
docs.hortonworks.com

http://docs.hortonworks.com

Hortonworks Data Platform Apr 13, 2015

ii

Hortonworks Data Platform: System Administration
Copyright © 2012-2015 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain free and open source.

For more information on Hortonworks technology, please visit the Hortonworks Data Platform page. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 3.0 License.
http://creativecommons.org/licenses/by-sa/3.0/legalcode

//hortonworks.com/training/
//hortonworks.com/products/hdp/
//hortonworks.com/services/
//hortonworks.com/training/
//hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Hortonworks Data Platform Apr 13, 2015

iii

Table of Contents
1. Decommissioning Slave Nodes ... 1

1.1. Prerequisites ... 1
1.2. Decommission DataNodes or NodeManagers .. 1
1.3. Decommission DataNodes .. 1
1.4. Decommission NodeManagers .. 2
1.5. Decommission HBase RegionServers .. 3

2. HBase Cluster Capacity and Region Sizing .. 5
2.1. Node Count and JVM Configuration ... 5
2.2. Region Count and Size ... 6
2.3. Increase Memstore Size for region server .. 6
2.4. Increase Size of the Region .. 7
2.5. Initial Configuration and Tuning ... 8
2.6. Configure Compactions .. 9

3. Hive Authorization .. 10
3.1. Ranger-Hive Integration .. 11
3.2. SQL Standard-Based Authorization in Hive .. 12
3.3. Required Privileges for Hive Operations .. 13
3.4. Configuring SQL Standard-Based Authorization ... 15
3.5. Storage-Based Authorization in Hive ... 16
3.6. Required Permissions for Hive Operations ... 17
3.7. Configuring Storage-based Authorization .. 17

4. Manually Adding Slave Nodes to an HDP Cluster ... 20
4.1. Prerequisites ... 20
4.2. Add Slave Nodes .. 20
4.3. Add HBase RegionServer .. 22

5. Optimizing HBase I/O/title> .. 25
5.1. Configuring BlockCache .. 28
5.2. (Optional) Configuring Off-heap Memory (BucketCache) 29
5.3. Compressing BlockCache ... 32

6. Using DistCp to Copy Files ... 34
6.1. Using DistCp ... 34
6.2. Command Line Options .. 35
6.3. Update and Overwrite .. 35
6.4. DistCp and Security Settings ... 36
6.5. Secure-to-Secure: Kerberos Principal Name .. 37
6.6. Secure-to-Secure: ResourceManager Mapping Rules .. 37
6.7. DistCp and HDP Version ... 38
6.8. DistCp Data Copy Matrix: HDP1/HDP2 to HDP2 .. 38
6.9. Copying Data from HDP-2.x to HDP-1.x Clusters .. 38
6.10. DistCp Architecture ... 39
6.11. DistCp Driver .. 39
6.12. Copy-listing Generator .. 39
6.13. InputFormats and MapReduce Components .. 40
6.14. DistCp Frequently Asked Questions ... 41
6.15. Appendix .. 42

Hortonworks Data Platform Apr 13, 2015

1

1. Decommissioning Slave Nodes
Hadoop provides the decommission feature to retire a set of existing slave nodes
(DataNodes, NodeManagers, or HBase RegionServers) in order to prevent data loss.

Slaves nodes are frequently decommissioned for maintainance. As a Hadoop administrator,
you will decommission the slave nodes periodically in order to either reduce the cluster size
or to gracefully remove dying nodes.

1.1. Prerequisites
• Ensure that the following property is defined in your hdfs-site.xml file.

<property>
 <name>dfs.hosts.exclude</name>
 <value><HADOOP_CONF_DIR>/dfs.exclude</value>
 <final>true</final>
 </property>

where <HADOOP_CONF_DIR> is the directory for storing the Hadoop configuration files.
For example, /etc/hadoop/conf.

• Ensure that the following property is defined in your yarn-site.xml file.

<property>
 <name>yarn.resourcemanager.nodes.exclude-path</name>
 <value><HADOOP_CONF_DIR>/yarn.exclude</value>
 <final>true</final>
</property>

where <HADOOP_CONF_DIR> is the directory for storing the Hadoop configuration files.
For example, /etc/hadoop/conf.

1.2. Decommission DataNodes or NodeManagers
Nodes normally run both a DataNode and a NodeManager, and both are typically
commissioned or decommissioned together.

With the replication level set to three, HDFS is resilient to individual DataNodes failures.
However, there is a high chance of data loss when you terminate DataNodes without
decommissioning them first. Nodes must be decommissioned on a schedule that permits
replication of blocks being decommissioned.

On the other hand, if a NodeManager is shut down, the ResourceManager will reschedule
the tasks on other nodes in the cluster. However, decommissioning a NodeManager
may be required in situations where you want a NodeManager to stop to accepting new
tasks, or when the tasks take time to execute but you still want to be agile in your cluster
management.

1.3. Decommission DataNodes
Use the following instructions to decommission DataNodes in your cluster:

Hortonworks Data Platform Apr 13, 2015

2

• On the NameNode host machine, edit the <HADOOP_CONF_DIR>/dfs.exclude file
and add the list of DataNodes hostnames (separated by a newline character).

where <HADOOP_CONF_DIR> is the directory for storing the Hadoop configuration files.
For example, /etc/hadoop/conf.

• Update the NameNode with the new set of excluded DataNodes. On the NameNode
host machine, execute the following command:

su <HDFS_USER>
hdfs dfsadmin -refreshNodes

where <HDFS_USER> is the user owning the HDFS services. For example, hdfs.

• Open the NameNode web UI (http://<NameNode_FQDN>:50070) and navigate to
the DataNodes page. Check to see whether the state has changed to Decommission In
Progress for the DataNodes being decommissioned.

• When all the DataNodes report their state as Decommissioned (on the DataNodes
page, or on the Decommissioned Nodes page at http://<NameNode_FQDN>:8088/
cluster/ nodes/decommissioned), all of the blocks have been replicated. You can
then shut down the decommissioned nodes.

• If your cluster utilizes a dfs.include file, remove the decommissioned nodes from
the <HADOOP_CONF_DIR>/dfs.include file on the NameNode host machine, then
execute the following command:

su <HDFS_USER>
hdfs dfsadmin -refreshNodes

Note

If no dfs.include file is specified, all DataNodes are considered to be
included in the cluster (unless excluded in the dfs.exclude file). The
dfs.hosts and dfs.hosts.exclude properties in hdfs-site.xml are
used to specify the dfs.include and dfs.exclude files.

1.4. Decommission NodeManagers
Use the following instructions to decommission NodeManagers in your cluster:

• On the NameNode host machine, edit the <HADOOP_CONF_DIR>/yarn.exclude file
and add the list of NodeManager hostnames (separated by a newline character).

where <HADOOP_CONF_DIR> is the directory for storing the Hadoop configuration files.
For example, /etc/hadoop/conf.

• If your cluster utilizes a yarn.include file, remove the decommissioned nodes from
the <HADOOP_CONF_DIR>/yarn.include file on the ResourceManager host machine.

Note

If no yarn.include file is specified, all NodeManagers are considered
to be included in the cluster (unless excluded in the yarn.exclude

Hortonworks Data Platform Apr 13, 2015

3

file). The yarn.resourcemanager.nodes.include-path and
yarn.resourcemanager.nodes.exclude-path properties in yarn-
site.xml are used to specify the yarn.include and yarn.exclude
files.

• Update the ResourceManager with the new set of NodeManagers. On the
ResourceManager host machine, execute the following command:

su <YARN_USER>
yarn rmadmin -refreshNodes

where <YARN_USER> is the user who owns the YARN services, for example, yarn.

1.5. Decommission HBase RegionServers
Use the following instructions to decommission HBase RegionServers in your cluster:

1. Decommission RegionServers. The preferred method of decommissioning
RegionServers is to use the graceful_stop.sh script (Option I). This option gradually
unloads Regions from the RegionServer, allowing the node to be terminated without
impacting data availability. You can also terminate the RegionServer without first
unloading its Regions (Option II). This will result in a short window of data unavailability
as HBase's natural data recovery operations execute.

• Option I: Perform a Graceful Stop

You can use the following command to gracefully decommission a loaded
RegionServer. Execute this command from any host machine with HBase configuration
installed.

su <HBASE_USER>/usr/hdp/current/hbase-client/bin/graceful_stop.sh
 <RegionServer.Hostname>

where <HBASE_USER> is the user who owns the HBase Services. For example, hbase.

Note

The value of <RegionServer.Hostname> must match the host name
that HBase uses to identify RegionServers.

To find the host name for a particular RegionServer, use the HBase web
UI to check the list of RegionServers in the HBase Master UI. Typically,
HBase Master uses host names but occassionally it can be the FQDN of a
RegionServer.

• Option II: Use hbase-daemon.sh

At the RegionServer that you want to decommission, execute:

su <HBASE_USER>
/usr/hdp/current/hbase-client/bin/graceful_stop.sh <RegionServer.Hostname>

where <HBASE_USER> is the user who owns the HBase Services. For example, hbase.

RegionServer closes all the regions, then shuts down.

Hortonworks Data Platform Apr 13, 2015

4

2. Enable the load balancer. If you used the graceful_stop.sh script, you may need to
re-enable the Region Balancer using the balance_switch shell command from. Use
the true option to enable the balancer, and false to disable it. The command returns
the value of the state of the balancer that existed before running the command.

If graceful_stop.sh disabled the balancer, you can enable it again using the
following series of commands:

su <HBASE_USER>
hbase shell
hbase(main):001:0> balance_switch true
false
0 row(s) in 0.3590 seconds

Hortonworks Data Platform Apr 13, 2015

5

2. HBase Cluster Capacity and Region
Sizing

This section describes how to plan the capacity of an HBase cluster and the size of its
RegionServers.

The following table provides information about HBase concepts:

HBase Concept Description

Region A group of contiguous HBase table rows. Tables start with one region and additional
regions are dynamically added as the table grows. Regions can be spread across multiple
hosts to provide load balancing and quick recovery from failure. There are two types of
region: primary and secondary. A secondary region is a replicated primary region located
on a different region server.

RegionServer Serves data requests for one or more regions. A single region is serviced by only one
RegionServer, but a region server may serve multiple regions.

Column family A group of semantically related columns stored together.

Memstore In-memory storage for a region server. region servers write files to HDFS
after the memstore reaches a configurable maximum value specified with the
hbase.hregion.memstore.flush.size property in the hbase-site.xml
configuration file.

Write Ahead Log (WAL) In-memory log where operations are recorded before they are stored in the memstore.

Compaction storm When the operations stored in the memstore are flushed to disk, HBase consolidates and
merges many smaller files into fewer large files. This consolidation is called compaction,
and it is usually very fast. However, if many region servers hit the data limit specified
by the memstore at the same time, HBase performance may degrade from the large
number of simultaneous major compactions. Administrators can avoid this by manually
splitting tables over time.

2.1. Node Count and JVM Configuration
The number of nodes in an HBase cluster is typically driven by the following considerations:

• Physical size of the data

• Read/Write Throughput

Physical Size of the Data

The physical size of data on disk is affected by the following factors:

Factor Affecting Size of Physical
Data

Description

HBase Overhead The default amount of disk space required for a single HBase table cell. Smaller
table cells require less overhead. The minimum cell size is 24 bytes and the
default maximum is 10485760 bytes. Administrators can customize the maximum
cell size with the hbase.client.keyvalue.maxsize property in the
hbase-site.xml configuration file. HBase table cells are aggregated into
blocks, and the block size is also configurable for each column family with the
hbase.mapreduce.hfileoutputformat.blocksize property. The default
value is 65536 bytes. Administrators may reduce this value for tables with highly
random data access patterns to improve query latency.

Compression Choose a data compression tool that makes sense for your data to reduce the
physical size of data on disk. Unfortunately, HBase cannot ship with LZO due to
licensing issues. However, HBase administrators may install LZO after installing

Hortonworks Data Platform Apr 13, 2015

6

Factor Affecting Size of Physical
Data

Description

HBase. GZIP provides better compression than LZO but is slower. HBase also
supports Snappy.

HDFS Replication HBase uses HDFS for storage, so replicating HBase data stored in HDFS affects the
total physical size of data. A typical replication factor of 3 for all HBase tables in a
cluster would triple the physical size of the stored data.

RegionServer Write Ahead Log
(WAL)

The size of the Write Ahead Log, or WAL, for each RegionServer has minimal
impact on the physical size of data. The size of the WAL is typically fixed at less
than half of the memory for the region server. Although this factor is included
here for completeness, the impact of the WAL on data size is negligible and its size
is usually not configured.

Read/Write Throughput

The number of nodes in an HBase cluster may also be driven by required throughput for
disk reads and/or writes. The throughput per node greatly depends on table cell size, data
request patterns, as well as node and cluster configuration. Use YCSB tools to test the
throughput of a single node or a cluster to determine if read/write throughput should drive
your the number of nodes in your HBase cluster. A typical throughput for write operations
for one region server is 5-15 Mb/s. Unfortunately, there is no good estimate for read
throughput; it varies greatly depending on physical data size, request patterns, and hit rate
for the block cache.

2.2. Region Count and Size
In general, an HBase cluster runs smoother with fewer regions. However, administrators
cannot directly configure the number of regions for a region server. However,
administrators can indirectly increase the number of regions in the following ways: In
addition, administrators can indirectly affect the number of regions for a RegionServer in
the following ways:

• Increase the size of the memstore for a region server

• Increase the size of a region

In addition, administrators can increase the number of regions for a RegionServer by pre-
splitting large regions to spread data and the request load across the cluster. HBase allows
administrators to individually configure each HBase table, which is useful when tables have
different workloads and use cases. Most region settings can be set on a per-table basis with
HTableDescriptor class, as well as the HBase CLI. These methods override the properties in
the hbase-site.xml configuration file. For further information, see Configure Compactions.

Note

The HDFS replication factor affects only disk usage and should not be
considered when planning the size of regions. The other factors described in
the table above are applicable.

2.3. Increase Memstore Size for region server
Usage of the RegionServer's memstore largely determines the maximum number of regions
for the region server. Each region has its own memstores, one for each column family,

http://hbase.apache.org/book.html#_ycsb
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HTableDescriptor.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.4/bk_Sys_Admin_Guides/content/ref-43981a30-a0b7-498e-b4ee-d7a0d2159264.1.html

Hortonworks Data Platform Apr 13, 2015

7

which grow to a configurable size, usually between 128 and 256 Mb. Administrators
specify this size with the hbase.hregion.memstore.flush.size property in the hbase-
site.xml configuration file. The region server dedicates some fraction of total memory to
region memstores based on the value of the hbase.regionserver.global.memstore.size
configuration property. If usage exceeds this configurable size, HBase may become
unresponsive or compaction storms might occur.

Use the following formula to estimate the number of Regions for a RegionServer:

(regionserver_memory_size) * (memstore_fraction) /
((memstore_size) * (num_column_families))

For example, assume the following configuration:

• region server with 16 Gb RAM (or 16384 Mb)

• Memstore fraction of .4

• Memstore with 128 Mb RAM

• 1 column family in table

The formula for this configuration would look as follows:

(16384 Mb * .4) / ((128 Mb * 1) = approximately 51 regions

The easiest way to decrease the number of regions for this example RegionServer is
increase the RAM of the memstore to 256 Mb. The reconfigured RegionServer would
then have approximately 25 regions, and the HBase cluster will run more smoothly if the
reconfiguration is applied to all RegionServers in the cluster. The formula can be used for
multiple tables with the same configuration by using the total number of column families in
all the tables.

Note

The formula assumes all regions are filled at approximately the same rate. If a
fraction of the cluster's regions are written to, divide the result by this fraction.

If the data request pattern is dominated by write operations rather than read operations,
increase the memstore fraction. However, this increase negatively impacts the block cache.

2.4. Increase Size of the Region
The other way to indirectly increase the number of regions for a RegionServer is to
increase the size of the region with the hbase.hregion.max.filesize property in
the hbase-site.xml configuration file. Administrators increase the number of regions
for a RegionServer by increasing the specified size at which new regions are dynamically
allocated.

Maximum region size is primarily limited by compactions. Very large compactions can
degrade cluster performance. The recommended maximum region size is 10 - 20 Gb. For
HBase clusters running version 0.90.x, the maximum recommended region size is 4 Gb

Hortonworks Data Platform Apr 13, 2015

8

and the default is 256 Mb. If you are unable to estimate the size of your tables, retain the
default value. Increase the region size only if your table cells tend to be 100 Kb or larger.

Note

HBase 0.98 introduces stripe compactions as an experimental feature that also
allows administrators to increase the size of regions. For more information, see
Experimental:Stripe Compactions at the Apache HBase site.

2.5. Initial Configuration and Tuning
HBase administrators typically use the following methods to initially configure the cluster:

• Increase the request handler thread count

• Configure the size and number of WAL files

• Configure compactions

• Pre-split tables

• Tune JVM garbage collection

Increase the Request Handler Thread Count

Administrators who expect their HBase cluster to experience a high volume request
pattern should increase the number of listeners generated by the RegionServers. Use
the hbase.regionserver.handler.count property in the hbase-site.xml
configuration file to set the number higher than the default value of 30.

Configure the Size and Number of WAL Files

HBase uses the Write Ahead Log, or WAL, to recover memstore data not yet flushed to
disk if a RegionServer crashes. Administrators should configure these WAL files to be
slightly smaller than the HDFS block size. By default, an HDFS block is 64 Mb and a WAL is
approximately 60 Mb. Hortonworks recommends that administrators ensure that enough
WAL files are allocated to contain the total capacity of the memstores. Use the following
formula to determine the number of WAL files needed:

(regionserver_heap_size * memstore fraction) / (default_WAL_size)

For example, assume the following HBase cluster configuration:

• 16 GB RegionServer heap

• 0.4 memstore fraction

• 60 MB default WAL size

The formula for this configuration looks as follows:

(16384 MB * 0.4 / 60 MB = approximately 109 WAL files

Use the following properties in the hbase-site.xml configuration file to configure the
size and number of WAL files:

http://hbase.apache.org/book.html#ops.stripe

Hortonworks Data Platform Apr 13, 2015

9

Configuration Property Description Default

hbase.regionserver.maxlogs Sets the maximum number of WAL
files.

32

hbase.regionserver.logroll.multiplier Multiplier of HDFS block size. 0.95

hbase.regionserver.hlog.blocksize Optional override of HDFS block size. Value assigned to actual HDFS block
size.

Note

If recovery from failure takes longer than expected, try reducing the number of
WAL files to improve performance.

2.6. Configure Compactions
Administrators who expect their HBase clusters to host large amounts of data should
consider the affect that compactions have on write throughput. For write-intensive
data request patterns, administrators should consider less frequent compactions and
more store files per region. Use the hbase.hstore.compaction.min property in the hbase-
site.xml configuration file to increase the minimum number of files required to trigger a
compaction. Administrators opting to increase this value should also increase the value
assigned to the hbase.hstore.blockingStoreFiles property since more files will accumulate.

Pre-split Tables

Administrators can pre-split tables during table creation based on the target number of
regions per RegionServer to avoid costly dynamic splitting as the table starts to fill up. In
addition, it ensures that the regions in the pre-split table are distributed across many host
machines. Pre-splitting a table avoids the cost of compactions required to rewrite the data
into separate physical files during automatic splitting. If a table is expected to grow very
large, administrators should create at least one region per RegionServer. However, do not
immediately split the table into the total number of desired regions. Rather, choose a low
to intermediate value. For multiple tables, do not create more than one region per region
server, especially if you are uncertain how large the table will grow. Creating too many
regions for a table that will never exceed 100 Mb in size isn't useful; a single region can
adequately services a table of this size.

Configure the JVM Garbage Collector

A RegionServer cannot utilize a very large heap due to the cost of garbage collection.
Administrators should specify no more than 24 GB for one region server.

Hortonworks Data Platform Apr 13, 2015

10

3. Hive Authorization
Authorization determines whether a user has the required permissions to perform select
operations, such as creating, reading, and writing data, as well as editing table metadata.
Apache Ranger provides centralized authorization for all HDP components, and Hive also
provides three authorization models. Administrators should consider the specific use case
when choosing an authorization model.

There are two primary use cases for Hive:

• Table storage layer

Many HDP components and underlying technologies, such as Apache Hive, Apache
HBase, Apache Pig, Apache MapReduce, and Apache Tez rely on Hive as a table storage
layer.

• SQL query engine

Hadoop administrators, business analysts, and data scientists use Hive to run SQL queries,
both from the Hive CLI and remotely through a client connecting to Hive through
HiveServer2. These users often configure a data analysis tool, such as Tableau, to connect
to Hive through HiveServer2.

When using a JDBC or ODBC driver, the value of the hive.server2.enable.doAs
configuration property in hive.site.xml determines the user account that runs a Hive
query. The value assigned to this property depends on the desired Hive authorization
model and, in the case of storage-based authorization, on the desired use case.

Hortonworks Data Platform Apr 13, 2015

11

In addition to the centralized authorization provided by Apache Ranger, Hive provides
three authorization models:

Authorization model Secure? Fine-grained
authorization
(column, row level)

Privilege
management using
GRANT/REVOKE
statements

Centralized
management GUI

Apache Ranger Secure Yes Yes Yes

SQL standard-based Secure Yes, through
privileges on table
views

Yes No

Storage-based Secure No. Authorization
at the level of
databases, tables and
partitions

No. Table privilege
based on HDFS
permission

No

Hive default Not secure. No
restriction on which
users can run GRANT
statements

Yes Yes No

Note

Administrators can secure the Hive CLI with Kerberos and by setting
permisssions on the HDFS directories where tables reside. The exception to
this is storage-based authorization, which does not require managing HDFS
permissions and is the most secure authorization model for the Hive CLI.

3.1. Ranger-Hive Integration
Apache Ranger provides centralized policy management for authentication and auditing
of all HDP components, including Hive. All HDP components are installed with an Ranger
plugin used to intercept authorization requests for that component, as shown in the
following illustration.

Apache Ranger-Hive integration

Hortonworks Data Platform Apr 13, 2015

12

Administrators who are responsible for managing access to multiple components are
strongly encouraged to use the Ranger Policy Manager to configure authentication for Hive
rather than using storage-based or SQL standard-based authorization to take advantage
of the ease-of-use provided by the Policy Manager. However, there are two primary use
cases where administrators might choose to integrate Ranger with SQL standard-based
authorization provided by Hive:

• An administrator is responsible for Hive authentication but not authentication for other
HDP components

• An administrator wants row-level authentication for one or more table views

In the first use case, an administrator could choose any of the authorization models
provided by Hive. The second use case is possible by integrating Ranger with SQL standard-
based authorization provided by Hive. Hortonworks recommends that administrators who
use both Ranger and SQL standard-based authorization use either White Policies in the
Policy Manager or GRANT and REVOKE statements in Hive, but not both. Authentication
changes made with GRANT and REVOKE statements appear as updates the corresponding
White Policy; there is no need to configure authorization both ways. Ranger also provides
an option to disable the use of GRANT and REVOKE statements.

There are two notable differences between Ranger authorization and SQL standard-based
authorization:

• Ranger does not have the concept of a role. Instead, Ranger translates roles into users
and groups.

• The ADMIN permission in Ranger is the equivalent to the WITH GRANT OPTION in SQL
standard-based authorization. However, the ADMIN permission gives the grantee the
ability to grant all permissions rather than just the permissions possessed by the grantor.
With SQL standard-based authorization, the WITH GRANT OPTION applies only to
permissions possessed by the grantor.

For more information about using ranger to configure Hive authorization, see the Apache
Ranger User Guide. For more information about SQL standard-based authorization, see the
following section.

3.2. SQL Standard-Based Authorization in Hive
SQL standard-based authorization provides fine-grained control using GRANT and REVOKE
statements and supports row and column-level access with table views. Granting access to a
table view is safer than granting access to the underlying table. This authorization model is
disabled for the Hive command line. Secure access from the Hive CLI is not possible because
users have direct access to HDFS and can bypass SQL standard-based authorization checks
and even disable the authorization model. As the name suggests, this authorization model
mimics traditional SQL compliant authorization in relational database systems with the
GRANT and REVOKE commands. A user's privileges are checked when she runs a Hive query
or command.

For more information about the ongoing work to fully support the SQL-2011 standard, see
"SQL Compliance" in the HDP Data Services Guide.

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.4/bk_Ranger_User_Guide/content/ch01.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.4/bk_Ranger_User_Guide/content/ch01.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.4/bk_dataintegration/content/ch_using-hive-SQL-compliance.html

Hortonworks Data Platform Apr 13, 2015

13

Administrators can grant roles as well as privileges. Users can belong to one or more roles.
Two roles have special meaning:

• public

• admin

All users belong to the public role. Administrators should use this role in GRANT statements
intended to grant a privilege to all users. Administrators should add users who do the work
of a database administrator to the admin role. These users have privileges to run additional
commands such as CREATE ROLE and DROP ROLE, and they can access objects to which
they haven't been given explicit access. However, users who belong to the admin role need
to run the SET ROLE command before using the privileges of the admin role because this
role is not included with the current roles by default.

The ownership of a table, view, or database determines who is authorized to perform
certain actions. For example, the user who creates a table, view, or database becomes its
owner. In the case of tables and views, the owner gets all the privileges with the GRANT
option. Administrators can also use the ALTER DATABASE command to specify a role as the
owner of a database.

SQL standard-based authorization models considers users with access to the following
functionality as privileged:

• Hive CLI

• HDFS commands

• Pig CLI

• hadoop jar command

• MapReduce

These tools and commands do not access data through HiveServer2, so SQL standard-based
authorization cannot authorize their access. Hortonworks recommends that administrators
configure storage-based authorization on the Hive Metastore server to control access to
data in Hive tables for these users. The two authorization models are compatible.

Note

Currently, SQL standard-based authorization does not poll groups from LDAP.

3.3. Required Privileges for Hive Operations
Privileges apply to tables and views, but not databases. The following privileges may be
granted and revoked:

• Y = required privilege

• Y + G = required privilege and the ability to grant the privilege to other users

Hortonworks Data Platform Apr 13, 2015

14

The following privileges are required for the specified Hive operations:

• Y = required privilege

• Y + G = required privilege and the ability to grant the privilege to other users

Hive
Operation

SELECT INSERT DELETE Update Ownership Admin URI privilege
(POSIX +
ownership)

GRANT Y

REVOKE Y

SHOW
GRANT

Y

SHOW ROLE
GRANT

Y

CREATE
ROLE

Y

SET ROLE Y

DROP ROLE Y

CREATE
TABLE

Y (of
database)

DROP TABLE Y

DESCRIBE
TABLE

Y

SHOW
PARTITIONS

Y

ALTER
TABLE
LOCATION

Y Y (for new
location)

ALTER
PARTITION
LOCATION

Y Y (for new
partition
location

ALTER
TABLE ADD
PARTITION

Y Y (for
partition
location)

ALTER
TABLE DROP
PARTITION

Y

all other
ALTER
TABLE
commands

Y

TRUNCATE
TABLE

Y

CREATE
VIEW

Y + G

ALTER VIEW
PROPERTIES

Y

ALTER VIEW
RENAME

Y

DROP VIEW
PROPERTIES

Y

DROP VIEW Y

ANALYZE
TABLE

Y Y

Hortonworks Data Platform Apr 13, 2015

15

SHOW
COLUMNS

Y

SHOW
TABLE
STATUS

Y

SHOW
TABLE
PROPERTIES

Y

CREATE
TABLE AS
SELECT

Y (of input) Y Y (of
database)

UPDATE
TABLE

Y

CREATE
INDEX

Y (of table)

DROP INDEX Y

ALTER
INDEX
REBUILD

Y

ALTER
INDEX
PROPERTIES

Y

QUERY
(INSERT,
SELECT
queries)

Y (input) Y (output) Y (output)

LOAD Y (output) Y (output) Y (input
location)

SHOW
CREATE
TABLE

Y + G

CREATE
FUNCTION

Y

DROP
FUNCTION

Y

CREATE
MACRO

Y

DROP
MACRO

Y

MSCK
(metastore
check)

Y

ALTER
DATABASE

Y

CREATE
DATABASE

Y (for custom
location)

EXPLAIN Y

DROP
DATABASE

Y

3.4. Configuring SQL Standard-Based
Authorization

Use the following procedure to configure SQL standard-based authorization for Hive:

Hortonworks Data Platform Apr 13, 2015

16

• Set the following configuration properties in hive-site.xml to enable SQL standard-based
authorization.

• hive.server2.enable.doAs

Allows Hive queries to be run by the user who submits the query, rather than by the
hive user. Must be set to FALSE for SQL standard-based authorization.

• hive.users.in.admin.role

Comma-separated list of users assigned to the ADMIN role.

• Hive administrator must grant herself the ADMIN privilege:

GRANT admin TO USER hiveadmin;

• Administrators must start HiveServer2 with the following command-line options:

Command line option Required value

hive.security.authorization.manager org.apache.hadoop.hive.ql.security.authorization.plugin.sql

hive.security.authorization.enabled true

hive.security.authenticator.manager org.apache.hadoop.hive.ql.security.SessionStateUserAuthenticator

hive.metastore.uris "" (Quotation marks surrounding a single empty space)

These properties appear in the following snippet of hive-site.xml:

<property>
 <name>hive.security.authorization.manager</name>
 <value>org.apache.hadoop.hive.ql.security.authorization.plugin.sql</ value>
</property>

<property>
 <name>hive.security.authorization.enabled</name>
 <value>true</value>
</property>

<property>
 <name>hive.security.authenticator.manager</name>
 <value>org.apache.hadoop.hive.ql.security.SessionStateUserAuthenticator</
value>
</property>

<property>
 <name>hive.metastore.uris</name>
 <value>""</value>
</property>

3.5. Storage-Based Authorization in Hive
As the name implies, storage-based authorization relies on the authorization provided
by the storage layer. In the case of an HDP cluster, the storage layer is HDFS, which
provides both POSIX and ACL permissions. Hive is one of many HDP components that share
storage on HDFS. HCatalog provides all of these components with a single consistent view
metadata, and this is why storage-based authorization is enabled in the Hive Metastore
server. By enabling this model on the Hive Metastore Server, Hadoop administrators

Hortonworks Data Platform Apr 13, 2015

17

can provide consistent data and metadata authorization. The model controls access to
metadata and checks permissions on the corresponding directories of the HDFS file system.
Traditional POSIX permissions for the HDFS directories where tables reside determine access
to those tables. For example, to alter table metadata for a table stored in HDFS at /user/
hive/warehouse/mytable, a user must have write permissions on that directory. However,
this authorization model doesn't support column-level security.

In addition to the traditional POSIX permissions model, HDFS also provides ACLs, or
access control lists, as described in ACLs on HDFS. An ACL consists of a set of ACL entries,
and each entry names a specific user or group and grants or denies read, write, and
execute permissions for the specified user or group. These ACLs are also based on POSIX
specifications, and they are compatible with the traditional POSIX permissions model.

HDFS ACL permissions provide administrators with authentication control over databases,
tables, and table partitions on the HDFS file system. For example, an administrator can
create a role with a set of grants on specific HDFS tables, then grant the role to a group
of users. Roles allow administrators to easily reuse permission grants. Hortonworks
recommends relying on POSIX permissions and a small number of ACLs to augment the
POSIX permissions for exceptions and edge cases.

Note

A file with an ACL incurs additional memory cost to the NameNode due to the
alternate algorithm used for permission checks on such files.

3.6. Required Permissions for Hive Operations
The following table shows the minimum permissions required for Hive operations using
storage-based authorization:

Operation Database Read
Access

Database Write
Access

Table Read Access Table Write Access

LOAD X

EXPORT X

IMPORT X

CREATE TABLE X

CREATE TABLE AS
SELECT

X X (source table)

DROP TABLE X

SELECT X

ALTER TABLE X

SHOW TABLES X

3.7. Configuring Storage-based Authorization
Set the following configuration properties in hive-site.xml to enable storage-based
authorization:

Configuration Property Description

hive.security.authorization.enabled Enables or disables Hive client authorization. This property
must be set to false in hive-site.xml, but set to true for
HiveServer2. Administrators can do this in one of two

Hortonworks Data Platform Apr 13, 2015

18

Configuration Property Description

ways: as a command-line option when starting HiveServer2
or in a separate hiveserver2-site.xml configuration file.

hive.security.authorization.manager The class name of the Hive client authorization
manager. Specify the following value for storage-based
authorization: org.apache.hadoop.hive.ql.security.
authorization.StorageBasedAuthorizationProvider.

hive.server2.enable.doAs Allows Hive queries to be run by the user who submits the
query rather than the Hive user. Must be set to true for
storage-based access.

hive.metastore.pre.event.listeners Enables Metastore security. Specify the following value:
org.apache.hadoop.ql.security .authorization.AuthorizationPre
EventListener.

hive.security.metastore.authorization.managerThe class name of the Hive Metastore authorization
manager. Specify the following value for storage-based
authorization: org.apache.hadoop.hive.ql.security.
authorization. StorageBasedAuthorizationProvider.

These properties appear in the following snippet of hive-site.xml:

<property>
 <name>hive.security.authorization.enabled</name>
 <value>false</value>
</property>

<property>
 <name>hive.security.authorization.manager</name>
 <value>org.apache.hadoop.hive.ql.security.authorization.
StorageBasedAuthorizationProvider</value>
</property>

<property>
 <name>hive.server2.enable.doAs</name>
 <value>true</value>
</property>

<property>
 <name>hive.metastore.pre.event.listeners</name>
 <name>org.apache.hadoop.ql.security.authorization.
AuthorizationPreEventListener</name>
</property>

<property>
 <name>hive.security.metastore.authorization.manager</name>
 <value>org.apache.hadoop.hive.ql.security.authorization.
StorageBasedAuthorizationProvider</value>
</property>

Administrators can use either of the following methods to create new tables and databases
with appropriate storage-based permissions:

• Use the Hive CLI to create the table or database, then manually modify the POSIX
permissions using the HDFS file system commands.

• Use the HCatalog CLI

The HCatalog command line tool uses the same syntax as Hive, but creates the table or
database with a corresponding directory owned by the user creating it. Assigning a group
permission is also supported. However, there are known issues with the HCatalog CLI:

Hortonworks Data Platform Apr 13, 2015

19

• Some metadata operations do not check for authorization. See Apache JIRA HIVE_3009
for more information.

• Hive currently performs authorization checks on the client, rather than the server. This
allows malicious users to circumvent these checks.

• DDL statements for managing permissions have no effect on storage-based
authorization, but they do not return error messages. See Apache JIRA HIVE-3010 for
more information.

https://issues.apache.org/jira/browse/HIVE-3009
https://issues.apache.org/jira/browse/HIVE-3010

Hortonworks Data Platform Apr 13, 2015

20

4. Manually Adding Slave Nodes to an
HDP Cluster

4.1. Prerequisites
Ensure that the new slave nodes meet the following prerequisites:

• The following operating systems are supported:

• 64-bit Red Hat Enterprise Linux (RHEL) 5 or 6

• 64-bit CentOS 5 or 6

• 64-bit SUSE Linux Enterprise Server (SLES) 11, SP1

• At each of your hosts:

• yum (RHEL)

• zypper (SLES)

• rpm

• scp

• curl

• wget

• unzip

• tar

• pdsh

• Ensure that all of the ports listed in Configuring Ports are available.

• To install Hive metastore or to use an external database for Oozie metastore, ensure that
you deploy either a MySQL or an Oracle database in your cluster. For instructions, see see
Meet Minimum System Requirements in Installing HDP Manually.

• Your system must have the correct JDK installed on all of the nodes in the cluster.
For further information, see Meet Minimum System Requirements in Installing HDP
Manually.

4.2. Add Slave Nodes
Use the following instructions to manually add a slave node:

• On each new slave node, configure the remote repository as described in "Installing
ZooKeeper", in Installing HDP Manually.

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.4/bk_HDP_Reference_Guide/content/reference_chap2.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.4/bk_installing_manually_book/content/meet-min-system-requirements.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.4/bk_installing_manually_book/content/meet-min-system-requirements.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.4/bk_installing_manually_book/content/ch_install_zookeeper_chapter.html

Hortonworks Data Platform Apr 13, 2015

21

• On each new slave node, install HDFS.

• On each new slave node, install compression libraries.

• On each new slave node, create the DataNode and YARN NodeManager local
directories.

• Copy the Hadoop configurations to the new slave nodes and set appropriate
permissions.

• Option I: Copy Hadoop config files from an existing slave node.

• On an existing slave node, make a copy of the current configurations:

tar zcvf hadoop_conf.tgz /etc/hadoop/conf

• Copy this file to each of the new nodes:

rm -rf /etc/hadoop/conf
cd /
tar zxvf $location_of_copied_conf_tar_file/hadoop_conf.tgz
chmod -R 755 /etc/hadoop/confa

• On each of the new slave nodes, start the NodeManager:

su -l yarn -c "/usr/hdp/current/hadoop-yarn-nodemanager/sbin/yarn-daemon.sh
 start nodemanager"

• Optional - If you use a HDFS or YARN/ResourceManager .include file in your cluster,
add the new slave nodes to the .include file, then run the applicable refreshNodes
command.

• To add new DataNodes to the dfs.include file:

• On the NameNode host machine, edit the /etc/hadoop/conf/dfs.include file
and add the list of the new slave node host names (separated by newline character).

Note

If no dfs.include file is specified, all DataNodes are considered to be
included in the cluster (unless excluded in the dfs.exclude file). The
dfs.hosts and dfs.hosts.exlude properties in hdfs-site.xml
are used to specify the dfs.include and dfs.exclude files.

• On the NameNode host machine, execute the following command:

su -l hdfs -c "hdfs dfsadmin -refreshNodes"

• To add new NodeManagers to the yarn.include file:

• On the ResourceManager host machine, edit the /etc/hadoop/conf/
yarn.include file and add the list of the slave node host names (separated by
newline character).

Hortonworks Data Platform Apr 13, 2015

22

Note

If no yarn.include file is specified, all NodeManagers are considered
to be included in the cluster (unless excluded in the yarn.exclude
file). The yarn.resourcemanager.nodes.include-path and
yarn.resourcemanager.nodes.exclude-path properties in yarn-
site.xml are used to specify the yarn.include and yarn.exclude
files.

• On the ResourceManager host machine, execute the following command:

su -l yarn -c "yarn rmadmin -refreshNodes"

4.3. Add HBase RegionServer
Use the following instructions to manually add HBase RegionServer hosts:

• On each of the new slave nodes, install HBase and ZooKeeper.

• For RHEL/CentOS/Oracle Linux:

yum install zookeeper hbase

• For SLES:

zypper install zookeeper hbase

• For Ubuntu:

apt-get install zookeeper hbase

• On each of the new slave nodes, add the HDP repository to yum:

• For RHEL/CentOS 5:

wget -nv http://public-repo-1.hortonworks.com/HDP/centos5/2.x/GA/2.1-
latest/hdp.repo -O /etc/yum.repos.d/hdp.repo

• For RHEL/CentOS 6:

wget -nv http://public-repo-1.hortonworks.com/HDP/centos6/2.x/GA/2.1-
latest/hdp.repo -O /etc/yum.repos.d/hdp.repo

• For SLES:

wget -nv http://public-repo-1.hortonworks.com/HDP/suse11/2.x/GA/2.1-
latest/hdp.repo -O /etc/zypp.repos.d/hdp.repo

• For Ubuntu:

wget http://public-repo-1.hortonworks.com/HDP/ubuntu12/2.x/hdp.list -O /
etc/apt/sources.list.d/hdp.list

• Copy the HBase configurations to the new slave nodes and set appropriate permissions.

• Option I: Copy HBase config files from an existing slave node.

Hortonworks Data Platform Apr 13, 2015

23

• On any existing slave node, make a copy of the current configurations:

tar zcvf hbase_conf.tgz /etc/hbase/conf
tar zcvf zookeeper_conf.tgz /etc/zookeeper/conf

• Copy these files to each of the new nodes:

rm -rf /etc/hbase/conf
mkdir -p /etc/hbase/conf
cd /
tar zxvf $location_of_copied_conf_tar_file/hbase_conf.tgz
chmod -R 755 /etc/hbase/conf

rm -rf /etc/zookeeper/conf
mkdir -p /etc/zookeeper/conf
cd /
tar zxvf $location_of_copied_conf_tar_file/zookeeper_conf.tgz
chmod -R 755 /etc/zookeeper/conf

• Option II: Manually add Hadoop configuration files as described in "Set Up the
Configuration Files", in Installing HDP Manually.

• On all of the new slave nodes, create the configuration directory, copy all of the
configuration files, and set the permissions:

rm -r $HBASE_CONF_DIR ;
mkdir -p $HBASE_CONF_DIR ;

Copy all of the configuration files to $HBASE_CONF_DIR

chmod a+x $HBASE_CONF_DIR/;
chown -R $HBASE_USER:$HADOOP_GROUP $HBASE_CONF_DIR/../ ;
chmod -R 755 $HBASE_CONF_DIR/../

rm -r $ZOOKEEPER_CONF_DIR ;
mkdir -p $ZOOKEEPER_CONF_DIR ;

Copy all of the configuration files to $ZOOKEEPER_CONF_DIR

chmod a+x $ZOOKEEPER_CONF_DIR/;
chown -R $ZOOKEEPER_USER:$HADOOP_GROUP $ZOOKEEPER_CONF_DIR/../ ;
chmod -R 755 $ZOOKEEPER_CONF_DIR/../

where:

• $HBASE_CONF_DIR is the directory to store the HBase configuration files. For
example, /etc/hbase/conf.

• $HBASE_USER is the user owning the HBase services. For example, hbase.

• $HADOOP_GROUP is a common group shared by services. For example, hadoop.

• $ZOOKEEPER_CONF_DIR is the directory to store the ZooKeeper configuration files.
For example, /etc/zookeeper/conf

• $ZOOKEEPER_USER is the user owning the ZooKeeper services. For example,
zookeeper.

http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.4/bk_installing_manually_book/content/ref-9e8edafc-6438-4354-97df-20de0fd55344.1.html

Hortonworks Data Platform Apr 13, 2015

24

• Start HBase RegionServer node:

<login as $HBASE_USER>
/usr/lib/hbase/bin/hbase-daemon.sh --config $HBASE_CONF_DIR start
 regionserver

• On the HBase Master host machine, edit the /usr/lib/hbase/conf file and add the
list of slave nodes' hostnames. The hostnames must be separated by a newline character.

Hortonworks Data Platform Apr 13, 2015

25

5. Optimizing HBase I/O/title>
This chapter describes several ways to optimize HBase I/O. We start with an overview of
HBase I/O, followed by a discussion of configuration options.

The information in this section is oriented toward basic BlockCache and MemStore tuning.
As such, it describes a subset of cache configuration options. HDP supports additional
BlockCache and MemStore properties, as well as other configurable performance
optimizations such as RPC, HFile block size settings, and HFile compaction. For a complete
list of configurable properties, see the hbase-default.xml source file in GitHub.

An Overview of HBase I/O

The following table describes several concepts related to HBase file operations and memory
(RAM) caching.

HBase Component Description

HFile An HFile contains table data, indexes over that data, and
metadata about the data.

Block An HBase block is the smallest unit of data that can be
read from an HFile. Each HFile consists of a series of blocks.
(Note: an HBase block is different than an HDFS block or
other underlying file system blocks.)

BlockCache BlockCache is the main HBase mechanism for low-latency
random read operations. BlockCache is one of two
memory cache structures maintained by HBase. When
a block is read from HDFS, it is cached in BlockCache.
Frequent access to rows in a block cause the block to be
kept in cache, improving read performance.

MemStore MemStore ("memory store") is the second of two cache
structures maintained by HBase. MemStore improves
write performance. It accumulates data until it is full, and
then writes ("flushes") the data to a new HFile on disk.
MemStore serves two purposes: it increases the total
amount of data written to disk in a single operation, and
it retains recently-written data in memory for subsequent
low-latency reads.

Write Ahead Log (WAL) The WAL is a log file that records all changes to data
until the data is successfully written to disk (MemStore is
flushed). This protects against data loss in the event of a
failure before MemStore contents are written to disk.

BlockCache and MemStore reside in random-access memory (RAM); HFiles and the Write
Ahead Log are persisted to HDFS.

Figure 1 shows write and read paths (simplified):

• During write operations, HBase writes to WAL and MemStore. Data is flushed from
MemStore to disk according to size limits and flush interval.

• During read operations, HBase reads the block from BlockCache or MemStore if it is
available in those caches. Otherwise it reads from disk and stores a copy in BlockCache.

https://github.com/hortonworks/hbase-release/blob/HDP-2.2.0.0/hbase-common/src/main/resources/hbase-default.xml

Hortonworks Data Platform Apr 13, 2015

26

Figure 1. HBase read and write operations

By default, BlockCache resides in an area of RAM that is managed by the Java Virtual
Machine ("JVM") Garbage Collector; this area of memory is known as “on-heap" memory
or the "Java heap." The BlockCache implementation that manages on-heap cache is called
LruBlockCache.

If you have stringent read latency requirements and you have more than 20 GB of RAM
available on your servers for use by HBase RegionServers, consider configuring BlockCache
to use both on-heap and off-heap ("direct") memory, as shown below. The associated
BlockCache implementation is called BucketCache. Read latencies for BucketCache tend to
be less erratic than LruBlockCache for large cache loads, because BucketCache (not JVM
Garbage Collection) manages block cache allocation.

Figure 2 illustrates the two BlockCache implementations and MemCache, which always
resides on the JVM heap.

Hortonworks Data Platform Apr 13, 2015

27

Figure 2. BucketCache implementation

• Additional notes:

• BlockCache is enabled by default for all HBase tables.

• BlockCache is beneficial for all read operations -- random and sequential -- though it is of
primary consideration for random reads.

• All regions hosted by a RegionServer share the same BlockCache.

• You can turn BlockCache caching on or off per column family.

http://hbase.apache.org/book/columnfamily.html

Hortonworks Data Platform Apr 13, 2015

28

5.1. Configuring BlockCache
If you have less than 20 GB of RAM available for use by HBase, consider tailoring the
default on-heap BlockCache implementation (LruBlockCache) for your cluster.

If you have more than 20 GB of RAM available, consider adding off-heap BlockCache
(BucketCache).

The first few steps are the same for both options:

• Specify the maximum amount of on-heap RAM to allocate to the HBase RegionServer on
each node. The default is 1 GB, which is too small for production.

To alter the default allocation, set the "RegionServers maximum Java heap size" value
(Ambari), or set the HBASE_HEAPSIZE environment variable in hbase-env.sh
(manual installation). Specify the value in megabytes. The HBase startup script uses
$HBASE_HEAPSIZE to override the default maximum JVM heap size (-Xmx).

The following example sets the maximum on-heap memory allocation to 20 GB in
hbase-env.sh:

 export HBASE_HEAPSIZE=20480

• Determine (or estimate) the proportions of reads and writes in your workload, and use
these proportions to specify on-heap memory for BlockCache and MemStore. The sum of
the two allocations must be less than or equal to 0.8. The following table describes the
two properties.

Property Default Value Description

hfile.block.cache.size 0.4 Proportion of maximum JVM heap size (Java -Xmx setting)
to allocate to BlockCache. A value of 0.4 allocates 40% of
the maximum heap size.

hbase.regionserver.global.memstore.upperLimit0.4 Proportion of maximum JVM heap size (Java -Xmx setting)
to allocate to MemStore. A value of 0.4 allocates 40% of
the maximum heap size.

Use the following guidelines to determine the two proportions:

• The default configuration for each property is 0.4, which configures BlockCache for a
mixed workload with roughly equal proportions of random reads and writes.

• If your workload is read-heavy and you do not plan to configure off-heap cache -- your
amount of available RAM is less than 20 GB -- increase hfile.block.cache.size
and decrease hbase.regionserver.global.memstore.upperLimit so that
the values reflect your workload proportions. This will optimize read performance.

• If your workload is write-heavy, decrease hfile.block.cache.size and increase
hbase.regionserver.global.memstore.upperLimit proportionally.

• As noted earlier, the sum of hfile.block.cache.size and
hbase.regionserver.global.memstore.upperLimit must be less than or
equal to 0.8 (80%) of the maximum Java heap size specified by HBASE_HEAPSIZE
(-Xmx). If you allocate more than 0.8 across both caches, the HBase RegionServer
process will return an error and will not start.

Hortonworks Data Platform Apr 13, 2015

29

• Do not set hfile.block.cache.size to zero. At a minimum, specify a proportion
that allocates enough space for HFile index blocks. To review index block sizes, use the
RegionServer Web GUI for each server.

• Edit the corresponding values in your hbase-site.xml file(s). Here are the default
definitions:

<property>
 <name>hfile.block.cache.size</name>
 <value>0.4</value>
 <description>Percentage of maximum heap (-Xmx setting) to allocate to
 block
 cache used by HFile/StoreFile. Default of 0.4 allocates 40%.
 </description>
 </property>

 <property>
 <name>hbase.regionserver.global.memstore.upperLimit</name>
 <value>0.4</value>
 <description>Maximum size of all memstores in a region server before
 new
 updates are blocked and flushes are forced. Defaults to 40% of heap.
 </description>
 </property>

• If you have less than 20 GB of RAM for use by HBase, you are done with the
configuration process. Restart (or rolling restart) your cluster. Check log files for error
messages. If you have more than 20 GB of RAM for use by HBase, consider configuring
the variables and properties in the next subsection.

5.2. (Optional) Configuring Off-heap Memory
(BucketCache)

At this point, you have determined that you have enough physical memory on your servers
to extend BlockCache beyond the JVM Heap. You have configured values for the JVM
heap, LruBlockCache, and MemStore (shown in Figure 2, copied here for reference).

Next, configure and enable BucketCache. To do this, note the memory specifications and
values in Configuring BlockCache, plus a few additional values shown in Figure 3 and in the
following table.

Hortonworks Data Platform Apr 13, 2015

30

Figure 3. Configuring BucketCache

In the following table, the first column refers to the elements in Figure 3. The second
column describes each element and, if applicable, its associated variable or property name.
The third column contains values and formulas.

The fourth column computes values based on the following sample configuration
parameters:

• 128 GB for the RegionServer process (there is additional memory available for other HDP
processes)

• Workload consists of 75% reads, 25% writes.

• HBASE_HEAPSIZE = 20 GB (20480 MB)

Note

Most of the following values are specified in megabytes; three are proportions.

Item Description Value or Formula Example

Hortonworks Data Platform Apr 13, 2015

31

A Total physical memory for
RegionServer operations:
on-heap plus off-heap
("direct") memory (MB)

(hardware dependent) 131072

B* HBASE_HEAPSIZE (-Xmx)
Maximum size of JVM heap
(MB)

Recommendation: 20480 20480

C -
XX:MaxDirectMemorySize
Amount of off-heap
("direct") memory to
allocate to HBase (MB)

A - B 131072 - 20480 = 110592

Dp* hfile.block.cache.size
Proportion of maximum
JVM heap size
(HBASE_HEAPSIZE, -Xmx)
to allocate to BlockCache.
The sum of this value plus
hbase.regionserver.global.memstore.size
must not exceed 0.8.

(proportion of reads) * 0.8 0.75 * 0.8 = 0.6

Dm Maximum amount of
JVM heap to allocate to
BlockCache (MB)

B * Dp 20480 * 0.6 = 12288

Ep* hbase.regionserver.global.memstore.size
Proportion of maximum
JVM heap size
(HBASE_HEAPSIZE, -Xmx)
to allocate to MemStore.
The sum of this value plus
hfile.block.cache.size
must be less than or equal
to 0.8.

0.8 - Dp 0.8 - 0.6 = 0.2

F Amount of off-heap
memory to reserve for other
uses (DFSClient; MB)

Recommendation: 1024 to
2048

2048

G Amount of off-heap
memory to allocate to
BucketCache (MB)

C - F 110592 - 2048 = 108544

hbase.bucketcache.size
Total amount of memory to
allocate to BucketCache, on-
and off-heap (MB)

Dm + G 12288 + 108544 = 120832

hbase.bucketcache.percentage.in.combinedcache
The proportion of memory
allocated to BucketCache
(off-heap cache), relative to
all BlockCache (on- and off-
heap)

G / (Dm + G) 108544 / 120832 =
0.89830508474576

* Specified in Configuring BlockCache

After completing the steps in Configuring BlockCache, follow these steps to configure
BucketCache.

• In the hbase-env.sh file for each RegionServer, or in the hbase-env.sh
file supplied to Ambari, set the -XX:MaxDirectMemorySize argument for
HBASE_REGIONSERVER_OPTS to the amount of direct memory you wish to
allocate to HBase. In the sample configuration, the value would be 110592m. (-
XX:MaxDirectMemorySize accepts a number followed by a unit indicator; m indicates
megabytes.)

Hortonworks Data Platform Apr 13, 2015

32

HBASE_OPTS="$HBASE_OPTS -XX:MaxDirectMemorySize=110592m"

• In the hbase-site.xml file, specify BucketCache size and percentage. For the sample
configuration, the values would be 120832 and 0.89830508474576, respectively.
If you choose to round the proportion, round up. This will allocate space related to
rounding error to the (larger) off-heap memory area.

<property>
 <name>hbase.bucketcache.size</name>
 <value>120832</value>
</property>

<property>
 <name>hbase.bucketcache.percentage.in.combinedcache</name>
 <value>0.8984</value>
</property>

• In the hbase-site.xml file, set hbase.bucketcache.ioengine to offheap. This
enables BucketCache.

<property>
 <name>hbase.bucketcache.ioengine</name>
 <value>offheap</value>
</property>

• Restart (or rolling restart) the cluster. It can take a minute or more to allocate
BucketCache, depending on how much memory you are allocating. Check logs for error
messages.

5.3. Compressing BlockCache
BlockCache compression caches data and encoded data blocks in their on-disk format,
rather than decompressing and decrypting them before caching. When compression is
enabled on a column family, this allows more data to fit into the amount of memory
dedicated to BlockCache. Decompression is repeated every time a block is accessed, but
the increase in available cache space can have a positive impact on throughput and mean
latency.

BlockCache compression is particularly useful when you have more data than RAM
allocated to BlockCache, but your compressed data would fit into BlockCache. (The savings
must be worth the increased garbage collection overhead and overall CPU load).

If your data can fit into block cache without compression, or if your workload is sensitive
to extra CPU or garbage collection overhead, we recommend against enabling BlockCache
compression.

Block cache compression is disabled by default. To enable BlockCache compression:

• Set hbase.block.data.cachecompressed to true in the hbase-site.xml file
on each RegionServer.

• Restart or rolling restart your cluster. Check logs for error messages.

Hortonworks Data Platform Apr 13, 2015

33

Important

This feature requires compression to be enabled on the table. For more
information, see Enable Compression on a ColumnFamily.

http://hbase.apache.org/book.html#changing.compression

Hortonworks Data Platform Apr 13, 2015

34

6. Using DistCp to Copy Files
Hadoop DistCp (distributed copy) can be used to copy data between Hadoop clusters (and
also within a Hadoop cluster). DistCp uses MapReduce to implement its distribution, error
handling, and reporting. It expands a list of files and directories into map tasks, each of
which copies a partition of the files specified in the source list.

6.1. Using DistCp
The most common use of DistCp is an inter-cluster copy:

hadoop distcp hdfs://nn1:8020/source hdfs://nn2:8020/destination

Where hdfs://nn1:8020/source is the data source, and hdfs://nn2:8020/
destination is the destination. This will expand the name space under /source on
NameNode "nn1" into a temporary file, partition its contents among a set of map tasks,
and start copying from "nn1" to "nn2". Note that DistCp requires absolute paths.

You can also specify multiple source directories:

hadoop distcp hdfs://nn1:8020/source/a hdfs://nn1:8020/source/b hdfs://
 nn2:8020/destination

Or specify multiple source directories from a file with the -f option:

hadoop distcp -f hdfs://nn1:8020/srclist hdfs://nn2:8020/destination

Where srclist contains:

hdfs://nn1:8020/source/a
hdfs://nn1:8020/source/b

DistCp from HDP-1.3.x to HDP-2.x

When using DistCp to copy from a HDP-1.3.x cluster to a HDP-2.x cluster, the format is:

hadoop distcp hftp://<hdp 1.3.x namenode host>:50070/<folder path of source>
 hdfs://<hdp 2.x namenode host>/<folder path of target>

Here is an example of a DistCp copy from HDP 1.3.0 to HDP-2.0:

hadoop distcp hftp://namenodehdp130.test.com:50070/apps/hive/warehouse/db/
 hdfs://namenodehdp20.test.com/data/raw/

When copying from multiple sources, DistCp will abort the copy with an error message
if two sources collide, but collisions at the destination are resolved based on the options
specified. By default, files already existing at the destination are skipped (i.e. not replaced
by the source file). A count of skipped files is reported at the end of each job, but it may be
inaccurate if a copier failed for some subset of its files, but succeeded on a later attempt.

It is important that each NodeManager is able to communicate with both the source
and destination file systems. For HDFS, both the source and destination must be running
the same version of the protocol, or use a backwards-compatible protocol; see "Copying
Between Versions".

Hortonworks Data Platform Apr 13, 2015

35

After a copy, you should generate and cross-check a listing of the source and destination to
verify that the copy was truly successful. Since DistCp employs both Map/Reduce and the
FileSystem API, issues in or between any of these three could adversely and silently affect
the copy. Some have had success running with -update enabled to perform a second pass,
but users should be acquainted with its semantics before attempting this.

It is also worth noting that if another client is still writing to a source file, the copy will
likely fail. Attempting to overwrite a file being written at the destination should also fail on
HDFS. If a source file is (re)moved before it is copied, the copy will fail with a FileNotFound
exception.

6.2. Command Line Options
For a description of DistCp command line options, see DistCp Command Line Options.

6.3. Update and Overwrite
The DistCp -update option is used to copy files from a source that do not exist at the
target, or that have different contents. The DistCp -overwrite option overwrites target
files even if they exist at the source, or if they have the same contents.

The -update and -overwrite options warrant further discussion, since their handling of
source-paths varies from the defaults in a very subtle manner.

Consider a copy from /source/first/ and /source/second/ to /target/, where
the source paths have the following contents:

hdfs://nn1:8020/source/first/1
hdfs://nn1:8020/source/first/2
hdfs://nn1:8020/source/second/10
hdfs://nn1:8020/source/second/20

When DistCp is invoked without -update or -overwrite, the DistCp defaults would
create directories first/ and second/, under /target. Thus:

distcp hdfs://nn1:8020/source/first hdfs://nn1:8020/source/second hdfs://
nn2:8020/target

would yield the following contents in /target:

hdfs://nn2:8020/target/first/1
hdfs://nn2:8020/target/first/2
hdfs://nn2:8020/target/second/10
hdfs://nn2:8020/target/second/20

When either -update or -overwrite is specified, the contents of the source directories
are copied to the target, and not the source directories themselves. Thus:

distcp -update hdfs://nn1:8020/source/first hdfs://nn1:8020/source/second
 hdfs://nn2:8020/target

would yield the following contents in /target:

hdfs://nn2:8020/target/1
hdfs://nn2:8020/target/2
hdfs://nn2:8020/target/10

http://hadoop.apache.org/docs/r2.5.2/hadoop-mapreduce-client/hadoop-mapreduce-client-core/DistCp.html#Command_Line_Options

Hortonworks Data Platform Apr 13, 2015

36

hdfs://nn2:8020/target/20

By extension, if both source folders contained a file with the same name ("0", for example),
then both sources would map an entry to /target/0 at the destination. Rather than
permit this conflict, DistCp will abort.

Now, consider the following copy operation:

distcp hdfs://nn1:8020/source/first hdfs://nn1:8020/source/second hdfs://
nn2:8020/target

With sources/sizes:

hdfs://nn1:8020/source/first/1 32
hdfs://nn1:8020/source/first/2 32
hdfs://nn1:8020/source/second/10 64
hdfs://nn1:8020/source/second/20 32

And destination/sizes:

hdfs://nn2:8020/target/1 32
hdfs://nn2:8020/target/10 32
hdfs://nn2:8020/target/20 64

Will effect:

hdfs://nn2:8020/target/1 32
hdfs://nn2:8020/target/2 32
hdfs://nn2:8020/target/10 64
hdfs://nn2:8020/target/20 32

1 is skipped because the file-length and contents match. 2 is copied because it doesn’t exist
at the target. 10 and 20 are overwritten because the contents don’t match the source.

If the -update option is used, 1 is overwritten as well.

6.4. DistCp and Security Settings
Security settings dictate whether DistCp should be run on the source cluster or the
destination cluster. The general rule-of-thumb is that if one cluster is secure and the other is
not secure, DistCp should be run from the secure cluster -- otherwise there may be security-
related issues.

When copying data from a secure cluster to an non-secure cluster, the following
configuration setting is required for the DistCp client:

<property>
 <name>ipc.client.fallback-to-simple-auth-allowed</name>
 <value>true</value>
</property>

When copying data from a secure cluster to a secure cluster, the following configuration
setting is required in the core-site.xml file:

<property>
 <name>hadoop.security.auth_to_local</name>
 <value></value>
 <description>Maps kerberos principals to local user names</description>

Hortonworks Data Platform Apr 13, 2015

37

</property>

6.5. Secure-to-Secure: Kerberos Principal Name
• distcp hdfs://hdp-2.0-secure hdfs://hdp-2.0-secure One issue here is

that the SASL RPC client requires that the remote server’s Kerberos principal must match
the server principal in its own configuration. Therefore, the same principal name must
be assigned to the applicable NameNodes in the source and the destination cluster. For
example, if the Kerberos principal name of the NameNode in the source cluster is nn/
host1@realm, the Kerberos principal name of the NameNode in destination cluster must
be nn/host2@realm, rather than nn2/host2@realm, for example.

6.6. Secure-to-Secure: ResourceManager Mapping
Rules

When copying between two HDP2 secure clusters, or from HDP1 secure to HDP2 secure,
further ResourceManager (RM) configuration is required if the two clusters have different
realms. In order for DistCP to succeed, the same RM mapping rule must be used in both
clusters.

For example, if secure Cluster 1 has the following RM mapping rule:

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[2:$1@$0](rm@.*SEC1.SUP1.COM)s/.*/yarn/
 DEFAULT
 </value>
</property>

And secure Cluster 2 has the following RM mapping rule:

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[2:$1@$0](rm@.*BA.YISEC3.COM)s/.*/yarn/
 DEFAULT
 </value>
</property>

The DistCp job from Cluster 1 to Cluster 2 will fail because Cluster 2 cannot resolve the RM
principle of Cluster 1 correctly to the yarn user, because the RM mapping rule in Cluster 2 is
different than the RM mapping rule in Cluster 1.

The solution is to use the same RM mapping rule in both Cluster 1 and Cluster 2:

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[2:$1@$0](rm@.*SEC1.SUP1.COM)s/.*/yarn/
 RULE:[2:$1@$0](rm@.*BA.YISEC3.COM)s/.*/yarn/
 DEFAULT
 </value>
 </property>

Hortonworks Data Platform Apr 13, 2015

38

6.7. DistCp and HDP Version
The HDP version of the source and destination clusters can determine which type of file
systems should be used to read the source cluster and write to the destination cluster.

For example, when copying data from a 1.x cluster to a 2.x cluster, it is impossible to use
“hdfs” for both the source and the destination, because HDP 1.x and 2.x have different
RPC versions, and the client cannot understand both at the same time. In this case the
WebHdfsFilesystem (webhdfs://) can be used in both the source and destination clusters, or
the HftpFilesystem (hftp://) can be used to read data from the source cluster.

6.8. DistCp Data Copy Matrix: HDP1/HDP2 to
HDP2

The following table provides a summary of configuration, settings and results when using
DistCp to copy data from HDP1 and HDP2 clusters to HDP2 clusters.

From To Source
Configuration

Destination
Configuration

DistCp Should be
Run on...

Result

HDP 1.3 HDP 2.x insecure + hdfs insecure +
webhdfs

HDP 1.3 (source) success

HDP 1.3 HDP 2.x secure + hdfs secure + webhdfs HDP 1.3 (source) success

HDP 1.3 HDP 2.x secure + hftp secure + hdfs HDP 2.x
(destination)

success

HDP 1.3 HDP 2.1 secure + hftp secure +
swebhdfs

HDP 2.1
(destination)

success

HDP 1.3 HDP 2.x secure + hdfs insecure +
webhdfs

HDP 1.3 (source) Possible issues are
discussed here.

HDP 2.x HDP 2.x secure + hdfs insecure + hdfs secure HDP 2.x
(source)

success

HDP 2.x HDP 2.x secure + hdfs secure + hdfs either HDP
2.x (source or
destination)

success

HDP 2.x HDP 2.x secure + hdfs secure + webhdfs HDP 2.x (source) success

HDP 2.x HDP 2.x secure + hftp secure + hdfs HDP 2.x
(destination)

success

For the above table:

• The term "secure" means that Kerberos security is set up.

• HDP 2.x means HDP 2.0 and HDP 2.1.

• hsftp is available in both HDP-1.x and HDP-2.x. It adds https support to hftp.

6.9. Copying Data from HDP-2.x to HDP-1.x
Clusters

Copying Data from HDP-1.x to HDP-2.x Clusters is also supported, however, HDP-1.x is not
aware of a new checksum introduced in HDP-2.x.

https://issues.apache.org/jira/browse/HADOOP-10016

Hortonworks Data Platform Apr 13, 2015

39

To copy data from HDP-2.x to HDP-1.x:

• Skip the checksum check during source 2.x --> 1.x.

• -or-

• Ensure that the file to be copied is in CRC32 before distcp 2.x --> 1.x.

6.10. DistCp Architecture
DistCp is comprised of the following components:

6.11. DistCp Driver
The DistCp Driver components are responsible for:

• Parsing the arguments passed to the DistCp command on the command-line, via:

• OptionsParser

• DistCpOptionsSwitch

Assembling the command arguments into an appropriate DistCpOptions object, and
initializing DistCp. These arguments include:

• Source-paths

• Target location

• Copy options (e.g. whether to update-copy, overwrite, which file attributes to preserve,
etc.)

Orchestrating the copy operation by:

• Invoking the copy-listing generator to create the list of files to be copied.

• Setting up and launching the Hadoop MapReduce job to carry out the copy.

• Based on the options, either returning a handle to the Hadoop MapReduce job
immediately, or waiting until completion.

The parser elements are executed only from the command-line (or if DistCp::run() is
invoked). The DistCp class may also be used programmatically, by constructing the
DistCpOptions object and initializing a DistCp object appropriately.

6.12. Copy-listing Generator
The copy-listing generator classes are responsible for creating the list of files/directories to
be copied from source. They examine the contents of the source paths (files/directories,
including wildcards), and record all paths that need copying into a SequenceFile for
consumption by the DistCp Hadoop Job. The main classes in this module include:

• CopyListing: The interface that should be implemented by any copy-listing generator
implementation. Also provides the factory method by which the concrete CopyListing
implementation is chosen.

Hortonworks Data Platform Apr 13, 2015

40

• SimpleCopyListing: An implementation of CopyListing that accepts multiple source paths
(files/directories), and recursively lists all of the individual files and directories under each
for copy.

• GlobbedCopyListing: Another implementation of CopyListing that expands wildcards in
the source paths.

• FileBasedCopyListing: An implementation of CopyListing that reads the source path list
from a specified file.

Based on whether a source file list is specified in the DistCpOptions, the source listing is
generated in one of the following ways:

• If there is no source file list, the GlobbedCopyListing is used. All wildcards are expanded,
and all of the expansions are forwarded to the SimpleCopyListing, which in turn
constructs the listing (via recursive descent of each path).

• If a source file list is specified, the FileBasedCopyListing is used. Source paths are read
from the specified file, and then forwarded to the GlobbedCopyListing. The listing is then
constructed as described above.

You can customize the method by which the copy-listing is constructed by providing a
custom implementation of the CopyListing interface. The behaviour of DistCp differs here
from the legacy DistCp, in how paths are considered for copy.

The legacy implementation only lists those paths that must definitely be copied on to the
target. E.g., if a file already exists at the target (and -overwrite isn’t specified), the file is
not even considered in the MapReduce copy job. Determining this during setup (i.e. before
the MapReduce Job) involves file size and checksum comparisons that are potentially time
consuming.

DistCp postpones such checks until the MapReduce job, thus reducing setup time.
Performance is enhanced further since these checks are parallelized across multiple maps.

6.13. InputFormats and MapReduce Components
The InputFormats and MapReduce components are responsible for the actual copying of
files and directories from the source to the destination path. The listing file created during
copy-listing generation is consumed at this point, when the copy is carried out. The classes
of interest here include:

• UniformSizeInputFormat: This implementation of
org.apache.hadoop.mapreduce.InputFormat provides equivalence with Legacy DistCp
in balancing load across maps. The aim of the UniformSizeInputFormat is to make each
map copy roughly the same number of bytes. Therefore, the listing file is split into groups
of paths, such that the sum of file sizes in each InputSplit is nearly equal to every other
map. The splitting is not always perfect, but its trivial implementation keeps the setup
time low.

• DynamicInputFormat and DynamicRecordReader: The DynamicInputFormat implements
org.apache.hadoop.mapreduce.InputFormat, and is new to DistCp. The listing file is
split into several “chunk files”, the exact number of chunk files being a multiple of the
number of maps requested for in the Hadoop Job. Each map task is “assigned” one of

Hortonworks Data Platform Apr 13, 2015

41

the chunk files (by renaming the chunk to the task’s id), before the Job is launched.
Paths are read from each chunk using the DynamicRecordReader, and processed in the
CopyMapper. After all of the paths in a chunk are processed, the current chunk is deleted
and a new chunk is acquired. The process continues until no more chunks are available.
This “dynamic” approach allows faster map tasks to consume more paths than slower
ones, thus speeding up the DistCp job overall.

• CopyMapper: This class implements the physical file copy. The input paths are checked
against the input options (specified in the job configuration), to determine whether a file
needs to be copied. A file will be copied only if at least one of the following is true:

• A file with the same name does not exist at target.

• A file with the same name exists at target, but has a different file size.

• A file with the same name exists at target, but has a different checksum, and -
skipcrccheck is not mentioned.

• A file with the same name exists at target, but -overwrite is specified.

• A file with the same name exists at target, but differs in block-size (and block-size
needs to be preserved).

• CopyCommitter: This class is responsible for the commit phase of the DistCp job,
including:

• Preservation of directory permissions (if specified in the options)

• Clean up of temporary files, work directories, etc.

6.14. DistCp Frequently Asked Questions
• Why does -update not create the parent source directory under a pre-existing target

directory? The behavior of -update and -overwrite is described in detail in the Using
DistCp section of this document. In short, if either option is used with a pre-existing
destination directory, the contents of each source directory are copied over, rather
than the source directory itself. This behavior is consistent with the legacy DistCp
implementation.

• How does the new DistCp (version 2) differ in semantics from the legacy DistCp?

• Files that are skipped during copy previously also had their file-attributes (permissions,
owner/group info, etc.) unchanged, when copied with Legacy DistCp. These are now
updated, even if the file copy is skipped.

• In Legacy DistCp, empty root directories among the source path inputs were not
created at the target. These are now created.

• Why does the new DistCp (version 2) use more maps than legacy DistCp? Legacy
DistCp works by figuring out what files need to be actually copied to target before
the copy job is launched, and then launching as many maps as required for copy. So
if a majority of the files need to be skipped (because they already exist, for example),
fewer maps will be needed. As a consequence, the time spent in setup (i.e. before the

Hortonworks Data Platform Apr 13, 2015

42

MapReduce job) is higher. The new DistCp calculates only the contents of the source
paths. It doesn’t try to filter out what files can be skipped. That decision is put off until
the MapReduce job runs. This is much faster (vis-a-vis execution-time), but the number of
maps launched will be as specified in the -m option, or 20 (the default) if unspecified.

• Why does DistCp not run faster when more maps are specified? At present, the
smallest unit of work for DistCp is a file. i.e., a file is processed by only one map.
Increasing the number of maps to a value exceeding the number of files would yield no
performance benefit. The number of maps launched would equal the number of files.

• Why does DistCp run out of memory? If the number of individual files/directories being
copied from the source path(s) is extremely large (e.g. 1,000,000 paths), DistCp might
run out of memory while determining the list of paths for copy. This is not unique to the
new DistCp implementation. To get around this, consider changing the -Xmx JVM heap-
size parameters, as follows:

bash$ export HADOOP_CLIENT_OPTS="-Xms64m -Xmx1024m"
 bash$ hadoop distcp /source /target

6.15. Appendix
Map Sizing

By default, DistCp makes an attempt to size each map comparably so that each copies
roughly the same number of bytes. Note that files are the finest level of granularity, so
increasing the number of simultaneous copiers (i.e. maps) may not always increase the
number of simultaneous copies nor the overall throughput.

DistCp also provides a strategy to “dynamically” size maps, allowing faster DataNodes
to copy more bytes than slower nodes. Using the dynamic strategy (explained in the
Architecture), rather than assigning a fixed set of source files to each map task, files are
instead split into several sets. The number of sets exceeds the number of maps, usually by
a factor of 2-3. Each map picks up and c opies all files listed in a chunk. When a chunk is
exhausted, a new chunk is acquired and processed, until no more chunks remain.

By not assigning a source path to a fixed map, faster map tasks (i.e. DataNodes) are able
to consume more chunks -- and thus copy more data -- than slower nodes. While this
distribution isn’t uniform, it is fair with regard to each mapper’s capacity.

The dynamic strategy is implemented by the DynamicInputFormat. It provides superior
performance under most conditions.

Tuning the number of maps to the size of the source and destination clusters, the size of
the copy, and the available bandwidth is recommended for long-running and regularly run
jobs.

Copying Between Versions of HDFS

For copying between two different versions of Hadoop, you will usually use HftpFileSystem.
This is a read-only FileSystem, so DistCp must be run on the destination cluster (more
specifically, on NodeManagers that can write to the destination cluster). Each source is
specified as hftp://<dfs.http.address>/<path> (the default dfs.http.address
is <namenode>:50070).

Hortonworks Data Platform Apr 13, 2015

43

MapReduce and Other Side-Effects

As mentioned previously, should a map fail to copy one of its inputs, there will be several
side-effects.

• Unless -overwrite is specified, files successfully copied by a previous map will be marked
as “skipped” on a re-execution.

• If a map fails mapreduce.map.maxattempts times, the remaining map tasks will be killed
(unless -i is set).

• If mapreduce.map.speculative is set final and true, the result of the copy is undefined.

SSL Configurations for HSFTP Sources

To use an HSFTP source (i.e. using the HSFTP protocol), a SSL configuration file needs to be
specified (via the -mapredSslConf option). This must specify 3 parameters:

• ssl.client.truststore.location: The local file system location of the trust-store file,
containing the certificate for the NameNode.

• ssl.client.truststore.type: (Optional) The format of the trust-store file.

• ssl.client.truststore.password: (Optional) Password for the trust-store file.

The following is an example of the contents of a SSL Configuration file:

<configuration>
 <property>
 <name>ssl.client.truststore.location</name>
 <value>/work/keystore.jks</value>
 <description>Truststore to be used by clients like distcp. Must be
 specified.</description>
 </property>

 <property>
 <name>ssl.client.truststore.password</name>
 <value>changeme</value>
 <description>Optional. Default value is "".</description>
 </property>

 <property>
 <name>ssl.client.truststore.type</name>
 <value>jks</value>
 <description>Optional. Default value is "jks".</description>
 </property>
</configuration>

The SSL configuration file must be in the classpath of the DistCp program.

	Hortonworks Data Platform
	Table of Contents
	1. Decommissioning Slave Nodes
	1.1. Prerequisites
	1.2. Decommission DataNodes or NodeManagers
	1.3. Decommission DataNodes
	1.4. Decommission NodeManagers
	1.5. Decommission HBase RegionServers

	2. HBase Cluster Capacity and Region Sizing
	2.1. Node Count and JVM Configuration
	2.2. Region Count and Size
	2.3. Increase Memstore Size for region server
	2.4. Increase Size of the Region
	2.5. Initial Configuration and Tuning
	2.6. Configure Compactions

	3. Hive Authorization
	3.1. Ranger-Hive Integration
	3.2. SQL Standard-Based Authorization in Hive
	3.3. Required Privileges for Hive Operations
	3.4. Configuring SQL Standard-Based Authorization
	3.5. Storage-Based Authorization in Hive
	3.6. Required Permissions for Hive Operations
	3.7. Configuring Storage-based Authorization

	4. Manually Adding Slave Nodes to an HDP Cluster
	4.1. Prerequisites
	4.2. Add Slave Nodes
	4.3. Add HBase RegionServer

	5. Optimizing HBase I/O/title>
	5.1. Configuring BlockCache
	5.2. (Optional) Configuring Off-heap Memory (BucketCache)
	5.3. Compressing BlockCache

	6. Using DistCp to Copy Files
	6.1. Using DistCp
	6.2. Command Line Options
	6.3. Update and Overwrite
	6.4. DistCp and Security Settings
	6.5. Secure-to-Secure: Kerberos Principal Name
	6.6. Secure-to-Secure: ResourceManager Mapping Rules
	6.7. DistCp and HDP Version
	6.8. DistCp Data Copy Matrix: HDP1/HDP2 to HDP2
	6.9. Copying Data from HDP-2.x to HDP-1.x Clusters
	6.10. DistCp Architecture
	6.11. DistCp Driver
	6.12. Copy-listing Generator
	6.13. InputFormats and MapReduce Components
	6.14. DistCp Frequently Asked Questions
	6.15. Appendix

