NameService:

hive --service netatool -1listFSRoot

4. Execute the following command with the -dryRun option to test your configuration
change before implementing it:

hi ve --service netatool -updatelLocation <naneservice-uri> <nanmenode-uri> -
dr yRun

5. Execute the command again, this time without the -dryRun option:

hi ve --service metatool -updatelocation <naneservice-uri> <nanenode-uri >

Test various failover scenarios to validate your configuration.

http://docs.hortonworks.com/HDPDocuments/Ambari-1.7.0.0/Ambari_Doc_Suite/ADS_v170.html#Install,_Configure_and_Deploy_a_HDP_Cluster
http://docs.hortonworks.com/HDPDocuments/Ambari-1.7.0.0/Ambari_Doc_Suite/ADS_v170.html#Install,_Configure_and_Deploy_a_HDP_Cluster

Hortonworks Data Platform Dec 2, 2014

HDP 2.2 enables HBase administrators to configure HBase clusters with read-only high
availability (HA). This feature benefits HBase applications that require low-latency queries
and can tolerate minimal staleness for read operations. Examples include queries on remote
sensor data, distributed messaging, object stores, and user profile management.

High Availability for HBase features the following functionality:
* Data is safely protected in HDFS

* Failed nodes are automatically recovered

* No single point of failure

» All HBase API and region operations are supported, including scans, region split/merge,
and META table support. The META table stores information about regions.

However, HBase administrators should carefully consider the following costs associated
with using high availability features:

* Double or triple Mentst or e usage

* Increased Bl ockCache usage

* Increased network traffic for log replication

* Extra backup RPCs for secondary region replicas

HBase is a distributed key-value store designed for fast table scans and read operations at
petabyte scale. Before configuring HA for HBase, you should understand the concepts in
the following table.

HBase Concept Description

Region A group of contiguous rows in an HBase table. Tables start
with one region. Additional regions are added dynamically
as the table grows. Regions can be spread across multiple
hosts to balance workloads and recover quickly from
failure.

There are two types of regions: primary and secondary.
A secondary region is a copy of a primary region that is
replicated on a different Region Server.

Region Server A Region Server serves data requests for one or more
regions. A single region is serviced by only one Region
Server, but a Region Server may serve multiple regions.
When region replication is enabled, a Region Server
can serve regions in primary and secondary mode
concurrently.

Column family A column family is a group of semantically related columns
that are stored together.

Mentt or e MenSt or e is in-memory storage for a Region Server.
Region Servers write files to HDFS after the Menft or e
reaches a configurable maximum value specified with the
hbase. hregi on. nenst ore. f | ush. si ze property in
the hbase- si t e. xm configuration file.

Hortonworks Data Platform Dec 2, 2014

HBase Concept Description

Write Ahead Log (WAL) The WAL is a log file that records all changes to data until

the data is successfully written to disk and the Mentt or e

is flushed). This protects against data loss in the event of a
failure before Mentt or e contents are written to disk.

Compaction When operations stored in the Mentt or e are flushed
to disk, HBase consolidates and merges many smaller
files into fewer large files. This consolidation is called
compaction, and it is usually very fast. However, if many
Region Servers hit the data limit that is specified by the
MenBt or e at the same time, HBase performance may
degrade from the large number of simultaneous major
compactions. Administrators can avoid this by manually
splitting tables over time.

For information about configuring regions, see "HBase Cluster Capacity and Region Sizing"
in the System Administration Guides.

Architecturally, HBase has had a strong consistency guarantee from the start. All reads and
writes are routed through a single Region Server, which guarantees that all writes happen
in order, and all reads access the most recently committed data.

However, because of this "single homing" of reads to a single location, if the server
becomes unavailable, the regions of the table that are hosted in the Region Server become
unavailable for some time until they are recovered. There are three phases in the region
recovery process: detection, assignment, and recovery. Of these, the detection phase

is usually the longest, currently 20 to 30 seconds, depending on the Zookeeper session
timeout setting when the Region Server fails but the Zookeeper session is running. After
that, data is recovered from the Write Ahead Log and assigns the region to a different
server. Until the recovery is complete, during this time clients cannot read data from that
region.

For some use cases, the data may be read-only or stale data is acceptable. However, for use
cases where latency is not acceptable, HBase can be used. To achieve high availability for
reads, HBase provides a feature called region replication. When region replication is used
each region of a table can be replicated and opened in different Region Servers. By default,
the region replication is set to 1, so only a single region replica is deployed and there will
not be any changes from the original model. If region replication is set to 2 or more, then
the master assigns replicas of the regions of the table. The Load Balancer ensures that

the region replicas are not co-hosted in the same Region Servers and in the same rack if
possible.

All of the replicas for a single region have a unique replica ID, starting with 0. The region
replica with replica ID = 0 is called the "primary region." The others are called “secondary
region replicas,” or "secondaries." Only the primary region can accept writes from the client,
and the primary always contains the latest changes. Since all writes must go through the
primary region, writes are not highly available because they might be blocked for some
time if the region becomes unavailable.

For example, in the following image Region Server 1 is responsible for responding to
queries and scans for keys 10 through 40. If Region Server 1 crashes, the region holding
keys 10-40 is unavailable for a short time until the region recovers.

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.0/bk_Sys_Admin_Guides/content/ch_clust_capacity.html

Hortonworks Data Platform Dec 2, 2014

N Divided among
Keys within HBase different RegionServers
Key:10-20 ﬂl;:g}
|l\ Serverl)
‘_‘_-_._._._,-l"
HBase Table Key:20-40
HRegion
Table1 Key:40-80 /)@ﬂr?
Key:60-80 T
HRegion
Serverd
Key:80-100

HA provides a way to access keys 10-40 even if Region Server 1 is not available, by hosting
replicas of the region and assigning the region replicas to other Region Servers as backups.
In the following image, Region Server 2 hosts secondary region replicas for keys 10-20,

and Region Server 3 hosts the secondary region replica for keys 20-40. Region Server 2 also
hosts the secondary region replica for keys 80-100. There are no separate Region Server
processes for secondary replicas. Rather, Region Servers can serve regions in primary or
secondary mode. When Region Server 2 services queries and scans for keys 10-20, it acts in
secondary mode.

. Divided amang
Keys within HBase different RegionServers
T

i 1

Key:10-20 (HRegion |

\ Serverl J

N

~_
HBase Table Key:20-40
Table Key:40-60
Kay:60-80
Hey 80-100

e Note

Regions acting in secondary mode are also known as Secondary Region
Replicas. However, there is no separate Region Server process. A region in
secondary mode can read but cannot write data. In addition, the data it returns
may be stale, as described in the following section.

Hortonworks Data Platform Dec 2, 2014

Timeline and Strong Data Consistency

HBase guarantees timeline consistency for all data served from Region Servers in secondary
mode. This means that all HBase clients see the same data in the same order, but that

data may be slightly stale. Only the primary Region Server is guaranteed to have the latest
data. Timeline consistency simplifies the programming logic for complex HBase queries and
provides lower latency than quorum-based consistency.

In contrast, strong data consistency means that the latest data is always served. However,
strong data consistency can greatly increase latency in the case of a Region Server failure,
because only the primary Region Server is guaranteed to have the latest data. The HBase
API allows application developers to specify the data consistency that is required for a
query.

=

The HBase API contains a method called Resul t . i sSt al e(), which specifies
whether data returned in secondary mode can be stale, which means that

the data has not been updated with the latest write operation to the primary
Region Server.

Writes are written only to the primary region replica.

2

By default, HBase tables do not use high availability features. After configuring
your cluster for high availability, designate tables as HA by setting region
replication to a value greater than 1 at table creation time. For more
information, see Creating Highly-Available HBase Tables.

For read-only tables, you do not need to use any of the following methods.
Disabling and enabling the table should make the data available in all region
replicas.

The following two mechanisms are used to propagate writes from the primary replica to
secondary replicas.

StoreFile Refresher

The first mechanism is the StoreFile refresher, which was introduced in Phase 1 (Apache
HBase 1.0.0 and HDP 2.1).

StoreFile refresher is a thread per Region Server, which runs periodically, and does a refresh
operation for the store files of the primary region for the secondary region replicas. If
enabled, the refresher ensures that the secondary region replicas see the new flushed,
compacted, or bulk loaded files from the primary region in a timely manner. However, this
means that only flushed data can be read back from the secondary region replicas, and
after the refresher runs, making the secondaries lag behind the primary for a longer time.

To enable this feature, configure
hbase. regi onserver.storefil e.refresh. peri od to a value greater than

creating-ha-hbase-tables.html

Hortonworks Data Platform Dec 2, 2014

zero, and set hbase. regi onserver.storefil e.refresh. all totrue. For more
information about these properties, see Configuring HA Reads for HBase.

Async WAL Replication

The second mechanism for propagating writes to secondaries is done via the Async WAL
Replication feature. This feature is only available in HA Phase 2 (starting with HDP 2.2).

Async WAL replication works similarly to HBase's multi-datacenter replication, but the
data from a region is replicated to its secondary regions. Each secondary replica always
receives writes in the same order that the primary region committed them. In some sense,
this design can be thought of as "in-cluster replication"; instead of replicating to a different
datacenter, the data goes to secondary regions. This process keeps the secondary region’s
in-memory state up to date. Data files are shared between the primary region and the
other replicas, so there is no extra storage overhead. However, secondary regions will
have recent non-flushed data in their MemStores, which increases memory overhead. The
primary region writes flush, compaction, and bulk load events to its WAL as well, which are
also replicated through WAL replication to secondaries. When secondary replicas detect

a flush/compaction or bulk load event, they replay the event to pick up the new files and
drop the old ones.

Committing writes in the same order as in the primary region ensures that the secondaries
won't diverge from the primary region's data, but because the log replication is
asynchronous, the data might still be stale in secondary regions. Because this feature works
as a replication endpoint, performance and latency characteristics should be similar to inter-
cluster replication.

Async WAL Replication is disabled by default in HA Phase 2. To enable this

feature, set hbase. regi on. replica.replication. enabl ed to true and set
hbase. regi onserver.storefil e.refresh. al | to false. For more information
about these properties, see Creating Highly-Available HBase Tables.

When you create a table with high availability enabled, the Async WAL Replication feature
adds a new replication peer named r egi on_replica_replication.

Once enabled, to disable this feature you must perform the following steps:

1. Sethbase. regi on.replica. replication. enabl ed property to false in hbase-
site.xm .

2. In your cluster, disable the replication peer named r egi on_replica_replication,
using hbase shell or ReplicationAdmin class: hbase> di sabl e_peer
"region_replica_replication

Store File TTL

In phase 1 and 2 of the write propagation approaches described previously, store files for
the primary replica will be opened in secondaries independent of the primary region. Thus,
for files that the primary region compacted and archived, the secondaries might still refer
to these files to read data.

Both features use HFi | eLi nks to refer to files, but the file might be deleted prematurely.
To prevent |I/O exceptions for requests to replicas, set the configuration property
hbase. master. hfil ecl eaner.tt!| to a sufficient time range such as 1 hour.

config-ha-reads-hbase.html
creating-ha-hbase-tables.html

Hortonworks Data Platform Dec 2, 2014

Region Replication for the Region of the META Table

Currently, Async Write Ahead Log (WAL) Replication is not done for the write ahead

log of the META table. The secondary replicas of the META table refresh themselves
from the persistent store files. To ensure that the META store files are refreshed, set the
hbase. regi onserver. storefil e.refresh. peri od property to a non-zero value.

E

Setting the configuration property
hbase. regi onserver.storefil e.refresh. al |l tofalse only refreshes
the store files of the META table’s region.

With timeline consistency, HBase introduces a consistency definition that can be provided
per get or scan read operation:

publ i ¢ enum Consi st ency {

STRONG,
TI MELI NE

}

Consi st ency. STRONG s the default consistency model provided by HBase. If a table
has region replication set to 1, or has region replicas but the reads are done with time
consistency enabled, the read is always performed by the primary regions. This preserves
previous behavior and the client receives the latest data.

If a read is performed with Consi st ency. Tl MELI NE, then the read RPC will be sent

to the primary Region Server first. After a short interval, such as the default setting of 10
milleseconds for the hbase. cl i ent. pri maryCal | Ti meout . get property, the parallel
RPC for secondary region replicas is sent if the primary region replica does not respond.
HBase returns the result from the RPC that finishes first. If the response is from the primary
region replica, the data is current. You can use the Resul t . i sSt al e() API to determine
the state of the resulting data:

o If the result is from a primary region, Resul t . i sSt al e() is set to false.
* If the result is from a secondary region, Resul t . i sSt al e() is set to true.

TI MELI NE consistency as implemented by HBase differs from pure eventual consistency in
the following respects:

* Single homed and ordered updates: Whether region replication is enabled or not, on
the write side, there is still only one defined replica, the primary, that can accept writes.
This replica is responsible for ordering the edits and preventing conflicts. This guarantees
that two different writes are not committed at the same time by different replicas,
resulting in divergent data. With this approach, there is no need to do read-repair or last-
timestamp-wins types of conflict resolution.

* The secondary replicas also apply edits in the order that the primary committed them.
Thus the secondaries contain a snapshot of the primary data at any point in time. This is

Hortonworks Data Platform Dec 2, 2014

similar to RDBMS replications and HBase multi-datacenter replication, but takes place in a
single cluster.

* On the read side, the client can detect whether the read is coming from up-to-date data
or stale data. Also, the client can issue reads with different consistency requirements on a
per-operation basis to ensure its own semantic guarantees.

* The client might still read stale data if it receives data from one secondary replica
first, followed by reads from another secondary replica. There is no stickiness to
region replicas, nor is there a transaction ID-based guarantee. If required, this can be
implemented later.

Memory Accounting

Secondary region replicas refer to data files in the primary region replica, but they have
their own Mentt or es in HA Phase 2 and use block cache as well. However, secondary
region replicas cannot flush data when there is memory pressure for their Mentt or es.
They can only free up Mentt or e memory when the primary region does a flush and the
flush is replicated to the secondary.

Because a Region Server can host primary replicas for some regions and secondaries for
others, secondary replicas might generate extra flushes to primary regions in the same host.
In extreme situations, there might be no memory for new writes from the primary, by way
of write ahead log (WAL) replication.

To resolve this situation, the secondary replica is allowed to do a store file

refresh, which is a file system list operation to pick up new files from the primary
and possibly dropping its Ment or e. This refresh will only be performed

if the Ment or e size of the biggest secondary region replica is at least
hbase.region.replica.storefile.refresh. nenstore. multiplier
times bigger than the biggest Mentst or e of a primary replica. The default value for
hbase.region.replica.storefile.refresh. nenstore. multiplier is4.

=

If this operation is performed, the secondary replica might obtain partial

row updates across column families because column families are flushed
independently. Hortonworks recommends that you configure HBase to perform
this operation infrequently.

You can disable this feature by setting the value to a large number, but this
might cause replication to be blocked without resolution.

Secondary Replica Failover

When a secondary region replica first comes online, or after a secondary region fails over,
it may have contain edits from its Menst or e. The secondary replica must ensure that it
accesses stale data that has been overwritten before serving requests after assignment.
Therefore, the secondary waits until it detects a full flush cycle, consisting of start flush and
commit flush, or a region open event replicated from the primary replica.

Until the flush cycle occurs, the secondary region replica rejects all read requests by way of
an |OException with the following message:

10

Hortonworks Data Platform Dec 2, 2014

The region's reads are disabl ed

Other replicas might be available to read, thus not causing any impact for the RPC with
TIMELINE consistency.

To facilitate faster recovery, the secondary region triggers a flush

request from the primary when it is opened. The configuration property
hbase.region.replica.wait.for.primary.fl ush, whichis enabled by default,
can be used to disable this feature if needed.

To enable high availability for HBase reads, specify the following server-side and client-side
configuration properties in your hbase- si t e. xm configuration file, and then restart the
HBase Master and Region Servers.

The following table describes server-side properties. Set these properties for all servers in
your HBase cluster that will use region replicas.

Property Example value Description
hbase. r egi onserver. 30000 Specifies the period (in milliseconds) for
storefile.refresh. period refreshing the store files for secondary

regions. The default value is 0, which
indicates that the feature is disabled.
Secondary regions receive new files
from the primary region after the
secondary replica refreshes the list of
files in the region.

Note: Too-frequent refreshes might
cause extra Namenode pressure.

If files cannot be refreshed for

longer than HFile TTL, specified with
hbase. master. hfil ecl eaner.ttl
the requests are rejected.

Refresh period should be a non-zero
number if META replicas are enabled
(see hbase. net a. repl i ca. count).

If you specify refresh period, we
recommend configuring HFile TTL to a
larger value than its default.

hbase. regi on.repli ca. true Determines whether asynchronous

replication. enabl ed WAL replication is enabled or not. The
value can be true or false. The default
is false.

If this property is enabled,

a replication peer named
region_replica_replicationis
created. The replication peer replicates
changes to region replicas for any
tables that have region replication set
to 1 or more.

After enabling this property, disabling
it requires setting it to false and
disabling the replication peer using
the shell or the Repl i cati onAdmi n

11

Hortonworks Data Platform

Dec 2, 2014

Property

Example value

Description

java class. When replication is explicitly
disabled and then re-enabled, you must
set hbase. repl i cati on to true.

hbase. mast er.
hfilecleaner.ttl

3600000

Specifies the period (in milliseconds)
to keep store files in the archive folder
before deleting them from the file
system.

hbase. mast er.
| oadbal ancer. cl ass

or g. apache. hadoop. hbase.

mast er . bal ancer.
St ochast i cLoadBal ancer

Specifies the Java class used for
balancing the load of all HBase clients.

The default value is

or g. apache. hadoop. hbase.

nmast er . bal ancer.

St ochast i cLoadBal ancer, which
is the only load balancer that supports
reading data from Region Servers in
secondary mode.

hbase. net a. repl i ca. count

Region replication count for the meta
regions. The default value is 1.

hbase. r egi onserver.
storefile.refresh. all

false

Determines whether all store files will
be refreshed, as opposed to just META
tables. The default is true.

Set this value to false when

hbase. regi on.replica.
replication. enabl edis

true. This should be true if

meta replicas are enabled (via

hbase. net a. repl i ca. count setto
greater than 1).

hbase.region.replica.wait.
for.primary. flush

true

Specifies whether to wait for a full
flush cycle from the primary before
starting to serve data in a secondary
replica.

Disabling this feature might cause
secondary replicas to read stale data
when a region is transitioning to
another Region Server.

hbase. regi on.repli ca.
storefile.refresh.
nmenstore. mul tiplier

Multiplier for a “store file refresh”
operation for the secondary region
replica.

If a Region Server has memory
pressure, the secondary region will
refresh its store files if the MemStore
size of the biggest secondary replica is
bigger than this multiplier times than
the MemStore size oxlinkxf the biggest
primary replica.

To disable this feature (not
recommended), set this property to a
large value.

The following table lists client-side properties. Set these properties for all clients
(applications) and servers (in your HBase cluster) that will use region replicas.

Property

Example value

Description

hbase. i pc.client.
speci ficThreadForWiting

true

Specifies whether to enable
interruption of RPC threads at
the client side. This is required for

12

Hortonworks Data Platform Dec 2, 2014

Property Example value Description

region replicas with fallback RPC's to
secondary regions.

hbase. client. 10000 Specifies the timeout (in microseconds)
primaryCal | Ti meout . get before secondary fallback RPC's

are submitted for get requests with
Consi st ency. Tl MELI NE to the
secondary replicas of the regions. The
default value is 10ms.

Setting this to a smaller value increases
the number of RPC’s, but lowers 99th-
percentile latencies.

hbase. client. 10000 Specifies the timeout (in microseconds)
pri maryCal | Ti neout . before secondary fallback RPC's are
mul ti get submitted for multi-get requests

(HTabl e. get (Li st <Get >)) with
Consi st ency. TI MELI NE to the
secondary replicas of the regions. The
default value is 10ms.

Setting this to a smaller value increases
the number of RPC’s, but lowers 99th-
percentile latencies.

hbase. client. 1000000 Specifies the timeout (in microseconds)
pri maryCal | Ti neout . scan before secondary fallback RPC’s are
submitted for scan requests with
Consi st ency. Tl MELI NE to the
secondary replicas of the regions. The
default value is 1 second.

Setting this to a smaller value increases
the number of RPC’s, but lowers 99th-
percentile latencies.

hbase. net a. replicas. use true Specifies whether to use META table
replicas or not. The default value is
false.

HBase tables are not highly available by default. To enable high availability, designate a
table as HA during table creation.

Creating HA Tables with the HBase Java API

HBase application developers create highly available HBase tables programmatically using
the Java API, as shown in the following example:

HTabl eDescri ptor htd =
new HTabl eDesscri pt or (Tabl eNane. val ue ("t est _tabl e"));
ht d. set Regi onRepl i cati on(2);

adni n. cr eat eTabl e(ht d) ;

This example creates a table named t est _t abl e that is replicated to one secondary
region. To replicate t est _t abl e to two secondary replicas, pass 3 as a parameter to the
set Regi onRepl i cati on() method.

Creating HA Tables with the HBase Shell

13

Hortonworks Data Platform Dec 2, 2014

Create HA tables using the REG ON_REPLI CATI ON keyword with the HBase shell. Valid
values are 1, 2, and 3, indicating the total number of copies. The default value is 1.

The following example creates a table named t 1 that is replicated to one secondary
replica:

CREATE 't1', 'f1', {REG ON_REPLI CATI ON => 2}
To replicate t 1 to two secondary regions, set REG ON_REPLI CATI ONto 3:

CREATE 't1', 'f1', {REG ON_REPLI CATION => 3}

This section describes how to query HA-enabled HBase tables.
Querying HBase with the Java API

The HBase Java API enables application developers to specify the desired data consistency
for a query using the set Consi st ency() method, as shown in the following example.
A new enum, CONSI STENCY, specifies two levels of data consistency: TI MELI NE and
STRONG.

Get get = new Get(row);
get . set Consi st ency(CONSI STENCY. Tl MELI NE) ;

Result result = table.get(get);

HBase application developers can also pass multiple get s:

CGet getl = new Get(row);
get 1. set Consi st ency(Consi st ency. Tl MELI NE) ;

ArraylLi st<Get> gets = new ArrayLi st <Get>();
Result[] results = table.get(gets);

The set Consi st ency() method is also available for Scan objects:

Scan scan = new Scan();
scan. set Consi st ency(CONSI STENCY. Tl MELI NE) ;

Resul t Scanner scanner = tabl e. get Scanner (scan);

In addition, you can use the Resul t. i sStal e() method to determine whether the
query results arrived from the primary or a secondary replica:

Result result = table.get(get);
if (result.isStale()) {

}

Querying HBase Interactively

To specify the desired data consistency for each query, use the HBase shell:

hbase(rmai n): 001: 0> get 't1', 'r6', {CONSISTENCY => "TI MELI NE"}

14

Hortonworks Data Platform Dec 2, 2014

Interactive scans also accept this syntax:

hbase(mai n): 001: 0> scan 't1', {CONSISTENCY => ' Tl MELI NE }

e Note
4

This release of HBase does not provide a mechanism to determine if the results
from an interactive query arrived from the primary or a secondary replica.

You can also request a specific region replica for debugging:

hbase> get 't1', 'r6', {REG ON_REPLICA |D=>0, CONSI STENCY=>'TI MELI NE' }
hbase> get 't1', 'r6', {REG ON_REPLICA |D=>2, CONSI STENCY=>'TI MELI NE' }

2.7. Monitoring Secondary Region Replicas

HBase provides highly available tables by replicating table regions. All replicated regions
have a unique replica ID. The replica ID for a primary region is always 0. The HBase web-
based interface displays the replica IDs for all defined table regions. In the following

example, the table t 1 has two regions. The secondary region is identified by a replica ID of
1.

Table

Tahle Attributes

Aitribute Hame

Walus Dederigitian

Enaisd e Ie tha tabie enakied

[l ST Y BADME I B Sabie cmpacting

Table Regions

Mama Raghon Sonsor Tt Koy EndKey Foquests
EE LTI F BETROR N, ade Dea 1 | T B! ofrlas tal T leal T sandbow horfomeworks com G000 o

0 Vs T o203 0001, ST DR S5 T SR 00 a0 T Lt 15000 Sardbi heroreir bk coim G000 o
Regions by Region Server

Rsghon Servar Ragion Gount

EAT G T T e] F3

To access the HBase Master Server user interface, point your browser to port 60010.

15

Hortonworks Data Platform Dec 2, 2014

The HDFS NameNode High Availability feature enables you to run redundant NameNodes
in the same cluster in an Active/Passive configuration with a hot standby. This eliminates
the NameNode as a potential single point of failure (SPOF) in an HDFS cluster.

Before the release of HDFS NameNode High Availability, if a cluster had a single
NameNode, and that machine or process became unavailable, the entire cluster would be
unavailable until the NameNode was either restarted or started on a separate machine.
This situation impacted the total availability of the HDFS cluster in two major ways:

* In the case of an unplanned event such as a server failure, the cluster would be
unavailable until an operator restarted the NameNode.

» Planned maintenance events such as software or hardware upgrades on the NameNode
machine would result in periods of cluster downtime.

HDFS NameNode HA avoids this by facilitating either a fast failover to the new NameNode
during machine crash, or a graceful administrator-initiated failover during planned
maintenance.

This guide provides an overview of the HDFS NameNode High Availability (HA) feature,
instructions on how to deploy Hue with an HA cluster, and instructions on how to enable
HA on top of an existing HDP cluster using the Quorum Journal Manager (QJM) and
Zookeeper Failover Controller for configuration and management. Using the QJM and
Zookeeper Failover Controller enables the sharing of edit logs between the Active and
Standby NameNodes.

2

This guide assumes that an existing HDP cluster has been manually installed and
deployed. If your existing HDP cluster was installed using Ambari, configure
NameNode HA using the Ambari wizard, as described in "Enabling NameNode
High Availability" in the Ambari User's Guide.

In a typical HA cluster, two separate machines are configured as NameNodes. In a working
cluster, one of the NameNode machine is in the Active state, and the other is in the
Standby state.

The Active NameNode is responsible for all client operations in the cluster, while the
Standby acts as a slave. The Standby machine maintains enough state to provide a fast
failover (if required).

In order for the Standby node to keep its state synchronized with the Active node, both
nodes communicate with a group of separate daemons called JournalNodes (JNs). When
the Active node performs any namespace modification, the Active node durably logs a
modification record to a majority of these JNs. The Standby node reads the edits from
the JNs and continuously watches the JNs for changes to the edit log. Once the Standby
Node observes the edits, it applies these edits to its own namespace. When using QJM,

16

http://docs.hortonworks.com/HDPDocuments/Ambari-1.7.0.0/Ambari_Doc_Suite/ADS_v170.html#Ambari_User's_Guide

Hortonworks Data Platform Dec 2, 2014

JournalNodes acts the shared editlog storage. In a failover event, the Standby ensures that
it has read all of the edits from the JounalNodes before promoting itself to the Active state.
(This mechanism ensures that the namespace state is fully synchronized before a failover
completes.)

e Note
y

Secondary NameNode is not required in HA configuration because the Standby
node also performs the tasks of the Secondary NameNode.

To provide a fast failover, it is also necessary that the Standby node have up-to-date
information on the location of blocks in your cluster. To get accurate information about the
block locations, DataNodes are configured with the location of both of the NameNodes,
and send block location information and heartbeats to both NameNode machines.

SHARED EDITS
Jeurnaliode JournalNode ‘ JaurnalNode
T Write Read ¢

NameNode NameNode

T Block Reports to Active & Standby T

=5 . -~

DataNode DataNode .. DataMode

It is vital for the correct operation of an HA cluster that only one of the NameNodes should
be active at a time. Failure to do so, would cause the namespace state to quickly diverge
between the two NameNode machines thus causing potential data loss. This situation is
called a split-brain scenario.

To prevent the split-brain scenario, the JournalNodes allow only one NameNode to be a
writer at a time. During failover, the NameNode that is to chosen to become active takes
over the role of writing to the JournalNodes. This process prevents the other NameNode
from continuing in the active state and thus lets the new active node proceed with the
failover safely.

3.2. Hardware Resources

Ensure that you prepare the following hardware resources:

* NameNode machines: The machines where you run Active and Standby NameNodes,
should have exactly the same hardware. For recommended hardware for NameNodes,
see "Hardware for Master Nodes" in the Cluster Planning Guide.

17

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.0/bk_cluster-planning-guide/index.html

Hortonworks Data Platform Dec 2, 2014

* JournalNode machines: The machines where you run the JournalNodes. The
JournalNode daemon is relatively lightweight, so these daemons may reasonably be co-
located on machines with other Hadoop daemons, for example the NameNodes or the
YARN ResourceManager.

E

There must be at least three JournalNode daemons, because edit log
modifications must be written to a majority of JournalNodes. This lets the
system tolerate failure of a single machine. You may also run more than
three JournalNodes, but in order to increase the number of failures that
the system can tolerate, you must run an odd number of JournalNodes. For
example, 3, 5, 7, and so on.

When you run <N> number of JournalNodes, the system can tolerate at most
(<N>- 1) / 2 failures and continue to function normally.

» Zookeeper machines: For automated failover functionality, there must be an existing
Zookeeper cluster available. The Zookeeper service nodes can be co-located with other
Hadoop daemons.

In an HA cluster, the Standby NameNode also performs checkpoints of the namespace
state. Therefore, do not deploy a Secondary NameNode, CheckpointNode, or BackupNode
in an HA cluster.

HA configuration is backward compatible and works with your existing single NameNode
configuration. The following instructions describe how to set up NameName HA on a
manually-installed cluster. If you installed with Ambari and manage HDP on Ambari 1.7.0
or later, instead of the manual instructions use the Ambari documentation, "Enabling
NameNode High Availability" in the Ambari User's Guide.

2

To deploy a NameNode HA cluster, use the steps in the following subsections.

HA cannot accept HDFS cluster names that include an underscore (_).

First, add high availability configurations to your HDFS configuration files. Start by taking
the HDFS configuration files from the original NameNode in your HDP cluster, and use that
as the base, adding the properties mentioned below to those files.

After you have added the configurations below, ensure that the same set of HDFS
configuration files are propogated to all nodes in the HDP cluster. This ensures that all the
nodes and services are able to interact with the highly available NameNode.

Add the following configuration options to your hdf s- si t e. xm file:

18

http://docs.hortonworks.com/HDPDocuments/Ambari-1.7.0.0/Ambari_Doc_Suite/ADS_v170.html#Ambari_User's_Guide

Hortonworks Data Platform Dec 2, 2014

» dfs.nameservices

Choose an arbitrary but logical name (for example mycluster) as the value for
df s. naneser vi ces option. This name will be used for both configuration and
authority component of absolute HDFS paths in the cluster.

<property>

<nane>df s. naneser vi ces</ nane>

<val ue>nycl ust er </ val ue>

<descri pti on>Logi cal name for this new naneservice</description>
</ property>

If you are also using HDFS Federation, this configuration setting should also include the
list of other nameservices, HA or otherwise, as a comma-separated list.

« dfs.ha.namenodes.[$nameservice ID]

Provide a list of comma-separated NameNode IDs. DataNodes use this this property to
determine all the NameNodes in the cluster.

For example, for the nameservice ID mycl ust er and individual NameNode IDs nn1 and
nn2, the value of this property is:

<property>

<nane>df s. ha. nanenodes. mycl ust er </ name>

<val ue>nnil, nn2</ val ue>

<descri pti on>Uni que identifiers for each NameNode in the naneservi ce</
descri pti on>
</ property>

2

* dfs.namenode.rpc-address.[$nameservice ID].[$name node ID]

Currently, a maximum of two NameNodes can be configured per
nameservice.

Use this property to specify the fully-qualified RPC address for each NameNode to listen
on.

Continuing with the previous example, set the full address and IPC port of the
NameNode process for the above two NameNode IDs - nn1 and nn2.

Note that there will be two separate configuration options:

<property>
<nane>df s. nanenode. r pc- addr ess. mycl ust er . nnl</ name>
<val ue>nmachi nel. exanpl e. com 8020</ val ue>

</ property>

<property>
<nane>df s. nanenode. r pc- addr ess. nycl ust er. nn2</ nane>
<val ue>nachi ne2. exanpl e. com 8020</ val ue>

</ property>

* dfs.namenode.http-address.[$nameservice ID].[$name node ID]
19

Hortonworks Data Platform Dec 2, 2014

Use this property to specify the fully-qualified HTTP address for each NameNode to listen
on.

Set the addresses for both NameNodes HTTP servers to listen on. For example:

<pr operty>
<nane>df s. namenode. htt p- addr ess. nycl ust er. nnl1</ name>
<val ue>machi nel. exanpl e. com 50070</ val ue>

</ property>

<property>
<nane>df s. namenode. htt p- addr ess. nycl ust er. nn2</ name>

<val ue>machi ne2. exanpl e. com 50070</ val ue>
</ property>

E

e dfs.namenode.shared.edits.dir

If you have Hadoop security features enabled, set the https-address for each
NameNode.

Use this property to specify the URI that identifies a group of JournalNodes (JNs) where
the NameNode will write and read edits.

Configure the addresses of the JNs that provide the shared edits storage. The Active
nameNode writes to this shared storage and the Standby NameNode reads from this
location to stay up-to-date with all the file system changes.

Although you must specify several JournalNode addresses, you must configure only one
of these URIs for your cluster.

The URI should be of the form:

gj ournal ://host 1: port 1; host 2: port 2; host 3: port3/journal Id

The Journal ID is a unique identifier for this nameservice, which allows a single set of
JournalNodes to provide storage for multiple federated namesystems. You can reuse the
nameservice ID for the journal identifier.

For example, if the JournalNodes for a cluster were running on nodel. exanpl e. com
node2. exanpl e. comand node3. exanpl e. com and the nameservice ID were
nmycl ust er, you would use the following value for this setting:

<property>

<nane>df s. nanenode. shar ed. edi t s. di r </ name>

<val ue>qj our nal : / / nodel. exanpl e. com 8485; node2. exanpl e. com 8485; node3.
exanpl e. com 8485/ mycl ust er </ val ue>
</ property>

E

+ dfs.client.failover.proxy.provider.[$nameservice ID]

Note that the default port for the JournalNode is 8485.

20

Hortonworks Data Platform Dec 2, 2014

This property specifies the Java class that HDFS clients use to contact the Active
NameNode. DFS Client uses this Java class to determine which NameNode is the current
Active and therefore which NameNode is currently serving client requests.

Use the Confi gur edFai | over Pr oxyPr ovi der implementation if you are not using a
custom implementation.

For example:

<property>
<nanme>df s. client.fail over.proxy. provider. nycl uster </ nane>
<val ue>or g. apache. hadoop. hdf s. server . nanenode. ha.

Conf i gur edFai | over Pr oxyPr ovi der </ val ue>

</ property>

+ dfs.ha.fencing.methods

This property specifies a list of scripts or Java classes that will be used to fence the Active
NameNode during a failover.

For maintaining system correctness, it is important to have only one NameNode in the
Active state at any given time. When using the Quorum Journal Manager, only one
NameNode will ever be allowed to write to the JournalNodes, so there is no potential for
corrupting the file system metadata from a split-brain scenario. However, when a failover
occurs, it is still possible that the previous Active NameNode could serve read requests to
clients, which may be out of date until that NameNode shuts down when trying to write
to the JournalNodes.

For this reason, it is still recommended to configure some fencing methods even when
using the Quorum Journal Manager. To improve the availability of the system in the
event the fencing mechanisms fail, it is advisable to configure a fencing method which
is guaranteed to return success as the last fencing method in the list. Note that if you
choose to use no actual fencing methods, you must set some value for this setting, for
example shell(/ bi n/ t rue).

The fencing methods used during a failover are configured as a carriage-return-
separated list, which will be attempted in order until one indicates that fencing has
succeeded. The following two methods are packaged with Hadoop: shel | and
sshf ence. For information on implementing a custom fencing method, see the
or g. apache. hadoop. ha. NodeFencer class.

¢ sshfence: connects to the Active NameNode using the Secure SHell (SSH) and kill the
process.

The sshfence option uses SSH to connect to the target node and uses fuser to kill the
process listening on the TCP port of the service. In order for this fencing option to
work, it must be able to use SSH to connect to the target node without providing a
passphrase. Ensure that you configure the df s. ha. f enci ng. ssh. pri vat e- key-
fil es option, which is a comma-separated list of SSH private key files.

For example:

21

Hortonworks Data Platform Dec 2, 2014

<property>
<nanme>df s. ha. f enci ng. net hods</ name>
<val ue>sshf ence</ val ue>

</ property>

<property>
<nane>df s. ha. f enci ng. ssh. pri vat e- key-fil es</ name>
<val ue>/ hone/ exanpl euser/ . ssh/i d_rsa</val ue>

</ property>

Optionally, you can also configure a non-standard username or port to perform the
SSH. You can also configure a timeout, in milliseconds, for the SSH, after which this
fencing method fails. To configure a non-standard username or port and timeout, see
the properties given below:

<property>

<nane>df s. ha. f enci ng. net hods</ nane>

<val ue>sshf ence([[usernane] [: port]]) </ val ue>
</ property>

<property>
<nane>df s. ha. f enci ng. ssh. connect - t i meout </ nane>
<val ue>30000</ val ue>

</ property>

¢ shell: Run an arbitrary shell command to fence the Active NameNode.

The shell fencing method runs an arbitrary shell command:

<property>

<nanme>df s. ha. f enci ng. net hods</ nanme>

<val ue>shel | (/ path/to/ my/script.sh argl arg2 ...)</val ue>
</ property>

The string between the parentheses [(and)] is passed directly to a bash shell and may
not include any closing parentheses.

The shell command will be run with an environment set up to contain all of the current
Hadoop configuration variables, with the underscore character (_) replacing any dot or
period characters (.) in the configuration keys. The configuration used has already had
any namenode-specific configurations promoted to their generic forms. For example,
df s_namenode_r pc- addr ess contains the RPC address of the target node,

even though the configuration may specify that variable as df s. nanenode. r pc-
address. nsl. nnl.

Additionally, the following variables that refer to the target node to be fenced are also
available:

* $t ar get _host : Hostname of the node to be fenced
* $target _port:IPC port of the node to be fenced

» $t ar get _addr ess: The combination of $t ar get _host and $target_port as
host:port

* $t arget _nameser vi cei d: The nameservice ID of the NN to be fenced

22

Hortonworks Data Platform Dec 2, 2014

* $t ar get _nanenodei d: The namenode ID of the NN to be fenced

These environment variables may also be used as substitutions in the shell command.
For example:

<property>
<nane>df s. ha. f enci ng. net hods</ nane>
<val ue>shel | (/ path/to/ my/script.sh --naneservi ce=
$t arget _naneservi cei d $target _host: $target _port) </ val ue>
</ property>

If the shell command returns an exit code of 0, the fencing is successful.

E

This fencing method does not implement any timeout. If timeouts are
necessary, they should be implemented in the shell script itself. For
example, by forking a subshell to kill its parent in a specified number of
seconds.

fs.defaultFS The default path prefix used by the Hadoop FS client. Optionally, you may
now configure the default path for Hadoop clients to use the new HA-enabled logical
URI. For example, for mycluster nameservice ID, this will be the value of the authority
portion of all of your HDFS paths. Configure this property in the cor e-si te. xm file:

<property>

<nane>f s. def aul t FS</ nanme>

<val ue>hdf s: // mycl ust er </ val ue>
</ property>

dfs.journalnode.edits.dir This is the absolute path on the JournalNode servers where
the edits and other local state information used by the JournalNodes are stored. You
may only use a single path for this configuration. Redundancy for this data is provided
by either running multiple separate JournalNodes or by configuring this directory on a
locally-attached RAID array. For example:

<property>

<nane>df s. j our nal node. edi t s. di r </ nane>

<val ue>/ pat h/ t o/ j our nal / node/ | ocal / dat a</ val ue>
</ property>

=

See "Creating Service Principals and Keytab files for HDP" in Installing HDP
Manually for instructions on configuring Kerberos-based security for Highly
Available clusters.

In this section, we use NN1 to denote the original NameNode in the non-HA setup, and
NN2 to denote the other NameNode that is to be added in the HA setup.

23

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.0/bk_installing_manually_book/index.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.0/bk_installing_manually_book/index.html

Hortonworks Data Platform Dec 2, 2014

2

1.

2.

3.

HA clusters reuse the nameservice ID to identify a single HDFS instance that
may consist of multiple HA NameNodes.

A new abstraction called NameNode ID is added with HA. Each NameNode in
the cluster has a distinct NameNode ID to distinguish it.

To support a single configuration file for all of the NameNodes, the relevant
configuration parameters are suffixed with both the nameservice ID and the
NameNode ID.

Start the JournalNode daemons on the set of machines where the JournalNodes are
deployed. On each machine, execute the following command:

su —| hdfs —c "/usr/hdp/current/hadoop- hdf s-j our nal node/ ../ hadoop/ shi n/
hadoop- daenon. sh start journal node"

Wait for the daemon to start on each of the JournalNode machines.
Initialize JournalNodes.

¢ At the NN1 host machine, execute the following command:

su —| hdfs —c "nanenode -initializeSharedEdits -force"

This command formats all the JournalNodes. This by default happens in an interactive
way. The command prompts users for “Y/N” input to confirm the format. You can skip
the prompt by using option -force or -noninteractive.

It also copies all the edits data after the most recent checkpoint from the edits
directories of the local NameNode (NN1) to JournalNodes.

¢ At the host with the journal node (if it is separated from the primary host), execute
the following command:

su —| hdfs —c "nanenode -initializeSharedEdits -force"

* Initialize HA state in ZooKeeper. Execute the following command on NN1:

hdfs zkfc -format ZK -force

This command creates a znode in ZooKeeper. The failover system stores uses this
znode for data storage.

* Check to see if Zookeeper is running. If not, start Zookeeper by executing the
following command on the ZooKeeper host machine(s).

su - zookeeper -c "export ZOOCFGDI R=/usr/hdp/current/zookeeper-server/
conf ; export ZOOCFG=zoo. cfg;
source /usr/ hdp/current/zookeeper-server/conf/
zookeeper-env. sh ; /usr/hdp/current/zookeeper-server/bin/zkServer. sh
start"

¢ At the standby namenode host, execute the following command:

su -1 hdfs -c "nanmenode -bootstrapStandby -force"

24

Hortonworks Data Platform Dec 2, 2014

4. Start NN1. At the NN1 host machine, execute the following command:

su -1 hdfs -c "/usr/hdp/current/hadoop-hdf s- nanenode/ . ./ hadoop/ sbi n/ hadoop-
daenon. sh start nanenode"

Make sure that NN1 is running correctly.

5. Format NN2 and copy the latest checkpoint (FSImage) from NN1 to NN2 by executing
the following command:

su -1 hdfs -c "nanenode -bootstrapStandby -force"

This command connects with HH1 to get the namespace metadata and the
checkpointed fsimage. This command also ensures that NN2 receives sufficient
editlogs from the JournalNodes (corresponding to the fsimage). This command fails if
JournalNodes are not correctly initialized and cannot provide the required editlogs.

6. Start NN2. Execute the following command on the NN2 host machine:

su -1 hdfs -c "/usr/hdp/current/hadoop- hdf s- nanenode/ . . / hadoop/ shi n/ hadoop-
daenon. sh start nanenode"

Ensure that NN2 is running correctly.

7. Start DataNodes. Execute the following command on all the DataNodes:

su -1 hdfs -c "/usr/hdp/current/hadoop- hdf s-dat anode/ . ./ hadoop/ shi n/ hadoop-
daenon. sh start dat anode"

8. Validate the HA configuration.

Go to the NameNode web pages separately by browsing to their configured HTTP
addresses. Under the configured address label, you should see the HA state of the
NameNode. The NameNode can be either in "standby" or "active" state.

NameNode '‘example.com:8020' {{standby)

| Started: |[Thu Aug 15 02:16:35 UTC 2013 |
Version: || 3.0.0-SNAPSHOT, 5¢35d30ce6f27a7d452e398be48be310a403¢286 |
| Compiled: || 2013-08-14T19:42Z by hdfs from trunk]
Cluster ID: CID-9165ed44-7149-4508-a4a5-625915d12689 |

|

| Block Pool ID: || BP-2092817692-68.142.245,166-13751435160589

NameMode Logs

=

The HA NameNode is initially in the Standby state after it is bootstrapped.
You can use either the Java Management Extension (JMX) t ag. HASt at e to
query the HA state of a NameNode or the following command:

hdf s haadnmi n -get ServiceState

9. Transition one of the HA NameNodes to Active state.

25

Hortonworks Data Platform Dec 2, 2014

Initially, both NN1 and NN2 are in Standby state. Therefore you must transition one
of the NameNodes to Active state. This transition can be performed using one of the
following options:

¢ Option I - Using CLI Use the command line interface (CLI) to transition one of the
NameNodes to Active State. Execute the following command on that NameNode host
server:

hdfs haadnmin -fail over --forcefence --forceactive <servi cel d> <nanenodel d>

For more information on the haadni n command, see "Appendix: Administrative
Commands."

* Option Il - Deploying Automatic Failover You can configure and deploy automatic
failover using the instructions provided in Configure and Deploy NameNode
Automatic Failover.

If you are going to use Hue with an HA Cluster, make the following changes to / et ¢/ hue/
conf/ hue.ini:

1. Install the Hadoop HttpFS component on the Hue server.

For RHEL/CentOS/Oracle Linux:

yum install hadoop-httpfs

For SLES:

yuminstall hadoop-httpfs

2. Modify / et ¢/ hadoop- ht t pf s/ conf/ htt pf s- env. sh to add the JDK path. In the
file, ensure that JAVA HOVE is set:

export JAVA HOVE=/usr/jdk64/j dkl.7.0_67

3. Configure the HttpFS service script for use by setting up the symlinkin/etc/init. d:

> |n -s /usr/hdp/{HDP2. 2. x version nunber}/etc/rc.d/init.d/ hadoop-httpfs
/etc/init.d/ hadoop-httpfs

For example, { HDP2. 2. x ver si on nunber} could be 2. 2. 0. 0- 2041.

4. Modify / et ¢/ hadoop- ht t pf s/ conf/ httpfs-site.xm to configure HttpFS to talk
to the cluster, by confirming that the following properties are correct:

<property>
<nane>ht t pf s. pr oxyuser . hue. host s</ name>
<val ue>*</val ue>

</ property>

<property>
<nane>ht t pf s. pr oxyuser . hue. gr oups</ nanme>
<val ue>*</val ue>

</ property>

26

appendix-admin-commands.html
appendix-admin-commands.html
nn-ha-auto-failover.html
nn-ha-auto-failover.html

Hortonworks Data Platform Dec 2, 2014

5. Start the HttpFS service.

servi ce hadoop-httpfs start

6. Modify the cor e-si te. xm file. On the NameNodes and all the DataNodes, add
the following properties to the $HADOOP_CONF_DI R / core-site. xml file, where
$HADOOP_CONF_DI Ris the directory for storing the Hadoop configuration files. For
example, / et ¢/ hadoop/ conf.

<property>
<name>hadoop. pr oxyuser . htt pf s. gr oups</ name>
<val ue>*</val ue>

</ property>

<property>
<nanme>hadoop. pr oxyuser. htt pf s. host s</ nanme>
<val ue>*</val ue>

</ property>

7. Inthe hue. i ni file, under the [hadoop] [[hdfs_cl usters]][[[defaul t]]]
subsection, use the following variables to configure the cluster:

Property Description Example

fs_defaultfs NameNode URL using the hdfs://mycluster
logical name for the new name
service. For reference, this is
the dfs.nameservices property
in hdfs-site.xml in your Hadoop
configuration.

webhdfs_url URL to the HttpFsS server. http://c6401.apache.org: 14000/
webhdfs/v1/

8. Restart Hue for the changes to take effect.

service hue restart

You can configure multiple Oozie servers against the same database to provide High
Availability (HA) for the Oozie service. You must meet the following prerequisites:

* A database that supports multiple concurrent connections. In order to have full HA, the
database should also have HA support, or it becomes a single point of failure.

E

* A ZooKeeper ensemble. Apache ZooKeeper is a distributed, open-source coordination
service for distributed applications. Oozie servers use it for coordinating access to the
database and communicating with each other. In order to have full HA, there should be
at least 3 ZooKeeper servers. Find more information about Zookeeper here.

The default Derby database does not support this.

* Multiple Oozie servers.

27

http://zookeeper.apache.org/

Hortonworks Data Platform Dec 2, 2014

* A Loadbalancer, Virtual IP, or Round-Robin DNS. This is used to provide a single entry-
point for users and for callbacks from the JobTracker. The load balancer should be
configured for round-robin between the Oozie servers to distribute the requests. Users
using either the Oozie client, a web browser, or the REST API should connect through the
load balancer. In order to have full HA, the load balancer must also have HA support or it
becomes a single point of failure. For information about how to set up your Oozie servers
to handle failover, see Configuring Oozie Failover.

While not strictly required, you should configure all ZooKeeper servers to
have identical properties.

* While operating an HA cluster, the Active NameNode cannot commit a transaction if it
cannot write successfully to a quorum of the JournalNodes.

* When restarting an HA cluster, the steps for initializing JournalNodes and NN2 can be
skipped.

* Start the services in the following order:
1. JournalNodes

2. NameNodes

Verify that the ZKFailoverController (ZKFC) process on each node is
running so that one of the NameNodes can be converted to active state.

3. DataNodes

* In a NameNode HA cluster, the following df s adm n command options will run only on
the active NameNode:

-rol I Edits

-set Quot a

-clrQuota

- set SpaceQuot a

-cl r SpaceQuot a

-set St or agePol i cy

- get St or agePol i cy
-finalizeUpgrade

-rol i ngUpgr ade

- print Topol ogy

- al | owSnapshot <snapshotDi r >
- di sal | owSnapshot <snapshot Di r >

The following df s adm n command options will run on both the active and standby
NameNodes:

28

nn-ha-config-oozie-failover.html

Hortonworks Data Platform Dec 2, 2014

-saf ennde enter

- saveNanespace

-rest oreFai | edSt or age

-refreshNodes

-refreshServi ceAcl

-refreshUser ToG oupsMappi ngs
-refreshSuper User G oupsConfi gur ati on
-refreshCal | Queue

- et asave

- set Bal ancer Bandwi dt h

The-refresh <host:ipc_port> <key> argl..ar gn command will be sent to
the corresponding host according to its command arguments.

The - f et chl mage <l ocal directory>command attempts to identify the active
NameNode through an RPC call, and then fetch the f si nage from that NameNode. This
means that usually the f si mage is retrieved from the active NameNode, but it is not
guaranteed because a failover can happen between the two operations.

The following df s adm n command options are sent to the DataNodes:

- ref reshNanenodes

- del et eBl ockPool

- shut downDat anode <dat anode_host : i pc_port> upgrade
- get Dat anodel nf o <dat anode_host : i pc_port >

The preceding sections describe how to configure manual failover. In that mode, the
system will not automatically trigger a failover from the active to the standby NameNode,
even if the active node has failed. This section describes how to configure and deploy
automatic failover.

Automatic failover adds the following components to an HDFS deployment:
* ZooKeeper quorum
» ZKFailoverController process (abbreviated as ZKFC).

The ZKFailoverController (ZKFC) is a ZooKeeper client that monitors and manages the state
of the NameNode. Each of the servers that run the NameNode service also run a ZKFC. The
ZKFC is responsible for:

» Health monitoring: The ZKFC periodically pings its local NameNode with a health-check
command.

» ZooKeeper session management: When the local NameNode is healthy, the ZKFC holds
a session open in ZooKeeper. If the local NameNode is active, it also holds a special "lock"
znode. This lock uses ZooKeeper support for ephemeral nodes. If the session expires, the
lock node is automatically deleted.

» ZooKeeper-based election: If the local NameNode is healthy and no other node currently
holds the lock znode, the ZKFC attempts to acquire the lock. If the ZKFC succeeds,

29

Hortonworks Data Platform Dec 2, 2014

then it has won the election and is responsible for running a failover to make its local
NameNode active. The failover process is similar to the manual failover described above.
First, the previous active node is fenced if necessary and then the local NameNode
transitions to active state.

Zookeeper Service
Monitor and
maintain active Iookeeper Tookeeper Maoniter and try
lock 5 p : : to take active
E lock
Tookepper
P ..
fookeeperFC ZookeeperFC
SHARED EDITS
Monitor liveness Monitor livenes:
and health. | Journallode | | JournalNode | and health,
Manage HA l Manage HA
state ! ™= 3ournalvode " state

Lol

e Write Read ___gom
HameNode HameNode

o ' [|

Datahgde | s o r Datakgde |

Datakgde

3.5.1. Prerequisites

Complete the following prerequisite configurations:

» Make sure that you have a working Zookeeper service. If you have an Ambari deployed
HDP cluser with Zookeeper, you can use that. If not, deploy ZooKeeper using the
instructions provided in the "Installing ZooKeeper" chapter of the Installing HDP
Manually guide.

e Note
y/

In a typical deployment, ZooKeeper daemons are configured to run on
three or five nodes. However, it is acceptable to co-locate the ZooKeeper
nodes on the same hardware as the HDFS NameNode and Standby Node.
Many operators choose to deploy the third ZooKeeper process on the same
node as the YARN ResourceManager. To achieve performance and improve
isolation, Hortonworks recommends configuring the ZooKeeper nodes such
that the ZooKeeper data and HDFS metadata is stored on separate disk
drives.

¢ Shut down your HA cluster that is configured for manual failover using the instructions
provided in "Controlling HDP Services Manually," in the HDP Reference Guide.

Currently, you cannot transition from a manual failover setup to an automatic failover
setup while the cluster is running.

30

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.0/bk_installing_manually_book/index.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.0/bk_installing_manually_book/index.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.0/bk_HDP_Reference_Guide/content/ch02.html

Hortonworks Data Platform Dec 2, 2014

Complete the following actions:
1. Configure automatic failover.

a. Set up your cluster for automatic failover. Add the following property to the the
hdf s-sit e. xm file for both the NameNode nodes:

<property>
<nanme>df s. ha. aut omat i c-f ai | over . enabl ed</ nane>
<val ue>t rue</ val ue>

</ property>

b. List the host-port pairs running the ZooKeeper service. Add the following property to
the the core-si te. xnl file for both the NameNode machines:

<property>

<nanme>ha. zookeeper . quor unx/ nane>

<val ue>zkl. exanpl e. com 2181, zk2. exanpl e. com 2181, zk3. exanpl e.
com 2181</ val ue>
</ property>

E

Suffix the configuration key with the nameservice ID to configure the
above settings on a per-nameservice basis. For example, in a cluster
with federation enabled, you can explicitly enable automatic failover
for only one of the nameservices by setting df s. ha. aut omat i c-
fail over. enabl ed. $ny- naneservi ce-i d.

2. Initialize HA state in ZooKeeper.

Execute the following command on NN1:

hdfs zkfc -format ZK -force

This command creates a znode in ZooKeeper. The automatic failover system stores uses
this znode for data storage.

3. Check to see if Zookeeper is running. If not, start Zookeeper by executing the following
command on the ZooKeeper host nodes.

su - zookeeper -c "export ZOOCFGDI R=/usr/ hdp/ current/zookeeper-server/
conf ;

export ZOOCFG=zoo.cfg; source /usr/hdp/current/zookeeper-server/conf/
zookeeper - env. sh ;

[usr/ hdp/ current/zookeeper-server/bin/zkServer.sh start"

4. Start the JournalNodes, NameNodes, and DataNodes using the instructions provided in
"Controlling HDP Services Manually," in the HDP Reference Guide.

5. Start the Zookeeper Failover Controller (ZKFC) by executing the following command:

su -1 hdfs -c "/usr/hdp/current/hadoop- hdf s- nanenode/ . ./ hadoop/ sbi n/ hadoop-
daenon. sh start zkfc"

31

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.0/bk_HDP_Reference_Guide/content/ch02.html

Hortonworks Data Platform Dec 2, 2014

The sequence of starting the ZKFC determines which NameNode will become Active. For
example, if the ZKFC is started on NN1 first, it causes NN1 to become Active.

E

6. Verify automatic failover.

To convert a non-HA cluster to an HA cluster, Hortonworks recommends that
you run the boot st r apSt andby command to initialize NN2 before you
start the ZKFC on any of the NameNode nodes.

a. Locate the Active NameNode.
Use the NameNode web Ul to check the status for each NameNode host node.
b. Cause a failure on the Active NameNode host machine.

For example, you can use the following command to simulate a JVM failure:

kill -9 $PID of Active NameNode

Or, you could power cycle the node or unplug its network interface to simulate
outage.

¢. The Standby NameNode should now automatically become Active within several
seconds.

=

d. If the test fails, your HA settings might be incorrectly configured.

The amount of time required to detect a failure and trigger a failover
depends on the configuration of the ha. zookeeper . sessi on-
ti meout . ns property. The default value for this property is 5 seconds.

Check the logs for the zkfc daemons and the NameNode daemons to diagnose the
issue.

1. Set up your database for high availability. For details, see the documentation for your
Oozie database.

Oozie database configuration properties may need special configuration. For details, see
the JDBC driver documentation for your database.

2. Configure Oozie identically on two or more servers.

3. Set the OQZI E_HTTP_HOSTNAME variable in 00zi e- env. sh to the Load Balancer or
Virtual IP address.

4. Start all Oozie servers.

5. Use either a Virtual IP Address or Load Balancer to direct traffic to Oozie servers.

32

Hortonworks Data Platform Dec 2, 2014

6. Access Oozie via the Virtual IP or Load Balancer address.

The subcommands of hdf s haadm n are used for administering an HA cluster.

Running the hdf s haadm n command without any additional arguments will display the
following usage information:

Usage: DFSHAAdm n [-ns <naneservi cel d>]
[-transitionToActive <servicel d>]
[-transitionToSt andby <servi cel d>]
[-failover [--forcefence] [--forceactive] <serviceld> <servicel d>]
[-get ServiceState <servicel d>]
[-checkHeal t h <servicel d>]
[-hel p <conmand>

This section provides high-level uses of each of these subcommands.

* transitionToActive and transitionToStandby: Transitions the state of the given
NameNode to Active or Standby.

These subcommands cause a given NameNode to transition to the Active or Standby
state, respectively. These commands do not attempt to perform any fencing, and
thus should be used rarely. Instead, Hortonworks recommends using the following
subcommand:

hdf s haadmi n -fail over
* failover: Initiates a failover between two NameNodes.
This subcommand causes a failover from the first provided NameNode to the second.

¢ If the first NameNode is in the Standby state, this command transitions the second to
the Active state without error.

« If the first NameNode is in the Active state, an attempt is made to gracefully transition
it to the Standby state. If this fails, the fencing methods that are configured by
df s. ha. f enci ng. net hods) are attempted in order until one succeeds. Only after
this process can the second NameNode be transitioned to the Active state. If the
fencing methods fail, the second NameNode is not transitioned to an Active state and
an error is returned.

*» getServiceState: Determines whether the given NameNode is Active or Standby.

This subcommand connects to the provided NameNode, determines its current state, and
prints either "standby" or "active" to STDOUT appropriately. This subcommand might be
used by cron jobs or monitoring scripts.

* checkHealth: Checks the health of the given NameNode.

This subcommand connects to the NameNode to check its health. The NameNode is
capable of performing some diagnostics that include checking if internal services are
running as expected. This command will return 0 if the NameNode is healthy else it will
return a non-zero code.

33

Hortonworks Data Platform Dec 2, 2014

e Note

This subcommand is in implementation phase and currently always returns
success unless the given NameNode is down.

34

Hortonworks Data Platform Dec 2, 2014

This chapter provides instructions on setting up the ResourceManager (RM) High
Availability (HA) feature in an HDFS cluster. The Active and Standby ResourceManagers
embed the Zookeeper-based ActiveStandbyElector to determine which ResourceManager
should be active.

E

This document assumes that an existing HDP cluster has been manually
installed and deployed. It provides instructions on how to manually enable
ResourceManager HA on top of the existing cluster.

The ResourceManager is a single point of failure (SPOF) in an HDFS cluster. Each cluster has
a single ResourceManager, and if that machine or process becomes unavailable, the entire
cluster is unavailable until the ResourceManager is either restarted or started on a separate
node. This situation impacts the total availability of the HDFS cluster in two ways:

* Unplanned events, such as a node failure, cause the cluster to be unavailable until an
operator restarts the ResourceManager.

* Planned maintenance events, such as software or hardware upgrades on the
ResourceManager node, cause periods of cluster downtime.

The ResourceManager HA feature addresses these problems. This feature enables you to
run redundant ResourceManagers in the same cluster in an Active/Passive configuration
with a hot standby. This mechanism thus facilitates either a fast failover to the standby
ResourceManager during node failure, or a graceful administrator-initiated failover during
planned maintenance.

Ensure that you prepare the following hardware resources:

* ResourceManager nodes: The nodes where you run Active and Standby
ResourceManagers should have exactly the same hardware. For recommended hardware
for ResourceManagers, see "Hardware for Master Nodes" in the Cluster Planning Guide.

» Zookeeper machines: For automated failover functionality, there must be an existing
Zookeeper cluster available. The Zookeeper service nodes can be co-located with other
Hadoop daemons.

HA configuration is backward-compatible and works with your existing single
ResourceManager configuration.

As described in the following sections, first configure manual or automatic
ResourceManager failover. Then deploy the ResourceManager HA cluster.

35

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.0/bk_cluster-planning-guide/index.html

Hortonworks Data Platform

Dec 2, 2014

Prerequisites

Complete the following prerequisites:

* Make sure that you have a working Zookeeper service. If you had an Ambari- deployed
HDP cluster with Zookeeper, you can use that Zookeeper service. If not, deploy
ZooKeeper using the instructions provided in the "Installing ZooKeeper" chapter of the
Installing HDP Manually guide.

2

In a typical deployment, ZooKeeper daemons are configured to run on
three or five nodes. However, it is acceptable to co-locate the ZooKeeper
nodes on the same hardware as the HDFS NameNode and Standby Node.
Many operators choose to deploy the third ZooKeeper process on the same
node as the YARN ResourceManager. To achieve performance and improve
isolation, Hortonworks recommends configuring the ZooKeeper nodes so
that the ZooKeeper data and HDFS metadata are stored on separate disk

drives.

» Shut down the cluster using the instructions provided in "Controlling HDP Services
Manually," in the HDP Reference Guide.

Set Common ResourceManager HA Properties

The following properties are required for both manual and automatic ResourceManager
HA. Add these properties to the et ¢/ hadoop/ conf/yarn-si te. xm file:

Property Name

Recommended Value

Description

ha. enabl ed

yar n. resour cenanager.

true

Enable RM HA

ha.rmids

yarn. resourcenmanager.

Cluster-specific, e.g., rm1,rm2

A comma-separated list of
ResourceManager IDs in the cluster.

host nane. <rm i d>

yarn. resourcenmanager.

Cluster-specific

The host name of the
ResourceManager. Must be set for all
RMs.

recovery. enabl ed

yarn. resourcenanager .

true

Enable job recovery on RM restart or
failover.

store. cl ass

yar n. resour cenanager.

org. apache. hadoop. yarn.
server.resour cemanager.
recovery. ZKRVSt at eSt or e

The RMStateStore implementation to
use to store the ResourceManager's
internal state. The ZooKeeper- based
store supports fencing implicitly, i.e.,
allows a single ResourceManager to
make multiple changes at a time, and
hence is recommended.

yar n. resour cemanager
addr ess

. zk-

Cluster-specific

The ZooKeeper quorum to use to store
the ResourceManager's internal state.
For multiple ZK servers, use commas to
separate multiple ZK servers.

provi der

yarn.client.fail over-proxy-

or g. apache. hadoop. yarn.
client.

When HA is enabled, the class to be
used by Clients, AMs and NMs to

36

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.0/bk_installing_manually_book/index.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.0/bk_installing_manually_book/index.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.0/bk_HDP_Reference_Guide/content/ch02.html

Hortonworks Data Platform Dec 2, 2014

Property Name Recommended Value Description
Conf i gur edRMFai | over failover to the Active RM. It should
ProxyProvi der extend

or g. apache. hadoop. yarn.
client. RVFai | over ProxyProvi de

This is an optional configuration.

The default value is
“org.apache.hadoop.yarn.client.
ConfiguredRMFailoverProxyProvider”

You can also set values for each of the following properties in yar n-
site.xm:

yar n. resour cenanager . addr ess. <r n¥#i d>

yarn. r esour cenanager . schedul er. addr ess. <r n#i d>

yarn. resour cenmanager . adm n. addr ess. <r n#i d>

yarn. resour cenmanager . r esour ce#t racker . addr ess. <r n#i d>
yar n. r esour cenanager . webapp. addr ess. <r m#i d>

If these addresses are not explicitly set, each of these properties will use
yarn. resour cenanager . host nane. <rm i d>: def aul t _port

such as DEFAULT_RM PORT, DEFAULT_RM SCHEDULER PORT.

The following is a sample yar n-si te. xm fil e with these common ResourceManager
HA properties configured:

<I-- RM HA Configurations-->

<property>
<nane>yar n. r esour cemanager . ha. enabl ed</ nanme>
<val ue>t rue</ val ue>

</ property>

<property>
<panme>yar n. r esour cenanager . ha. r mi ds</ nanme>
<val ue>rmi, r n2</ val ue>

</ property>

<property>
<name>yar n. r esour cemanager . host nane. r m.</ nane>
<val ue>${rnl address}</val ue>

</ property>

<pr operty>
<name>yar n. r esour cemanager . host nane. r n2</ name>
<val ue>${rn2 address}</val ue>

</ property>

<property>
<nanme>yar n. r esour cemanager . webapp. addr ess. r niL</ nanme>
<val ue>rmlL_web_addr ess: port_nunx/val ue>
<descri pti on>We can set rnl_web_address separately. If not, it will use
${yarn. resour cemanager . host nane. r mL} : DEFAULT_RM WEBAPP_PORT</
descri pti on>

37

Hortonworks Data Platform Dec 2, 2014

</ property>

<property>
<nane>yar n. r esour cemanager . webapp. addr ess. r n2</ nane>
<val ue>rn2_web_addr ess: port_nunx/ val ue>

</ property>

<property>
<nanme>yar n. r esour cenanager . r ecovery. enabl ed</ name>
<val ue>t r ue</ val ue>

</ property>

<property>

<name>yar n. r esour cemanager . st or e. cl ass</ nane>

<val ue>or g. apache. hadoop. yar n. server. resour cemanager . r ecovery.
ZKR\EBt at eSt or e</ val ue>
</ property>

<property>
<name>yar n. r esour cemanager . zk- addr ess</ nane>
<val ue>${ zkl. addr ess, zk2. addr ess} </ val ue>

</ property>

<property>

<name>yarn. client. fail over-proxy-provi der </ name>

<val ue>or g. apache. hadoop. yarn. cl i ent. Confi gur edRMFai | over Pr oxyPr ovi der </
val ue>
</ property>

Configure Manual ResourceManager Failover

Automatic ResourceManager failover is enabled by default, so it must be disabled for
manual failover.

To configure manual failover for ResourceManager HA, add the
yarn. resour cemanager . ha. aut omati c-f ai | over. enabl ed configuration
property to the et ¢/ hadoop/ conf/yarn-site. xm file, and set its value to "false":

<property>
<nanme>yar n. r esour cemanager . ha. aut omati c-f ai | over. enabl ed</ nane>
<val ue>f al se</val ue>

</ property>

Configure Automatic ResourceManager Failover

The preceding section described how to configure manual failover. In that mode,

the system will not automatically trigger a failover from the active to the standby
ResourceManager, even if the active node fails. This section describes how to configure
automatic failover.

1. Add the following configuration options to the yar n- si t e. xim file:

Property Name Recommended Value Description
yarn. resour cenanager . ha. /yarn-leader-election The base znode path to use
automati c-fail over. zk- base- for storing leader information,
path when using ZooKeeper-based
leader election. This is an optional
configuration. The default value is

38

Hortonworks Data Platform Dec 2, 2014

Property Name Recommended Value Description
/yarn-| eader-el ection

yarn. resour cemanager . yarn-cluster The name of the cluster. In a HA
cluster-id setting, this is used to ensure the RM
participates in leader election for this
cluster, and ensures that it does not
affect other clusters.

Example:

<property>
<name>yar n. r esour cemanager . ha. aut omat i c-f ai | over. zk- base- pat h</ nane>
<val ue>/yarn-| eader - el ecti on</ val ue>
<descri pti on>Optional setting. The default value is /yarn-I|eader-

el ecti on</descri pti on>

</ property>

<property>
<name>yar n. r esour cemanager . cl ust er - i d</ name>
<val ue>yarn- cl ust er </ val ue>

</ property>

. Automatic ResourceManager failover is enabled by default.

If you previously configured manual ResourceManager failover by setting the value of
yarn. resour cemanager . ha. aut omati c-f ai | over. enabl ed to false, you must
delete this property to return automatic failover to its default enabled state.

. Copy the et ¢/ hadoop/ conf/yarn-si te. xnl file from the primary
ResourceManager host to the standby ResourceManager host.

. Make sure that the cl i ent Port value setin et ¢/ zookeeper/ conf/ zoo. cfg
matches the port set in the following yar n-si t e. xnl property:

<property>
<name>yar n. r esour cemanager . zk- st at e- st or e. addr ess</ nane>
<val ue>l ocal host: 2181</ val ue>

</ property>

. Start ZooKeeper. Execute this command on the ZooKeeper host nodes:

su - zookeeper -c "export ZOOCFGDI R=/usr/ hdp/current/zookeeper-server/
conf ;

export ZOOCFG=zoo. cfg; source /usr/hdp/current/zookeeper-server/conf/
zookeeper - env. sh ;

[usr/ hdp/ current/zookeeper-server/bi n/ zkServer.sh start"

. Start HDFS using the instructions provided in "Controlling HDP Services Manually," in the
HDP Reference Guide.

. Start YARN using the instructions provided in "Controlling HDP Services Manually," in the
HDP Reference Guide.

. Set the active ResourceManager:

39

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.0/bk_HDP_Reference_Guide/content/ch02.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.0/bk_HDP_Reference_Guide/content/ch02.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.0/bk_HDP_Reference_Guide/content/ch02.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.0/bk_HDP_Reference_Guide/content/ch02.html

Hortonworks Data Platform Dec 2, 2014

FOR MANUAL FAILOVER ONLY: If you configured manual ResourceManager failover,
you must transition one of the ResourceManagers to Active mode. Execute the following
CLI command to transition ResourceManager r nil to Active:

yarn rmadmin -transiti onToActive rml

You can use the following CLI command to transition ResourceManager r nl to Standby
mode:

yarn rmadm n -transitionToSt andby rml

FOR AUTOMATIC FAILOVER: If you configured automatic ResourceManager failover, no
action is required. The Active ResourceManager is chosen automatically.

7. Start all remaining unstarted cluster services using the instructions provided in the
"Controlling HDP Services Manually" chapter of the HDP Reference Guide.

The minimum yar n- si t e. xm configuration settings for ResourceManager HA with
automatic failover are as follows:

<property>
<nanme>yar n. r esour cemanager . ha. enabl ed</ nane>
<val ue>t rue</ val ue>

</ property>

<property>
<nane>yar n. r esour cenanager . ha. r mi ds</ nanme>
<val ue>rni, r n2</ val ue>

</ property>

<property>
<name>yar n. r esour cemanager . host nane. r mL.</ nanme>
<val ue>192. 168. 1. 9</ val ue>

</ property>

<property>
<nane>yar n. r esour cemanager . host name. r n2</ nane>
<val ue>192. 168. 1. 10</ val ue>

</ property>

<property>
<nanme>yar n. r esour cenanager . r ecovery. enabl ed</ name>
<val ue>true</ val ue>

</ property>

<property>

<name>yar n. r esour cemanager . st or e. cl ass</ nane>

<val ue>or g. apache. hadoop. yar n. server. resour cemanager . r ecovery.
ZKR\VEB at eSt or e</ val ue>
</ property>

<property>
<nanme>yar n. r esour cemanager . zk- addr ess</ name>

40

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.0/bk_HDP_Reference_Guide/content/ch02.html

Hortonworks Data Platform Dec 2, 2014

<val ue>192. 168. 1. 9: 2181, 192. 168. 1. 10: 2181</ val ue>
<description>For multiple zk services, separate themw th conma</
descri pti on>
</ property>

<property>
<name>yar n. r esour cenanager . cl ust er - i d</ nane>
<val ue>yar n-cl ust er </ val ue>

</ property>

To test ResourceManager HA on a single node or launch more than one ResourceManager
on a single node, you must add the following settings in the yar n- si t e. xmi file.

To enable ResourceManager r imlL to launch:

<property>
<name>yar n. r esour cenanager . ha. i d</ name>
<val ue>r ml</ val ue>
<description>f we want to |launch nmore than one RMin single node, we
need this configuration</description>
</ property>

To enable ResourceManager r n2 to launch:
<property>
<name>yar n. r esour cenmanager . ha. i d</ name>
<val ue>r n2</ val ue>
<description>f we want to |launch nmore than one RMin single node, we
need this configuration</description>
</ property>

You should also explicitly set values specific to each ResourceManager for the following
properties separately inyarn-site. xm :

* yarn.resourcemanager.address.<rm-id>

* yarn.resourcemanager.scheduler.address.<rm-id>

* yarn.resourcemanager.admin.address.<rm-id>

* yarn.resourcemanager.resource#tracker.address.<rm-id>

* yarn.resourcemanager.webapp.address.<rm-id>

For example:

<l-- RML Configs -->

<property>
<name>yar n. r esour cemanager . addr ess. r m.</ nane>
<val ue>| ocal host : 23140</ val ue>

</ property>

<property>

<nanme>yar n. r esour cemanager . schedul er. addr ess. r niL.</ nanme>
<val ue>| ocal host : 23130</ val ue>

41

Hortonworks Data Platform Dec 2, 2014

</ property>

<property>
<nanme>yar n. r esour cenmanager . webapp. addr ess. r niL</ name>
<val ue>| ocal host : 23188</ val ue>

</ property>

<property>
<nanme>yar n. r esour cenanager . r esour ce-t racker. addr ess. r m.</ nane>
<val ue>| ocal host : 23125</ val ue>

</ property>

<property>
<name>yar n. r esour cenanager . adm n. addr ess. r nl</ nanme>
<val ue>l ocal host : 23141</ val ue>

</ property>

<I-- RMR configs -->

<property>
<nanme>yar n. r esour cenanager . addr ess. r mr2</ nane>
<val ue>| ocal host : 33140</ val ue>

</ property>

<property>
<name>yar n. r esour cenanager . schedul er . addr ess. r n2</ nane>
<val ue>l ocal host : 33130</ val ue>

</ property>

<property>
<nane>yar n. r esour cemanager . webapp. addr ess. r n2</ nane>
<val ue>l ocal host : 33188</ val ue>

</ property>

<property>
<nane>yar n. r esour cenanager . r esour ce-t racker . addr ess. r n2</ nane>
<val ue>| ocal host : 33125</ val ue>

</ property>

<property>
<nane>yar n. r esour cenanager . adm n. addr ess. r n2</ nane>
<val ue>l ocal host : 33141</ val ue>

</ property>

42

	Hortonworks Data Platform
	Table of Contents
	1. High Availability for Hive Metastore
	1.1. Use Cases and Failover Scenarios
	1.2. Software Configuration
	1.2.1. Install HDP
	1.2.2. Update the Hive Metastore
	1.2.3. Validate Configuration

	2. Highly Available Reads with HBase
	2.1. Introduction to HBase High Availability
	2.2. Propagating Writes to Region Replicas
	2.3. Timeline Consistency
	2.4. Configuring HA Reads for HBase
	2.5. Creating Highly-Available HBase Tables
	2.6. Querying Secondary Regions
	2.7. Monitoring Secondary Region Replicas

	3. Namenode High Availability
	3.1. Architecture
	3.2. Hardware Resources
	3.3. Deploy NameNode HA Cluster
	3.3.1. 1. Configure NameNode HA Cluster
	3.3.2. 2. Deploy NameNode HA Cluster
	3.3.3. 3. Deploy Hue with an HA Cluster
	3.3.4. 4. Deploy Oozie with an HA Cluster

	3.4. Operating a NameNode HA Cluster
	3.5. Configure and Deploy NameNode Automatic Failover
	3.5.1. Prerequisites
	3.5.2. Instructions
	3.5.3. Configuring Oozie Failover

	3.6. Appendix: Administrative Commands

	4. Resource Manager High Availability
	4.1. Hardware Resources
	4.2. Deploy ResourceManager HA Cluster
	4.2.1. Configure Manual or Automatic ResourceManager Failover
	4.2.2. Deploy the ResourceManager HA Cluster
	4.2.3. Minimum Settings for Automatic ResourceManager HA Configuration
	4.2.4. Testing ResourceManager HA on a Single Node

