Hortonworks Data Platform
Data Governance Guide

(March 1, 2016)

http://docs.cloudera.com

Hortonworks Data Platform March 1, 2016

Hortonworks Data Platform: Data Governance Guide
Copyright © 2012-2016 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

@ @ Except where otherwise noted, this document is licensed under
@ Creative Commons Attribution ShareAlike 4.0 License.
BY SA

http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks Data Platform March 1, 2016

Table of Contents

1. HDP Data GOVEINANCEiiiiieiiieii ettt et et e e e e e e e e e s e e e s e e e e e rernaaennanans 1

1.7, FalCON OVEIVIEW ... s 1

1.2, Atlas OVEIVIEW ...ttt e e e e et e e e e e e e eeeaae e e eeas 2

2. Data Pipelin@s (FAlCON) e 4

2.1. Understanding Data PIipelinescccooiiiiiiiiiieee e 4

2.2. Quick Start: Using the Falcon Web Ul to Define Data Pipelinesuuuveeeneee 5

2.2.1. Creating a Cluster ENtityccooviiiiiiiiiiiiii 7

2.2.2. Creating a Feed ENtityooooviiiiiiiii 9

2.2.3. Creating a Process ENTitYccooeeeieieieieeeeeeeeeeeee e 11

2.3. Search For and Manage Data Pipeline Entitiesccccceviiiiiiiiiiiiine, 13

2.4. Mirroring Data (FalCON)ooooeiiiiieie e 14

2.5. Using the Falcon CLI to Define Data Pipelinescccoiiiiiiiiiiiiiie 16

2.5.1. Deploying Data Pipelinesuuuuumummmmimimiiiiiiiiiii 19

2.5.2. Replicating Data (Falcon)ccoooeieiiieieeeeeee e 20

2.5.3. Viewing Alerts in Falcon ... 27

2.5.4. Late Data Handlingoooooiiiiiiiiii 28

2.5.5. Setting a Retention POlICYcceeiiiiiiiiiiiimiiiiiiiiiieeeeeeeeeeeeeeeeee e 29

2.5.6. Setting @ Retry POlICY ... 29

2.5.7. Enabling Email Notificationsccccuumimimiiiiiiiiiii 30

2.6. Understanding Dependencies in FalCoNuuueeuiiiiiiiiiiiiiiiiieiiiieeeieeeeeeeeeeeee 31

2.7. Viewing DePENTENCIESuuuuuuiuii e 31

3. Metadata Services Framework (Atlas) ... 33

3.1. Understanding the HDP Metadata Services Frameworkccccevviiiiiinnnnnnne. 33

3.2. Using the Atlas Web Ul to Search Metadataccooeviiiiiiiiiiiiiiii, 34

4. Reference (FAlCON) ... e e e e e e e e e e e e eeennaas 38

I I @ [=Y P 38

4.1.1. Valid Cluster Tag Attributesccovviiiiiiiiiiiieee 38

4.1.2. Cluster INterfacesooooeeiiiiiie 38

4.1.3. Cluster XSD SpecifiCationcoeiiiiiiiiiiiie e 38

4.2, Feed ENtity oo 38

4.3, Process ENTitY ...coooeeieiiieeeeeeeeee e 39

4.4. Using the CLI to Manage Entities and Instances ..., 39

4.4.1. Managing Entities with the CLIeuviiiiiiiiiiiiiiiiieees 39

4.4.2. Managing Instances with the CLI ... 40

5. Troubleshooting (FAlCON)coiiiiiiii e e e 41

ST IR (el o T oY TR 41

5.2. Falcon Server Failure ... e e e 41

5.3. Delegation Token RENEWal ISSUESuuuuuuuuuiuiiiiiiiiiiiiiiiiiiieieeeeseeeenseneeessnenenee 41

5.4. Invalid Entity SChemauuuiiii e 41

5.5. INCOITECE ENTItY ...eiieieiiiiie et e e e e e e e e e e ee e e e e e e eeeens 41

5.6. Bad Config StOre Errorcoooeiiiiie e 41

5.7. Unable to set DataSet ENtityccoooeiiiiiiiiie e 42

5.8. 00ZI€ JODS ..eiiiiiiie e 42

6. Configuring High Availability (Falcon Server) ... 43
6.1. Configuring Properties and Setting Up Directory Structure for High

N7 11 =Y o 1 P 43

6.2. Preparing the Falcon SEIrVErs ... 44

6.3. Manually Failing Over the Falcon SErverscccccocuuimiiiiimiiiiiiiieeeeee 44

Hortonworks Data Platform March 1, 2016

7. Metadata Store REST API Reference (Atlas)

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.

... 45
Data MOl ... 45
AAMINRESOUICE ... 45
ENTItYRESOUICE ...ttt e e et e e e e e e e e e e raea e e e aaaeeees 46
HIVELINEAGERESOUICE ...ttt e e 48
MetadataDisCOVErYRESOUICEccoiiiiiiiiiiiie e 48
e =T L €T =T o] a1 3=F Yo 18 ¢ ol 50
TYPESRESOUICE ..ottt e e e e r s e e s e e s 51

Hortonworks Data Platform March 1, 2016

List of Figures

1.1.
1.2.
2.1.
2.2.
2.3.
2.4,
2.5.
2.6.
2.7.
2.8.
2.9.
3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

Falcon Archit@CIUIE ...coeeeeecie e e e e e e e s 2
ATIAS OVEIVIEW .. s 3
Data PIPeliNG .. e e e ee e 4
Data PIpeling FIOWcoooiiiiiiiiiiiiiiiiiiiieiietee ettt 5
Ambari Dashboard Falcon and Oozie Service INdicatorsccoevveuiiiiiiiiniiiiiiiiiieeeee. 6
New Cluster Configuration Dialogccceiiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeee e 8
New Feed Configuration Dialogcocoiiieiiiiieie s 10
New Process Configuration Dialogooooeiiiiiiiiiiiiii e 12
2 [elo) I =Y el o L U 1 P 13
New Mirror Configuration Dialogcoooiiiiiiiiiiii 15
LCT =T o] AT L3V AV o 2 o TR 32
Atlas ArchiteCture ... 33
Enter Tag to Search in Atlas Dashboard ... 35
Click the Tag Link to View Detailscccoiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 35
DTSy = 11 1= o J 36
SCREMA TaD e 36
L@ U o 11 I | o PP 37

Hortonworks Data Platform March 1, 2016

List of Tables

2.1.
2.2.
2.3.
2.4,
2.5.
2.6.
4.1.
4.2,
4.3.
4.4.

Cluster Entity Configuration ValUEseuuueiiiimmiiieeeiiieeeeieeeeeeeeeeneneeenesenenenenenenenes 8
General Feed Configuration Values ... 10
General Process Configuration Valuesccoeeririiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeee e 12
Mirror Configuration Values ... 16
Available Falcon Event AlErtSeueiii i 27
Email Notifications Startup Properties ... 30
Cluster tag €lemMEeNtScoooiiiiiiee e 38
Cluster INTErfacesoooo i 38
ENTITY ACTIONS ..eeiieiiiiiiiiiie et 39

Instance Actions

Vi

Hortonworks Data Platform March 1, 2016

1. HDP Data Governance

Enterprises that adopt modern data architectures with Hadoop must reconcile

data management realities when they bring existing and new data from disparate
platforms under management. As Hadoop is deployed in corporate data and processing
environments, metadata and data governance must be vital parts of any enterprise-ready
data lake to realize true value.

In HDP, the overall management of the data life cycle in the platform is achieved by using
data pipelines, which ingest, move, tag, process, and expire data, and an underlying
flexible metadata store that manages all data for all components of HDP. This underlying
metadata store simplifies data governance for Hadoop because you no longer must create
interfaces to each HDP component. Instead, you can program your third-party governance
applications to access one HDP metadata store that gives you access to all metadata for the
platform.

Data governance in HDP is managed by the following components:

» Apache Falcon: solves enterprise challenges related to Hadoop data replication, business
continuity, and lineage tracing by deploying a framework for data management and
processing. The Falcon framework can also leverage other HDP components, such as Pig,
HDFS, and Oozie. Falcon enables this simplified management by providing a framework
to define, deploy, and manage data pipelines. Data pipelines contain:

¢ A definition of the dataset to be processed.
¢ Interfaces to the Hadoop cluster where the data resides.

¢ A process definition that defines how the data is consumed and invokes processing
logic.

» Apache Atlas: extends Falcon's governance capabilities by adding business taxonomical
and operational metadata. Atlas is a scalable and extensible set of core governance
services that enable enterprises to meet their compliance requirements within the
Hadoop stack and to integrate with their data ecosystem outside HDP. Atlas provides:

* Data classification.
¢ Centralized auditing.
* Search and lineage history.

* Security and policy engines.

1.1. Falcon Overview

Apache Falcon addresses the following data governance requirements and provides a
wizard-like GUI that eliminates hand coding of complex data sets and offers:

* Centrally manage the data lifecycle: Falcon enables you to manage the data lifecyle in
one common place where you can define and manage policies and pipelines for data
ingest, processing, and export.

https://www.hortonworks.com/blog/enterprise-hadoop-journey-data-lake/
https://www.hortonworks.com/blog/enterprise-hadoop-journey-data-lake/

Hortonworks Data Platform

March 1, 2016

¢ Business continuity and disaster recovery: Falcon can replicate HDFS and Hive datasets,
trigger processes for retry, and handle late data arrival logic. In addition, Falcon can
mirror file systems or Hive HCatalog on clusters using recipes that enable to you re-use
complex workflows.

* Address audit and compliance requirements: Falcon provides audit and compliance

features that enable you to visualize data pipeline lineage, track data pipeline audit logs,
and tag data with business metadata.

Figure 1.1. Falcon Architecture

Centralized Falcon Orchestration Framework

v
‘ol T -

2

Data Entity Process
Scheduled Jobs
stewards Specs Status
-
" Hadoop
~admins_~ Oozie
EEEEEN
NN
EEEEEN
HDFS | Hive MapRed / Pig / Hive ! Sqoop /

I Flume ! DistCP

Hadoop ecosystem tools

Falcon can be installed and managed by Apache Ambari, and jobs can be traced through
the native Falcon Ul. Falcon can process data from:

¢ Oozie jobs
* Pig scripts

¢ Hive scripts

1.2. Atlas Overview

Apache Atlas is a low-level service in the Hadoop stack that provides core metadata
services. Initially, Atlas provides metadata services for Hive, but in subsequent releases all
components of HDP will be brought under Atlas metadata manaagement. Atlas provides:

* Knowledge store that leverages existing Hadoop metastores: Categorized into
a business-oriented taxonomy of data sets, objects, tables, and columns. Supports
the exchange of metadata between HDP foundation components and third-party
applications or governance tools.

¢ Data lifecycle management: Leverages existing investment in Apache Falcon with a
focus on provenance, multi-cluster replication, data set retention and eviction, late data
handling, and automation.

¢ Audit store: Historical repository for all governance events, including security events
(access, grant, deny), operational events related to data provenance and metrics. The
Atlas audit store is indexed and searchable for access to governance events.

Hortonworks Data Platform March 1, 2016

¢ Security: Integration with HDP security that enables you to establish global security
policies based on data classifications and that leverages Apache Ranger plug-in
architecture for security policy enforcement.

* Policy engine: Fully extensible policy engine that supports metadata-based, geo-based,
and time-based rules that rationalize at runtime.

¢ RESTful interface: Supports extensibility by way of REST APIs to third-party applications
SO you can use your existing tools to view and manipulate metadata in the HDP
foundation components.

Figure 1.2. Atlas Overview

Retail

Healthcare Financial

S0
Dodd-Frank

PCI
Pl

HIPAS,
HLY

REST API

Services

| - -

Knowledge Store Data Lifecycle

Tag Based

‘ Policies

Audit Store

Real Time Tag Based Access Control

Apache Atlas

Hortonworks Data Platform March 1, 2016

2. Data Pipelines (Falcon)

Data pipelines, which consist of cluster storage location definitions, dataset feeds, and
processing logic can be configured using either the Falcon command-line interface (CLI) or
the web Ul. This topic explains what data pipelines are and how to configure them for data
replication and mirroring. Information for using both the web Ul and the CLI is included.
The CLI commands support automating data pipeline creation.

2.1. Understanding Data Pipelines

A data pipeline consists of a dataset and processing that acts on the dataset across your
HDFS cluster.

Figure 2.1. Data Pipeline

A Falcon Data Pipeline for Hadoop

FEED
(DATASET)

CLUSTER
(COLO)

Each pipeline consists of XML pipeline specifications, called entities. These entities act
together to provide a dynamic flow of information to load, clean, and process data.

There are three types of entities:
¢ Cluster: Defines where data and processes are stored.
¢ Feed: Defines the datasets to be cleaned and processed.

¢ Process: Consumes feeds, invokes processing logic, and produces further feeds. A process
defines the configuration of the Oozie workflow and defines when and how often the
workflow should run. Also allows for late data handling.

Hortonworks Data Platform March 1, 2016

Each entity is defined separately and then linked together to form a data pipeline. Falcon
provides predefined policies for data replication, retention, late data handling, and
replication. These sample policies are easily customized to suit your needs.

These entities can be reused many times to define data management policies for Oozie

jobs, Pig scripts, and Hive queries. For example, Falcon data management policies become
Oozie coordinator jobs:

Figure 2.2. Data Pipeline Flow

Data Pipeline

B Llean —Lrep,

(@ APACHE FALCON

Falcon adds the required data governance features

DEFINITION TRACING
Replication | Retention Audit | Lineage
Eviction | Late Data Tagging

Auto Generate
& Orchestrate

Multiple complex Oozie workflows Other Hadoop

ecosystem
tools
such as

2.2. Quick Start: Using the Falcon Web Ul to
Define Data Pipelines

The Falcon web Ul enables you to define and deploy data pipelines. Using the web Ul
ensures that the XML definition file that you use to deploy the data pipeline to the Falcon
server is well-formed.

Prerequisite Setup Steps:

Before you define a data pipeline, a system administrator must:

¢ Make sure that you have the following components installed on your cluster:
e HDP

¢ Falcon

Hortonworks Data Platform March 1, 2016

¢ Qozie client and server

Make sure that the Falcon and Oozie services are running. For example, if you are using
Ambari, confirm that the Falcon and Oozie services have green check marks adjacent to
them on the Ambari dashboard:

Figure 2.3. Ambari Dashboard Falcon and Oozie Service Indicators

K itrics

a3

4

Misiric Actiong =

4

FEFE Drs L [EF TR N HOFS L

w
8% 3/3

LU Lage CAuriiles ILisid] HamanN

iuI| D & o
18|84 .

Create the directory structure on HDFS for the staging, temp, and working folders where
the cluster entity stores the dataset. These folders must be owned by the falcon user.

For example:

sudo su fal con

hadoop fs nkdir -p /apps/fal con/primary_Cl uster/staging
hadoop fs nkdir -p /apps/fal con/primary_C uster/worki ng
hadoop fs nkdir -p /apps/falcon/tnp

These commands create the following directories that are owned by the falcon user:
/apps/falcon/primary_Cluster/staging
/apps/falcon/primary_Cluster/working

/apps/falcon/tmp

2 Important

Permissions on the cluster staging directory must be set to 777 (read/write/
execute for owner/group/others). Only Oozie job definitions are written
to the staging directory so setting permissions to 777 does not create any
vulnerability.

Run:

hadoop fs -chnmod -R 777 <your _stagi ng_directory_pat h>

6

Hortonworks Data Platform March 1, 2016

* Launch the Falcon web Ul. If you are using Ambari:
1. On the Services tab, select Falcon in the services list.

2. At the top of the Falcon service page, click Quick Links, and then click Falcon Web UI.

c Important

To access the Falcon Ul on a secured cluster, use ki ni t before accessing
the Kerberos-protected web server and configure your browsers for
SPNEGO access. For more information, see Configure Browser for SPNEGO.

2.2.1. Creating a Cluster Entity

Always specify a cluster entity before defining other elements in your data pipeline. The
cluster entity defines where the data and the processes for your data pipeline are stored.
For more information, see the cluster entity XSD here.

To use the Falcon web Ul to define a cluster entity:

1. At the top of the Falcon web Ul page, click Cluster.

https://wiki.zimbra.com/wiki/Configure_Browser_for_SPNEGO
https://git-wip-us.apache.org/repos/asf?p=incubator-falcon.git;a=blob_plain;f=client/src/main/resources/cluster-0.1.xsd;hb=HEAD

Hortonworks Data Platform March 1, 2016

Figure 2.4. New Cluster Configuration Dialog

*Fﬂm ® e | ab ot || O Procme | 0 pme | | et e |

--1- & Motficstions e Lagmet o relp

M KFL Prosirs i

— ym— schamer mrrdna = e o chamer 0T rara rrplluase”
e rpea llrpies ode=ral T
- BT el e LR T
el i i
* s ; =
i Dewitutar « B T TR
rall Fniel. aradpecrs i A Larcihoa honoesin 2o B0 POT v 2T
Tags Bt e
e T T Ty
aersdipecerd = Pl abradbeos. heosrtrsserin, povm. BOGRD e 0T
* midl g ety -
Mmool Lind e Ty AR e prdipere uldias oy coen BT
[i B " L]
faepe (=Y L afiririane
e — e Ty e
aersdipeerd = e S erelbns oo ey TRORCaCi e
Ty gt Vol Baa o LT
by g) et P vl B 118 “fiiariane
R o Ty
— (el i Ceare B i o G 1318 wipe Tl iy P v i o -’
s
— nabrcies ooy oo 00 daa i e
i e aredbes Fororseay pon POOE) ey 4000 sirtariaon Type rgairy eradpoint" venwon="1
R o
Shwmid W S el P et o b b e, G e e,
— R
Azt maras VY P AL B el rhoster M iRgeg
e iy S —
S v B B T L s
= = Bt
sl e workry pad e Boony proed-chaa e el
& adq| gy B =
Row whan AECL SIS S
. pay e
(A o
b | [=T Bty e g
o =il s S 7] peram=T ey jpreaps aay perreeens T TR
—-— S pTp .
ey N i £ ki i propmty nme= e
S prege
= o -
LS S CEE=]

- =
2. On the New Cluster page, specify the following values:

Table 2.1. Cluster Entity Configuration Values

Value Description

Name Name of the cluster entity. Not necessarily the actual
cluster name.

Colo and Description Name and description of the data center.

Tags Metadata tagging.

Access Control List Specify the HDFS access permissions.

Interfaces Specify the interface types:

Hortonworks Data Platform

March 1, 2016

Value

Description

readonly — Required for distcp (distributed copy) used
in replication.

write —Required to write to HDFS.
execute —Required to write jobs to MapReduce.

workflow —Required. This interface submits Oozie
jobs.

messaging —Required to send alerts.

registry —Required to register or deregister partitions
in the Hive Metastore and to fetch events on partition
availability.

Properties

Specify a name and value for each property.

Location

Specify HDFS locations for the staging, temp, and
working directories. For more information, see
Prerequisite Setup Steps [5].

3. Click Next to view a summary of your cluster entity definition. The XML file is displayed
to the right of the summary. Click Edit XML to edit the XML directly.

4. If you are satisfied with the cluster entity definition, click Save.

5. To verify that you successfully created the cluster entity, enter the cluster entity name
in the Falcon web Ul Search well and press Enter. If the cluster entity name appears in
the search results, it was successfully created. See Search For and Manage Data Pipeline

Entities.

2.2.2. Creating a Feed Entity

The feed entity defines the datasets that are cleaned and processed in your data pipeline.
For more information, see the feed entity XSD here.

To use the Falcon web Ul to define a feed entity:

1. At the top of the Falcon web Ul page, click Feed.

https://git-wip-us.apache.org/repos/asf?p=incubator-falcon.git;a=blob_plain;f=client/src/main/resources/feed-0.1.xsd;hb=HEAD

Hortonworks Data Platform March 1, 2016

Figure 2.5. New Feed Configuration Dialog

—-t-q- A uoitcmors [k loget @ g

W WML Pt et

r— e e . e B e P e e e ey e L
= g = Tl T et - i g i

s
= e ekl g g
tpi] S s il]
=k
Crm ryetar - PN PR
et dad iy s =T P T NOT arad =00 -0 7 - 1 Th BT
Tagn = TRy Tl
R N Harameg rcaliony
<l e, P i
e | * o e,
[e SIS Pfed="UAER
1 P st i & et T
M el Lt ettt e
. . &
e it —— . N
amban-ga = Telih § it
Teha Ak
- iaialer = e
i - [o T

= AT
L i i i e et T A
B L e o L
* [
ST
= o g
+ Phaans

2. On the New Feed page, specify the following values:

Table 2.2. General Feed Configuration Values

Value Description
Name and Description Name and description of the feed entity.
Tags Metadata tagging. For example, you can set the key

to "externalTarget" and the corresponding value to
"Marketing" tagging this feed for marketing.

Groups Specify the feed group. Feeds can belong to multiple
groups.
Notification Enables email notifications that are sent when the

scheduled feed instance completes. Specify the email
address where you want notifications to be sent. For
example, j doe@yz. com

Access Control List Specify the HDFS access permissions. Required for HDFS.

Schema Specify the schema location and provider. This is
required for HDFS.

10

Hortonworks Data Platform March 1, 2016

3. Click Next to advance to the Properties configuration where you can configure the
timing and other feed properties.

4. Click Next to advance to the Location configuration where you can specify the global
location across clusters. For HDFS paths, choose File System and for Hive tables, choose
Catalog Storage. For example, to specify a data path for a File System location, in the
Data path text box, enter /weblogs/${YEAR}-${MONTH}-${DAY}-${HOUR} to point to
the web logs.

5. Click Next to advance to the Clusters configuration where you can:

* Select the target cluster entity that you defined in Creating a Cluster Entity for
retention or replication.

* Specify the Storage type and Location. If you do not specify a location, the location
that you specified in the Properties configuration is used.

* Select the Validity interval.

6. Click Next to view a summary of your feed entity definition. The XML file is displayed to
the right of the summary. Click Edit XML to edit the XML directly.

7. If you are satisfied with the feed entity definition, click Save.
8. To verify that you successfully created the feed entity, enter the feed entity name in the

Falcon web Ul Search well and press Enter. If the feed entity name appears in the search
results, it was successfully created. See Search For and Manage Data Pipeline Entities.

2.2.3. Creating a Process Entity

The process entity consumes the feeds, invokes processing logic, and can produce
additional feeds. For more information, see the process entity XSD here

To use the Falcon web Ul to define a process entity:

1. At the top of the Falcon web Ul page, click Process.

11

https://git-wip-us.apache.org/repos/asf?p=incubator-falcon.git;a=blob_plain;f=client/src/main/resources/process-0.1.xsd;hb=HEAD

Hortonworks Data Platform March 1, 2016

Figure 2.6. New Process Configuration Dialog

@ Falcon (& o [1w [0 e [130m]

—l-q- A mestases Biloget @ e

W WML Pravir L =

[- =} o L Chopan il P, i R, i, O T /e Gk
- Al -
A
FrT———— Pe—— il
sy T T -0 T A BT ead =00 07 - 1 Th ST
tmp s/ s
(=T o
= e] - - o i -
i R |, RRRFYCIWEL PR PITE | TSI, L L
sy - g e Ve e, i R g
— sl L s e e e ey s = T
——— - i i
.
Pl B rg - -GS i

T T T

g e L
e - [
k3 A UULHH]

2. On the New Process page, specify the following values:

Table 2.3. General Process Configuration Values

Value Description
Name Name of the process entity.
Tags Business labels, such as "Finance." There is no input

validation on this field, so there can be duplicates,
which is resolved in environments with Apache Atlas
integration. See Configuring, Using, and Managing the
Metadata Store (Atlas).

Workflow Specify a Name for the workflow, which Engine it uses,
and the Path to the workflow engine. For example, if
you are using a Pig script to define the workflow, you
can set the Path to /apps/clickstream/clean-script.pig

Notification Enables email notifications that are sent when the
process instance completes. Specify the email address
where you want notifications to be sent. For example,
j doe@yz. com

Access Control List Specify the HDFS access permissions. Required for HDFS.

3. Click Next to advance to the Properties configuration where you can configure the time
zone, timing, and retry policy.

4. Click Next to advance to the Clusters configuration where you can:

12

Hortonworks Data Platform March 1, 2016

* Select the target cluster entity that you defined in Creating a Cluster Entity to specify
where the process runs.

* Select the Validity interval.

5. Click Next to advance to the Inputs & Outputs configuration where you can configure:
* Inputs: Feeds that are consumed by the process.
¢ Outputs: Feeds that are generated and output by the process.

6. Click Next to view a summary of your process entity definition. The XML file is displayed
to the right of the summary. Click Edit XML to edit the XML directly.

7. If you are satisfied with the process entity definition, click Save.

8. To verify that you successfully created the process entity, enter the process entity name
in the Falcon web Ul Search well and press Enter. If the process entity name appears in
the search results, it was successfully created. See Search For and Manage Data Pipeline
Entities.

2.3. Search For and Manage Data Pipeline Entities

The best way to search for and manage data pipeline entities is by using the Falcon web UL.

Figure 2.7. Falcon Search Ul

 Falcon Ore srotas e 0

Q) process (2]
Type process
Tagprocess

To search for and manage data pipeline entities with the Falcon web Ul:
1. Launch the Falcon web Ul. If you are using Ambari:

a. On the Services tab, select Falcon in the services list.

b. At the top of the Falcon service page, click Quick Links, and then click Falcon Web UI.
2. Enter your query in the Search well, and press Enter.

You can filter entities based on names, types, or tags. By default, the first argument in
your query is the Name filter. Wildcards are supported, such as asterisk (*). The search
is interactive so you can refine your search by adding and removing tags to tune your

result set.

Filter Description

Name Subsequence of the entity name (cluster, feed, or
process name). Not case sensitive. The entity name

13

Hortonworks Data Platform

March 1, 2016

Filter

Description

must contain all of the characters in the subsequence in
the same order as the original sequence from which it
derives.

For example:
 "sample1" matches the entity named "SampleFeed1-2"

¢ "mhs" matches the entity named "New-My-Hourly-
Summary"

Tag

Keywords in metadata tags. Not case sensitive. Entities
that are returned in search results have tags that match
all of the tag keywords.

Type

Specifies the type of entity. Valid entity types are cluster,
feed, or process. The Falcon search Ul infers the type
filter automatically. For example, to add a "process" filter
type, enter process in the search well, and then choose
type:process from the hints offered in the Ul as shown
in the previous screen capture.

3. Select entities in the search results and then select the action you want to perform.
Depending on the type of entity you select, you can schedule, resume, pause, edit, copy,
delete, or download the XML. In addition, when you click on an entity in the search
results, you can view its instances and property details.

4. Click the Falcon icon in the upper left corner of the window to exit the search results and

start a new search.

3 Note

Click tags in the search results to add them to the search well so you can search
on the tag definitions.

2.4. Mirroring Data (Falcon)

Mirroring data produces an exact copy of the data and keeps both copies synchronized.
You can use Falcon to mirror HDFS directories or Hive tables and you can mirror between
HDFS and Amazon S3 or Microsoft Azure. A whole database replication can be performed

with Hive.

To mirror data with the Falcon web UI:

1. Launch the Falcon web Ul. If you are using Ambari:

a. On the Services tab, select Falcon in the services list.

b. At the top of the Falcon service page, click Quick Links, and then click Falcon Web UI.

2. At the top of the Falcon web Ul page, click Mirror.

14

Hortonworks Data Platform March 1, 2016

Figure 2.8. New Mirror Configuration Dialog

*Fﬂlﬂﬂl‘l rr:h:“ |Ar-a | © Proces || 8 sror | |ll:-:-fwﬁ-.:#+|.r|.

[adrge Maegn

Mew Mirrar

ey WAL & mid ing

- Bource - -7 Run job heve

!
i

Target O Run o heve

oo QRIS haws 15

~SelecT Chrne-

L 1]

Lzl

Path

Wakidity
St , Bm. L~ . Mm
OTAAFE0NS | (G PM sty | |01 18] PML | 0GMT) Wwesh £

_Srl-nd.lh'tl.u

fmad] it

My ed i o

o (N

3. On the New Mirror page, specify the following values:

15

Hortonworks Data Platform March 1, 2016

Table 2.4. Mirror Configuration Values

Value Description

Mirror Name Name of the mirror entity.

Tags Metadata tagging. An example is provided in the Ul.

Mirror Type Select whether this is a File System or Hive catalog
mirror type.

Source Specify the location, name, and path of the cluster

or Hive table that is to be mirrored, and specify if the
mirroring job runs on the source cluster.

Target Specify the location, name, and path where the mirrored
cluster is stored, and specify if the mirroring job runs on
the target cluster.

Validity Specify the validity interval.

Advanced Options Expand the Advanced Options section of the page

to configure how often the target cluster is updated,
throttle distcp operations, set a retry policy, and specify
the ACL for the mirror entity.

4. Click Next to view a summary of your mirror entity definition.
5. If you are satisfied with the mirror entity definition, click Save.

6. To verify that you successfully created the mirror entity, enter the mirror entity name
in the Falcon web Ul Search well and press Enter. If the mirror entity name appears in
the search results, it was successfully created. See Search For and Manage Data Pipeline
Entities.

2.5. Using the Falcon CLI to Define Data Pipelines

To use the Falcon CLI to define a data pipeline:

1. Create the cluster specification XML file, also known as a cluster entity. There are several
interfaces to define in a cluster entity. For example, here is a cluster entity with all cluster
interfaces defined:

¢ Colo: Name of the Data Center
* Name: Filename of the Data Center

* <interface>: Specify the interface type

2 Important
Permissions on the cluster staging directory must be set to 777 (read/write/
execute for owner/group/others). Only Oozie job definitions are written
to the staging directory so setting permissions to 777 does not create any
vulnerability.

<?xm version="1.0"?><!--
Cl uster Exanpl e
-->
<cl uster col o="$M/Dat aCent er" descri pti on="description" nanme=
" $MyDat aCent er " >

16

Hortonworks Data Platform March 1, 2016

<interfaces>
<interface type="readonly" endpoi nt="hftp://nn:50070" version="2.4.0" />
<!-- Required for distcp for replications. -->
<interface type="wite" endpoint="hdfs://nn:8020" version="2.4.0" />
<I-- Needed for witing to HDFS-->
<interface type="execute" endpoi nt="rm 8050" version="2.4.0" /> <!--
Needed to wite to jobs as MapReduce-->
<interface type="workflow' endpoint="http://os: 11000/ oozi e/" versi on="4.
0.0" /> <!-- Required. Submits Oozie jobs.-->
<interface type="registry" endpoint="thrift://hnms:9083" version="0.
13.0" /> <!--Register/deregister partitions in the Hi ve Metastore and get
events on partition availability
-->
<interface type="nessagi ng" endpoi nt="tcp://nmg: 61616?daenon=t r ue"
version="5.1.6" /> <!--Needed for alerts-->
</interfaces>
<l ocati ons>
<l ocati on nane="st agi ng" pat h="/apps/fal con/prod-cluster/staging" />
<!--HDFS directories used by the Fal con server-->
<l ocation nanme="tenp" path="/tnp" />
<l ocati on nanme="wor ki ng" pat h="/apps/fal con/prod-cluster/working" />
</l ocati ons>
</cluster>

3 Note

Additional properties must be set if you are configuring for a secure cluster.
For more information, see "Configuring for Secure Clusters" in the Non-
Ambari Cluster Installation guide.

2. Next, create a dataset specification XML file, or feed entity:
» Reference the cluster entity to determine which clusters the feed uses.
» <frequency>: Specify the frequency of the feed.
* <retention limit>: Choose a retention policy for the data to remain on the cluster.
* <location>: Provide the HDFS path to the files.

* Optional. Specify an Email Notification. The email notification tag must be placed
before the <ACL> tag.

¢ <ACL owner>: Specify the HDFS access permissions.

¢ Optional. Specify a Late Data Handling cut-off.

<?xm version="1.0"?>

<l--
Feed Exanpl e
-->
<f eed descri pti on="$%$r awl nput Feed" nanme="t est Feed” xm ns="uri: fal con: feed: 0.
1">
<frequency>hours(1) </ frequency> <!--Feed run frequency-->
<late-arrival cut-off="hours(6)”"/> <!-- Late arrival cut-off -->

<gr oups>chur nAnal ysi sFeeds</ groups> <! --Feed group, feeds can belong to
mul tiple groups -->

17

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_installing_manually_book/content/ch_getting_ready_chapter.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_installing_manually_book/content/ch_getting_ready_chapter.html

Hortonworks Data Platform March 1, 2016

<t ags external Sour ce=$M/EDW ext er nal Tar get =Mar keti ng> <!-- Met adat a
tagging -->
<clusters> <!-- Target clusters for retention and replication. -->
<cl uster name="$MyDataCenter" type="source">
<validity start="$date" end="$date"/>
<retention limt="days($n)" action="delete"> <I--Currently delete is
the only action available -->
</cl uster>
<cl ust er nanme="$MyDat aCent er - secondary" type="target">
<validity start="2012-01-01T00: 00Z" end="2099-12-31T00: 00Z"/ >
<l ocation type="data” path="/churn/webl ogs/ ${ YEAR} - ${ MONTH} - ${ DAY} -
${HOUR} "/ >
<retention limt="days(7)" action="delete"/>
</cl uster>
</cl usters>
<l ocations> <!-- dobal |ocation across clusters - HDFS paths or Hive
tables -->
<l ocation type="data" path="/webl ogs/ ${ YEAR} - ${ MONTH} - ${ DAY} - ${ HOUR} "/ >
</l ocati ons>

<notification type="email" to="fal con@yz.con'/>

<ACL owner ="hdfs" group="users" perm ssion="0755"/> <!-- Required for

HDFS. -->

<schema | ocati on="/none" provider="none"/> <!-- Required for HDFS. -->
</ f eed>

3. Create the process specification XML file:
* <cluster name>: Reference the cluster entity to define where the process runs.
» <feed>: Reference the feed entity to define the datasets that the process uses.
¢ Optional. Specify Late Data Handling policies or a Retry Policy.

* Optional. Specify an Email Notification.

<?xm version="1.0"7?>
<l--
Process Exanpl e
-->
<process nanme="process-test" xm ns="uri:falcon:process:0.1">
<cl ust ers>
<cl uster name="$M/Dat aCent er " >
<validity start="2011-11-02T00: 00Z" end="2011-12-30T00: 00Z"
</cluster>
</cl usters>
<paral | el >1</parall el >
<or der >FlI FO</ order> <!--You can al so use LI FO and LASTONLY but FIFO is
reconmmended i n nost cases-->
<frequency>days(1)</frequency>
<i nput s>
<i nput end="today(0,0)" start="today(0,0)" feed="feed-clicks-raw'
name="i nput" />
</ i nput s>
<out put s>
<out put instance="now(0, 2)" feed="feed-clicks-clean" nane="output" /

</ out put s>

<wor kf | ow engi ne="pi g" pat h="/apps/clickstream cl ean-script.pig" />
<retry policy="periodic" delay="m nutes(10)" attenpts="3"/>

<| at e- process policy="exp-backoff" del ay="hours(1)">

18

Hortonworks Data Platform March 1, 2016

<l ate-i nput input="input" workfl ow path="/apps/clickstreani|ate" />
</| at e- pr ocess>
<notification type="email" to="fal con@yz.com falcon_2@yz.coni/>
</ process>

S Note

LIFO and LASTONLY are also supported schedule changes for <order>.

You can now move on to Deploying Data Pipelines.

2.5.1. Deploying Data Pipelines

After you create your data pipeline with Falcon, you can deploy it with the Falcon CLI.
To deploy the data pipeline:
1. Submit your entities to Falcon. Be sure to specify the correct entity type.

a. Submit your cluster entity.

For example, to submit $sampleClusterFile.xml:

falcon entity -type cluster -submit -file $sanpl eC usterFile.xmn
b. Submit your dataset or feed entity.

For example, to submit $sampleFeedFile.xml:

falcon entity -type feed -subnit -file $sanpl eFeedFil e. xm
¢. Submit your process entity.

For example, to submit $sampleProcessFile.xml:

falcon entity -type process -subnit -file $sanpl eProcessFil e. xn
2. Schedule your feed and process entities.
a. Schedule your feed.

For example, to schedule $feedName:

falcon entity -type feed -schedul e -nane $f eedNane
b. Schedule your process.

For example, to schedule $processName:

falcon entity -type process -schedul e -name $processNanme

Your data pipeline is now deployed with basic necessary information to run Oozie jobs, Pig
scripts, and Hive queries. You can now explore other sections such as Late Data Handling or
Retry Policy.

19

Hortonworks Data Platform March 1, 2016

2.5.2. Replicating Data (Falcon)

2.5.2.1.

2.5.2.2.

Falcon can replicate data across multiple clusters using distcp, and do it according to the
frequency you specify in the feed entity. Falcon uses a pull-based replication mechanism,
meaning in every target cluster, for a given source cluster, a coordinator is scheduled which
pulls the data using distcp from source cluster.

Prerequisites

Before you begin setting up Data Replication, that you have the following components
installed on your cluster:

* HDP. Installed on your cluster (using Ambari or a manual installation)
* Falcon. Installed on your cluster and the Falcon Service is running.

* Oozie Client and Server. Installed on your cluster and the Oozie Service is running on
your cluster.

Define the Data Source: Set Up a Source Cluster Entity

Define where data and processes are stored in the cluster entity.

1. Create an XML file for the Cluster entity. This file contains all properties for the cluster.
Include the XML version:

<?xm version="1.0"?>

2. Define the col o0 and nane attributes for the cluster.

<?xm version="1.0"?>

<cl ust er col o="<MyDat aCent er>" descri pti on="descri ption"
name="<MyDat aCent er Fi | enane>" >

</cluster>

3 Note

col o specifies the data center to which this cluster belongs.

narme is the name of the cluster, which must be unique.

3. Define the interfaces for the cluster. For each interface specify type of interface,
endpoint, and Apache version.

For example:

<cl uster col o="<MMDat aCent er>" descri pti on="description"
name="<M/Dat aCent er Fi | enane>" >
<interfaces>

<I-- Required for distcp for replications. -->
<interface type="readonly" endpoi nt="hftp://nn:50070" version="2.
4.0" />

<I-- Needed for witing to HDFS-->

20

Hortonworks Data Platform March 1, 2016

<interface type="wite" endpoint="hdfs://nn:8020" version="2.4.
0" />

<I-- Required. An execute interface specifies the interface for
job tracker.-->
<interface type="execute" endpoint="rm 8050" version="2.4.0" />

<I-- Required. A workflow interface specifies the interface for
wor kf | ow engi nes, such as Qozie.-->

<interface type="workflow' endpoint="http://os:11000/ oozi e/"
version="4.0.0" />

<I--Aregistry interface specifies the interface for the netadata
catal og, such as Hive Metastore or HCatal og. -->

<interface type="registry" endpoint="thrift://hms:9083" version=
"0.13.0" />

<l--Messaging interface specifies the interface for sendi ng
alerts.-->
<interface type="nessagi ng" endpoint="tcp://ng: 61616?daenon=t r ue"
version="5.1.6" />
</interfaces>
</cluster>

4. Provide the locations for the HDFS paths to files.

For example:

<cl uster col o="<My/Dat aCent er>" descri pti on="descri ption"
nanme="<M/Dat aCent er >" >
<interfaces>

<I-- Required for distcp for replications. -->

<interface type="readonly" endpoint="hftp://nn:50070" version="2
4.0" />

<I'-- Needed for witing to HDFS-->

<interface type="write" endpoint="hdfs://nn:8020" version="2.4.
0" />

<I-- Needed to wite to jobs as MapReduce-->
<interface type="execute" endpoint="rm 8050" version="2.4.0" />

<I-- Required. Submits Qozie jobs.-->
<interface type="workflow' endpoint="http://os:11000/ oozi e/"
version="4.0.0" />

<I--Register/deregister partitions in the H ve Metastore and get
events on partition availability-->

<interface type="registry" endpoint="thrift://hnms:9083" version=
"0.13.0" />

<l --Needed for alerts-->
<interface type="nessagi ng" endpoint="tcp://ny: 61616?daenon=t r ue"
version="5.1.6" />
</interfaces>

<l ocati ons>

<I--HDFS directories used by the Fal con server-->

21

Hortonworks Data Platform March 1, 2016

<l ocati on nanme="stagi ng" path="/apps/fal con/prod-cluster/
stagi ng" />
<l ocati on nane="tenp" path="/tnmp" />
<l ocati on name="wor ki ng" pat h="/apps/fal con/ prod-cl uster/
wor ki ng" />
</l ocati ons>
</cluster>

The cluster entity is complete if you are using a non-secure environment. If you are using
an environment that is secured with Kerberos, continue on with the next step.

5. For secure clusters, define the following properties in all your cluster entities as shown
below:

<cl uster col o="<My/Dat aCent er>" descri pti on="descri ption"
nanme="<M/Dat aCent er >" >

<interfaces>

<I-- Required for distcp for replications. -->

<interface type="readonly" endpoi nt="hftp://nn:50070" version="2.
4.0" />

<I-- Needed for witing to HDFS-->

<interface type="wite" endpoint="hdfs://nn:8020" version="2.4.
0" />

<I-- Needed to wite to jobs as MapReduce-->
<interface type="execute" endpoint="rm 8050" version="2.4.0" />

<I-- Required. Submits Oozie jobs.-->
<interface type="workflow' endpoint="http://os:11000/ oozi e/"
version="4.0.0" />

<l --Register/deregister partitions in the Hi ve Metastore and get
events on partition availability-->

<interface type="registry" endpoint="thrift://hms:9083" version=
"0.13.0" />

<!--Needed for alerts-->
<interface type="nessagi ng" endpoint="tcp://ng: 61616?daenon=t r ue"
version="5.1.6" />
</interfaces>

<l ocati ons>

<I--HDFS directories used by the Fal con server-->
<l ocati on nane="st agi ng" pat h="/apps/fal con/ prod-cl uster/
stagi ng" />
<l ocation name="tenp" path="/tnp" />
<l ocati on nane="wor ki ng" pat h="/apps/fal con/ prod-cl uster/
wor ki ng" />
</l ocati ons>

<properties>
<property name="dfs. nanenode. ker ber os. pri nci pal " val ue="nn/ $ny.
i nt er nal @XAMPLE. COM'/ >
<property name="hi ve. met ast ore. ker beros. princi pal " val ue="hi ve/
$ny. i nt er nal @GEXAVMPLE. COM' / >

22

Hortonworks Data Platform March 1, 2016

2.5.2.3.

2.5.2.4.

<property nanme="hi ve. netastore.uris" value="thrift://$ny.
i nt ernal : 9083"/ >
<property name="hi ve. met ast ore. sasl . enabl ed" val ue="true"/>
</ properties>
</ cl uster>

Replace $my.internal @EXAMPLE.COM and $my.internal with your own values.

c Important
Make sure hadoop.security.auth_to_local in core-site.xml is consistent across
all clusters. Inconsistencies in rules for hadoop.security.auth_to_local can
lead to issues with delegation token renewals.

Create the Replication Target: Define a Cluster Entity
Replication targets must also be defined as cluster entities. These entities include:
» col o and nane attributes for the cluster.

* Interfaces for the cluster.

* Locations for the HDFS paths to files.

* (For secure clusters only) security properties.

Create the Feed Entity

The feed entity defines the data set that Falcon replicates. Reference your cluster entities to
determine which clusters the feed uses.

1. Create an XML file for the Feed entity.

<?xm version="1.0"?>

2. Describe the feed.

<?xm version="1.0"?>

<f eed descri pti on="$r awl nput Feed" nanme="t est Feed” xm ns="uri: fal con: f eed: 0.
1" >

</ f eed>

3. Specify the frequency of the feed.
<?xm version="1.0"?>
<feed descri pti on="$r awm nput Feed" nanme="t est Feed” xm ns="uri :fal con: feed: 0.
1">

<!--Feed run frequency-->
<frequency>hours(1)</frequency>

</ feed>
4. Choose a retention policy for the data to remain on the cluster.

For example:

<?xm version="1.0"?>

23

Hortonworks Data Platform March 1, 2016

<feed descri pti on="%r awl nput Feed" nanme="t est Feed” xml ns="uri:fal con: feed: 0.
1">

<!--Feed run frequency-->
<f requency>hours(1)</frequency>

</ f eed>

5. (Optional) Set a late-arrival cut-off policy. The supported policies for late data handling
are backoff, exp-backoff (default), and final.

For example, to set the policy to a late cutoff of 6 hours:

<?xm version="1.0"7?>
<f eed descri pti on="$r awm nput Feed" nanme="t est Feed” xm ns="uri :fal con: f eed: 0.
1>

<!--Feed run frequency-->
<frequency>hour s(1) </ frequency>

<l-- Late arrival cut-off -->
<l ate-arrival cut-off="hours(6)”/>

</ f eed>
6. Define your source and target clusters for the feed.

For example, for two clusters, MyDataCenter and MyDataCenter-secondary cluster:

<?xm version="1.0"?>
<f eed descri pti on="$r awl nput Feed" nanme="t est Feed” xm ns="uri: fal con: feed: 0.
1">

<l--Feed run frequency-->
<frequency>hours(1)</frequency>

<l-- Late arrival cut-off -->
<l ate-arrival cut-off="hours(6)”/>

<!-- Target clusters for retention and replication. -->
<cl ust er s>
<cl uster name="<M/Dat aCent er>" type="source">
<validity start="$date" end="$date"/>

<I--Currently delete is the only action available -->
<retention limt="days($n)" action="del ete">
</cl uster>

<cl ust er name="$M/Dat aCent er - secondary" type="target">
<validity start="2012-01-01T00: 00Z" end="2099-12-31T00: 00Z"/ >
<l ocation type="data” path="/churn/webl ogs/ ${ YEAR} - ${ MONTH} -
${ DAY} - ${ HOUR} "/>
<retention limt="days(7)" action="delete"/>
</cl uster>
</cl usters>
</ f eed>

7. Specify the HDFS weblogs path locations or Hive table locations. For example to
specify the HDFS weblogs location:

24

Hortonworks Data Platform March 1, 2016

<?xm version="1.0"?>

<f eed descri pti on="$r awm nput Feed" nanme="t est Feed” xm ns="uri :fal con: feed: 0.
1">

<!--Feed run frequency-->
<frequency>hours(1)</frequency>

<l-- Late arrival cut-off -->
<l ate-arrival cut-off="hours(6)”/>

<I-- Target clusters for retention and replication. -->
<cl ust er s>
<cl ust er name="<MDat aCent er>" type="source">
<validity start="%date" end="$date"/>

<I--Currently delete is the only action available -->
<retention |limt="days($n)" action="del ete">
</cl uster>

<cl ust er nanme="$M/Dat aCent er - secondary" type="target">
<validity start="2012-01-01T00: 00Z" end="2099-12-31T00: 00Z"/ >
<l ocation type="data” path="/churn/webl ogs/ ${ YEAR} - ${ MONTH} -
${ DAY} - ${ HOUR} "/ >
<retention limt="days(7)" action="del ete"/>
</cl uster>
</cl usters> <l ocati ons>

<lI-- G obal location across clusters - HDFS paths or Hive tables -->

<l ocation type="data" path="/webl ogs/ ${ YEAR} - ${ MONTH} - ${ DAY} - ${ HOUR} "/>
</l ocati ons>

</ f eed>

8. Specify HDFS ACLs. Set the owner, group, and level of permissions for HDFS. For
example:

<?xm version="1.0"?>
<feed descri pti on="%r awl nput Feed" nanme="t est Feed” xm ns="uri:fal con: feed: 0.
1">

<l--Feed run frequency-->
<frequency>hour s(1) </ frequency>

<l-- Late arrival cut-off -->
<l ate-arrival cut-off="hours(6)”/>

<I-- Target clusters for retention and replication. -->
<cl usters>
<cl uster name="<MyDat aCent er>" type="source">
<validity start="%$date" end="$date"/>

<I--Currently delete is the only action available -->
<retention |imt="days($n)" acti on="del ete">
</cl uster>

<cl ust er nanme="$M/Dat aCent er - secondary" type="target">

<validity start="2012-01-01T00: 00Z" end="2099-12-31T00: 002"/ >

<l ocation type="data” path="/churn/webl ogs/ ${ YEAR} - ${ MONTH} - ${ DAY} -
${HOUR} "/>

25

Hortonworks Data Platform March 1, 2016

<retention |imt="days(7)" action="delete"/>
</cl uster>
</cl usters>

<lI-- G obal location across clusters - HDFS paths or Hi ve tables -->
<l ocati ons>
<l ocation type="data" path="/webl ogs/ ${ YEAR} - ${ MONTH} - ${ DAY} - ${ HOUR} "/
>
</l ocations>

<!-- Required for HDFS. -->
<ACL owner ="hdfs" group="users" perm ssion="0755"/>

</ feed>

9. Specify the location of the schema file for the feed as well as the provider of the
schema like protobuf, thrift etc. For example:

<?xm version="1.0"?>
<f eed descri pti on="$%$r awl nput Feed" nane="t est Feed” xm ns="uri: fal con: feed: 0.
1">

<I--Feed run frequency-->
<frequency>hours(1)</frequency>

<!-- Late arrival cut-off -->
<l ate-arrival cut-off="hours(6)”/>

<I-- Target clusters for retention and replication. -->
<cl ust ers>
<cl ust er nanme="<MDat aCent er >" type="source">
<validity start="$date" end="$date"/>

<I--Currently delete is the only action available -->
<retention |imt="days($n)" action="del ete">
</cl uster>

<cl ust er name="$M/Dat aCent er - secondary" type="target">

<validity start="2012-01-01T00: 002" end="2099-12-31T00: 00Z"/ >

<l ocation type="data” path="/churn/webl ogs/ ${ YEAR} - ${ MONTH} - ${ DAY} -
${HOUR} "/>

<retention limt="days(7)" action="delete"/>

</cl uster>
</ cl ust er s>

<I-- G obal location across clusters - HDFS paths or Hve tables -->
<l ocat i ons>
<l ocation type="data" path="/webl ogs/ ${ YEAR} - ${ MONTH} - ${ DAY} - ${ HOUR} "/
>
</l ocat i ons>

<I-- Required for HDFS. -->
<ACL owner ="hdfs" group="users" permn ssion="0755"/>

<schema | ocati on="/schema" provi der="prot obuf"/>
</ feed>

2.5.2.5. Submit and Validate the Entities

* Submit your cluster entities. For example:

26

Hortonworks Data Platform March 1, 2016

falcon entity -type cluster -submit -file <YourC uster>. xmi

For each entity, you should see the following success message for submit:

fal con/defaul t/Submit successful ($entity type) $yourEntityFile

* Submit your feed entity. For example:

falcon entity -type feed -submt -file <YourFeed>. xm

For each feed entity, you should see the following success message for submit:

fal con/defaul t/Submt successful (feed) <YourFeed>

 Schedule your feed entity. For example:

falcon entity -type feed -nanme <Your Feed> -schedul e

For each feed entity, you should see the following success message for schedule:

fal con/ def aul t/ Schedul e successful (feed) <YourFeed>
2.5.2.6. Confirm Results

To confirm your results, check your target cluster and review your Oozie jobs.

2.5.3. Viewing Alerts in Falcon

Falcon provides alerting for a variety of events to let you monitor the health of your data
pipelines. All events are logged to the metric.log file, which is installed by default in your
$user /| ogs/ directory. You can view the events from the log or capture them using a
custom interface.

Each event logged provides the following information:

» Date: UTC date of action.

* Action: Event name.

* Dimensions: List of name/value pairs of various attributes for a given action.

* Status: Result of the action. Can be FAILED or SUCCEEDED (when applicable).

* Time-taken: Time in nanoseconds for a given action to complete.

For example, a new process-definition alert would log the following information:

2012- 05-04 12:23: 34,026 {Action:submt, D nensions:{entityType=process},
St at us: SUCCEEDED, Ti nme-taken: 97087000 ns}

Table 2.5. Available Falcon Event Alerts

Entity Type Action Returns Success/Failure
Cluster New cluster definitions submitted to Falcon Yes
Cluster Cluster update events Yes

27

Hortonworks Data Platform

March 1, 2016

Entity Type Action Returns Success/Failure
Cluster Cluster remove events Yes
Feed New feed definition submitted to Falcon Yes
Feed Feed update events Yes
Feed Feed suspend events Yes
Feed Feed resume events Yes
Feed Feed remove events Yes
Feed Feed instance deletion event No
Feed Feed instance deletion failure event (no retries) |No
Feed Feed instance replication event No
Feed Feed instance replication failure event No
Feed Feed instance replication auto-retry event No
Feed Feed instance replication retry exhaust event No
Feed Feed instance late arrival event No
Feed Feed instance post cut-off arrival event No
Process New process definition posted to Falcon Yes
Process Process update events Yes
Process Process suspend events Yes
Process Process resume events Yes
Process Process remove events Yes
Process Process instance kill events Yes
Process Process instance re-run events Yes
Process Process instance generation events No
Process Process instance failure events No
Process Process instance auto-retry events No
Process Process instance retry exhaust events No
Process Process re-run due to late feed event No
N/A Transaction rollback failed event No

2.5.4. Late Data Handling

Late data handling in Falcon defines how long data can be delayed and how that late data
is handled. For example, a late arrival cut-off of hour s(6) in the feed entity means that
data for the specified hour can delay as much as 6 hours later. The late data specification in
the process entity defines how this late data is handled. The late data policy in the process
entity defines how frequently Falcon checks for late data.

The supported policies for late data handling are:

* backoff: Take the maximum late cut-off and check every specified time.

» exp-backoff (default): Recommended. Take the maximum cut-off date and check on an
exponentially determined time.

« final:Take the maximum late cut-off and check once.

The policy, along with delay, defines the interval at which late data check is done. Late
input specification for each input defines the workflow that should run when late data is
detected for that input.

28

Hortonworks Data Platform March 1, 2016

To handle late data, you need to modify the feed and process entities.
1. Specify the cut-off time in your feed entity.

For example, to set a cut-off of 4 hours:

<late-arrival cut-off="hours(4)”/>
2. Specify a check for late data in all your process entities that reference that feed entity.

For example, to check each hour until the cut-off time with a specified policy of
backof f and a delay of 1 hour:

<| at e- process pol i cy="exp-backoff" del ay="hours(1)”>
<l ate-i nput input="input" workfl ow path="/apps/clickstreanf|late" />
</ | at e- process>

2.5.5. Setting a Retention Policy

You can set retention policies on a per-cluster basis. You must specify the amount of time
to retain data before deletion.

Falcon kicks off the retention policy on the basis of the time value you specify:
* Less than 24 hours: Falcon kicks off the retention policy every 6 hours.
* More than 24 hours: Falcon kicks off the retention policy every 24 hours.

* When a feed is scheduled: Falcon kicks off the retention policy immediately.

3 Note

When a feed is successfully scheduled, Falcon triggers the retention policy
immediately regardless of the current timestamp or state of the cluster.

To set a retention policy, add the following lines to your feed entity for each cluster that
the feed belongs to:

<cl ust er s>
<cl uster name="corp" type="source">
<validity start="2012-01-30T00: 00Z" end="2013-03-31T23: 592"
ti mezone="UTC"' />
<retention limt="$uni t X Tine($n)" action="delete" /> <!--
Retention policy. -->
</cl uster>
</ cl usters>

Where |l i mi t can be minutes, hours, days, or months and then a specified numeric value.
Falcon then retains data spanning from the current moment back to the time specified in
the attribute. Any data beyond the limit (past or future) is erased.

2.5.6. Setting a Retry Policy

You can set retry policies on a per-process basis. The policies determine how workflow
failures are handled. Depending on the delay and number of attempts, the workflow is
retried after specified intervals.

29

Hortonworks Data Platform March 1, 2016

To set a retry policy, add the following lines to your process entity:

<retry policy=[retry policy] delay=[retry del ay]attenpts=[attenpts]/>
<retry policy="%policy" delay="m nutes($n)" attenpts="$n"/>

For example:
<process nane ="[sanpl e-process]">
<retry policy="periodic" delay="m nutes(10)" attenpts="3"/>
< br ocess>
In this example, the workflow is retried after 10 minutes, 20 minutes, and 30 minutes.

2.5.7. Enabling Email Notifications

You can enable email notifications in feed entities and process entities. When email
notifications are enabled, an email is sent to the specified email address when the
scheduled feed or process instance completes. Email notifications can be specified in feed or
process entities as follows:

<process nane="<process_nanme>
<notification type="email" to="jdoe@xanple.com sjones@onpany.cont/>
</ process>

Where t ype specifies the type of notification. Currently, only the erai | notification type
is supported. The t 0 attribute specifies where the notification is to be sent. In the case of
email notifications, specify the email address where you want notifications sent for the t o
attribute. Multiple recipients can be specified as a comma-separated list of email addresses
as shown in the previous example. The <not i fi cat i on>tag must be placed before the
<ACL> tag.

Falcon email notifications require SMTP server configurations to be defined in the Falcon
startup. properti es file that is located in the FALCON_HOVME/ conf directory.
Configure the following startup properties for email notifications:

Table 2.6. Email Notifications Startup Properties

Property Description Default Values
falcon.email.smtp.host Name of the host where the SMTP | ocal host
server can be found.
falcon.email.smtp.port The SMTP server host port to connect |25
to.
falcon.email.from.address The "From:" address used for all fal con@ ocal host

notification emails.

falcon.email.smtp.auth Indicates whether user sending the fal se
email is authenticated. Boolean value
(true | false)

falcon.email.smtp.user If authentication is enabled, this none
property specifies the username that
is used to log in.

falcon.email.smtp.password If authentication is enabled, the none
username's password that is used to
authenticate the user.

30

Hortonworks Data Platform

March 1, 2016

Property

Description

Default Values

monitoring.plugins

Ensure that the email notification
plugin is listed for this property to
enable email notifications.

For example:

or g. apache. f al con. pl ugi n.

Enmi | Noti fi cati onPl ugi n,
or g. apache. f al con. pl ugi n.

Def aul t Moni t ori ngPl ugi n

none

2.6. Understanding Dependencies in Falcon

Cross-entity dependencies in Falcon are important because a dependency cannot be
removed until all the dependents are first removed. For example, if Falcon manages two
clusters, one in Oregon and one in Virginia, and the Oregon cluster is going to be taken
down, you must first resolve the Virginia cluster dependencies as one Dataset (Dataset 3)
has a cross-entity dependency and depends on Email Ingest (Process 1).

Email ingest

CLUSTER 1

Entity Dependencies

Virginia Hadoop
cluster

CLUSTER 2

To remove the Oregon cluster, you must resolve this dependency. Before you can remove
the Oregon Hadoop cluster, you must remove not only Process 1, Datasets 1 and 2 but also
modify the Dataset 3 entity to remove its dependence on Process 1.

As Falcon manages more clusters, viewing these dependencies becomes more crucial.

2.7. Viewing Dependencies

The Falcon native Ul provides dependency viewing for clusters, datasets, and processes that
shows lineage in a list or graphical format:

31

Hortonworks Data Platform March 1, 2016

¢ List: View the various dependencies and their types in a linear format.

» Graph: View the relationships between dependencies as a graph to determine
requirements for removal.

Figure 2.9. Graph_view.png
Dependency
»arawEmalingestfro >4 cleanseEmaliProce

iz rawEmaliFeed

is primaryCluster

-

32

Hortonworks Data Platform March 1, 2016

3. Metadata Services Framework (Atlas)

Atlas is a low-level service that provides metadata services to the HDP platform. Veracity of
the metadata is maintained by leveraging Apache Ranger to prevent unauthorized access
at runtime, using both role-based (RBAC) and attribute-based (ABAC) access control.

c Important

This chapter is intended as a quick start for the Atlas web Ul. The content will
be updated on a regular cadence over the next few months.

3.1. Understanding the HDP Metadata Services
Framework

Hadoop presents data governance challenges because it is a platform comprised of
autonomous projects that define their own future and share no common framework.

For example, disparate tools, such as HCatalog, Ranger, and Falcon provide pieces of an
overall data governance solution, but there is no comprehensive governance within the
Hadoop stack. In addition, there is no means to integrate the Hadoop stack with external
governance frameworks.

Atlas provides the means to centrally manage the data lifecycle in HDP, providing a
repository that collects metadata for the platform that can be searched, tagged, and
managed. A REST APl is also available that can be used to integrate third-party governance
tools with HDP. For information about the REST API, see Appendix D in this guide.

Figure 3.1. Atlas Architecture

D

REST API |
(7 N g
[le][StonnJ[Sqnop}[Oﬂwrs} §
L Search DSL
r AN
Type System "
L J §
' N &
Titan /| HBase] %
Repository
A T4

* REST API handles all interaction with the metadata services.
* Existing HDP stack plug-in model leveraged by metadata services.
¢ Metadata search provided in two ways:
¢ DSL (domain-specific language) search. A SQL-like query language.

¢ Lucene-style full text search.

33

Hortonworks Data Platform March 1, 2016

* Type system provides flexible modeling capability to model any business, data asset, or
process, including inheritance.

Titan/HBase Graph database that runs the type system.

* Bridge, a native connector to automatically fetch lineage and metadata. The Hive bridge
connector ships with HDP 2.3. Additional components to follow.

Solr/Elastic provide additional plugable search capability that can be used without
affecting the REST API or Atlas capabilities.

3.2. Using the Atlas Web Ul to Search Metadata

Using the Atlas web Ul is an efficient way to interact with HDP metadata services. Use
Ambari to deploy your cluster, choose Atlas as one of your services, and the Atlas web Ul is
automatically installed. See the Automated Install with Ambari guide.

Try the Atlas web Ul by installing sample metadata with the qui ck_st art. py Python
script. This script installs metadata in your repository so you can test the search capabilities
of the Atlas web Ul:

To install sample metadata in your Atlas repository:

1. At a command prompt, log in to the host on your cluster where Atlas is installed.

2. Run the following command as the Atlas user:

su atlas -c '/usr/hdp/current/atlas-server/bin/quick_start. py'
After you have installed the sample metadata, you can explore the Atlas web UI.
To search metadata with the Atlas web Ul:

1. From the Ambari dashboard, click Services > Atlas. On the Summary tab, make sure that
the Atlas Metadata Server is started.

2. Click Quick Links > Atlas Dashboard to launch the Atlas web UL.

3. Type a tag name in the search well and press enter:

34

https://docs.hortonworks.com/HDPDocuments/Ambari-2.2.2.18/bk_ambari-installation/content/index.html

Hortonworks Data Platform March 1, 2016

Figure 3.2. Enter Tag to Search in Atlas Dashboard

Atlas
B

sarch: Table, DB, Column

Tags
Dimension
ETL
Fact
JdbcAccess
Metric

PlI

4. The search returns all metadata types that are associated with the tag. Click the
identifier link to view details about the metadata object:

Figure 3.3. Click the Tag Link to View Details

Atlas
=

Tags

Dimension
ETL

Fact
JdbcAccess
Metric

Pl

1 results matching your search query Fact were found

693c12b0-6e0e-43e7-ad86-6d1837500a2¢c
typeName: Table

Previous - Next

5. You can view four types of information for each metadata object by clicking each tab:
Details, Schema, Output, and Input.

35

Hortonworks Data Platform March 1, 2016

The Details tab shows information about the object, such as when it was created, the
owner, when it was last accessed, and so on:

Figure 3.4. Details Tab

Atlas

Back To Result

Name: sales_fact

Description: sales fact table

Details Schema Qutput Input
Key Value
createTime
db id : d1fdd238-49ac-decf-bedf-d3f81451cb35
jsonClass : org.apache.atlas. typesystem.json.InstanceSerialization$_Id
typeName : DB

lastAccessTime

owner Joe
retention
sd jsonClass : org.apache.atlas.typesystem.json.InstanceSerialization$_Reference

typeMame : StorageDesc

tableType Managed

6. Click the Schema tab to view the metadata object schema:

Figure 3.5. Schema Tab

Atlas

Back To Result

Name: sales fact

Description: sales fact table

Details Schema Output Input
MName Comment DataType
time_id time id int
product_id product id int
customer_id customer id int
sales product id double

7. Click the Output or the Input tabs to view lineage of the metadata:

36

Hortonworks Data Platform March 1, 2016

Figure 3.6. Output Tab

Atlas

Back To Result

Name: sales_fact

Description: sales fact table

Details Schema Output Input

sales_fact loadSalesDaily sales_fact_daily_mv loadSalesMonthly sales_fact_monthly_mwv

> :E > :E

In the above image, the lineage, or where the data comes from and where it goes when
it is output is shown.

37

Hortonworks Data Platform March 1, 2016

4. Reference (Falcon)

Valid entity schemas are required for a successful data pipline.

To use the Falcon REST API, see RESTful Resources on the Apache web site.

4.1. Cluster

Always specify a cluster entity before determining the other elements in your data pipeline.

4.1.1. Valid Cluster Tag Attributes

The Cluster tag contains the following attributes to set:

<cluster col o="NJ-datacenter" description="test_cluster" nane="prod-
cluster">

Table 4.1. Cluster tag elements

Example Definition Required?
col 0="$uni que_nang" Unigue name of the cluster, |Yes
such as New Jersey Data
Center.
description="$your text" |Description of the cluster, if |No
desired.
name="$fi | enane" Description of the cluster Yes
readiness.

4.1.2. Cluster Interfaces

You can define the following interfaces in your cluster entity:

Table 4.2. Cluster Interfaces

Type Required Interface Example Code
readonly Yes <interface type="readonly" endpoint="hftp://nn: 50070" version="2.4.0" />
write Yes <interface type="write" endpoint="hdfs://nn:8020" version="2.4.0" />
execute Yes <interface type="execute" endpoint ="rm 8050" version="0.20.2" />
workflow Yes <interface type="workfl ow"
endpoi nt ="http://| ocal host: 11000/ oozi e/" version="3.1" />

registry No, unless your <interface type="registry"

feeds are Hive endpoi nt="thrift://local host:9083" version="0.11.0" />

tables.
messaging Yes <interface type="nessagi ng"

endpoi nt="tcp:/ /| ocal host: 61616?daenon=true" version="5.4.6" />

4.1.3. Cluster XSD Specification

The Cluster XSD specification is defined here.

4.2. Feed Entity

The Feed XSD specification is defined here.

38

http://falcon.apache.org/restapi/ResourceList.html
https://git-wip-us.apache.org/repos/asf?p=incubator-falcon.git;a=blob_plain;f=client/src/main/resources/cluster-0.1.xsd;hb=HEAD
https://git-wip-us.apache.org/repos/asf?p=incubator-falcon.git;a=blob_plain;f=client/src/main/resources/feed-0.1.xsd;hb=HEAD

Hortonworks Data Platform

March 1, 2016

4.3. Process Entity

The Process XSD specification is defined here.

4.4. Using the CLI to Manage Entities and

Instances

Falcon supports managing entities and instances with the CLI. Entities include all data
pipeline components, such as clusters, feeds, and processes. Instances include only feeds

and processes.

4.4.1. Managing Entities with the CLI

The following table provides information about CLI options you can use to manage entities:

Table 4.3. Entity Actions

Option Entities Definition CLI Usage
definition All Current entity definition. $FALCON_HOME/bin/falcon
Any documentation you entity -type [cluster|feed |
have made within the entity | process] -name $name -
will NOT be retained. definition
delete All Removes the entity from $FALCON_HOME/bin/falcon
any scheduled activity and | entity -type [cluster|feed |
the Falcon configuration process] -name $name -
store. delete
dependency Feeds, Processes CLI dependency tracking. $FALCON_HOME/bin/falcon
Returns all dependencies of |entity -type [cluster|feed |
the specified entity. process] -name $name -
dependency
list All Lists all scheduled and $FALCON_HOME/bin/falcon
submitted entities in Falcon |entity -type [cluster|feed |
for a specified entity. process] -list
resume Feeds, Processes Restores a feed or process | $FALCON_HOME/bin/falcon
back to the active state, entity -type [feed | process] -
resuming the related Oozie |name $name -resume
bundle.
schedule Feeds, Processes Schedules submitted feeds | $FALCON_HOME/bin/falcon
or processes. entity -type [process|feed] -
name $name -schedule
status All Current status of the entity. | $FALCON_HOME/bin/falcon
entity -type [cluster|feed |
process] -name $name -
status
submit All Creates a new cluster, $FALCON_HOME/bin/falcon
feed, or process entity entity -submit -type cluster -
and validate it against the | file /cluster/definition.xml
appropriate XSD. Check for
dependent entities.
suspend Feeds, Processes Suspends any scheduled $FALCON_HOME/bin/falcon
entity by triggering suspend | entity -type [feed | process] -
on the Oozie bundle. name $name -suspend
update Feeds, Processes Allows an already submitted | $SFALCON_HOME/bin/falcon
or scheduled entity to be entity -type [feed | process]

39

https://git-wip-us.apache.org/repos/asf?p=incubator-falcon.git;a=blob_plain;f=client/src/main/resources/process-0.1.xsd;hb=HEAD

Hortonworks Data Platform

March 1, 2016

Option

Entities

Definition

CLI Usage

cluster entities.

updated. Not allowed for

-name $name -update [-
effective $effective time]

4.4.2. Managing Instances with the CLI

The following table provides information about CLI options you can use to manage feed or

process instances:

Table 4.4. Instance Actions

Option Definition CLI Usage
continue Continue a process instance in a $FALCON_HOME/bin/falcon
terminal state such as SUCCEEDED, instance -type $feed/process -name
KILLED, or FAILED. $name -continue -start "yyyy-MM-
dd'T'HH:mm'Z" -end "yyyy-MM-
dd'T'HH:mm'z"
help Returns help on Falcon commands. $FALCON_HOME/bin/falcon admin -
help
kill Kills all the instances of the specified |$FALCON_HOME/bin/falcon instance
process whose nominal time is -type $feed/process -name $name -kill
between the given start time and end |-start "yyyy-MM-dd'T'HH:mm'Z" -end
time. "yyyy-MM-dd'T'HH:mm'Z"'
logs Gets logs for instance actions. $FALCON_HOME/bin/falcon instance
-type $feed/process -name $name -
logs -start "yyyy-MM-dd'T'"HH:mm'Z" [-
end "yyyy-MM-dd'T'"HH:mm'Z"] [-runid
$runid]
rerun Rerun a process instance in a terminal | $FALCON_HOME/bin/falcon instance
state such as SUCCEEDED, KILLED, or |-type $feed/process -name $name -re-
FAILED. run -start "yyyy-MM-dd'T'HH:mm'Z" -
end "yyyy-MM-dd'T'HH:mm'Z" [-file
$properties file]
resume Resumes any instance in a suspended |$FALCON_HOME/bin/falcon instance
state. -type $feed/process -name $name -
resume -start "yyyy-MM-dd'T'"HH:mm'zZ"
-end "yyyy-MM-dd'T'"HH:mm'zZ"
running Provides all running instances of the | $FALCON_HOME/bin/falcon instance
specified process. -type $feed/process -name $name -
running
status Gets the status of one or multiple $FALCON_HOME/bin/falcon instance
instances of a process. -type $feed/process -name $name -
status -start "yyyy-MM-dd'T'HH:mm'Z" -
end "yyyy-MM-dd'T"HH:mm'Z"
summary Summary of the status of feeds or $FALCON_HOME/bin/falcon
processes within the time periods instance -type $feed/process -name
specified. $name -summary -start "yyyy-MM-
dd'T'HH:mm'Z" -end "yyyy-MM-
dd'T'HH:mm'z"
suspend Suspends one or more instances for $FALCON_HOME/bin/falcon
the given process. Pauses the parent |instance -type $feed/process -name
workflow at the state. $name -suspend -start "yyyy-MM-
dd'T'HH:mm'Z" -end "yyyy-MM-
dd'T'HH:mm'z"
version Returns current version of Falcon. $FALCON_HOME/bin/falcon admin -
version

40

Hortonworks Data Platform March 1, 2016

5. Troubleshooting (Falcon)

The following information can help you troubleshoot issues with your Falcon server
installation.

5.1. Falcon logs

The Falcon server logs are available in the logs directory under $FALCON_HOME.

To get logs for an instance of a feed or process:

$FALCON _HOVE/ bi n/ fal con instance -type $feed/ process -nane $nanme -1o0gs -start
"yyyy-Mdd' T"HH: i Z' " [-end "yyyy-MMdd' T"HH: nmm Z' "] [-runid $runid]

5.2. Falcon Server Failure

The Falcon server is stateless. All you need to do is restart Falcon for recovery, because a
Falcon server failure does not affect currently scheduled feeds and processes.

5.3. Delegation Token Renewal Issues

Inconsistencies in rules for hadoop.security.auth_to_local can lead to issues with delegation
token renewals.

If you are using secure clusters, verify that hadoop. security. auth _to | ocal in core-
site.xml is consistent across all clusters.

5.4. Invalid Entity Schema

Invalid values in cluster, feeds (datasets), or processing schema can occur.

Review Falcon entity specifications.

5.5. Incorrect Entity

Failure to specify the correct entity type to Falcon for any action results in a validation
error.

For example, if you specify -type feed to sumbit -type process, you will see the following
error:

[org. xm . sax. SAXPar seExcepti on; |ineNunber: 5; columNunber: 68; cvc-elt.1.a:
Cannot find the declaration of el ement 'process'.]

5.6. Bad Config Store Error

The configuration store directory must be owned by your "falcon" user.

41

http://falcon.apache.org/EntitySpecification.html

Hortonworks Data Platform March 1, 2016

5.7. Unable to set DataSet Entity

Ensure ‘validity times’ make sense.
* They must align between clusters, processes, and feeds.

¢ In a given pipeline Dates need to be 1ISO8601 format:

yyyy- MMt dd' T' HH: mm 2’

5.8. Oozie Jobs

Always start with the Oozie bundle job, one bundle job per feed and process. Feeds have
one coordinator job to set the retention policy and one coordinator for the replication

policy.

42

Hortonworks Data Platform March 1, 2016

6. Configuring High Availability (Falcon
Server)

Currently, configuring high availability for the Falcon server is a manual process. When the
primary Falcon server is down, the backup Falcon server must be manually started by the
system administrator. Then the backup Falcon server picks up where the primary server
stopped.

6.1. Configuring Properties and Setting Up
Directory Structure for High Availability

Required Properties for Falcon Server High Availability:

The Falcon server stores its data in the startup.properties file that is located in the
<falcon_home>/conf directory. Configure the start-up properties as follows for high
availability:

» *.config.store.uri: This location should be a directory on HDFS.

» * retry.recorder.path: This location should be an NFS-mounted directory that is owned
by Falcon, and with permissions set to 755.

» * falcon.graph.storage.directory: This location should also be an NFS-mounted directory
that is owned by Falcon, and with permissions set to 755.

* Falcon conf directory: The default location of this directory is <falcon_home>/conf, which
is symbolically linked to /etc/falcon/conf. This directory must point to an NFS-mounted
directory to ensure that the changes made on the primary Falcon server are populated to
the back-up server.

To set up an NFS-mounted directory:

The following instructions use 240.0.0.10 for the NFS server, 240.0.0.12 for the primary
Falcon server, and 240.0.0.13 for the back-up Falcon server.

1. Logged in as root on the server that hosts the NFS mount directory:

a. Install and start NFS with the following command:

yuminstall nfs-utils nfs-utils-lib
chkconfig nfs on

service rpchind start

service nfs start

b. Create a directory that holds the Falcon data:
nkdir -p /hadoop/fal con/ dat a

¢. Add the following lines to the file /etc/exports to share the data directories:

/ hadoop/ f al con/ data 240. 0. 0. 12(rw, sync, no_r oot _squash, no_subt ree_check)
/ hadoop/ f al con/ data 240. 0. 0. 13(rw, sync, no_r oot _squash, no_subt ree_check)

43

Hortonworks Data Platform March 1, 2016

d. Export the shared data directories:

exportfs -a

2. Logged in as root, install the nf s- ut i | s package and its library on each of the Falcon
servers.

yuminstall nfs-utils nfs-utils-lib

3. After installing the NFS utilities packages, still logged in as root, create the NFS mount
directory, and then mount the directories with the following commands:

nkdir -p /hadoop/fal con/data
nmount 240. 0. 0. 10: / hadoop/ f al con/ dat a/ hadoop/ f al con/ dat a

6.2. Preparing the Falcon Servers

To prepare the Falcon servers for high availability:

1. Logged in as root on each of the Falcon servers, make sure that the properties
* retry.recorder.path and *.falcon.graph.storage.directory point to a directory under
the NFS-mounted directory. For example, the /hadoop/falcon/data directory as shown in
the above example.

2. Logged in as the falcon user, start the primary Falcon server. Do not start the back-up
Falcon server.

<fal con_hone>/ bi n/fal con-start

6.3. Manually Failing Over the Falcon Servers

When the primary Falcon server fails, the failover to the back-up server is a manual process:

1. Logged in as the falcon user, make sure that the Falcon process is not running on the
back-up server:

<f al con- honme>/ bi n/ f al con- st op

2. Logged in as root, update the client.properties files on all of the Falcon client nodes. Set
the property falcon.url to the fully qualified domain name of the back-up server.

If Transport Layer Security (TLS) is disabled, use port 15000:
fal con. url =http://<back-up-server>: 15000/ ### if TLS is di sabl ed
If TLS is enabled, use port 15443:

fal con. url =https://<back-up-server>: 15443/ ### if TLS i s enabl ed

3. Logged in as the falcon user, start the back-up Falcon server:

<f al con- hone>/ bi n/ f al con- st art

44

Hortonworks Data Platform March 1, 2016

7. Metadata Store REST API Reference
(Atlas)

This APl supports a Representational State Transfer (REST) model for accessing a set of

resources through a fixed set of operations. The following resources are accessible through
the RESTful model:

* AdminResource [45]
 EntityResource [46]

¢ HiveLineageResource [48]

MetadataDiscoveryResource [48]

RexsterGraphResource [50]

TypesResource [51]

2 Important

This appendix is intended as a quick start for the Atlas REST API. The content
will be updated on a regular cadence over the next few months.

7.1. Data Model

All endpoints act on a common set of data. The data can be represented with difference
media (i.e. "MIME") types, depending on the endpoint that consumes and/or produces the
data. The data can be described by an XML Schema, which definitively describes the XML
representation of the data, but is also useful for describing the other formats of the data,
such as JSON.

This document describes the data using terms based on an XML Schema. Data can be
grouped by namespace with a schema document describing the elements and types of the
namespace. Types define the structure of the data and elements are instances of a type.
For example, elements are usually produced by (or consumed by) a REST endpoint, and the
structure of each element is described by its type.

7.2. AdminResource

Jersey Resource for administrative operations. The following resources are applicable:
« 227TITLE??? [45]
e ?M?TITLE??? [46]

/admin/stack

GET Fetches the thread stack dump for this application.

Response Body element: (custom)

45

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.w3.org/XML/Schema
http://json.org/

Hortonworks Data Platform March 1, 2016

media types: text/plain ‘

JSON represents the thread stack dump.

/admin/version

GET Fetches the version for this application.
Response Body element: (custom)
media types: application/json

JSON represents the version.

7.3. EntityResource

Entity management operations. An entity is an instance of a type. Entities conform to the
definition of the type that they they correspond to. The following resources are applicable:

« 277TITLE??? [46]
« 227TITLE??? [46]
« 227TITLE??? [47]

o 27?TITLE??? [47]

/entities
POST Submits an entity definition (instance) corresponding to a
given type.
Response Body element: (custom)
media types: application/json
GET Fetches the list of entities for an entity type.
Parameters name description |type default
type The name query
of a unique
type.
Response Body element: (custom)
media types: application/json

/entities/{guid}

GET Fetches the complete definition of the entity identified by
the GUID.
Parameters name description |type default
GUID The globally |path
unique
identifier of
the entity.
Response Body element: (custom)
media types: application/json

46

Hortonworks Data Platform

March 1, 2016

PUT Adds a property to the entity ID.
Parameters name description |type default
GUID The globally |path
unique
identifier of
the entity.
property The property |query
that must be
added.
value The value of |query
the property.
Response Body element: (custom)
media types: application/json

Response payload as JSON.

/entities/{guid}/traits

GET Gets the list of trait names for the entity that is
represented by the GUID.
Parameters name description |type default
GUID The globally |path
unique
identifier of
the entity.
Response Body element: (custom)
media types: application/json

A list of trait names for the entity that is identified by the

GUID.
POST Submits a new trait to an existing entity that is
represented by the GUID.
Parameters name description | type default
GUID The globally |path
unique
identifier of
the entity.
Response Body element: (custom)
media types: application/json

/entities/{guid}/traits/{traitName}

DELETE Deletes a trait from the entity that is represented by the
GUID.
Parameters name description | type default
GUID The globally |path
unique
identifier of
the entity.
traitName The name of |path
the trait.
Response Body element: (custom)

Hortonworks Data Platform March 1, 2016

‘ H media types: application/json H

7.4. HivelLineageResource

Jersey Resource for the Hive table lineage. The following resources are applicable:

« 277TITLE??? [48]
« 227TITLE??? [48]
« 227TITLE?2? [48]

/lineage/hive/table/{tableName}/inputs/graph

GET Fetches the inputs graph for an entity.
Parameters name description |type default
tableName |The name of |path
the table.
Response Body element: (custom)
media types: application/json

/lineage/hive/table/{tableName}/outputs/graph

GET Fetches the outputs graph for an entity.
Parameters name description |type default
tableName |The name of |path
the table.
Response Body element: (custom)
media types: application/json

/lineage/hive/table/{tableName}/schema

GET Fetches the schema for the table.
Parameters name description |type default
tableName |The name of |path
the table.
Response Body element: (custom)
media types: application/json

7.5. MetadataDiscoveryResource

Jersey Resource for metadata operations. The following resources are applicable:

o 2727TITLE??? [49]
* 227TITLE??? [49]

e ?7?TITLE??? [49]

48

Hortonworks Data Platform

March 1, 2016

e ??72TITLE??? [49]

/discovery/search

GET Search by using a query.
Parameters name description |type default
query The search |query
query in raw
Gremlin or
DSL format
that falls
back to full
text.
Response Body element: (custom)
media types: application/json

JSON represents the type and results.

/discovery/search/dsl

GET Search by using the query DSL format.
Parameters name description |type default
query The search |query
query in DSL
format.
Response Body element: (custom)
media types: application/json

JSON represents the type and results.

/discovery/search/fulltext

GET Search by using full text search.
Parameters name description |type default
query The full text |query
search query.
Response Body element: (custom)
media types: application/json

JSON represents the type and results.

/discovery/search/gremlin

GET Search by using the raw gremlin query format.
Parameters name description |type default
query The search |query
query in
raw gremlin
format.
Response Body element: (custom)
media types: application/json

JSON represents the type and results.

49

Hortonworks Data Platform

March 1, 2016

7.6. RexsterGraphResource

Jersey Resource for lineage metadata operations. Implements most of the GET operations
of the Rexster APl without the indexes. This is a subset of the Rexster REST API, designed

to provide read-only methods for accessing the back-end graph. See https://github.com/
tinkerpop/rexster/wiki/Basic-REST-API.

The following resources are applicable:

?22?TITLE??? [50]
?22?TITLE??? [50]
?22?TITLE??? [50]
?22?TITLE?2? [51]

?TITLE??? [51]

/graph/edges/{id}

GET Fetches a single edge with a unique ID.
For example, GET http://host/ net adat a/
| i neage/ edges/i d graph. get Edge(i d);
Parameters name description |type default
id path
Response Body element: (custom)
media types: application/json
/graph/vertices
GET Fetches a list of vertices that match a property key and
value.
For example, GET http://host/ net adat a/
| i neage/ verti ces?key=&val ue=
gr aph. get Verti ces(key, val ue);
Parameters name description |type default
key query
value query
Response Body element: (custom)
media types: application/json

/graph/vertices/{id}

GET Fetches a single vertex with a unique ID.
For example, GET htt p://host/ net adat a/
I'i neage/vertices/id graph.getVertex(id);
Parameters name description |type default
id path

50

https://github.com/tinkerpop/rexster/wiki/Basic-REST-API
https://github.com/tinkerpop/rexster/wiki/Basic-REST-API

Hortonworks Data Platform

March 1, 2016

Response Body

element: (custom)

media types: application/json

/graph/vertices/{id}/{direction}

GET Fetches a list of adjacent edges with a direction.
For example, GET http://host/
nmet adat a/ | i neage/ vertices/id /
di rectiongraph. getVertex(id).get{D rection}
direction: {(?!outE)(?!bothE)(?!inE)(?! out)
(?!'both) (?'in)(?! query).+}
Parameters name description |type default
id path
direction path
Response Body element: (custom)
media types: application/json

Fdges() ;

/graph/vertices/properties/{id}

GET Fetches properties for a single vertex with a unique ID.

For example, GET http://host/ net adat a/

| i neage/vertices/ properties/id

S Note
This method is not part of the Rexster API.

Parameters name description |type default

id path

relationships query false
Response Body element: (custom)

media types: application/json

71.7. TypesResource

This class provides a RESTful API for types. A type is the description of any representable
item, for example, a Hive table. You can represent any meta model of any domain using
these types. The following resources are applicable:

e« 222TITLE??? [51]
« 227TITLE??? [52]

/types

POST

Submits a type definition that corresponds to a type
that represents a domain meta model. This method can
represent objects like a Hive database, Hive table, and so
on.

Response Body

element: (custom)

51

Hortonworks Data Platform March 1, 2016

H media types: application/json H
GET Fetches a list of trait type names that are registered in the
type system.
Parameters name description |type default
type The name query all
of the
enumerator

org. apachej atl as.typesystem
types. Dat affypes. TypeQat egory.

Typically, this
can be one
of:

all, TRAIT,
CLASS,
ENUM,
STRUCT.

Response Body element: (custom)

media types: application/json

The entity names response payload represented as JSON.

/types/{typeName}
GET Fetches the complete definition of a unique type name.
Parameters name description |type default
typename The unique |path
name of the
type.
Response Body element: (custom)
media types: application/json

52

	Hortonworks Data Platform
	Table of Contents
	1. HDP Data Governance
	1.1. Falcon Overview
	1.2. Atlas Overview

	2. Data Pipelines (Falcon)
	2.1. Understanding Data Pipelines
	2.2. Quick Start: Using the Falcon Web UI to Define Data Pipelines
	2.2.1. Creating a Cluster Entity
	2.2.2. Creating a Feed Entity
	2.2.3. Creating a Process Entity

	2.3. Search For and Manage Data Pipeline Entities
	2.4. Mirroring Data (Falcon)
	2.5. Using the Falcon CLI to Define Data Pipelines
	2.5.1. Deploying Data Pipelines
	2.5.2. Replicating Data (Falcon)
	2.5.2.1. Prerequisites
	2.5.2.2. Define the Data Source: Set Up a Source Cluster Entity
	2.5.2.3. Create the Replication Target: Define a Cluster Entity
	2.5.2.4. Create the Feed Entity
	2.5.2.5. Submit and Validate the Entities
	2.5.2.6. Confirm Results

	2.5.3. Viewing Alerts in Falcon
	2.5.4. Late Data Handling
	2.5.5. Setting a Retention Policy
	2.5.6. Setting a Retry Policy
	2.5.7. Enabling Email Notifications

	2.6. Understanding Dependencies in Falcon
	2.7. Viewing Dependencies

	3. Metadata Services Framework (Atlas)
	3.1. Understanding the HDP Metadata Services Framework
	3.2. Using the Atlas Web UI to Search Metadata

	4. Reference (Falcon)
	4.1. Cluster
	4.1.1. Valid Cluster Tag Attributes
	4.1.2. Cluster Interfaces
	4.1.3. Cluster XSD Specification

	4.2. Feed Entity
	4.3. Process Entity
	4.4. Using the CLI to Manage Entities and Instances
	4.4.1. Managing Entities with the CLI
	4.4.2. Managing Instances with the CLI

	5. Troubleshooting (Falcon)
	5.1. Falcon logs
	5.2. Falcon Server Failure
	5.3. Delegation Token Renewal Issues
	5.4. Invalid Entity Schema
	5.5. Incorrect Entity
	5.6. Bad Config Store Error
	5.7. Unable to set DataSet Entity
	5.8. Oozie Jobs

	6. Configuring High Availability (Falcon Server)
	6.1. Configuring Properties and Setting Up Directory Structure for High Availability
	6.2. Preparing the Falcon Servers
	6.3. Manually Failing Over the Falcon Servers

	7. Metadata Store REST API Reference (Atlas)
	7.1. Data Model
	7.2. AdminResource
	7.3. EntityResource
	7.4. HiveLineageResource
	7.5. MetadataDiscoveryResource
	7.6. RexsterGraphResource
	7.7. TypesResource

