
Hortonworks Data Platform

 (September 30, 2015)

Hadoop High Availability

docs.cloudera.com

http://docs.cloudera.com

Hortonworks Data Platform September 30, 2015

ii

Hortonworks Data Platform: Hadoop High Availability
Copyright © 2012-2015 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks Data Platform September 30, 2015

iii

Table of Contents
1. High Availability for Hive Metastore ... 1

1.1. Use Cases and Failover Scenarios ... 1
1.2. Software Configuration ... 2

1.2.1. Install HDP ... 2
1.2.2. Update the Hive Metastore .. 2
1.2.3. Validate configuration .. 3

2. Deploying Multiple HiveServer2 Instances for High Availability 4
2.1. Adding an Additional HiveServer2 to Your Cluster Manually 5
2.2. Adding an Additional HiveServer2 to a Cluster with Ambari 6

3. HiveServer2 High Availability via ZooKeeper ... 9
3.1. How ZooKeeper Manages HiveServer2 Requests ... 9
3.2. Dynamic Service Discovery Through ZooKeeper ... 10
3.3. Rolling Upgrade for HiveServer2 Through ZooKeeper 12

4. Highly Available Reads with HBase ... 14
4.1. Introduction to HBase High Availability ... 15
4.2. Propagating Writes to Region Replicas .. 17
4.3. Timeline Consistency ... 19
4.4. Configuring HA Reads for HBase ... 21
4.5. Creating Highly-Available HBase Tables ... 23
4.6. Querying Secondary Regions ... 24
4.7. Monitoring Secondary Region Replicas .. 25
4.8. HBase Cluster Replication for Geographic Data Distribution 25

4.8.1. HBase Cluster Replication Overview .. 26
4.8.2. Managing and Configuring HBase Cluster Replication 27
4.8.3. Verifying Replicated HBase Data ... 28
4.8.4. HBase Cluster Replication Details .. 29
4.8.5. HBase Replication Metrics ... 34
4.8.6. Replication Configuration Options .. 34
4.8.7. Monitoring Replication Status ... 35

5. Namenode High Availability ... 36
5.1. Architecture .. 36
5.2. Hardware Resources .. 37
5.3. Deploy NameNode HA Cluster .. 38

5.3.1. Configure NameNode HA Cluster ... 38
5.3.2. Deploy NameNode HA Cluster .. 43
5.3.3. Deploy Hue with an HA Cluster .. 46
5.3.4. Deploy Oozie with an HA Cluster ... 47

5.4. Operating a NameNode HA cluster ... 48
5.5. Configure and Deploy NameNode Automatic Failover 49

5.5.1. Prerequisites ... 50
5.5.2. Instructions ... 50
5.5.3. Configuring Oozie Failover ... 52

5.6. Appendix: Administrative Commands .. 53
6. Resource Manager High Availability ... 55

6.1. Hardware Resources .. 55
6.2. Deploy ResourceManager HA Cluster .. 55

6.2.1. Configure Manual or Automatic ResourceManager Failover 56
6.2.2. Deploy the ResourceManager HA Cluster ... 59

Hortonworks Data Platform September 30, 2015

iv

6.2.3. Minimum Settings for Automatic ResourceManager HA
Configuration ... 60
6.2.4. Testing ResourceManager HA on a Single Node 61

Hortonworks Data Platform September 30, 2015

v

List of Figures
2.1. Example Deployment of Multiple HiveServer2 Instances .. 4
2.2. Add New Hosts with Ambari .. 7
2.3. Add HiveServer2 with Ambari ... 8
4.1. Example of a Complex Cluster Replication Configuration ... 27
4.2. HBase Replication Architecture Overview .. 29

Hortonworks Data Platform September 30, 2015

vi

List of Tables
4.1. HBase Cluster Management Commands .. 28

Hortonworks Data Platform September 30, 2015

1

1. High Availability for Hive Metastore
This document is intended for system administrators who need to configure the Hive
Metastore service for High Availability.

Important

The relational database that backs the Hive metastore itself should also be
made highly available using best practices defined for the database system in
use.

1.1. Use Cases and Failover Scenarios
This section provides information on the use cases and failover scenarios for high
availability (HA) in the Hive metastore.

Use Cases

The metastore HA solution is designed to handle metastore service failures. Whenever
a deployed metastore service goes down, metastore service can remain unavailable for
a considerable time until service is brought back up. To avoid such outages, deploy the
metastore service in HA mode.

Deployment Scenarios

Hortonworks recommends deploying the metastore service on multiple boxes concurrently.
Each Hive metastore client reads the configuration property hive.metastore.uris to
get a list of metastore servers with which it can communicate.

<property>
 <name>hive.metastore.uris</name>
 <value>thrift://$Hive_Metastore_Server_Host_Machine_FQDN</value>
 <description>A comma separated list of metastore uris on which metastore
 service is running</description>
</property>

Note that the relational database that backs the Hive metastore itself should also be made
highly available using the best practices defined for the database system in use.

In the case of a secure cluster, add the following configuration property to the hive-
site.xml file for each metastore server:

<property>
 <name>hive.cluster.delegation.token.store.class</name>
 <value>org.apache.hadoop.hive.thrift.ZooKeeperTokenStore</value>
</property>

Failover Scenario

A Hive metastore client always uses the first URI to connect with the metastore server. If
the metastore server becomes unreachable, the client randomly picks up a URI from the list
and attempts to connect with that.

Hortonworks Data Platform September 30, 2015

2

1.2. Software Configuration
Complete the following tasks to configure Hive HA solution:

1. Install HDP [2]

2. Update the Hive Metastore [2]

3. Validate configuration [3]

1.2.1. Install HDP
Use the following instructions to install HDP on your cluster hardware. Ensure that you
specify the virtual machine (configured in the previous section) as your NameNode.

1. Download the Apache Ambari repository using the instructions provided in " Download
the Ambari Repository" in the Automated Install with Ambari guide.

Note

Do not start the Ambari server until you have configured the relevant
templates as outlined in the following steps.

2. Edit the <master-install-machine-for-Hive-Metastore>/etc/hive/
conf.server/hive-site.xml configuration file to add the following properties:

• Provide the URI for the client to contact Metastore server. The following property can
have a comma separated list when your cluster has multiple Hive Metastore servers.

<property>
 <name>hive.metastore.uris</name>
 <value>thrift://$Hive_Metastore_Server_Host_Machine_FQDN</value>
 <description>URI for client to contact metastore server</description>
</property>

• Configure Hive cluster delegation token storage class.

<property>
 <name>hive.cluster.delegation.token.store.class</name>
 <value>org.apache.hadoop.hive.thrift.ZooKeeperTokenStore</value>
</property>

• Complete HDP installation.

• Continue the Ambari installation process using the instructions provided in "
Installing, Configuring, and Deploying an HDP Cluster" in the Automated Install with
Ambari guide.

• Complete the Ambari installation. Ensure that the installation was successful.

1.2.2. Update the Hive Metastore
HDP components configured for HA must use a NameService rather than a NameNode.
Use the following instructions to update the Hive Metastore to reference the NameService
rather than a Name Node.

https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_Installing_HDP_AMB/content/_download_the_ambari_repo.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_Installing_HDP_AMB/content/_download_the_ambari_repo.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_Installing_HDP_AMB/content/ch_Deploy_and_Configure_a_HDP_Cluster.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_Installing_HDP_AMB/content/ch_Deploy_and_Configure_a_HDP_Cluster.html

Hortonworks Data Platform September 30, 2015

3

Note

Hadoop administrators also often use the following procedure to update the
Hive metastore with the new URI for a node in a Hadoop cluster. For example,
administrators sometimes rename an existing node as their cluster grows.

1. Open a command prompt on the machine hosting the Hive metastore.

2. Set the HIVE_CONF_DIR environment variable:

export HIVE_CONF_DIR=/etc/hive/conf/conf.server

3. Execute the following command to retrieve a list of URIs for the filesystem roots,
including the location of the NameService:

hive --service metatool -listFSRoot

4. Execute the following command with the -dryRun option to test your configuration
change before implementing it:

hive --service metatool -updateLocation <nameservice-uri> <namenode-uri> -
 dryRun

5. Execute the command again, this time without the -dryRun option:

hive --service metatool -updateLocation <nameservice-uri> <namenode-uri>

1.2.3. Validate configuration

Test various failover scenarios to validate your configuration.

Hortonworks Data Platform September 30, 2015

4

2. Deploying Multiple HiveServer2
Instances for High Availability

This topic describes how to deploy and configure a second instance of HiveServer2 (HS2)
that runs in parallel with your primary instance of HS2 to enhance availability.

Figure 2.1. Example Deployment of Multiple HiveServer2 Instances

Hortonworks Data Platform September 30, 2015

5

2.1. Adding an Additional HiveServer2 to Your
Cluster Manually

1. Install Hive on the new node. For example, use one of the following commands in RHEL/
CentOS/Oracle Linux environments:

• If the new node is part of a cluster where Hadoop and HDFS have not been installed,
use the following command:

yum install hive-hcatalog hadoop hadoop-hdfs hadoop-libhdfs hadoop-yarn
 hadoop-mapreduce hadoop-client openssl

For information about installing on other operating systems, see "Installing the Hive-
HCatalog Package" and "Install the Hadoop Packages" in the Non-Ambari Cluster
Installation Guide.

• If the new node is part of a cluster where Hadoop and HDFS are installed, you need
only install the hive-hcatalog package. For example, in RHEL/CentOS/Oracle Linux
environments use the following command:

yum install hive-hcatalog

For information about installing on other operating systems, see "Installing the Hive-
HCatalog Package" in the Non-Ambari Cluster Installation Guide.

Note

For HDP-1.3.x, you must install HCatalog separately because HCatalog and
Hive are not merged in that release.

2. Copy the following configuration files from your existing HS2 instance to the new HS2
instance:

• Under /etc/hive/conf, copy the hive-site.xml file.

For HDP version 2.2 and later, you must also copy the hiveserver2-site.xml file.

• Under /etc/hadoop/conf, copy the core-site.xml, hdfs-site.xml,
mapred-site.xml, and yarn-site.xml files.

3. Copy the database driver file for the metastore database from the /usr/hdp/
current/hive-server2/lib folder of the existing HS2 instance to the /usr/
hdp/current/hive-server2/lib folder of the new instance. For example,
postgresql-jdbc.jar is the database driver file for a PostgreSQL database, and
mysql-connector-java.jar is the database driver file for a MySQL database.

Note

Before HDP version 2.2.0, the database driver file for the metastore database
is located in the /usr/lib folder.

4. Start the HS2 service:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_installing_manually_book/content/install_hive_hcat_rpm.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_installing_manually_book/content/install_hive_hcat_rpm.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_installing_manually_book/content/install_the_hadoop_packages.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_installing_manually_book/content/install_hive_hcat_rpm.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_installing_manually_book/content/install_hive_hcat_rpm.html

Hortonworks Data Platform September 30, 2015

6

su $HIVE_USER
/usr/lib/hive/bin/hiveserver2 -hiveconf hive.metastore.uris=" "
-hiveconf hive.log.file=hiveserver2.log
>$HIVE_LOG_DIR/hiveserver2.out 2
>$HIVE_LOG_DIR/hiveserver2.log &

If you are using HDP 2.1.15 and earlier, the HS2 service startup script is located in the /
usr/lib/hive/bin directory. For more information about starting the HS2 service,
see the

Note

• If you are using HDP 2.1.15 and earlier, the HS2 service startup script is
located in the /usr/lib/hive/bin directory.

• Specifying –hiveconf hive.metastore.uris=" " when you
start the HS2 service causes HS2 to use an embedded metastore, which
improves the performance when HS2 retrieves data from the back-end
data store (RDBMS). If you are using HDP 2.3.0 or later and have added
the hive.metastore.uris=" " property to the hiveserver2-
site.xml file, it is not necessary to specify it on the command line when
you start the service.

5. Validate your installation by connecting to the new HS2 instance using Beeline.

a. Open Beeline command-line shell to interact with HS2:

/usr/hdp/current/hive-server2/bin/beeline

b. Establish a connection to HS2:

!connect jdbc:hive2://$hive.server.full.hostname:<port_number> $HIVE_USER
 password org.apache.hive.jdbc.HiveDriver

c. Run sample commands:

show databases;
create table test2(a int, b string);
show tables;

This completes the manual installation of an additional HiveServer2 on a cluster.

2.2. Adding an Additional HiveServer2 to a Cluster
with Ambari

If you have a new HiveServer2 (HS2) instance installed on a new host that has not been
added to your cluster, you can add it with Ambari.

1. Open Ambari in a browser and click the Hosts tab.

2. On the Hosts page, click Actions, and select Add New Hosts:

Hortonworks Data Platform September 30, 2015

7

Figure 2.2. Add New Hosts with Ambari

3. Follow the Add Host Wizard instructions.

4. When you have completed adding the host to your cluster, click the Services tab.

5. On the Services page, click Hive in the list of services on the left side of the browser.

6. On the upper right side of the Hive Services page, click Service Actions, and select Add
HiveServer2:

Hortonworks Data Platform September 30, 2015

8

Figure 2.3. Add HiveServer2 with Ambari

7. In the Confirmation dialog box, select the host that you added in Steps 1 -3, and click
Confirm Add.

The progress of adding the HS2 is displayed in the Background Operation Running
dialog box. Click OK when it is finished to dismiss the dialog box.

Hortonworks Data Platform September 30, 2015

9

3. HiveServer2 High Availability via
ZooKeeper

This chapter describes how to implement HiveServer2 High Availability through ZooKeeper,
including:

• How ZooKeeper Manages HiveServer2 Requests

• Dynamic Service Discovery Through ZooKeeper

• Rolling Upgrade for HiveServer2 Through ZooKeeper

3.1. How ZooKeeper Manages HiveServer2
Requests

Multiple HiveServer2 (HS2) instances can register themselves with ZooKeeper and then
the client (client driver) can find a HS2 through ZooKeeper. When a client requests an HS2
instance, ZooKeeper returns one randomly-selected registered HS2.

This enables the following scenarios:

• High Availability

If more than one HS2 instance is registered with ZooKeeper, and all instances fail except
one, ZooKeeper passes the link to the instance that is running and the client can connect
successfully. (Failed instances must be restarted manually.)

• Load Balancing

If there is more than one HS2 instance registered with ZooKeeper, ZooKeeper responds
to client requests by randomly passing a link to one of the HS2 instances. This ensures
that all HS2 instances get roughly the same workload.

• Rolling Upgrade

It is possible to register HS2 instances based on their version, configuring HS2s from
the new version as active and HS2s from the old version as passive. ZooKeeper passes
connections only to active HS2s, so over time the old version participates less and less in
existing sessions. Ultimately, when the old version is no longer participating at all, it can
be removed.

For further information, see Rolling Upgrade Guide.

Not handled:

• Automatic Failover

If an HS2 instance failed while a client is connected, the session is lost. Since this situation
need to be handed at the client, there is no automatic failover; the client needs to
reconnect using ZooKeeper.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_rolling-upgrade/content/ch_overview-rolling-upgrade.xml.html

Hortonworks Data Platform September 30, 2015

10

3.2. Dynamic Service Discovery Through
ZooKeeper

The HS2 instances register with ZooKeeper under a namespace. When a HiveServer2
instance comes up, it registers itself with ZooKeeper by adding a znode in ZooKeeper. The
znode name has the format:

/<hiveserver2_namespace>/
serverUri=<host:port>;version=<versionInfo>;
sequence=<sequence_number>,

The znode stores the server host:port as its data.

The server instance sets a watch on the znode; when the znode is modified, that watch
sends a notification to the server. This notification helps the server instance keep track of
whether or not it is on the list of servers available for new client connections.

When a HiveServer2 instance is de-registered from ZooKeeper, it is removed from the list of
servers available for new client connections. (Client sessions on the server are not affected.)
When the last client session on a server is closed, the server is closed.

To de-register a single HiveServer2, enter hive --service hiveserver2 --deregister <package
ID>

Query Execution Path Without ZooKeeper

As shown in the illustration below, query execution without ZooKeeper happens in the
traditional client/server model used by most databases:

1. The JDBC / ODBC driver is given a host:port to an existing HS2 instance.

This establishes a session where multiple queries can be executed.

For each query...

2. Client submits a query to HS2 which in turn submits it for execution to Hadoop.

3. The results of query are written to a temporary file.

4. The client driver retrieves the records from HS2 which returns them from the temporary
file.

Hortonworks Data Platform September 30, 2015

11

Query Execution Path With ZooKeeper

Query execution with ZooKeeper takes advantage of dynamic discovery. Thus, the client
driver needs to know how to use this capability, which is available in HDP 2.2 and later with
the JDBC driver and ODBC driver 2.0.0.

Dynamic discovery is implemented by including an additional indirection step through
ZooKeeper. As shown in the figure below...

1. Multiple HiveServer2 instances are registered with ZooKeeper

2. The client driver connects to the ZooKeeper ensemble:

jdbc:hive2://<zookeeper_ensemble>;serviceDiscoveryMode=zooKeeper;
 zooKeeperNamespace=<hiveserver2_namespace

In the figure below, <zookeeper_ensemble> is Host1:Port1, Host2:Port2, Host3:Port3;
<hiveserver_namespace) is hiveServer2.

3. ZooKeeper randomly returns <host>:<port> for one of the registered HiveServer2
instances.

4. The client driver can not connect to the returned HiveServer instance and proceed as
shown in the previous section (as if ZooKeeper was not present).

Hortonworks Data Platform September 30, 2015

12

3.3. Rolling Upgrade for HiveServer2 Through
ZooKeeper

There are additional configuration settings and procedures that need to be implemented
to support rolling upgrade for HiveServer.

• Configuration Requirements

1. Set hive.zookeeper.quorum to the ZooKeeper ensemble (a comma separated list
of ZooKeeper server host:ports running at the cluster)

2. Customize hive.zookeeper.session.timeout so that it closes the connection
between the HiveServer2’s client and ZooKeeper if a heartbeat is not received within
the timeout period.

3. Set hive.server2.support.dynamic.service.discovery to true

4. Set hive.server2.zookeeper.namespace to the value that you want to use as
the root namespace on ZooKeeper. The default value is hiveserver2.

5. The adminstrator should ensure that the ZooKeeper service is running on the cluster,
and that each HiveServer2 instance gets a unique host:port combination to bind to
upon startup.

• Upgrade Steps

1. Without altering the old version of HiveServer2, bring up instances of the new version
of HiveServer2. Make sure they start up successfully.

2. To de-register instances of the old version of HiveServer2, enter hive service
hiveserver2 deregister

Hortonworks Data Platform September 30, 2015

13

3. Do not shut down the older instances of HiveServer2, as they might have active client
sessions. When sessions complete and the last client connection is closed, the server
instances shut down on their own. Eventually all instances of the older version of
HiveServer2 will become inactive.

• Downgrade (Rollback) Steps

1. Bring up instances of the older version of HiveServer2. Make sure they start up
successfully.

2. To explicitly de-register the instances of the newer version of HiveServer2, enter:

hive service hiveserver2 deregister

3. Do not shut down the newer instances of HiveServer2, as they might have active client
sessions. When sessions complete and the last client connection is closed, the server
instances shut down on their own. Eventually all instances of the newer version of
HiveServer2 will become inactive.

Hortonworks Data Platform September 30, 2015

14

4. Highly Available Reads with HBase
HDP enables HBase administrators to configure HBase clusters with read-only High
Availability, or HA. This feature benefits HBase applications that require low-latency queries
and can tolerate minimal (near-zero-second) staleness for read operations. Examples
include queries on remote sensor data, distributed messaging, object stores, and user
profile management.

High Availability for HBase features the following functionality:

• Data is safely protected in HDFS

• Failed nodes are automatically recovered

• No single point of failure

• All HBase API and region operations are supported, including scans, region split/merge,
and META table support (the META table stores information about regions)

However, HBase administrators should carefully consider the following costs associated
with using High Availability features:

• Double or triple MemStore usage

• Increased BlockCache usage

• Increased network traffic for log replication

• Extra backup RPCs for secondary region replicas

HBase is a distributed key-value store designed for fast table scans and read operations at
petabyte scale. Before configuring HA for HBase, you should understand the concepts in
the following table.

HBase Concept Description

Region A group of contiguous rows in an HBase table. Tables start
with one region; additional regions are added dynamically
as the table grows. Regions can be spread across multiple
hosts to balance workloads and recover quickly from
failure.

There are two types of regions: primary and secondary. A
secondary region is a copy of a primary region, replicated
on a different Region Server.

Region server A Region server serves data requests for one or more
regions. A single region is serviced by only one Region
Server, but a Region Server may serve multiple regions.
When region replication is enabled, a Region Server
can serve regions in primary and secondary mode
concurrently.

Column family A column family is a group of semantically related columns
that are stored together.

Memstore Memstore is in-memory storage for a Region Server.
Region Servers write files to HDFS after the MemStore
reaches a configurable maximum value specified with the

Hortonworks Data Platform September 30, 2015

15

HBase Concept Description

hbase.hregion.memstore.flush.size property in
the hbase-site.xml configuration file.

Write Ahead Log (WAL) The WAL is a log file that records all changes to data
until the data is successfully written to disk (MemStore is
flushed). This protects against data loss in the event of a
failure before MemStore contents are written to disk.

Compaction When operations stored in the MemStore are flushed
to disk, HBase consolidates and merges many smaller
files into fewer large files. This consolidation is called
compaction, and it is usually very fast. However, if
many Region Servers hit the data limit (specified by the
MemStore) at the same time, HBase performance may
degrade from the large number of simultaneous major
compactions. Administrators can avoid this by manually
splitting tables over time.

For information about configuring regions, see "HBase Cluster Capacity and Region Sizing"
in the System Administration Guide.

4.1. Introduction to HBase High Availability
HBase, architecturally, has had a strong consistency guarantee from the start. All reads and
writes are routed through a single Region Server, which guarantees that all writes happen
in order, and all reads access the most recently committed data.

However, because of this "single homing" of reads to a single location, if the server
becomes unavailable, the regions of the table that are hosted in the Region Server
become unavailable for some time until they are recovered. There are three phases in
the region recovery process: detection, assignment, and recovery. Of these, the detection
phase is usually the longest, currently on the order of 20 to 30 seconds depending on
the ZooKeeper session timeout setting (if the Region Server became unavailable but the
ZooKeeper session is alive). After that we recover data from the Write Ahead Log and
assign the region to a different server. During this time -- until the recovery is complete --
clients are not able to read data from that region.

For some use cases the data may be read-only, or reading some amount of stale data is
acceptable. With timeline-consistent highly available reads, HBase can be used for these
kind of latency-sensitive use cases where the application can expect to have a time bound
on the read completion.

For achieving high availability for reads, HBase provides a feature called “region
replication”. In this model, for each region of a table, there can be multiple replicas that
are opened in different Region Servers. By default, the region replication is set to 1, so only
a single region replica is deployed and there are no changes from the original model. If
region replication is set to 2 or more, then the master assigns replicas of the regions of the
table. The Load Balancer ensures that the region replicas are not co-hosted in the same
Region Servers and also in the same rack (if possible).

All of the replicas for a single region have a unique replica ID, starting with 0. The region
replica with replica ID = 0 is called the "primary region." The others are called “secondary
region replicas,” or "secondaries". Only the primary region can accept writes from the client,
and the primary always contains the latest changes. Since all writes must go through the
primary region, the writes are not highly available (meaning they might be blocked for
some time if the region becomes unavailable).

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_Sys_Admin_Guides/content/ch_clust_capacity.html

Hortonworks Data Platform September 30, 2015

16

In the following image, for example, Region Server 1 is responsible for responding to
queries and scans for keys 10 through 40. If Region Server 1 crashes, the region holding
keys 10-40 is unavailable for a short time until the region recovers.

HA provides a way to access keys 10-40 even if Region Server 1 is not available, by hosting
replicas of the region and assigning the region replicas to other Region Servers as backups.
In the following image, Region Server 2 hosts secondary region replicas for keys 10-20,
and Region Server 3 hosts the secondary region replica for keys 20-40. Region Server 2 also
hosts the secondary region replica for keys 80-100. There are no separate Region Server
processes for secondary replicas. Rather, Region Servers can serve regions in primary or
secondary mode. When Region Server 2 services queries and scans for keys 10-20, it acts in
secondary mode.

Note

Regions acting in secondary mode are also known as Secondary Region
Replicas. However, there is no separate Region Server process. A region in

Hortonworks Data Platform September 30, 2015

17

secondary mode can read but cannot write data. In addition, the data it returns
may be stale, as described in the following section.

Timeline and Strong Data Consistency

HBase guarantees timeline consistency for all data served from Region Servers in secondary
mode, meaning all HBase clients see the same data in the same order, but that data may be
slightly stale. Only the primary Region Server is guaranteed to have the latest data. Timeline
consistency simplifies the programming logic for complex HBase queries and provides lower
latency than quorum-based consistency.

In contrast, strong data consistency means that the latest data is always served. However,
strong data consistency can greatly increase latency in case of a Region Server failure,
because only the primary Region Server is guaranteed to have the latest data. The HBase
API allows application developers to specify which data consistency is required for a query.

Note

The HBase API contains a method called Result.isStale(), which indicates
whether data returned in secondary mode is "stale" -- the data has not been
updated with the latest write operation to the primary Region Server.

4.2. Propagating Writes to Region Replicas
As discussed in the introduction, writes are written only to the primary region replica.

The following two mechanisms are used to propagate writes from the primary replica to
secondary replicas.

Note

By default, HBase tables do not use High Availability features. After configuring
your cluster for High Availability, designate tables as HA by setting region
replication to a value greater than 1 at table creation time. For more
information, see Creating Highly-Available HBase Tables.

For read-only tables, you do not need to use any of the following methods.
Disabling and enabling the table should make the data available in all region
replicas.

StoreFile Refresher

The first mechanism is the store file refresher, which was introduced in Phase 1 (Apache
HBase 1.0.0 and HDP 2.1).

Store file refresher is a thread per Region Server, which runs periodically, and does a refresh
operation for the store files of the primary region for the secondary region replicas. If
enabled, the refresher ensures that the secondary region replicas see the new flushed,
compacted or bulk loaded files from the primary region in a timely manner. However, this
means that only flushed data can be read back from the secondary region replicas, and
after the refresher is run, making the secondaries lag behind the primary for an a longer
time.

Hortonworks Data Platform September 30, 2015

18

To enable this feature, configure
hbase.regionserver.storefile.refresh.period to a value greater than zero.
For more information about these properties, see Configuring HA Reads for HBase.

Async WAL Replication

The second mechanism for propagating writes to secondaries is done via the Async WAL
Replication feature. This feature is only available in HA Phase 2 (starting with HDP 2.2).

Async WAL replication works similarly to HBase’s multi-datacenter replication, but the
data from a region is replicated to its secondary regions. Each secondary replica always
receives writes in the same order that the primary region committed them. In some sense,
this design can be thought of as "in-cluster replication"; instead of replicating to a different
datacenter, the data goes to secondary regions. This process keeps the secondary region’s
in-memory state up to date. Data files are shared between the primary region and the
other replicas, so there is no extra storage overhead. However, secondary regions have
recent non-flushed data in their MemStores, which increases memory overhead. The
primary region writes flush, compaction, and bulk load events to its WAL as well, which are
also replicated through WAL replication to secondaries. When secondary replicas detect
a flush/compaction or bulk load event, they replay the event to pick up the new files and
drop the old ones.

Committing writes in the same order as in the primary region ensures that the secondaries
won’t diverge from the primary region's data, but because the log replication is
asynchronous, the data might still be stale in secondary regions. Because this feature works
as a replication endpoint, performance and latency characteristics should be similar to inter-
cluster replication.

Async WAL Replication is disabled by default. To enable this feature, set
hbase.region.replica.replication.enabled to true. For more information
about these properties, see Creating Highly-Available HBase Tables.

When you create a table with High Availability enabled, the Async WAL Replication feature
adds a new replication peer (named region_replica_replication).

Once enabled, to disable this feature you'll need to perform the following two steps:

• Set hbase.region.replica.replication.enabled to false in hbase-
site.xml.

• In your cluster, disable the replication peer named region_replica_replication,
using hbase shell or ReplicationAdmin class: hbase> disable_peer
'region_replica_replication'

Store File TTL

In phase 1 and 2 of the write propagation approaches mentioned above, store files for the
primary replica are opened in secondaries independent of the primary region. Thus, for files
that the primary region compacted and archived, the secondaries might still refer to these
files for reading.

Both features use HFileLinks to refer to files, but there is no guarantee that the file is
not deleted prematurely. To prevent I/O exceptions for requests to replicas, set the
configuration property hbase.master.hfilecleaner.ttl to a sufficient time range
such as 1 hour.

Hortonworks Data Platform September 30, 2015

19

Region Replication for the META Table’s Region

Currently, Async WAL Replication is not done for the META table’s WAL
-- the META table’s secondary replicas still refresh themselves from the
persistent store files. To ensure that the META store files are refreshed, set
hbase.regionserver.meta.storefile.refresh.period to a non-zero value. This
is configured differently than hbase.regionserver.storefile.refresh.period.

4.3. Timeline Consistency
With timeline consistency, HBase introduces a Consistency definition that can be provided
per read operation (get or scan):

public enum Consistency {
 STRONG,
 TIMELINE
 }

Consistency.STRONG is the default consistency model provided by HBase. If a table has
region replication = 1, or has region replicas but the reads are done with time consistency
enabled, the read is always performed by the primary regions. This preserves previous
behavior; the client receives the latest data.

If a read is performed with Consistency.TIMELINE, then the read
RPC is sent to the primary Region Server first. After a short interval
(hbase.client.primaryCallTimeout.get, 10ms by default), a parallel RPC for
secondary region replicas is sent if the primary does not respond back. HBase returns the
result from whichever RPC finishes first. If the response is from the primary region replica,
the data is current. You can use Result.isStale() API to determine the state of the
resulting data:

• If the result is from a primary region, Result.isStale() is set to false.

• If the result is from a secondary region, Result.isStale() is set to true.

TIMELINE consistency as implemented by HBase differs from pure eventual consistency in
the following respects:

• Single homed and ordered updates: Whether region replication is enabled or not, on
the write side, there is still only one defined replica (primary) that can accept writes. This
replica is responsible for ordering the edits and preventing conflicts. This guarantees
that two different writes are not committed at the same time by different replicas,
resulting in divergent data. With this approach, there is no need to do read-repair or last-
timestamp-wins types of of conflict resolution.

• The secondary replicas also apply edits in the order that the primary committed them,
thus the secondaries contain a snapshot of the primary's data at any point in time. This
is similar to RDBMS replications and HBase’s own multi-datacenter replication, but in a
single cluster.

• On the read side, the client can detect whether the read is coming from up-to-date data
or is stale data. Also, the client can issue reads with different consistency requirements on
a per-operation basis to ensure its own semantic guarantees.

Hortonworks Data Platform September 30, 2015

20

• The client might still read stale data if it receives data from one secondary replica
first, followed by reads from another secondary replica. There is no stickiness to
region replicas, nor is there a transaction ID-based guarantee. If required, this can be
implemented later.

Memory Accounting

Secondary region replicas refer to data files in the primary region replica, but they have
their own MemStores (in HA Phase 2) and use block cache as well. However, one distinction
is that secondary region replicas cannot flush data when there is memory pressure for their
MemStores. They can only free up MemStore memory when the primary region does a
flush and the flush is replicated to the secondary.

Because a Region Server can host primary replicas for some regions and secondaries for
others, secondary replicas might generate extra flushes to primary regions in the same host.
In extreme situations, there might be no memory for new writes from the primary, via WAL
replication.

To resolve this situation, the secondary replica is allowed to do a “store file refresh.” A file
system list operation picks up new files from the primary, possibly dropping its MemStore.
This refresh is only performed if the MemStore size of the biggest secondary region replica
is at least hbase.region.replica.storefile.refresh.memstore.multiplier
times bigger than the biggest MemStore of a primary replica. (The default value for
hbase.region.replica.storefile.refresh.memstore.multiplier is 4.)

Note

If this operation is performed, the secondary replica might obtain partial
row updates across column families (because column families are flushed
independently). We recommend that you configure HBase to not do this
operation frequently.

You can disable this feature by setting the value to a large number, but this
might cause replication to be blocked without resolution.

Secondary Replica Failover

When a secondary region replica first comes online, or after a secondary region fails over,
it may have contain edits from its MemStore. The secondary replica must ensure that it
does accesss stale data (data that has been overwritten) before serving requests after
assignment. Therefore, the secondary waits until it detects a full flush cycle (start flush,
commit flush) or a “region open event” replicated from the primary.

Until the flush cycle occurs, the secondary region replica rejects all read requests via an
IOException with the following message:

The region's reads are disabled

Other replicas are probably still be available to read, thus not causing any impact for the
RPC with TIMELINE consistency.

To facilitate faster recovery, the secondary region triggers a flush
request from the primary when it is opened. The configuration property
hbase.region.replica.wait.for.primary.flush (enabled by default) can be
used to disable this feature if needed.

Hortonworks Data Platform September 30, 2015

21

4.4. Configuring HA Reads for HBase
To enable High Availability for HBase reads, specify the following server-side and client-side
configuration properties in your hbase-site.xml configuration file, and then restart the
HBase Master and Region Servers.

The following table describes server-side properties. Set these properties for all servers in
your HBase cluster that use region replicas.

Property Example value Description

hbase.regionserver.
storefile.refresh.period

30000 Specifies the period (in milliseconds) for
refreshing the store files for secondary
regions. The default value is 0, which
indicates that the feature is disabled.
Secondary regions receive new files
from the primary region after the
secondary replica refreshes the list of
files in the region.

Note: Too-frequent refreshes might
cause extra Namenode pressure.
If files cannot be refreshed for
longer than HFile TTL, specified with
hbase.master.hfilecleaner.ttl,
the requests are rejected.

Refresh period should be a non-zero
number if META replicas are enabled
(see hbase.meta.replica.count).

If you specify refresh period, we
recommend configuring HFile TTL to a
larger value than its default.

hbase.region.replica.
replication.enabled

true Determines whether asynchronous
WAL replication is enabled or not. The
value can be true or false. The default
is false.

If this property is enabled,
a replication peer named
region_replica_replication is
created. The replication peer replicates
changes to region replicas for any
tables that have region replication set
to 1 or more.

After enabling this property, disabling
it requires setting it to false and
disabling the replication peer using
the shell or the ReplicationAdmin
java class. When replication is explicitly
disabled and then re-enabled, you must
set hbase.replication to true.

hbase.master.
hfilecleaner.ttl

3600000 Specifies the period (in milliseconds)
to keep store files in the archive folder
before deleting them from the file
system.

hbase.master.
loadbalancer.class

org.apache.hadoop.hbase.
master.balancer.
StochasticLoadBalancer

Specifies the Java class used for
balancing the load of all HBase clients.

The default value is
org.apache.hadoop.hbase.
master.balancer.

Hortonworks Data Platform September 30, 2015

22

Property Example value Description

StochasticLoadBalancer, which
is the only load balancer that supports
reading data from Region Servers in
secondary mode.

hbase.meta.replica.count 3 Region replication count for the meta
regions. The default value is 1.

hbase.regionserver.
meta.storefile.refresh.period

30000 Specifies the period in milliseconds for
refreshing the store files for the HBase
META tables secondary regions. If this
is set to 0, the feature is disabled.

When the secondary region refreshes
the list of files in the region, the
secondary regions see new files that
are flushed and compacted from the
primary region. There is no notification
mechanism.

Note: If the secondary region
is refreshed too frequently, it
may cause Namenode pressure.
Requests are rejected if the files
cannot be refreshed for longer than
HFile TTL, which is specified with
hbase.master.hfilecleaner.ttl.
Configuring HFile TTL to a larger value
is recommended with this setting.

If META replicas are enabled, set
this to a non-zero number by setting
hbase.meta.replica.count to a
value greater than 1.

hbase.region.replica.wait.
for.primary.flush

true Specifies whether to wait for a full
flush cycle from the primary before
starting to serve data in a secondary
replica.

Disabling this feature might cause
secondary replicas to read stale data
when a region is transitioning to
another Region Server.

hbase.region.replica.
storefile.refresh.
memstore.multiplier

4 Multiplier for a “store file refresh”
operation for the secondary region
replica.

This multiplier is used to refresh a
secondary region instead of flushing a
primary region. The default value (4)
configures the file refresh so that the
biggest secondary region replica is 4
times bigger than the biggest primary
region.

Disabling this feature is not
recommended. However, if you want
to do so, set this property to a large
value.

The following table lists client-side properties. Set these properties for all clients,
applications, and servers in your HBase cluster that use region replicas.

Property Example value Description

hbase.ipc.client.
specificThreadForWriting

true Specifies whether to enable
interruption of RPC threads at

Hortonworks Data Platform September 30, 2015

23

Property Example value Description

the client side. This is required for
region replicas with fallback RPC’s to
secondary regions.

hbase.client.
primaryCallTimeout.get

10000 Specifies the timeout (in microseconds)
before secondary fallback RPC’s
are submitted for get requests with
Consistency.TIMELINE to the
secondary replicas of the regions. The
default value is 10ms.

Setting this to a smaller value increases
the number of RPC’s, but lowers 99th-
percentile latencies.

hbase.client.
primaryCallTimeout.
multiget

10000 Specifies the timeout (in microseconds)
before secondary fallback RPC’s are
submitted for multi-get requests
(HTable.get(List<Get>)) with
Consistency.TIMELINE to the
secondary replicas of the regions. The
default value is 10ms.

Setting this to a smaller value increases
the number of RPC’s, but lowers 99th-
percentile latencies.

hbase.client.
primaryCallTimeout.scan

1000000 Specifies the timeout (in microseconds)
before secondary fallback RPC’s are
submitted for scan requests with
Consistency.TIMELINE to the
secondary replicas of the regions. The
default value is 1 second.

Setting this to a smaller value increases
the number of RPC’s, but lowers 99th-
percentile latencies.

hbase.meta.replicas.use true Specifies whether to use META table
replicas or not. The default value is
false.

4.5. Creating Highly-Available HBase Tables
HBase tables are not highly available by default. To enable high availability, designate a
table as HA during table creation.

Creating HA Tables with the HBase Java API

HBase application developers create highly available HBase tables programmatically, using
the Java API, as shown in the following example:

HTableDescriptor htd =
 new HTableDesscriptor(TableName.valueOf("test_table"));
htd.setRegionReplication(2);
...
admin.createTable(htd);

This example creates a table named test_table that is replicated to one secondary
region. To replicate test_table to two secondary replicas, pass 3 as a parameter to the
setRegionReplication() method.

Creating HA Tables with the HBase Shell

Hortonworks Data Platform September 30, 2015

24

Create HA tables using the HBase shell using the REGION_REPLICATION keyword. Valid
values are 1, 2, and 3, indicating the total number of copies. The default value is 1.

The following example creates a table named t1 that is replicated to one secondary
replica:

 CREATE 't1', 'f1', {REGION_REPLICATION => 2}

To replicate t1 to two secondary regions, set REGION_REPLICATION to 3:

 CREATE 't1', 'f1', {REGION_REPLICATION => 3}

4.6. Querying Secondary Regions
This section describes how to query HA-enabled HBase tables.

Querying HBase with the Java API

The HBase Java API allows application developers to specify the desired data consistency
for a query using the setConsistency() method, as shown in the following example. A new
enum, CONSISTENCY, specifies two levels of data consistency: TIMELINE and STRONG.

Get get = new Get(row);
get.setConsistency(CONSISTENCY.TIMELINE);
...
Result result = table.get(get);

HBase application developers can also pass multiple gets:

Get get1 = new Get(row);
get1.setConsistency(Consistency.TIMELINE);
...
ArrayList<Get> gets = new ArrayList<Get>();
...
Result[] results = table.get(gets);

The setConsistency() method is also available for Scan objects:

Scan scan = new Scan();
scan.setConsistency(CONSISTENCY.TIMELINE);
...
ResultScanner scanner = table.getScanner(scan);

In addition, you can use the Result.isStale() method to determine whether the
query results arrived from the primary or a secondary replica:

Result result = table.get(get);
if (result.isStale()) {
 ...
}

Querying HBase Interactively

To specify the desired data consistency for each query, use the HBase shell:

hbase(main):001:0> get 't1', 'r6', {CONSISTENCY => "TIMELINE"}

Hortonworks Data Platform September 30, 2015

25

Interactive scans also accept this syntax:

hbase(main):001:0> scan 't1', {CONSISTENCY => 'TIMELINE'}

Note

This release of HBase does not provide a mechanism to determine if the results
from an interactive query arrived from the primary or a secondary replica.

You can also request a specific region replica for debugging:

hbase> get 't1', 'r6', {REGION_REPLICA_ID=>0, CONSISTENCY=>'TIMELINE'}
hbase> get 't1', 'r6', {REGION_REPLICA_ID=>2, CONSISTENCY=>'TIMELINE'}

4.7. Monitoring Secondary Region Replicas
HBase provides highly available tables by replicating table regions. All replicated regions
have a unique replica ID. The replica ID for a primary region is always 0. The HBase web-
based interface displays the replica IDs for all defined table regions. In the following
example, the table t1 has two regions. The secondary region is identified by a replica ID of
1.

To access the HBase Master Server user interface, point your browser to port 16010.

4.8. HBase Cluster Replication for Geographic
Data Distribution

HBase provides a cluster replication mechanism which allows you to keep one cluster’s state
synchronized with that of another cluster, using the write-ahead log (WAL) of the source
cluster to propagate the changes. Some use cases for cluster replication include:

• Backup and disaster recovery

• Data aggregation

Hortonworks Data Platform September 30, 2015

26

• Geographic data distribution, such as data centers

• Online data ingestion combined with offline data analytics

Note

Replication is enabled at the granularity of the column family. Before enabling
replication for a column family, create the table and all column families to be
replicated on the destination cluster.

4.8.1. HBase Cluster Replication Overview

Cluster replication uses a source-push methodology. An HBase cluster can be a 'source'
cluster, which means it is the source of the new data (also known as a 'master' or 'active'
cluster), a 'destination' cluster, which means that it is the cluster that receives the new data
by way of replication (also known as a 'slave' or 'passive' cluster), or an HBase cluster can
fulfill both roles at once. Replication is asynchronous, and the goal of replication is eventual
consistency. When the source receives an edit to a column family with replication enabled,
that edit is propagated to all destination clusters using the WAL for that column family on
the Region Server that manages the relevant region.

When data is replicated from one cluster to another, the original source of the data is
tracked by using a cluster ID which is part of the metadata. In HBase 0.96 and newer
(HBASE-7709), all clusters that have already consumed the data are also tracked. This
prevents replication loops.

The WALs for each Region Server must be kept in HDFS as long as they are needed to
replicate data to a slave cluster. Each Region Server reads from the oldest log it needs to
replicate and keeps track of its progress by processing WALs inside ZooKeeper to simplify
failure recovery. The position marker which indicates a slave cluster’s progress, as well as
the queue of WALs to process, may be different for every slave cluster.

The clusters participating in replication can be of different sizes. The master cluster relies
on randomization to attempt to balance the stream of replication on the slave clusters. It is
expected that the slave cluster has storage capacity to hold the replicated data, as well as
any data it is responsible for ingesting. If a slave cluster runs out of room, or is inaccessible
for other reasons, it throws an error, the master retains the WAL, and then retries the
replication at intervals.

Note

Terms such as master-master, master-slave, and cyclical were used to describe
replication relationships in HBase. These terms added confusion, and have been
abandoned in favor of discussions about cluster topologies appropriate for
different scenarios.

4.8.1.1. HBase Cluster Topologies

• A central source cluster might propagate changes out to multiple destination clusters, for
failover or due to geographic distribution.

https://issues.apache.org/jira/browse/HBASE-7709

Hortonworks Data Platform September 30, 2015

27

• A source cluster might push changes to a destination cluster, which might also push its
own changes back to the original cluster.

• Many different low-latency clusters might push changes to one centralized cluster for
backup or resource-intensive data analytics jobs. The processed data might then be
replicated back to the low-latency clusters.

Multiple levels of replication may be chained together to suit your organization’s needs.
The following diagram shows a hypothetical scenario. The arrows indicate the data paths.

Figure 4.1. Example of a Complex Cluster Replication Configuration

HBase replication borrows many concepts from the statement-based replication design
used by MySQL. Instead of SQL statements, entire WALEdits, which consist of multiple cell
inserts that come from Put and Delete operations on the clients, are replicated in order to
maintain atomicity.

4.8.2. Managing and Configuring HBase Cluster Replication

Process Overview

1. Configure and start the source and destination clusters. Create tables with the same
names and column families on both the source and destination clusters, so that the
destination cluster knows where to store the data that it receives.

2. All hosts in the source and destination clusters should be reachable to each other.

Hortonworks Data Platform September 30, 2015

28

3. If both clusters use the same ZooKeeper cluster, you must use a different
zookeeper.znode.parent, because they cannot write in the same folder.

4. Check to be sure that replication has not been disabled. The hbase.replication
setting defaults to true.

5. On the source cluster, in HBase shell, add the destination cluster as a peer, using the
add_peer command.

6. On the source cluster, in HBase shell, enable the table replication, using the
enable_table_replication command.

7. Check the logs to see if replication is taking place. If so, you see messages like the
following, coming from the Replication Source:

LOG.info("Replicating "+ClusterId + " -> " + peerClusterId);

Table 4.1. HBase Cluster Management Commands

Command Description

add_peer <ID> <CLUSTER_KEY> Adds a replication relationship between two clusters:

• ID: A unique string, which must not contain a hyphen.

• CLUSTER_KEY: Composed using the following format:

hbase.zookeeper.quorum:hbase.zookeeper.
property.clientPort:zookeeper.znode.parent

list_peers Lists all replication relationships known by the cluster.

enable_peer <ID> Enables a previously-disabled replication relationship.

disable_peer <ID> Disables a replication relationship. After disabling, HBase
no longer sends edits to that peer cluster, but continues
to track the new WALs that are required for replication to
commence again if it is re-enabled.

remove_peer <ID> Disables and removes a replication relationship. After
removal, HBase no longer sends edits to that peer cluster
nor does it track WALs.

enable_table_replication <TABLE_NAME> Enables the table replication switch for all of the column
families associated with that table. If the table is not
found in the destination cluster, one is created with the
same name and column families.

disable_table_replication <TABLE_NAME> Disables the table replication switch for all of the column
families associated with that table.

4.8.3. Verifying Replicated HBase Data

The VerifyReplication MapReduce job, which is included in HBase, performs
a systematic comparison of replicated data between two different clusters. Run the
VerifyReplication job on the master cluster, supplying it with the peer ID and table name
to use for validation. You can limit the verification further by specifying a time range or
specific column families. The job short name is verifyrep. To run the job, use a command
like the following:

$ HADOOP_CLASSPATH=`${HBASE_HOME}/bin/hbase classpath`
"${HADOOP_HOME}/bin/hadoop" jar "${HBASE_HOME}/hbase-server-VERSION.jar"
verifyrep --starttime=<timestamp> --stoptime=<timestamp> --families=<myFam>
 <ID> <tableName>

Hortonworks Data Platform September 30, 2015

29

The VerifyReplication command prints out GOODROWS and BADROWS counters to
indicate rows that did and did not replicate correctly.

4.8.4. HBase Cluster Replication Details

Figure 4.2. HBase Replication Architecture Overview

WAL (Write Ahead Log) Edit Process

A single WAL edit goes through the following steps when it is replicated to a slave cluster:

1. An HBase client uses a Put or Delete operation to manipulate data in HBase.

2. The Region Server writes the request to the WAL in such a way that it can be replayed if
the write operation is not successful.

3. If the changed cell corresponds to a column family that is scoped for replication, the edit
is added to the queue for replication.

4. In a separate thread, the edit is read from the log as part of a batch process. Only the
KeyValues that are eligible for replication are kept. KeyValues that are eligible for
replication are those KeyValues that are:

• Part of a column family whose schema is scoped GLOBAL

• Not part of a catalog such as hbase:meta

Hortonworks Data Platform September 30, 2015

30

• Have not originated from the target slave cluster

• Have not already been consumed by the target slave cluster

5. The WAL edit is tagged with the master’s UUID and added to a buffer. When the buffer
is full or the reader reaches the end of the file, the buffer is sent to a random Region
Server on the slave cluster.

6. The Region Server reads the edits sequentially and separates them into buffers, one
buffer per table. After all edits are read, each buffer is flushed using Table, the HBase
client. The UUID of the master Region Server and the UUIDs of the slaves, which have
already consumed the data, are preserved in the edits when they are applied. This
prevents replication loops.

7. The offset for the WAL that is currently being replicated in the master is registered in
ZooKeeper.

8. The edit is inserted as described in Steps 1, 2, and 3.

9. In a separate thread, the Region Server reads, filters, and edits the log edits as described
in Step 4. The slave Region Server does not answer the RPC call.

10.The master Region Server sleeps and tries again. The number of attempts can be
configured.

11.If the slave Region Server is still not available, the master selects a new subset of Region
Servers to replicate to, and tries again to send the buffer of edits.

12.Meanwhile, the WALs are rolled and stored in a queue in ZooKeeper. Logs that are
archived by their Region Server (by moving them from the Region Server log directory
to a central log directory) update their paths in the in-memory queue of the replicating
thread.

13.When the slave cluster is finally available, the buffer is applied in the same way as during
normal processing. The master Region Server then replicates the backlog of logs that
accumulated during the outage.

4.8.4.1. Spreading Queue Failover Load

When replication is active, a subset of Region Servers in the source cluster is responsible
for shipping edits to the sink. This responsibility must be failed over like all other Region
Server functions if a process or node crashes. The following configuration settings are
recommended for maintaining an even distribution of replication activity over the
remaining live servers in the source cluster:

• Set replication.source.maxretriesmultiplier to 300.

• Set replication.source.sleepforretries to 1 (1 second). This value, combined
with the value of replication.source.maxretriesmultiplier, causes the retry
cycle to last about 5 minutes.

• Set replication.sleep.before.failover to 30000 (30 seconds) in the source
cluster site configuration.

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Table.html

Hortonworks Data Platform September 30, 2015

31

4.8.4.2. Preserving Tags During Replication

By default, the codec used for replication between clusters strips tags, such as cell-
level ACLs, from cells. To prevent the tags from being stripped, you can use a different
codec which does not strip them. Configure hbase.replication.rpc.codec to
use org.apache.hadoop.hbase.codec.KeyValueCodecWithTags, on both the
source and the sink Region Servers which are involved in the replication. This option was
introduced in HBASE-10322.

4.8.4.3. HBase Replication Internals

Replication State in ZooKeeper

HBase replication maintains its state in ZooKeeper. By default, the state is contained in the
base node /hbase/replication. This node contains two child nodes, the Peers znode
and the RS znode.

The Peers Znode

The peers znode is stored in /hbase/replication/peers by default. It consists of a
list of all peer replication clusters along with the status of each of them. The value of each
peer is its cluster key, which is provided in the HBase shell. The cluster key contains a list of
ZooKeeper nodes in the cluster quorum, the client port for the ZooKeeper quorum, and the
base znode for HBase in HDFS on that cluster.

The RS Znode

The rs znode contains a list of WAL logs which need to be replicated. This list is divided
into a set of queues organized by Region Server and the peer cluster that the Region Server
is shipping the logs to. The rs znode has one child znode for each Region Server in the
cluster. The child znode name is the Region Server hostname, client port, and start code.
This list includes both live and dead Region Servers.

4.8.4.4. Choosing Region Servers to Replicate to

When a master cluster Region Server initiates a replication source to a slave cluster, it
first connects to the ZooKeeper ensemble of the slave using the provided cluster key.
Then it scans the rs/ directory to discover all the available 'sinks' (Region Servers that are
accepting incoming streams of edits to replicate) and randomly chooses a subset of them
using a configured ratio which has a default value of 10 per cent. For example, if a slave
cluster has 150 servers, 15 are chosen as potential recipients for edits sent by the master
cluster Region Server. Because this selection is performed by each master Region Server,
the probability that all slave Region Servers are used is very high. This method works for
clusters of any size. For example, a master cluster of 10 servers replicating to a slave cluster
of 5 servers with a ratio of 10 per cent causes the master cluster Region Servers to choose
one server each at random.

A ZooKeeper watcher is placed on the ${zookeeper.znode.parent}/rs node of the
slave cluster by each of the master cluster Region Servers. This watcher monitors changes in
the composition of the slave cluster. When nodes are removed from the slave cluster, or if
nodes go down or come back up, the master cluster Region Servers respond by selecting a
new pool of slave Region Servers to which to replicate.

https://issues.apache.org/jira/browse/HBASE-10322

Hortonworks Data Platform September 30, 2015

32

4.8.4.5. Keeping Track of Logs

Each master cluster Region Server has its own znode in the replication znodes hierarchy.
It contains one znode per peer cluster. For example, if there are 5 slave clusters, 5 znodes
are created, and each of these contain a queue of WALs to process. Each of these queues
tracks the WALs created by that Region Server, but they can differ in size. For example, if
one slave cluster becomes unavailable for some time, the WALs should not be deleted. They
need to stay in the queue while the others are processed. See Region Server Failover for an
example.

When a source is instantiated, it contains the current WAL that the Region Server is writing
to. During log rolling, the new file is added to the queue of each slave cluster znode just
before it is made available. This ensures that all the sources are aware that a new log exists
before the Region Server is able to append edits into it. However, this operation is now
more expensive. The queue items are discarded when the replication thread cannot read
more entries from a file because it reached the end of the last block and there are other
files in the queue. This means that if a source is up to date and replicates from the log that
the Region Server writes to, reading up to the end of the current file does not delete the
item in the queue.

A log can be archived if it is no longer used or if the number of logs exceeds the
hbase.regionserver.maxlogs setting because the insertion rate is faster than regions
are flushed. When a log is archived, the source threads are notified that the path for that
log changed. If a particular source has already finished with an archived log, it ignores the
message. If the log is in the queue, the path is updated in memory. If the log is currently
being replicated, the change is done atomically so that the reader does not attempt to
open the file when it has already been moved. Because moving a file is a NameNode
operation, if the reader is currently reading the log, it does not generate an exception.

4.8.4.6. Reading, Filtering, and Sending Edits

By default, a source attempts to read from a WAL and ships log entries to a sink as quickly
as possible. Speed is limited by the filtering of log entries. Only KeyValues that are scoped
GLOBAL and that do not belong to catalog tables are retained. Speed is limited by total
size of the list of edits to replicate per slave, which is limited to 64 MB by default. With this
configuration, a master cluster Region Server with three slaves would use at most 192 MB
to store data to replicate. This does not account for the data which was filtered but not
garbage collected.

Once the maximum size of edits has been buffered or the reader reaches the end of the
WAL, the source thread stops reading and chooses at random a sink to replicate to from
the list that was generated by keeping only a subset of slave Region Servers. It directly
issues an RPC to the chosen Region Server and waits for the method to return. If the RPC is
successful, the source determines whether the current file has been emptied or whether it
contains more data that needs to be read. If the file has been emptied, the source deletes
the znode in the queue. Otherwise, it registers the new offset in the log znode. If the RPC
throws an exception, the source retries 10 times before trying to find a different sink.

4.8.4.7. Cleaning Logs

If replication is not enabled, the log-cleaning thread of the master deletes old logs using a
configured TTL (Time To Live). This TTL-based method does not work well with replication

Hortonworks Data Platform September 30, 2015

33

because archived logs that have exceeded their TTL may still be in a queue. The default
behavior is augmented so that if a log is past its TTL, the cleaning thread looks up every
queue until it finds the log. During this process, queues that are found are cached. If the log
is not found in any queues, the log is deleted. The next time the cleaning process needs to
look for a log, it starts by using its cached list.

4.8.4.8. Region Server Failover

When no Region Servers are failing, keeping track of the logs in ZooKeeper adds no value.
Unfortunately, Region Servers do fail, and since ZooKeeper is highly available, it is useful for
managing the transfer of the queues in the event of a failure.

Each of the master cluster Region Servers keeps a watcher on every other Region Server,
in order to be notified when one becomes unavailable just as the master does. When a
failure happens, they all race to create a znode called lock inside the unavailable Region
Server znode that contains its queues. The Region Server that creates it successfully then
transfers all the queues to its own znode, one at a time since ZooKeeper does not support
renaming queues. After all queues are transferred, they are deleted from the old location.
The recovered znodes are then renamed with the slave cluster ID appended to the name of
the server that failed.

Next, the master cluster Region Server creates one new source thread per copied queue.
Each of the source threads follows the 'read/filter/ship pattern.' Those queues never receive
new data because they do not belong to their new Region Server. When the reader hits the
end of the last log, the queue znode is deleted and the master cluster Region Server closes
that replication source.

For example, the following hierarchy represents what the znodes layout might be for
a master cluster with 3 Region Servers that are replicating to a single slave with the ID
of 2. The Region Server znodes contain a peers znode that contains a single queue.
The znode names in the queues represent the actual file names on HDFS in the form
address,port.timestamp:

/hbase/replication/rs/
 1.1.1.1,60020,123456780/
 2/
 1.1.1.1,60020.1234 (Contains a position)
 1.1.1.1,60020.1265
 1.1.1.2,60020,123456790/
 2/
 1.1.1.2,60020.1214 (Contains a position)
 1.1.1.2,60020.1248
 1.1.1.2,60020.1312
 1.1.1.3,60020, 123456630/
 2/
 1.1.1.3,60020.1280 (Contains a position)

Assume that 1.1.1.2 loses its ZooKeeper session. The survivors race to create a lock, and,
arbitrarily, 1.1.1.3 wins. It then starts transferring all the queues to the znode of its local
peers by appending the name of the server that failed. Right before 1.1.1.3 is able to clean
up the old znodes, the layout looks like the following:

/hbase/replication/rs/
 1.1.1.1,60020,123456780/
 2/

Hortonworks Data Platform September 30, 2015

34

 1.1.1.1,60020.1234 (Contains a position)
 1.1.1.1,60020.1265
 1.1.1.2,60020,123456790/
 lock
 2/
 1.1.1.2,60020.1214 (Contains a position)
 1.1.1.2,60020.1248
 1.1.1.2,60020.1312
 1.1.1.3,60020,123456630/
 2/
 1.1.1.3,60020.1280 (Contains a position)

 2-1.1.1.2,60020,123456790/
 1.1.1.2,60020.1214 (Contains a position)
 1.1.1.2,60020.1248
 1.1.1.2,60020.1312

Some time later, but before 1.1.1.3 is able to finish replicating the last WAL from 1.1.1.2, it
also becomes unavailable. Some new logs were also created in the normal queues. The last
Region Server then tries to lock 1.1.1.3’s znode and begins transferring all the queues. Then
the new layout is:

/hbase/replication/rs/
 1.1.1.1,60020,123456780/
 2/
 1.1.1.1,60020.1378 (Contains a position)

 2-1.1.1.3,60020,123456630/
 1.1.1.3,60020.1325 (Contains a position)
 1.1.1.3,60020.1401

 2-1.1.1.2,60020,123456790-1.1.1.3,60020,123456630/
 1.1.1.2,60020.1312 (Contains a position)
 1.1.1.3,60020,123456630/
 lock
 2/
 1.1.1.3,60020.1325 (Contains a position)
 1.1.1.3,60020.1401

 2-1.1.1.2,60020,123456790/
 1.1.1.2,60020.1312 (Contains a position)

4.8.5. HBase Replication Metrics
The following metrics are exposed at the global Region Server level and at the peer level
(since HBase 0.95):

Metric Description

source.sizeOfLogQueue Number of WALs to process (excludes the one which is
being processed) at the replication source.

source.shippedOps Number of of mutations shipped.

source.logEditsRead Number of mutations read from WALs at the replication
source.

source.ageOfLastShippedOp Age of last batch shipped by the replication source.

4.8.6. Replication Configuration Options

Hortonworks Data Platform September 30, 2015

35

Option Description Default Setting

zookeeper.znode.parent Name of the base ZooKeeper znode
that is used for HBase.

/hbase

zookeeper.znode.replication Name of the base znode used for
replication.

replication

zookeeper.znode.replication.
peers

Name of the peer znode. peers

zookeeper.znode.replication.
peers.state

Name of the peer-state znode. peer-state

zookeeper.znode.replication.
rx

Name of the rs znode. rs

hbase.replication Whether replication is enabled or
disabled on the cluster.

false

replication.sleep.before.
failover

Number of milliseconds a worker
should sleep before attempting to
replicate the WAL queues for a dead
Region Server.

--

replication.executor.workers Number of Region Servers a Region
Server should attempt to failover
simultaneously.

1

4.8.7. Monitoring Replication Status

You can use the HBase shell command status 'replication' to monitor the
replication status on your cluster. The command has three variations:

Command Description

* status 'replication' Prints the status of each source and its sinks, sorted by
hostname.

* status 'replication', 'source' Prints the status for each replication source, sorted by
hostname.

* status 'replication', 'sink' Prints the status for each replication sink, sorted by
hostname.

Hortonworks Data Platform September 30, 2015

36

5. Namenode High Availability
The HDFS NameNode High Availability feature enables you to run redundant NameNodes
in the same cluster in an Active/Passive configuration with a hot standby. This eliminates
the NameNode as a potential single point of failure (SPOF) in an HDFS cluster.

Formerly, if a cluster had a single NameNode, and that machine or process became
unavailable, the entire cluster would be unavailable until the NameNode was either
restarted or started on a separate machine. This situation impacted the total availability of
the HDFS cluster in two major ways:

• In the case of an unplanned event such as a machine crash, the cluster would be
unavailable until an operator restarted the NameNode.

• Planned maintenance events such as software or hardware upgrades on the NameNode
machine would result in periods of cluster downtime.

HDFS NameNode HA avoids this by facilitating either a fast failover to the new NameNode
during machine crash, or a graceful administrator-initiated failover during planned
maintenance.

This guide provides an overview of the HDFS NameNode High Availability (HA) feature,
instructions on how to deploy Hue with an HA cluster, and instructions on how to enable
HA on top of an existing HDP cluster using the Quorum Journal Manager (QJM) and
ZooKeeper Failover Controller for configuration and management. Using the QJM and
ZooKeeper Failover Controller enables the sharing of edit logs between the Active and
Standby NameNodes.

Note

This guide assumes that an existing HDP cluster has been manually installed and
deployed. If your existing HDP cluster was installed using Ambari, configure
NameNode HA using the Ambari wizard, as described in the Ambari User's
Guide.

5.1. Architecture
In a typical HA cluster, two separate machines are configured as NameNodes. In a working
cluster, one of the NameNode machine is in the Active state, and the other is in the
Standby state.

The Active NameNode is responsible for all client operations in the cluster, while the
Standby acts as a slave. The Standby machine maintains enough state to provide a fast
failover (if required).

In order for the Standby node to keep its state synchronized with the Active node, both
nodes communicate with a group of separate daemons called JournalNodes (JNs). When
the Active node performs any namespace modification, the Active node durably logs a
modification record to a majority of these JNs. The Standby node reads the edits from
the JNs and continuously watches the JNs for changes to the edit log. Once the Standby
Node observes the edits, it applies these edits to its own namespace. When using QJM,
JournalNodes acts the shared editlog storage. In a failover event, the Standby ensures that

https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_Ambari_Users_Guide/content/_namenode_high_availability.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_Ambari_Users_Guide/content/_namenode_high_availability.html

Hortonworks Data Platform September 30, 2015

37

it has read all of the edits from the JounalNodes before promoting itself to the Active state.
(This mechanism ensures that the namespace state is fully synchronized before a failover
completes.)

Note

Secondary NameNode is not required in HA configuration because the Standby
node also performs the tasks of the Secondary NameNode.

To provide a fast failover, it is also necessary that the Standby node have up-to-date
information on the location of blocks in your cluster. To get accurate information about the
block locations, DataNodes are configured with the location of both of the NameNodes,
and send block location information and heartbeats to both NameNode machines.

It is vital for the correct operation of an HA cluster that only one of the NameNodes should
be Active at a time. Failure to do so, would cause the namespace state to quickly diverge
between the two NameNode machines thus causing potential data loss. (This situation is
called a split-brain scenario.)

To prevent the split-brain scenario, the JournalNodes allow only one NameNode to be a
writer at a time. During failover, the NameNode, that is to chosen to become active, takes
over the role of writing to the JournalNodes. This process prevents the other NameNode
from continuing in the Active state and thus lets the new Active node proceed with the
failover safely.

5.2. Hardware Resources
Ensure that you prepare the following hardware resources:

• NameNode machines: The machines where you run Active and Standby NameNodes,
should have exactly the same hardware. For recommended hardware for NameNodes,
see "Hardware for Master Nodes" in the Cluster Planning Guide.

• JournalNode machines: The machines where you run the JournalNodes. The
JournalNode daemon is relatively lightweight, so these daemons may reasonably be co-

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_cluster-planning-guide/index.html

Hortonworks Data Platform September 30, 2015

38

located on machines with other Hadoop daemons, for example the NameNodes or the
YARN ResourceManager.

Note

There must be at least three JournalNode daemons, because edit log
modifications must be written to a majority of JNs. This lets the system
tolerate failure of a single machine. You may also run more than three
JournalNodes, but in order to increase the number of failures that the system
can tolerate, you must run an odd number of JNs, (i.e. 3, 5, 7, etc.).

Note that when running with N JournalNodes, the system can tolerate at
most (N - 1) / 2 failures and continue to function normally.

• ZooKeeper machines: For automated failover functionality, there must be an existing
ZooKeeper cluster available. The ZooKeeper service nodes can be co-located with other
Hadoop daemons.

In an HA cluster, the Standby NameNode also performs checkpoints of the namespace
state. Therefore, do not deploy a Secondary NameNode, CheckpointNode, or BackupNode
in an HA cluster.

5.3. Deploy NameNode HA Cluster
HA configuration is backward compatible and works with your existing single NameNode
configuration. The following instructions describe how to set up NameName HA on a
manually-installed cluster. If you installed with Ambari and manage HDP on Ambari 2.0.0 or
later, instead of the manual instructions use the Ambari documentation for the NameNode
HA wizard.

Note

HA cannot accept HDFS cluster names that include an underscore (_).

To deploy a NameNode HA cluster, use the steps in the following subsections.

5.3.1. Configure NameNode HA Cluster
First, add High Availability configurations to your HDFS configuration files. Start by taking
the HDFS configuration files from the original NameNode in your HDP cluster, and use that
as the base, adding the properties mentioned below to those files.

After you have added the configurations below, ensure that the same set of HDFS
configuration files are propogated to all nodes in the HDP cluster. This ensures that all the
nodes and services are able to interact with the highly available NameNode.

Add the following configuration options to your hdfs-site.xml file:

• dfs.nameservices

Choose an arbitrary but logical name (for example mycluster) as the value for
dfs.nameservices option. This name will be used for both configuration and
authority component of absolute HDFS paths in the cluster.

https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_Ambari_Users_Guide/content/_how_to_configure_namenode_high_availability.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_Ambari_Users_Guide/content/_how_to_configure_namenode_high_availability.html

Hortonworks Data Platform September 30, 2015

39

<property>
 <name>dfs.nameservices</name>
 <value>mycluster</value>
 <description>Logical name for this new nameservice</description>
</property>

If you are also using HDFS Federation, this configuration setting should also include the
list of other nameservices, HA or otherwise, as a comma-separated list.

• dfs.ha.namenodes.[$nameservice ID]

Provide a list of comma-separated NameNode IDs. DataNodes use this this property to
determine all the NameNodes in the cluster.

For example, for the nameservice ID mycluster and individual NameNode IDs nn1 and
nn2, the value of this property is:

<property>
 <name>dfs.ha.namenodes.mycluster</name>
 <value>nn1,nn2</value>
 <description>Unique identifiers for each NameNode in the
 nameservice</description>
</property>

Note

Currently, a maximum of two NameNodes can be configured per
nameservice.

• dfs.namenode.rpc-address.[$nameservice ID].[$name node ID]

Use this property to specify the fully-qualified RPC address for each NameNode to listen
on.

Continuing with the previous example, set the full address and IPC port of the
NameNode process for the above two NameNode IDs - nn1 and nn2.

Note that there will be two separate configuration options.

<property>
 <name>dfs.namenode.rpc-address.mycluster.nn1</name>
 <value>machine1.example.com:8020</value>
</property>

<property>
 <name>dfs.namenode.rpc-address.mycluster.nn2</name>
 <value>machine2.example.com:8020</value>
</property>

• dfs.namenode.http-address.[$nameservice ID].[$name node ID]

Use this property to specify the fully-qualified HTTP address for each NameNode to listen
on.

Set the addresses for both NameNodes HTTP servers to listen on. For example:

<property>

Hortonworks Data Platform September 30, 2015

40

 <name>dfs.namenode.http-address.mycluster.nn1</name>
 <value>machine1.example.com:50070</value>
</property>

<property>
 <name>dfs.namenode.http-address.mycluster.nn2</name>
 <value>machine2.example.com:50070</value>
</property>

Note

If you have Hadoop security features enabled, set the https-address for each
NameNode.

• dfs.namenode.shared.edits.dir

Use this property to specify the URI that identifies a group of JournalNodes (JNs) where
the NameNode will write/read edits.

Configure the addresses of the JNs that provide the shared edits storage. The Active
nameNode writes to this shared storage and the Standby NameNode reads from this
location to stay up-to-date with all the file system changes.

Although you must specify several JournalNode addresses, you must configure only one
of these URIs for your cluster.

The URI should be of the form:

qjournal://host1:port1;host2:port2;host3:port3/journalId

The Journal ID is a unique identifier for this nameservice, which allows a single set of
JournalNodes to provide storage for multiple federated namesystems. You can reuse the
nameservice ID for the journal identifier.

For example, if the JournalNodes for a cluster were running on node1.example.com,
node2.example.com, and node3.example.com, and the nameservice ID were
mycluster, you would use the following value for this setting:

<property>
 <name>dfs.namenode.shared.edits.dir</name>
 <value>qjournal://node1.example.com:8485;node2.example.com:
 8485;node3.example.com:8485/mycluster</value>
</property>

Note

Note that the default port for the JournalNode is 8485.

• dfs.client.failover.proxy.provider.[$nameservice ID]

This property specifies the Java class that HDFS clients use to contact the Active
NameNode. DFS Client uses this Java class to determine which NameNode is the current
Active and therefore which NameNode is currently serving client requests.

Use the ConfiguredFailoverProxyProvider implementation if you are not using a
custom implementation.

Hortonworks Data Platform September 30, 2015

41

For example:

<property>
 <name>dfs.client.failover.proxy.provider.mycluster</name>
 <value>org.apache.hadoop.hdfs.server.namenode.ha.
 ConfiguredFailoverProxyProvider</value>
</property>

• dfs.ha.fencing.methods

This property specifies a list of scripts or Java classes that will be used to fence the Active
NameNode during a failover.

For maintaining system correctness, it is important to have only one NameNode in the
Active state at any given time. When using the Quorum Journal Manager, only one
NameNode will ever be allowed to write to the JournalNodes, so there is no potential for
corrupting the file system metadata from a split-brain scenario. However, when a failover
occurs, it is still possible that the previous Active NameNode could serve read requests to
clients, which may be out of date until that NameNode shuts down when trying to write
to the JournalNodes.

For this reason, it is still recommended to configure some fencing methods even when
using the Quorum Journal Manager. To improve the availability of the system in the
event the fencing mechanisms fail, it is advisable to configure a fencing method which
is guaranteed to return success as the last fencing method in the list. Note that if you
choose to use no actual fencing methods, you must set some value for this setting, for
example shell(/bin/true).

The fencing methods used during a failover are configured as a carriage-return-
separated list, which will be attempted in order until one indicates that fencing
has succeeded. The following two methods are packaged with Hadoop: shell
and sshfence. For information on implementing custom fencing method, see the
org.apache.hadoop.ha.NodeFencer class.

• sshfence: SSH to the Active NameNode and kill the process.

The sshfence option SSHes to the target node and uses fuser to kill the process
listening on the service's TCP port. In order for this fencing option to work, it must
be able to SSH to the target node without providing a passphrase. Ensure that you
configure the dfs.ha.fencing.ssh.private-key-files option, which is a
comma-separated list of SSH private key files.

For example:

<property>
 <name>dfs.ha.fencing.methods</name>
 <value>sshfence</value>
</property>

<property>
 <name>dfs.ha.fencing.ssh.private-key-files</name>
 <value>/home/exampleuser/.ssh/id_rsa</value>
</property>

Hortonworks Data Platform September 30, 2015

42

Optionally, you can also configure a non-standard username or port to perform the
SSH. You can also configure a timeout, in milliseconds, for the SSH, after which this
fencing method will be considered to have failed. To configure non-standard username
or port and timeout, see the properties given below:

<property>
 <name>dfs.ha.fencing.methods</name>
 <value>sshfence([[username][:port]])</value>
</property>

<property>
 <name>dfs.ha.fencing.ssh.connect-timeout</name>
 <value>30000</value>
</property>

• shell: Run an arbitrary shell command to fence the Active NameNode.

The shell fencing method runs an arbitrary shell command:

<property>
 <name>dfs.ha.fencing.methods</name>
 <value>shell(/path/to/my/script.sh arg1 arg2 ...)</value>
</property>

The string between '(' and ')' is passed directly to a bash shell and may not include any
closing parentheses.

The shell command will be run with an environment set up to contain all of the
current Hadoop configuration variables, with the '_' character replacing any '.'
characters in the configuration keys. The configuration used has already had any
namenode-specific configurations promoted to their generic forms -- for example
dfs_namenode_rpc-address will contain the RPC address of the target node,
even though the configuration may specify that variable as dfs.namenode.rpc-
address.ns1.nn1.

Additionally, the following variables (referring to the target node to be fenced) are
also available:

• $target_host: Hostname of the node to be fenced

• $target_port: IPC port of the node to be fenced

• $target_address: The combination of $target_host and $target_port as
host:port

• $target_nameserviceid: The nameservice ID of the NN to be fenced

• $target_namenodeid: The namenode ID of the NN to be fenced

These environment variables may also be used as substitutions in the shell command.
For example:

<property>
 <name>dfs.ha.fencing.methods</name>

Hortonworks Data Platform September 30, 2015

43

 <value>shell(/path/to/my/script.sh --nameservice=$target_nameserviceid
 $target_host:$target_port)</value>
</property>

If the shell command returns an exit code of 0, the fencing is successful.

Note

This fencing method does not implement any timeout. If timeouts are
necessary, they should be implemented in the shell script itself (for
example, by forking a subshell to kill its parent in some number of
seconds).

• fs.defaultFS The default path prefix used by the Hadoop FS client. Optionally, you may
now configure the default path for Hadoop clients to use the new HA-enabled logical
URI. For example, for mycluster nameservice ID, this will be the value of the authority
portion of all of your HDFS paths. Configure this property in the core-site.xml file:

<property>
 <name>fs.defaultFS</name>
 <value>hdfs://mycluster</value>
</property>

• dfs.journalnode.edits.dir This is the absolute path on the JournalNode machines
where the edits and other local state (used by the JNs) will be stored. You may only
use a single path for this configuration. Redundancy for this data is provided by either
running multiple separate JournalNodes or by configuring this directory on a locally-
attached RAID array. For example:

<property>
 <name>dfs.journalnode.edits.dir</name>
 <value>/path/to/journal/node/local/data</value>
</property>

Note

See "Creating Service Principals and Keytab files for HDP" in the "Setting
Up Security for Manual Installs" chapter of the Installing HDP Manually for
instructions on configuring Kerberos-based security for Highly Available
clusters.

5.3.2. Deploy NameNode HA Cluster

In this section, we use NN1 to denote the original NameNode in the non-HA setup, and
NN2 to denote the other NameNode that is to be added in the HA setup.

Note

HA clusters reuse the nameservice ID to identify a single HDFS instance (that
may consist of multiple HA NameNodes).

A new abstraction called NameNode ID is added with HA. Each NameNode in
the cluster has a distinct NameNode ID to distinguish it.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_installing_manually_book/content/ch_getting_ready_chapter.html

Hortonworks Data Platform September 30, 2015

44

To support a single configuration file for all of the NameNodes, the relevant
configuration parameters are suffixed with both the nameservice ID and the
NameNode ID.

1. Start the JournalNode daemons on those set of machines where the JNs are deployed.
On each machine, execute the following command:

su –l hdfs –c "/usr/hdp/current/hadoop-hdfs-journalnode/../hadoop/sbin/
hadoop-daemon.sh start journalnode"

2. Wait for the daemon to start on each of the JN machines.

3. Initialize JournalNodes.

• At the NN1 host machine, execute the following command:

su –l hdfs –c "hdfs namenode -initializeSharedEdits -force"

This command formats all the JournalNodes. This by default happens in an interactive
way: the command prompts users for “Y/N” input to confirm the format. You can skip
the prompt by using option -force or -nonInteractive.

It also copies all the edits data after the most recent checkpoint from the edits
directories of the local NameNode (NN1) to JournalNodes.

• At the host with the journal node (if it is separated from the primary host), execute
the following command:

su –l hdfs –c "hdfs namenode -initializeSharedEdits -force"

• Initialize HA state in ZooKeeper. Execute the following command on NN1:

hdfs zkfc -formatZK -force

This command creates a znode in ZooKeeper. The failover system stores uses this
znode for data storage.

• Check to see if ZooKeeper is running. If not, start ZooKeeper by executing the
following command on the ZooKeeper host machine(s).

su - zookeeper -c "export ZOOCFGDIR=/usr/hdp/current/zookeeper-server/
conf ; export ZOOCFG=zoo.cfg; source /usr/hdp/current/zookeeper-server/
conf/zookeeper-env.sh ; /usr/hdp/current/zookeeper-server/bin/zkServer.sh
 start"

• At the standby namenode host, execute the following command:

su -l hdfs -c "hdfs namenode -bootstrapStandby -force"

4. Start NN1. At the NN1 host machine, execute the following command:

su -l hdfs -c "/usr/hdp/current/hadoop-hdfs-namenode/../hadoop/sbin/hadoop-
daemon.sh start namenode"

Make sure that NN1 is running correctly.

Hortonworks Data Platform September 30, 2015

45

5. Format NN2 and copy the latest checkpoint (FSImage) from NN1 to NN2 by executing
the following command:

su -l hdfs -c "hdfs namenode -bootstrapStandby -force"

This command connects with HH1 to get the namespace metadata and the
checkpointed fsimage. This command also ensures that NN2 receives sufficient
editlogs from the JournalNodes (corresponding to the fsimage). This command fails if
JournalNodes are not correctly initialized and cannot provide the required editlogs.

6. Start NN2. Execute the following command on the NN2 host machine:

su -l hdfs -c "/usr/hdp/current/hadoop-hdfs-namenode/../hadoop/sbin/hadoop-
daemon.sh start namenode"

Ensure that NN2 is running correctly.

7. Start DataNodes. Execute the following command on all the DataNodes:

su -l hdfs -c "/usr/hdp/current/hadoop-hdfs-datanode/../hadoop/sbin/hadoop-
daemon.sh start datanode"

8. Validate the HA configuration.

Go to the NameNodes' web pages separately by browsing to their configured HTTP
addresses. Under the configured address label, you should see that HA state of the
NameNode. The NameNode can be either in "standby" or "active" state.

Note

The HA NameNode is initially in the Standby state after it is bootstrapped.
You can also use either JMX (tag.HAState) to query the HA state of a
NameNode. The following command can also be used to query the HA state
of a NameNode:

hdfs haadmin -getServiceState

9. Transition one of the HA NameNode to Active state.

Initially, both NN1 and NN2 are in Standby state. Therefore you must transition one
of the NameNode to Active state. This transition can be performed using one of the
following options:

Hortonworks Data Platform September 30, 2015

46

• Option I - Using CLI Use the command line interface (CLI) to transition one of the
NameNode to Active State. Execute the following command on that NameNode host
machine:

hdfs haadmin -failover --forcefence --forceactive <serviceId> <namenodeId>

For more information on the haadmin command, see "Appendix: Administrative
Commands."

• Option II - Deploying Automatic Failover You can configure and deploy automatic
failover using the instructions provided in Configure and Deploy NameNode
Automatic Failover.

5.3.3. Deploy Hue with an HA Cluster

If you are going to use Hue with an HA Cluster, make the following changes to /etc/hue/
conf/hue.ini:

1. Install the Hadoop HttpFS component on the Hue server.

For RHEL/CentOS/Oracle Linux:

yum install hadoop-httpfs

For SLES:

yum install hadoop-httpfs

2. Modify /etc/hadoop-httpfs/conf/httpfs-env.sh to add the JDK path. In the
file, ensure that JAVA_HOME is set:

export JAVA_HOME=/usr/jdk64/jdk1.7.0_67

3. Configure the HttpFS service script for use by setting up the symlink in /etc/init.d:

> ln -s /usr/hdp/{HDP2.3.x version number}/etc/rc.d/init.d/
hadoop-httpfs /etc/init.d/hadoop-httpfs

For example, {HDP2.3.x version number} could be '2.3.2.0-2950'.

4. Modify /etc/hadoop-httpfs/conf/httpfs-site.xml to configure HttpFS to talk
to the cluster, by confirming that the following properties are correct:

<property>
 <name>httpfs.proxyuser.hue.hosts</name>
 <value>*</value>
</property>

<property>
 <name>httpfs.proxyuser.hue.groups</name>
 <value>*</value>
</property>

5. Start the HttpFS service.

service hadoop-httpfs start

Hortonworks Data Platform September 30, 2015

47

6. Modify the core-site.xml file. On the NameNodes and all the DataNodes, add
the following properties to the $HADOOP_CONF_DIR /core-site.xml file, where
$HADOOP_CONF_DIR is the directory for storing the Hadoop configuration files. For
example, /etc/hadoop/conf.

<property>
 <name>hadoop.proxyuser.httpfs.groups</name>
 <value>*</value>
</property>

<property>
 <name>hadoop.proxyuser.httpfs.hosts</name>
 <value>*</value>
</property>

7. In the hue.ini file, under the [hadoop][[hdfs_clusters]][[[default]]]
subsection, use the following variables to configure the cluster:

Property Description Example

fs_defaultfs NameNode URL using the
logical name for the new name
service. For reference, this is
the dfs.nameservices property
in hdfs-site.xml in your Hadoop
configuration.

hdfs://mycluster

webhdfs_url URL to the HttpFS server. http://c6401.apache.org:14000/
webhdfs/v1/

8. Restart Hue for the changes to take effect.

service hue restart

5.3.4. Deploy Oozie with an HA Cluster

You can configure multiple Oozie servers against the same database to provide High
Availability (HA) for the Oozie service. You need the following prerequisites:

• A database that supports multiple concurrent connections. In order to have full HA, the
database should also have HA support, or it becomes a single point of failure.

Note

The default derby database does not support this.

• A ZooKeeper ensemble. Apache ZooKeeper is a distributed, open-source coordination
service for distributed applications; the Oozie servers use it for coordinating access to the
database and communicating with each other. In order to have full HA, there should be
at least 3 ZooKeeper servers. Find more information about ZooKeeper here.

• Multiple Oozie servers.

Important

While not strictly required, you should configure all ZooKeeper servers to
have identical properties.

http://zookeeper.apache.org/

Hortonworks Data Platform September 30, 2015

48

• A Loadbalancer, Virtual IP, or Round-Robin DNS. This is used to provide a single entry-
point for users and for callbacks from the JobTracker. The load balancer should be
configured for round-robin between the Oozie servers to distribute the requests. Users
(using either the Oozie client, a web browser, or the REST API) should connect through
the load balancer. In order to have full HA, the load balancer should also have HA
support, or it becomes a single point of failure. For information about how to set up your
Oozie servers to handle failover, see Configuring Oozie Failover.

5.4. Operating a NameNode HA cluster
• While operating an HA cluster, the Active NameNode cannot commit a transaction if it

cannot write successfully to a quorum of the JournalNodes.

• When restarting an HA cluster, the steps for initializing JournalNodes and NN2 can be
skipped.

• Start the services in the following order:

1. JournalNodes

2. NameNodes

Note

Verify that the ZKFailoverController (ZKFC) process on each node is
running so that one of the NameNodes can be converted to active state.

3. DataNodes

• In a NameNode HA cluster, the following dfs admin command options will run only on
the active NameNode:

-rollEdits
-setQuota
-clrQuota
-setSpaceQuota
-clrSpaceQuota
-setStoragePolicy
-getStoragePolicy
-finalizeUpgrade
-rollingUpgrade
-printTopology
-allowSnapshot <snapshotDir>
-disallowSnapshot <snapshotDir>

The following dfs admin command options will run on both the active and standby
NameNodes:

-safemode enter
-saveNamespace
-restoreFailedStorage
-refreshNodes
-refreshServiceAcl
-refreshUserToGroupsMappings
-refreshSuperUserGroupsConfiguration

Hortonworks Data Platform September 30, 2015

49

-refreshCallQueue
-metasave
-setBalancerBandwidth

The -refresh <host:ipc_port> <key> arg1..argn command will be sent to
the corresponding host according to its command arguments.

The -fetchImage <local directory> command attempts to identify the active
NameNode through a RPC call, and then fetch the fsimage from that NameNode. This
means that usually the fsimage is retrieved from the active NameNode, but it is not
guaranteed because a failover can happen between the two operations.

The following dfs admin command options are sent to the DataNodes:

-refreshNamenodes
-deleteBlockPool
-shutdownDatanode <datanode_host:ipc_port> upgrade
-getDatanodeInfo <datanode_host:ipc_port>

5.5. Configure and Deploy NameNode Automatic
Failover

The preceding sections describe how to configure manual failover. In that mode, the
system will not automatically trigger a failover from the active to the standby NameNode,
even if the active node has failed. This section describes how to configure and deploy
automatic failover.

Automatic failover adds following components to an HDFS deployment

• ZooKeeper quorum

• ZKFailoverController process (abbreviated as ZKFC).

The ZKFailoverController (ZKFC) is a ZooKeeper client that monitors and manages the state
of the NameNode. Each of the machines which run NameNode service also runs a ZKFC.
ZKFC is responsible for:

• Health monitoring: ZKFC periodically pings its local NameNode with a health-check
command.

• ZooKeeper session management: When the local NameNode is healthy, the ZKFC holds
a session open in ZooKeeper. If the local NameNode is active, it also holds a special "lock"
znode. This lock uses ZooKeeper's support for "ephemeral" nodes; if the session expires,
the lock node will be automatically deleted.

• ZooKeeper-based election: If the local NameNode is healthy and no other node currently
holds the lock znode, ZKFC will try to acquire the lock. If ZKFC succeeds, then it has "won
the election" and will be responsible for running a failover to make its local NameNode
active. The failover process is similar to the manual failover described above: first, the
previous active is fenced if necessary and then the local NameNode transitions to active
state.

Hortonworks Data Platform September 30, 2015

50

5.5.1. Prerequisites
Complete the following prerequisites:

• Make sure that you have a working ZooKeeper service. If you had an Ambari deployed
HDP cluser with ZooKeeper, you can use that. If not, deploy ZooKeeper using the
instructions provided in the Non-Ambari Cluster Installation Guide.

Note

In a typical deployment, ZooKeeper daemons are configured to run on
three or five nodes. It is however acceptable to co-locate the ZooKeeper
nodes on the same hardware as the HDFS NameNode and Standby Node.
Many operators choose to deploy the third ZooKeeper process on the same
node as the YARN ResourceManager. To achieve performance and improve
isolation, Hortonworks recommends configuring the ZooKeeper nodes such
that the ZooKeeper data and HDFS metadata is stored on separate disk
drives.

• Shut down your HA cluster (configured for manual failover) using the instructions
provided in " Controlling HDP Services Manually," in the HDP Reference Guide.

Currently, you cannot transition from a manual failover setup to an automatic failover
setup while the cluster is running.

5.5.2. Instructions
Complete the following instructions:

1. Configure automatic failover.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html

Hortonworks Data Platform September 30, 2015

51

• Set up your cluster for automatic failover. Add the following property to the the hdfs-
site.xml file for both the NameNode machines:

<property>
 <name>dfs.ha.automatic-failover.enabled</name>
 <value>true</value>
 </property>

• List the host-port pairs running the ZooKeeper service. Add the following property to
the the core-site.xml file for both the NameNode machines:

<property>
 <name>ha.zookeeper.quorum</name>
 <value>zk1.example.com:2181,zk2.example.com:2181,
 zk3.example.com:2181</value>
</property>

Note

Suffix the configuration key with the nameservice ID to configure the
above settings on a per-nameservice basis. For example, in a cluster
with federation enabled, you can explicitly enable automatic failover
for only one of the nameservices by setting dfs.ha.automatic-
failover.enabled.$my-nameservice-id.

2. Initialize HA state in ZooKeeper.

Execute the following command on NN1:

hdfs zkfc -formatZK -force

This command creates a znode in ZooKeeper. The automatic failover system stores uses
this znode for data storage.

3. Check to see if ZooKeeper is running. If not, start ZooKeeper by executing the following
command on the ZooKeeper host machine(s).

su - zookeeper -c "export ZOOCFGDIR=/usr/hdp/current/zookeeper-server/
conf ; export ZOOCFG=zoo.cfg; source /usr/hdp/current/zookeeper-server/conf/
zookeeper-env.sh ; /usr/hdp/current/zookeeper-server/bin/zkServer.sh start"

4. Start the JournalNodes, NameNodes, and DataNodes using the instructions provided in
"Controlling HDP Services Manually," in the HDP Reference Guide.

5. Start the ZooKeeper Failover Controller (ZKFC) by executing the following command:

su -l hdfs -c "/usr/hdp/current/hadoop-hdfs-namenode/../hadoop/sbin/hadoop-
daemon.sh start zkfc"

The sequence of starting ZKFC determines which NameNode will become Active. For
example, if ZKFC is started on NN1 first, it will cause NN1 to become Active.

Hortonworks Data Platform September 30, 2015

52

Note

To convert a non-HA cluster to an HA cluster, Hortonworks recommends
that you run the bootstrapStandby command (this command is used to
initialize NN2) before you start ZKFC on any of the NameNode machines.

6. Verify automatic failover.

a. Locate the Active NameNode.

Use the NameNode web UI to check the status for each NameNode host machine.

b. Cause a failure on the Active NameNode host machine.

For example, you can use the following command to simulate a JVM crash:

kill -9 $PID_of_Active_NameNode

Or, you could power cycle the machine or unplug its network interface to simulate
outage.

c. The Standby NameNode should now automatically become Active within several
seconds.

Note

The amount of time required to detect a failure and trigger a failover
depends on the configuration of ha.zookeeper.session-timeout.ms
property (default value is 5 seconds).

d. If the test fails, your HA settings might be incorrectly configured.

Check the logs for the zkfc daemons and the NameNode daemons to diagnose the
issue.

5.5.3. Configuring Oozie Failover

1. Set up your database for High Availability. (For details, see the documentation for your
Oozie database.)

Oozie database configuration properties may need special configuration. (For details,
see the JDBC driver documentation for your database.)

2. Configure Oozie identically on two or more servers.

3. Set the OOZIE_HTTP_HOSTNAME variable in oozie-env.sh to the Load Balancer or
Virtual IP address.

4. Start all Oozie servers.

5. Use either a Virtual IP Address or Load Balancer to direct traffic to Oozie servers.

6. Access Oozie via the Virtual IP or Load Balancer address.

Hortonworks Data Platform September 30, 2015

53

5.6. Appendix: Administrative Commands
The subcommands of hdfs haadmin are extensively used for administering an HA cluster.

Running the hdfs haadmin command without any additional arguments will display the
following usage information:

Usage: DFSHAAdmin [-ns <nameserviceId>]
 [-transitionToActive <serviceId>]
 [-transitionToStandby <serviceId>]
 [-failover [--forcefence] [--forceactive] <serviceId> <serviceId>]
 [-getServiceState <serviceId>]
 [-checkHealth <serviceId>]
 [-help <command>

This section provides high-level uses of each of these subcommands.

• transitionToActive and transitionToStandby: Transition the state of the given
NameNode to Active or Standby.

These subcommands cause a given NameNode to transition to the Active or Standby
state, respectively. These commands do not attempt to perform any fencing, and
thus should be used rarely. Instead, Hortonworks recommends using the following
subcommand:

hdfs haadmin -failover

• failover: Initiate a failover between two NameNodes.

This subcommand causes a failover from the first provided NameNode to the second.

• If the first NameNode is in the Standby state, this command transitions the second to
the Active state without error.

• If the first NameNode is in the Active state, an attempt will be made to gracefully
transition it to the Standby state. If this fails, the fencing methods (as configured by
dfs.ha.fencing.methods) will be attempted in order until one succeeds. Only
after this process will the second NameNode be transitioned to the Active state. If the
fencing methods fail, the second NameNode is not transitioned to Active state and an
error is returned.

• getServiceState: Determine whether the given NameNode is Active or Standby.

This subcommand connects to the provided NameNode, determines its current state, and
prints either "standby" or "active" to STDOUT appropriately. This subcommand might be
used by cron jobs or monitoring scripts.

• checkHealth: Check the health of the given NameNode.

This subcommand connects to the NameNode to check its health. The NameNode is
capable of performing some diagnostics that include checking if internal services are
running as expected. This command will return 0 if the NameNode is healthy else it will
return a non-zero code.

Hortonworks Data Platform September 30, 2015

54

Note

This subcommand is in implementation phase and currently always returns
success unless the given NameNode is down.

Hortonworks Data Platform September 30, 2015

55

6. Resource Manager High Availability
This guide provides instructions on setting up the ResourceManager (RM) High Availability
(HA) feature in a HDFS cluster. The Active and Standby ResourceManagers embed the
ZooKeeper-based ActiveStandbyElector to determine which ResourceManager should be
active.

Note

This guide assumes that an existing HDP cluster has been manually installed and
deployed. It provides instructions on how to manually enable ResourceManager
HA on top of the existing cluster.

The ResourceManager was a single point of failure (SPOF) in an HDFS cluster. Each cluster
had a single ResourceManager, and if that machine or process became unavailable, the
entire cluster would be unavailable until the ResourceManager was either restarted or
started on a separate machine. This situation impacted the total availability of the HDFS
cluster in two major ways:

• In the case of an unplanned event such as a machine crash, the cluster would be
unavailable until an operator restarted the ResourceManager.

• Planned maintenance events such as software or hardware upgrades on the
ResourceManager machine would result in windows of cluster downtime.

The ResourceManager HA feature addresses these problems. This feature enables you to
run redundant ResourceManagers in the same cluster in an Active/Passive configuration
with a hot standby. This mechanism thus facilitates either a fast failover to the standby
ResourceManager during machine crash, or a graceful administrator-initiated failover
during planned maintenance.

6.1. Hardware Resources
Ensure that you prepare the following hardware resources:

• ResourceManager machines: The machines where you run Active and Standby
ResourceManagers should have exactly the same hardware. For recommended hardware
for ResourceManagers, see "Hardware for Master Nodes" in the Cluster Planning Guide.

• ZooKeeper machines: For automated failover functionality, there must be an existing
ZooKeeper cluster available. The ZooKeeper service nodes can be co-located with other
Hadoop daemons.

6.2. Deploy ResourceManager HA Cluster
HA configuration is backward-compatible and works with your existing single
ResourceManager configuration.

As described in the following sections, first configure manual or automatic
ResourceManager failover. Then deploy the ResourceManager HA cluster.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_cluster-planning-guide/index.html

Hortonworks Data Platform September 30, 2015

56

6.2.1. Configure Manual or Automatic ResourceManager
Failover

Prerequisites

Complete the following prerequisites:

• Make sure that you have a working ZooKeeper service. If you had an Ambari deployed
HDP cluster with ZooKeeper, you can use that ZooKeeper service. If not, deploy
ZooKeeper using the instructions provided in the Non-Ambari Cluster Installation Guide.

Note

In a typical deployment, ZooKeeper daemons are configured to run on
three or five nodes. It is, however, acceptable to co-locate the ZooKeeper
nodes on the same hardware as the HDFS NameNode and Standby Node.
Many operators choose to deploy the third ZooKeeper process on the same
node as the YARN ResourceManager. To achieve performance and improve
isolation, Hortonworks recommends configuring the ZooKeeper nodes such
that the ZooKeeper data and HDFS metadata is stored on separate disk
drives.

• Shut down the cluster using the instructions provided in "Controlling HDP Services
Manually," in the HDP Reference Guide.

Set Common ResourceManager HA Properties

The following properties are required for both manual and automatic ResourceManager
HA. Add these properties to the etc/hadoop/conf/yarn-site.xml file:

Property Name Recommended Value Description

yarn.resourcemanager.
ha.enabled

true Enable RM HA

yarn.resourcemanager.
ha.rm-ids

Cluster-specific, e.g., rm1,rm2 A comma-separated list of
ResourceManager IDs in the cluster.

yarn.resourcemanager.
hostname.<rm-id>

Cluster-specific The host name of the
ResourceManager. Must be set for all
RMs.

yarn.resourcemanager.
recovery.enabled

true Enable job recovery on RM restart or
failover.

yarn.resourcemanager.
store.class

org.apache.hadoop.yarn.
server.resourcemanager.
recovery.ZKRMStateStore

The RMStateStore implementation to
use to store the ResourceManager's
internal state. The ZooKeeper- based
store supports fencing implicitly, i.e.,
allows a single ResourceManager to
make multiple changes at a time, and
hence is recommended.

yarn.resourcemanager .zk-
address

Cluster-specific The ZooKeeper quorum to use to store
the ResourceManager's internal state.
For multiple ZK servers, use commas to
separate multiple ZK servers.

yarn.client.failover-proxy-
provider

org.apache.hadoop.yarn.
client.
ConfiguredRMFailover
ProxyProvider

When HA is enabled, the class to be
used by Clients, AMs and NMs to
failover to the Active RM. It should
extend

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html

Hortonworks Data Platform September 30, 2015

57

Property Name Recommended Value Description

org.apache.hadoop.yarn.
client.RMFailoverProxyProvider

This is an optional configuration.
The default value is
“org.apache.hadoop.yarn.client.
ConfiguredRMFailoverProxyProvider”

Note

You can also set values for each of the following properties in yarn-
site.xml:

yarn.resourcemanager.address.<rm#id>
yarn.resourcemanager.scheduler.address.<rm#id>
yarn.resourcemanager.admin.address.<rm#id>
yarn.resourcemanager.resource#tracker.address.<rm#id>
yarn.resourcemanager.webapp.address.<rm#id>

If these addresses are not explicitly set, each of these properties will use

yarn.resourcemanager.hostname.<rm-id>:default_port

such as DEFAULT_RM_PORT, DEFAULT_RM_SCHEDULER_PORT, etc.

The following is a sample yarn-site.xml file with these common ResourceManager
HA properties configured:

<!-- RM HA Configurations-->

<property>
 <name>yarn.resourcemanager.ha.enabled</name>
 <value>true</value>
</property>

<property>
 <name>yarn.resourcemanager.ha.rm-ids</name>
 <value>rm1,rm2</value>
</property>

<property>
 <name>yarn.resourcemanager.hostname.rm1</name>
 <value>${rm1 address}</value>
</property>

<property>
 <name>yarn.resourcemanager.hostname.rm2</name>
 <value>${rm2 address}</value>
</property>

<property>
 <name>yarn.resourcemanager.webapp.address.rm1</name>
 <value>rm1_web_address:port_num</value>
 <description>We can set rm1_web_address separately.
 If not, it will use
 ${yarn.resourcemanager.hostname.rm1}:DEFAULT_RM_WEBAPP_PORT
 </description>
</property>

Hortonworks Data Platform September 30, 2015

58

<property>
 <name>yarn.resourcemanager.webapp.address.rm2</name>
 <value>rm2_web_address:port_num</value>
</property>

<property>
 <name>yarn.resourcemanager.recovery.enabled</name>
 <value>true</value>
</property>

<property>
 <name>yarn.resourcemanager.store.class</name>
 <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.
 ZKRMStateStore</value>
</property>

<property>
 <name>yarn.resourcemanager.zk-address</name>
 <value>${zk1.address,zk2.address}</value>
</property>

<property>
 <name>yarn.client.failover-proxy-provider</name>
 <value>org.apache.hadoop.yarn.client.
 ConfiguredRMFailoverProxyProvider</value>
</property>

Configure Manual ResourceManager Failover

Automatic ResourceManager failover is enabled by default, so it must be disabled for
manual failover.

To configure manual failover for ResourceManager HA, add the
yarn.resourcemanager.ha.automatic-failover.enabled configuration property to the etc/
hadoop/conf/yarn-site.xml file, and set its value to "false":

<property>
 <name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
 <value>false</value>
</property>

Configure Automatic ResourceManager Failover

The preceding section described how to configure manual failover. In that mode,
the system will not automatically trigger a failover from the active to the standby
ResourceManager, even if the active node has failed. This section describes how to
configure automatic failover.

1. Add the following configuration options to the yarn-site.xml file:

Property Name Recommended Value Description

yarn.resourcemanager.ha.
automatic-failover.zk-base-
path

/yarn-leader-election The base znode path to use
for storing leader information,
when using ZooKeeper-based
leader election. This is an optional
configuration. The default value is

/yarn-leader-election

Hortonworks Data Platform September 30, 2015

59

Property Name Recommended Value Description

yarn.resourcemanager.
cluster-id

yarn-cluster The name of the cluster. In a HA
setting, this is used to ensure the RM
participates in leader election for this
cluster, and ensures that it does not
affect other clusters.

Example:

<property>
 <name>yarn.resourcemanager.ha.automatic-failover.zk-base-path</name>
 <value>/yarn-leader-election</value>
 <description>Optional setting. The default value is
 /yarn-leader-election</description>
</property>

<property>
 <name>yarn.resourcemanager.cluster-id</name>
 <value>yarn-cluster</value>
</property>

2. Automatic ResourceManager failover is enabled by default.

If you previously configured manual ResourceManager failover by setting the value of
yarn.resourcemanager.ha.automatic-failover.enabled to "false", you must
delete this property to return automatic failover to its default enabled state.

6.2.2. Deploy the ResourceManager HA Cluster

1. Copy the etc/hadoop/conf/yarn-site.xml file from the primary
ResourceManager host to the standby ResourceManager host.

2. Make sure that the clientPort value set in etc/zookeeper/conf/zoo.cfg
matches the port set in the following yarn-site.xml property:

<property>
 <name>yarn.resourcemanager.zk-state-store.address</name>
 <value>localhost:2181</value>
</property>

3. Start ZooKeeper. Execute this command on the ZooKeeper host machine(s):

su - zookeeper -c "export ZOOCFGDIR=/usr/hdp/current/zookeeper-server/
conf ; export ZOOCFG=zoo.cfg; source /usr/hdp/current/zookeeper-server/conf/
zookeeper-env.sh ; /usr/hdp/current/zookeeper-server/bin/zkServer.sh start"

4. Start HDFS using the instructions provided in "Controlling HDP Services Manually," in the
HDP Reference Guide.

5. Start YARN using the instructions provided in "Controlling HDP Services Manually," in the
HDP Reference Guide.

6. Set the active ResourceManager:

MANUAL FAILOVER ONLY: If you configured manual ResourceManager failover, you
must transition one of the ResourceManagers to Active mode. Execute the following CLI
command to transition ResourceManager "rm1" to Active:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html

Hortonworks Data Platform September 30, 2015

60

yarn rmadmin -transitionToActive rm1

You can use the following CLI command to transition ResourceManager "rm1" to
Standby mode:

yarn rmadmin -transitionToStandby rm1

AUTOMATIC FAILOVER: If you configured automatic ResourceManager failover, no
action is required -- the Active ResourceManager will be chosen automatically.

7. Start all remaining unstarted cluster services using the instructions provided in
"Controlling HDP Services Manually," in the HDP Reference Guide.

6.2.3. Minimum Settings for Automatic ResourceManager
HA Configuration

The minimum yarn-site.xml configuration settings for ResourceManager HA with
automatic failover are as follows:

<property>
 <name>yarn.resourcemanager.ha.enabled</name>
 <value>true</value>
</property>

<property>
 <name>yarn.resourcemanager.ha.rm-ids</name>
 <value>rm1,rm2</value>
</property>

<property>
 <name>yarn.resourcemanager.hostname.rm1</name>
 <value>192.168.1.9</value>
</property>

<property>
 <name>yarn.resourcemanager.hostname.rm2</name>
 <value>192.168.1.10</value>
</property>

<property>
 <name>yarn.resourcemanager.recovery.enabled</name>
 <value>true</value>
</property>

<property>
 <name>yarn.resourcemanager.store.class</name>
 <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.
ZKRMStateStore</value>
</property>

<property>
 <name>yarn.resourcemanager.zk-address</name>
 <value>192.168.1.9:2181,192.168.1.10:2181</value>
 <description>For multiple zk services, separate them with comma</description>
</property>

<property>

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html

Hortonworks Data Platform September 30, 2015

61

 <name>yarn.resourcemanager.cluster-id</name>
 <value>yarn-cluster</value>
</property>

6.2.4. Testing ResourceManager HA on a Single Node

If you would like to test ResourceManager HA on a single node (launch more than one
ResourceManager on a single node), you need to add the following settings in yarn-
site.xml.

To enable ResourceManager "rm1" to launch:

<property>
 <name>yarn.resourcemanager.ha.id</name>
 <value>rm1</value>
 <description>If we want to launch more than one RM in single node, we need
 this configuration</description>
</property>

To enable ResourceManager rm2 to launch:

<property>
 <name>yarn.resourcemanager.ha.id</name>
 <value>rm2</value>
 <description>If we want to launch more than one RM in single node, we need
 this configuration</description>
</property>

You should also explicitly set values specific to each ResourceManager for the following
properties separately in yarn-site.xml:

• yarn.resourcemanager.address.<rm-id>

• yarn.resourcemanager.scheduler.address.<rm-id>

• yarn.resourcemanager.admin.address.<rm-id>

• yarn.resourcemanager.resource#tracker.address.<rm-id>

• yarn.resourcemanager.webapp.address.<rm-id>

For example:

<!-- RM1 Configs -->

<property>
 <name>yarn.resourcemanager.address.rm1</name>
 <value>localhost:23140</value>
</property>

<property>
 <name>yarn.resourcemanager.scheduler.address.rm1</name>
 <value>localhost:23130</value>
</property>

<property>
 <name>yarn.resourcemanager.webapp.address.rm1</name>
 <value>localhost:23188</value>

Hortonworks Data Platform September 30, 2015

62

</property>

<property>
 <name>yarn.resourcemanager.resource-tracker.address.rm1</name>
 <value>localhost:23125</value>
</property>

<property>
 <name>yarn.resourcemanager.admin.address.rm1</name>
 <value>localhost:23141</value>
</property>

<!-- RM2 configs -->
<property>
 <name>yarn.resourcemanager.address.rm2</name>
 <value>localhost:33140</value>
</property>

<property>
 <name>yarn.resourcemanager.scheduler.address.rm2</name>
 <value>localhost:33130</value>
</property>

<property>
 <name>yarn.resourcemanager.webapp.address.rm2</name>
 <value>localhost:33188</value>
</property>

<property>
 <name>yarn.resourcemanager.resource-tracker.address.rm2</name>
 <value>localhost:33125</value>
</property>

<property>
 <name>yarn.resourcemanager.admin.address.rm2</name>
 <value>localhost:33141</value>
</property>

	Hortonworks Data Platform
	Table of Contents
	1. High Availability for Hive Metastore
	1.1. Use Cases and Failover Scenarios
	1.2. Software Configuration
	1.2.1. Install HDP
	1.2.2. Update the Hive Metastore
	1.2.3. Validate configuration

	2. Deploying Multiple HiveServer2 Instances for High Availability
	2.1. Adding an Additional HiveServer2 to Your Cluster Manually
	2.2. Adding an Additional HiveServer2 to a Cluster with Ambari

	3. HiveServer2 High Availability via ZooKeeper
	3.1. How ZooKeeper Manages HiveServer2 Requests
	3.2. Dynamic Service Discovery Through ZooKeeper
	3.3. Rolling Upgrade for HiveServer2 Through ZooKeeper

	4. Highly Available Reads with HBase
	4.1. Introduction to HBase High Availability
	4.2. Propagating Writes to Region Replicas
	4.3. Timeline Consistency
	4.4. Configuring HA Reads for HBase
	4.5. Creating Highly-Available HBase Tables
	4.6. Querying Secondary Regions
	4.7. Monitoring Secondary Region Replicas
	4.8. HBase Cluster Replication for Geographic Data Distribution
	4.8.1. HBase Cluster Replication Overview
	4.8.1.1. HBase Cluster Topologies

	4.8.2. Managing and Configuring HBase Cluster Replication
	4.8.3. Verifying Replicated HBase Data
	4.8.4. HBase Cluster Replication Details
	4.8.4.1. Spreading Queue Failover Load
	4.8.4.2. Preserving Tags During Replication
	4.8.4.3. HBase Replication Internals
	4.8.4.4. Choosing Region Servers to Replicate to
	4.8.4.5. Keeping Track of Logs
	4.8.4.6. Reading, Filtering, and Sending Edits
	4.8.4.7. Cleaning Logs
	4.8.4.8. Region Server Failover

	4.8.5. HBase Replication Metrics
	4.8.6. Replication Configuration Options
	4.8.7. Monitoring Replication Status

	5. Namenode High Availability
	5.1. Architecture
	5.2. Hardware Resources
	5.3. Deploy NameNode HA Cluster
	5.3.1. Configure NameNode HA Cluster
	5.3.2. Deploy NameNode HA Cluster
	5.3.3. Deploy Hue with an HA Cluster
	5.3.4. Deploy Oozie with an HA Cluster

	5.4. Operating a NameNode HA cluster
	5.5. Configure and Deploy NameNode Automatic Failover
	5.5.1. Prerequisites
	5.5.2. Instructions
	5.5.3. Configuring Oozie Failover

	5.6. Appendix: Administrative Commands

	6. Resource Manager High Availability
	6.1. Hardware Resources
	6.2. Deploy ResourceManager HA Cluster
	6.2.1. Configure Manual or Automatic ResourceManager Failover
	6.2.2. Deploy the ResourceManager HA Cluster
	6.2.3. Minimum Settings for Automatic ResourceManager HA Configuration
	6.2.4. Testing ResourceManager HA on a Single Node

