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1. Using Apache Hive
Hortonworks Data Platform deploys Apache Hive for your Hadoop cluster.

Hive is a data warehouse infrastructure built on top of Hadoop. It provides tools to enable
easy data ETL, a mechanism to put structures on the data, and the capability for querying
and analysis of large data sets stored in Hadoop files.

Hive defines a simple SQL query language, called QL, that enables users familiar with SQL
to query the data. At the same time, this language also allows programmers who are
familiar with the MapReduce framework to be able to plug in their custom mappers and
reducers to perform more sophisticated analysis that may not be supported by the built-in
capabilities of the language.

In this document:

• Hive Documentation [1]

• Features Overview [2]

• Moving Data into Hive [10]

• Hive JDBC and ODBC Drivers [20]

• Configuring HiveServer2 for Transactions (ACID Support) [23]

• Configuring HiveServer2 for LDAP and for LDAP over SSL [25]

• Troubleshooting Hive [28]

• Hive JIRAs [30]

1.1. Hive Documentation
Documentation for Hive can be found in wiki docs and javadocs.

1. Javadocs describe the Hive API.

2. The Hive wiki is organized in four major sections:

a. General Information about Hive

• Getting Started

• Presentations and Papers about Hive

• Hive Mailing Lists

b. User Documentation

• Hive Tutorial

• SQL Language Manual

• Hive Operators and Functions

http://hive.apache.org/javadocs/r1.2.2/api/index.html
https://cwiki.apache.org/confluence/display/Hive/Home
https://cwiki.apache.org/confluence/display/Hive/GettingStarted
https://cwiki.apache.org/confluence/display/Hive/Presentations
http://hive.apache.org/mailing_lists.html#Users
https://cwiki.apache.org/confluence/display/Hive/Tutorial
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://cwiki.apache.org/confluence/display/Hive/OperatorsAndFunctions
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• Hive Client

• Beeline: HiveServer2 Client

• Avro SerDe

c. Administrator Documentation

• Installing Hive

• Configuring Hive

• Setting Up the Metastore

• Setting Up Hive Web Interface

• Setting Up Hive Server

• Hive on Amazon Web Services

• Hive on Amazon Elastic MapReduce

d. Resources for Contributors

• Hive Developer FAQ

• How to Contribute

• Hive Developer Guide

• Plug-in Developer Kit

• Unit Test Parallel Execution

• Hive Architecture Overview

• Hive Design Docs

• Full-Text Search over All Hive Resources

• Project Bylaws

1.2. Features Overview
The following sections provide brief descriptions of Hive features:

• Temporary Tables [3]

• Cost-Based SQL Optimization [3]

• Optimized Row Columnar (ORC) Format [6]

• Streaming Data Ingestion [6]

• Query Vectorization [6]

https://cwiki.apache.org/confluence/display/Hive/HiveClient
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/AvroSerDe
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Installation
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Configuration
https://cwiki.apache.org/confluence/display/Hive/AdminManual+MetastoreAdmin
https://cwiki.apache.org/confluence/display/Hive/HiveWebInterface
https://cwiki.apache.org/confluence/display/Hive/AdminManual+SettingUpHiveServer
https://cwiki.apache.org/confluence/display/Hive/HiveAws
https://cwiki.apache.org/confluence/display/Hive/HiveAmazonElasticMapReduce
https://cwiki.apache.org/confluence/display/Hive/HiveDeveloperFAQ
https://cwiki.apache.org/confluence/display/Hive/HowToContribute
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide
https://cwiki.apache.org/confluence/display/Hive/PluginDeveloperKit
https://cwiki.apache.org/confluence/display/Hive/Unit+Test+Parallel+Execution
https://cwiki.apache.org/confluence/display/Hive/Design
https://cwiki.apache.org/confluence/display/Hive/DesignDocs
http://search-hadoop.com/Hive
https://cwiki.apache.org/confluence/display/Hive/Bylaws
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• Comparing Beeline to the Hive CLI [7]

1.2.1. Temporary Tables
Temporary tables are supported in Hive 0.14 and later. A temporary table is a convenient
way for an application to automatically manage intermediate data generated during a
complex query. Rather than manually deleting tables needed only as temporary data in
a complex query, Hive automatically deletes all temporary tables at the end of the Hive
session in which they are created. The data in these tables is stored in the user's scratch
directory rather than in the Hive warehouse directory. The scratch directory effectively acts
as the data sandbox for a user, located by default in /tmp/hive-<username>.

Tip

See Apache AdminManual Configuration for information on configuring Hive
to use a non-default scratch directory.

Hive users create temporary tables using the TEMPORARY keyword:

CREATE TEMPORARY TABLE tmp1 (c1 string);
CREATE TEMPORARY TABLE tmp2 AS ...
CREATE TEMPORARY TABLE tmp3 LIKE ... 

Multiple Hive users can create multiple Hive temporary tables with the same name because
each table resides in a separate session.

Temporary tables support most table options, but not all. The following features are not
supported:

• Partitioned columns

• Indexes

Note

A temporary table with the same name as a permanent table will cause all
references to that table name to resolve to the temporary table. The user
cannot access the permanent table during that session without dropping or
renaming the temporary table.

1.2.2. Cost-Based SQL Optimization
Cost-based optimization (CBO) of SQL queries is supported in Hive 0.13.0 and later. CBO
uses Hive table, table partition, and column statistics to create efficient query execution
plans. Efficient query plans better utilize cluster resources and improve query latency. CBO
is most useful for complex queries that contain multiple JOIN statements and for queries on
very large tables.

Note

Tables are not required to have partitions to generate CBO statistics. Column-
level CBO statistics can be generated by both partitioned and unpartitioned
tables.

https://cwiki.apache.org/confluence/display/Hive/AdminManual+Configuration
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CBO generates the following statistics:

Statistics Granularity Description

Table-level - Uncompressed size of table

- Number of rows

- Number of files

Column-level - Number of distinct values

- Number of NULL values

- Minimum value

- Maximum value

CBO requires column-level statistics to generate the best query execution plans. Later, when
viewing these statistics from the command line, you can choose to also include table-level
statistics that are generated by the hive.stats.autogather configuration property.
However, CBO does not use these table-level statistics to generate query execution plans.

Note

See  Statistics in Hive for more information.

Enabling Cost-based SQL Optimization

Hortonworks recommends that administrators always enable CBO. Set and verify the
following configuration parameters in hive-site.xml to enable cost-based optimization of
SQL queries:

Table 1.1. CBO Configuration Parameters

CBO Configuration Parameter Description Default Value

hive.cbo.enable Enables cost-based query
optimization.

False

hive.stats.autogather Enables automated gathering
of table-level statistics for newly
created tables and table partitions,
such as tables created with the
INSERT OVERWRITE statement.
The parameter does not produce
column-level statistics, such as those
generated by CBO. If disabled,
administrators must manually
generate these table-level statistics
with the ANALYZE TABLE statement.

True

The following configuration properties are not specific to CBO, but setting them to true
will also improve the performance of queries that generate statistics:

Configuration Parameter Description Default Value

hive.stats.fetch.
column.stats

Instructs Hive to collect column-level
statistics.

False

hive.compute.query.
using.stats

Instructs Hive to use statistics when
generating query plans.

False

Generating Statistics

https://cwiki.apache.org/confluence/display/Hive/StatsDev
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Use the ANALYZE TABLE command to generate statistics for tables and columns. Use the
optional NoScan clause to improve query performance by preventing a scan of files on
HDFS. This option gathers only the following statistics:

• Number of files

• Size of files in bytes

ANALYZE TABLE tablename [PARTITION(partcol1[=val1], partcol2[=val2], ...)]
 COMPUTE STATISTICS [NoScan];

The following example views statistics for all partitions in the employees table. The query
also uses the NoScan clause to improve performance:

ANALYZE TABLE employees PARTITION (dt) COMPUTE STATISTICS [NoScan];

Generating Column-level Statistics:

Use the following syntax to generate statistics for columns in the employee table:

ANALYZE TABLE tablename [PARTITION(partcol1[1=val1], partcol2[=val2], ...)]
 COMPUTE STATISTICS FOR COLUMNS [NoScan]; 

The following example generates statistics for all columns in the employees table:

ANALYZE TABLE employees PARTITION (dt) COMPUTE STATISTICS FOR COLUMNS; 

Viewing Statistics

Use the DESCRIBE statement to view statistics generated by CBO. Include
the EXTENDED keyword if you want to include statistics gathered when the
hive.stats.fetch.column.stats and hive.compute.query.using.stats
properties are enabled.

• Viewing Generated Table Statistics

• Use the following syntax to generate table statistics:

DESCRIBE [EXTENDED] tablename; 

Note

The EXTENDED keyword can be used only if the
hive.stats.autogather property is enabled in the hive-site.xml
configuration file.

• The following example displays all statistics for the employees table:

DESCRIBE EXTENDED employees; 

• Viewing Generated Column Statistics

• Use the following syntax to generate column statistics:

DESCRIBE FORMATTED [dbname.]tablename.columnname; 

• The following example displays statistics for the region column in the employees table:
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DESCRIBE FORMATTED employees.region; 

1.2.3. Optimized Row Columnar (ORC) Format
ORC-based tables are supported in Hive 0.14.0 and later. These tables can contain more
than 1,000 columns. For more information about how the ORC file format enhances Hive
performance, see LanguageManual ORC on the Apache site.

1.2.4. Streaming Data Ingestion

Note

If you have questions regarding this feature, contact Support by logging a case
on our Hortonworks Support Portal at http://support.hortonworks.com.

Limitations

Hive 0.13 and 0.14 have the following limitations to ingesting streaming data:

• Only ORC files are supported

• Destination tables must be bucketed

• Apache Flume or Apache Storm may be used as the streaming source

1.2.5. Query Vectorization
Vectorization allows Hive to process a batch of rows together instead of processing one
row at a time. Each batch is usually an array of primitive types. Operations are performed
on the entire column vector, which improves the instruction pipelines and cache usage.
HIVE-4160 has the design document for vectorization and tracks the implementation of
many subtasks.

Enable Vectorization in Hive

To enable vectorization, set this configuration parameter:

hive.vectorized.execution.enabled=true 

When vectorization is enabled, Hive examines the query and the data to determine
whether vectorization can be supported. If it cannot be supported, Hive will execute the
query with vectorization turned off.

Log Information about Vectorized Execution of Queries

The Hive client will log, at the info level, whether a query's execution is being vectorized.
More detailed logs are printed at the debug level.

The client logs can also be configured to show up on the console.

Supported Functionality

The current implementation supports only single table read-only queries. DDL queries or
DML queries are not supported.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC
https://support.hortonworks.com
https://issues.apache.org/jira/browse/HIVE-4160
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The supported operators are selection, filter and group by.

Partitioned tables are supported.

These data types are supported:

• tinyint

• smallint

• int

• bigint

• date

• boolean

• float

• double

• timestamp

• string

• char

• varchar

• binary

These expressions are supported:

• Comparison: >, >=, <, <=, =, !=

• Arithmetic: plus, minus, multiply, divide, modulo

• Logical: AND, OR

• Aggregates: sum, avg, count, min, max

Only the ORC file format is supported in the current implementation.

Unsupported Functionality

All datatypes, file formats, and functionality are currently unsupported.

Two unsupported features of particular interest are the logical expression NOT, and the
cast operator. For example, a query such as select x,y from T where a = b
will not vectorize if a is integer and b is double. Although both int and double are
supported, casting of one to another is not supported.

1.2.6. Comparing Beeline to the Hive CLI
HDP supports two Hive clients: the Hive CLI and Beeline. The primary difference between
the two involves how the clients connect to Hive.
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• The Hive CLI, which connects directly to HDFS and the Hive Metastore, and can be used
only on a host with access to those services.

• Beeline, which connects to HiveServer2 and requires access to only one .jar file: hive-
jdbc-<version>-standalone.jar.

Hortonworks recommends using HiveServer2 and a JDBC client (such as Beeline) as the
primary way to access Hive. This approach uses SQL standard-based authorization or
Ranger-based authorization. However, some users may wish to access Hive data from
other applications, such as Pig. For these use cases, use the Hive CLI and storage-based
authorization.

Beeline Operating Modes and HiveServer2 Transport Modes

Beeline supports the following modes of operation:

Table 1.2. Beeline Modes of Operation

Operating Mode Description

Embedded The Beeline client and the Hive installation both reside on
the same host machine. No TCP connectivity is required.

Remote Use remote mode to support multiple, concurrent
clients executing queries against the same remote
Hive installation. Remote transport mode supports
authentication with LDAP and Kerberos. It also supports
encryption with SSL. TCP connectivity is required.

Administrators may start HiveServer2 in one of the following transport modes:

Table 1.3. HiveServer2 Transport Modes

Transport Mode Description

TCP HiveServer2 uses TCP transport for sending and receiving
Thrift RPC messages.

HTTP HiveServer2 uses HTTP transport for sending and receiving
Thrift RPC messages.

While running in TCP transport mode, HiveServer2 supports the following authentication
schemes:

Table 1.4. Authentication Schemes with TCP Transport Mode

Authentication Scheme Description

Kerberos A network authentication protocol which operates that
uses the concept of 'tickets' to allow nodes in a network to
securely identify themselves. Administrators must specify
hive.server2.authentication=kerberos in the hive-site.xml
configuration file to use this authentication scheme.

LDAP The Lightweight Directory Access Protocol, an application-
layer protocol that uses the concept of 'directory services'
to share information across a network. Administrators
must specify hive.server2.authentication=ldap in the
hive-site.xml configuration file to use this type of
authentication.

PAM Pluggable Authentication Modules, or PAM, allow
administrators to integrate multiple authentication
schemes into a single API. Administrators must specify
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Authentication Scheme Description

hive.server2.authentication=pam in the hive-site.xml
configuration file to use this authentication scheme.

Custom Authentication provided by a
custom implementation of the
org.apache.hive.service.auth.PasswdAuthenticationProvider
interface. The implementing class must be available in
the classpath for HiveServer2 and its name provided as
the value of the hive.server2.custom.authentication.class
property in the hive-site.xml configuration property file.

None The Beeline client performs no authentication
with HiveServer2. Administrators must specify
hive.server2.authentication=none in the hive-site.xml
configuration file to use this authentication scheme.

NoSASL While running in TCP transport mode, HiveServer2
uses the Java Simple Authentication and Security Layer
(SASL) protocol to establish a security layer between
the client and server. However, HiveServer2 also
supports connections in TCP transfer mode that do
not use the SASL protocol Administrators must specify
hive.server2.authentication=nosasl in the hive-site.xml
configuration file to use this authentication scheme.

The next section describes the connection strings used to connect to HiveServer2 for all
possible combinations of these modes, as well as the connection string required to connect
to HiveServer2 in a secure cluster.

Connecting to Hive with Beeline

The following examples demonstrate how to use Beeline to connect to Hive for all possible
variations of these modes.

Embedded Client

Use the following syntax to connect to Hive from Beeline in embedded mode:

!connect jdbc:hive2:// 

Remote Client with HiveServer2 TCP Transport Mode and SASL Authentication

Use the following syntax to connect to HiveServer2 in TCP mode from a remote Beeline
client:

!connect jdbc:hive2://<host>:<port>/<db> 

The default port for HiveServer2 in TCP mode is 10000, and db is the name of the database
to which you want to connect.

Remote Client with HiveServer2 TCP Transport Mode and NoSASL Authentication

Clients must explicitly specify the authentication mode in their connection string when
HiveServer2 runs in NoSASL mode:

!connect jdbc:hive2://<host>:<port>/<db>;auth=noSasl hiveuser pass org.apache.
hive.jdbc.HiveDriver 

If users forget to include auth=noSasl in the JDBC connection string, the JDBC client API
attempts to make an SASL connection to HiveServer2. This causes an open connection that
eventually results in the client crashing with an Out Of Memory error.
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Remote Client with HiveServer2 HTTP Transport Mode

Use the following syntax to connect to HiveServer2 in HTTP mode from a remote Beeline
client:

!connect jdbc:hive2://<host>:<port>/<db>?hive.server2.transport.mode=
http;hive.server2.thrift.http.path=<http_endpoint> 

Remote Client with HiveServer2 in Secure Cluster

Use the following syntax to connect to HiveServer2 in a secure cluster from a remote
Beeline client:

!connect jdbc:hive2://<host>:<port>/<db>;principal=
<Server_Principal_of_HiveServer2> 

Note

The Beeline client must have a valid Kerberos ticket in the ticket cache before
attempting to connect.

1.3. Moving Data into Hive
There are multiple methods of moving data into Hive. How you move the data into
Hive depends on the source format of the data and the target data format that is
required. Generally, ORC is the preferred target data format because of the performance
enhancements that it provides.

The following methods are most commonly used:

Table 1.5. Most Common Methods to Move Data into Hive

Source of Data Target Data Format in Hive Method Description

ETL for legacy systems ORC file format 1. Move data into HDFS.

2. Use an external table to move data
from HDFS to Hive.

3. Then use Hive to convert the data to
the ORC file format.

Operational SQL database ORC file format 1. Use Sqoop to import the data from
the SQL database into Hive.

2. Then use Hive to convert the data to
the ORC file format.

Streaming source that is "append
only"

ORC file format 1. Write directly to the ORC file format
using the Hive Streaming feature.

1.3.1. Moving Data from HDFS to Hive Using an External
Table

This is the most common way to move data into Hive when the ORC file format is required
as the target data format. Then Hive can be used to perform a fast parallel and distributed
conversion of your data into ORC. The process is shown in the following diagram:
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Figure 1.1. Example: Moving .CSV Data into Hive

Moving .CSV Data into Hive

The following steps describe moving .CSV data into Hive using the method illustrated in the
above diagram with command-line operations.

1. Move .CSV data into HDFS:

a. The following is a .CSV file which contains a header line that describes the fields and
subsequent lines that contain the data:

[<username>@cn105-10 ~]$ head cars.csv
Name,Miles_per_Gallon,Cylinders,Displacement,Horsepower,Weight_in_lbs,
Acceleration,Year,Origin
"chevrolet chevelle malibu",18,8,307,130,3504,12,1970-01-01,A
"buick skylark 320",15,8,350,165,3693,11.5,1970-01-01,A
"plymouth satellite",18,8,318,150,3436,11,1970-01-01,A
"amc rebel sst",16,8,304,150,3433,12,1970-01-01,A
"ford torino",17,8,302,140,3449,10.5,1970-01-01,A
...
[<username>@cn105-10 ~]$

<username> is the user who is performing the operation. To test this example, run
with a user from your environment.

b. First, use the following command to remove the header line from the file because it is
not part of the data for the table:

[<username>@cn105-10 ~]$ sed -i 1d cars.csv

c. Move the data to HDFS:

[<username>@cn105-10 ~]$ hdfs dfs -copyFromLocal cars.csv /user/
<username>/visdata
[<username>@cn105-10 ~]$ hdfs dfs -ls /user/<username>/visdata
Found 1 items
-rwxrwxrwx   3 <username> hdfs      22100 2015-08-12 16:16 /user/
<username>/visdata/cars.csv
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2. Create an external table.

An external table is a table for which Hive does not manage storage. If you delete an
external table, only the definition in Hive is deleted. The data remains. An internal table
is a table that Hive manages. If you delete an internal table, both the definition in Hive
and the data are deleted.

The following command creates an external table:

CREATE EXTERNAL TABLE IF NOT EXISTS Cars(
        Name STRING, 
        Miles_per_Gallon INT,
        Cylinders INT,
        Displacement INT,
        Horsepower INT, 
        Weight_in_lbs INT,
        Acceleration DECIMAL,
        Year DATE,
        Origin CHAR(1))
    COMMENT 'Data about cars from a public database'
    ROW FORMAT DELIMITED
    FIELDS TERMINATED BY ','
    STORED AS TEXTFILE
    location '/user/<username>/visdata';

3. Create the ORC table.

Now, create a table that is managed by Hive with the following command:

CREATE TABLE IF NOT EXISTS mycars(
        Name STRING, 
        Miles_per_Gallon INT,
        Cylinders INT,
        Displacement INT,
        Horsepower INT, 
        Weight_in_lbs INT,
        Acceleration DECIMAL,
        Year DATE,
        Origin CHAR(1))
    COMMENT 'Data about cars from a public database'
    ROW FORMAT DELIMITED
    FIELDS TERMINATED BY ','
    STORED AS ORC;

4. Insert the data from the external table to the Hive ORC table.

Now, use an SQL statement to move the data from the external table that you created
in Step 2 to the Hive-managed ORC table that you created in Step 3:

INSERT OVERWRITE TABLE mycars SELECT * FROM cars;

Note

Using Hive to convert an external table into an ORC file format is very
efficient because the conversion is a parallel and distributed action, and no
standalone ORC conversion tool is necessary.

5. Verify that you imported the data into the ORC-formatted table correctly:
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hive> select * from mycars limit 3;
OK
"chevrolet chevelle malibu" 18 8 307 130 3504 12 1970-01-01 A
"buick skylark 320" 15 8 350 165 3693 12 1970-01-01 A
"plymouth satellite" 18 8 318 150 3436 11 1970-01-01 A
Time taken: 0.144 seconds, Fetched: 3 row(s)

1.3.2. Using Sqoop to Move Data into Hive
Sqoop is a tool that enables you to bulk import and export data from a database. You
can use Sqoop to import data into HDFS or directly into Hive. However, Sqoop can only
import data into Hive as a text file or as a SequenceFile. To use the ORC file format, you
must use a two-phase approach: first use Sqoop to move the data into HDFS, and then use
Hive to convert the data into the ORC file format as described in the above Steps 3 and 4 of
"Moving Data from HDFS to Hive Using an External Table."

A detailed Sqoop user guide is available on the Apache web site here.

The process for using Sqoop to move data into Hive is shown in the following diagram:

Figure 1.2. Using Sqoop to Move Data into Hive

Moving Data into Hive Using Sqoop

1. Specify the source connection information.

First, you must specify the:

• database URI (db.foo.com in the following example)

• database name (bar)

• connection protocol (jdbc:mysql:)

For this example, use the following command:

sqoop import --connect jdbc:mysql://db.foo.com/bar --table EMPLOYEES

If the source database requires credentials, such as a username and password, you can
enter the password on the command line or specify a file where the password is stored.

https://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html
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For example:

• Enter the password on the command line:

sqoop import --connect jdbc:mysql://db.foo.com/bar --table EMPLOYEES --
username <username> -P
Enter password: (hidden)

• Specify a file where the password is stored:

sqoop import --connect jdbc:mysql://db.foo.com/bar --table EMPLOYEES --
username <username> --password-file ${user.home}/.password

More connection options are described in the Sqoop User Guide on the Apache web site.

2. Specify the data and the parallelism for import:

a. Specify the data simply.

Sqoop provides flexibility to specify exactly the data you want to import from the
source system:

• Import an entire table:

sqoop import --connect jdbc:mysql://db.foo.com/bar --table EMPLOYEES

• Import a subset of the columns from a table:

sqoop import --connect jdbc:mysql://db.foo.com/bar --table EMPLOYEES --
columns "employee_id,first_name,last_name,job_title"

• Import only the latest records by specifying them with a WHERE clause and then
that they be appended to an existing table:

sqoop import --connect jdbc:mysql://db.foo.com/bar --table EMPLOYEES 
 --where "start_date > '2010-01-01'"

sqoop import --connect jdbc:mysql://db.foo.com/bar --table EMPLOYEES --
where "id > 100000" --target-dir /incremental_dataset --append

You can also use a free-form SQL statement.

b. Specify parallelism.

There are three options for specifying write parallelism (number of map tasks):

• Explicitly set the number of mappers using --num-mappers. Sqoop evenly splits
the primary key range of the source table:

sqoop import --connect jdbc:mysql://db.foo.com/bar --table EMPLOYEES --
num-mappers 8

In this scenario, the source table must have a primary key.

• Provide an alternate split key using --split-by. This evenly splits the data using
the alternate split key instead of a primary key:

https://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_connecting_to_a_database_server
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sqoop import --connect jdbc:mysql://db.foo.com/bar --table EMPLOYEES --
split-by dept_id

This method is useful if primary keys are not evenly distributed.

• When there is not split key or primary key, the data import must be sequential.
Specify a single mapper by using --num-mappers 1 or --autoreset-to-one-
mapper.

c. Specify the data using a query.

Instead of specifying a particular table or columns, you can specify the date with a
query. You can use one of the following options:

• Explicitly specify a split-by column using --split-by and put $ CONDITIONS
that Sqoop replaces with range conditions based on the split-by key. This method
requires a target directory:

sqoop import --query 'SELECT a.*, b.* FROM a JOIN b on (a.id == b.id)
WHERE $CONDITIONS' --split-by a.id --target-dir /user/foo/joinresults

• Use sequential import if you cannot specify a split-by column:

sqoop import --query 'SELECT a.*, b.* FROM a JOIN b on (a.id == b.id) 
WHERE $CONDITIONS' -m 1 --target-dir /user/foo/joinresults

To try a sample query without importing data, use the eval option to print the
results to the command prompt:

sqoop eval --connect jdbc:mysql://db.foo.com/bar --query "SELECT * FROM
 employees LIMIT 10"

3. Specify the destination for the data: HDFS or Hive.

Here is an example of specifying the HDFS target directory:

sqoop import --query 'SELECT a.*, b.* FROM a JOIN b on (a.id == b.id) 
WHERE $CONDITIONS' --split-by a.id --target-dir /user/foo/joinresults

If you can add text data into your Hive table, you can specify that the data be directly
added to Hive. Using --hive-import is the primary method to add text data directly
to Hive:

sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES --
hive-import

This method creates a metastore schema after storing the text data in HDFS.

If you have already moved data into HDFS and want to add a schema, use the create-
hive-table Sqoop command:

sqoop create-hive-table (generic-args) (create-hive-table-args)

Additional options for importing data into Hive with Sqoop:
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Table 1.6. Sqoop Command Options for Importing Data into Hive

Sqoop Command Option Description

--hive-home <directory> Overrides $HIVE_HOME.

--hive-import Imports tables into Hive using Hive's default delimiters if
none are explicitly set.

--hive-overwrite Overwrites existing data in the Hive table.

--create-hive-table Creates a hive table during the operation. If this option
is set and the Hive table already exists, the job will fail.
Set to false by default.

--hive-table <table_name> Specifies the table name to use when importing data
into Hive.

--hive-drop-import-delims Drops the delimiters \n, \r, and \01 from string fields
when importing data into Hive.

--hive-delims-replacement Replaces the delimiters \n, \r, and \01 from strings
fields with a user-defined string when importing data
into Hive.

--hive-partition-key Specifies the name of the Hive field on which a sharded
database is partitioned.

--hive-partition-value <value> A string value that specifies the partition key for data
imported into Hive.

--map-column-hive <map> Overrides the default mapping from SQL type to Hive
type for configured columns.

1.3.3. Incrementally Updating a Hive Table Using Sqoop and
an External Table

It is common to perform a one-time ingestion of data from an operational database to
Hive and then require incremental updates periodically. Currently, Hive does not support
SQL Merge for bulk merges from operational systems. Instead, you must perform periodic
updates as described in this section.

Note

This procedure requires change data capture from the operational database
that has a primary key and modified date field where you pulled the records
from since the last update.

Overview

This procedure combines the techniques that are described in the sections "Moving Data
from HDFS to Hive Using an External Table" and "Using Sqoop to Move Data into Hive."

Use the following steps to incrementally update Hive tables from operational database
systems:

1. Ingest: Complete data movement from the operational database (base_table) followed
by change or update of changed records only (incremental_table).

2. Reconcile: Create a single view of the base table and change records (reconcile_view) to
reflect the latest record set.

3. Compact: Create a reporting table (reporting_table) from the reconciled view.
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4. Purge: Replace the base table with the reporting table contents and delete any
previously processed change records before the next data ingestion cycle, which is
shown in the following diagram.

Figure 1.3. Data Ingestion Lifecycle

The base table is a Hive internal table, which was created during the first data ingestion.
The incremental table is a Hive external table, which likely is created from .CSV data
in HDFS. This external table contains the changes (INSERTs and UPDATEs) from the
operational database since the last data ingestion.

Note

Generally, the table is partitioned and only the latest partition is updated,
making this process more efficient.

Incrementally Updating Data in Hive

1. Ingest the data.

a. Store the base table in the ORC format in Hive.

The first time that data is ingested, you must import the entire table from the source
database. You can use Sqoop. The following example shows importing data from
Teradata:

sqoop import --connect jdbc:teradata://{host name}/Database=retail 
--connection-manager org.apache.sqoop.teradata.TeradataConnManager --
username dbc 
--password dbc --table SOURCE_TBL --target-dir /user/hive/base_table -m 1

b. Store this data into an ORC-formatted table using the Steps 2 - 5 shown in "Moving
Data from HDFS to Hive Using an External Table."

The base table definition after moving it from the external table to a Hive-managed
table looks like the below example:

CREATE TABLE base_table (
        id STRING,
        field1 STRING,
        modified_date DATE)
    ROW FORMAT DELIMITED
    FIELDS TERMINATED BY ','
    STORED AS ORC;



Hortonworks Data Platform March 1, 2016

18

c. Store the incremental table as an external table in Hive.

It is more common to be importing incremental changes since the last time data was
updated and then merging it. See the section "Using Sqoop to Move Data into Hive"
for examples of importing data with Sqoop.

In the following example, --check-column is used to fetch records newer than
last_import_date, which is the date of the last incremental data update:

sqoop import --connect jdbc:teradata://{host name}/Database=retail 
--connection-manager org.apache.sqoop.teradata.TeradataConnManager 
--username dbc --password dbc --table SOURCE_TBL --target-dir /user/hive/
incremental_table -m 1 
--check-column modified_date --incremental lastmodified --last-value
 {last_import_date}

You can also use --query to perform the same operation:

sqoop import --connect jdbc:teradata://{host name}/Database=retail 
--connection-manager org.apache.sqoop.teradata.TeradataConnManager --
username dbc 
--password dbc --target-dir /user/hive/incremental_table -m 1 
--query 'select * from SOURCE_TBL where modified_date >
 {last_import_date} AND $CONDITIONS’

d. After the incremental table data is moved into HDFS using Sqoop, you can define an
external Hive table over it with the following command:

CREATE EXTERNAL TABLE incremental_table (
        id STRING,
        field1 STRING,
        modified_date DATE)
    ROW FORMAT DELIMITED
    FIELDS TERMINATED BY ','
    STORED AS TEXTFILE
    location '/user/hive/incremental_table';

2. Reconcile or merge the data.

Create a view that uses UNION ALL to merge the data and reconcile the base table
records with the new records:

CREATE VIEW reconcile_view AS
SELECT t1.* FROM
    (SELECT * FROM base_table
     UNION ALL
     SELECT * from incremental_table) t1
JOIN
    (SELECT id, max(modified_date) max_modified FROM
        (SELECT * FROM base_table
         UNION ALL
         SELECT * from incremental_table)
     GROUP BY id) t2
ON t1.id = t2.id AND t1.modified_date = t2.max_modified;

EXAMPLES:
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• Figure 1.4. Dataset after the UNION ALL Command Is Run

• Figure 1.5. Dataset in the View

Note

In the reconcile_view only one record exists per primary key, which
is shown in the id column. The values displayed in the id column
correspond to the latest modification date that is displayed in the
modified_date column.

3. Compact the data.

The view changes as soon as new data is introduced into the incremental table in HDFS
(/user/hive/incremental_table, so create and store a copy of the view as a
snapshot in time:

DROP TABLE reporting_table;
CREATE TABLE reporting_table AS
SELECT * FROM reconcile_view;

4. Purge data.

a. After you have created a reporting table, clean up the incremental updates to ensure
that the same data is not read twice:

hadoop fs –rm –r /user/hive/incremental_table/*

b. Move the data into the ORC format as the base table. Frequently, this involves a
partition rather than the entire table:

DROP TABLE base_table;
CREATE TABLE base_table (
        id STRING,
        field1 STRING,
        modified_date DATE)
    ROW FORMAT DELIMITED
    FIELDS TERMINATED BY ','
    STORED AS ORC;

INSERT OVERWRITE TABLE base_table SELECT * FROM reporting_table;
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Handling Deletes

Deletes can be handled by adding a DELETE_DATE field in the tables:

CREATE VIEW reconcile_view AS
    SELECT t1.* FROM
        (SELECT * FROM base_table
         UNION
         SELECT * FROM incremental_table) t1
     JOIN
         (SELECT id, max(modified_date) max_modified FROM
             (SELECT * FROM base_table
              UNION
              SELECT * FROM incremental_table) 
      GROUP BY id) t2
   ON t1.id = t2.id AND t1.modified_date = t2.max_modified
   AND t1.delete_date IS NULL;

Tip

You can automate the steps to incrementally update data in Hive by using
Oozie. See "Using HDP for Workflow and Scheduling (Oozie)."

1.4. Hive JDBC and ODBC Drivers
Hortonworks provides Hive JDBC and ODBC drivers that let you connect to popular
Business Intelligence (BI) tools to query, analyze and visualize data stored within the
Hortonworks Data Platform.

Hive ODBC drivers for Linux and Mac operating systems are installed when you install Hive.
For information about using the Hive ODBC drivers, see the Hive ODBC Driver User Guide.

JDBC URLs have the following format:

jdbc:hive2://<host>:<port>/<dbName>;<sessionConfs>?<hiveConfs>#<hiveVars> 

JDBC Parameter Description

host The cluster node hosting HiveServer2.

port The port number to which HiveServer2 listens.

dbName The name of the Hive database to run the query against.

sessionConfs Optional configuration parameters for the
JDBC/ODBC driver in the following format:
<key1>=<value1>;<key2>=<key2>...;

hiveConfs Optional configuration parameters for
Hive on the server in the following format:
<key1>=<value1>;<key2>=<key2>; ...

The configurations last for the duration of the user
session.

hiveVars Optional configuration parameters for
Hive variables in the following format:
<key1>=<value1>;<key2>=<key2>; ...

The configurations last for the duration of the user
session.

The specific JDBC connection URL for a HiveServer2 client depends on several factors:

https://hortonworks.com/wp-content/uploads/2015/10/Hortonworks-Hive-ODBC-Driver-User-Guide.pdf
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• How is HiveServer2 deployed on the cluster?

• What type of transport does HiveServer2 use?

• Does HiveServer2 use transport-layer security?

• Is HiveServer2 configured to authenticate users?

The rest of this section describes how to use session configuration variables to format the
JDBC connection URLs for all these scenarios.

Note

Some HiveServer2 clients may need to run on a host outside of the Hadoop
cluster. These clients require access to the following .jar files to successfully
use the Hive JDBC driver in both HTTP and HTTPS modes: hive-jdbc-
<version>-standalone.jar, hadoop-common.jar, and hadoop-
auth.jar.

Embedded and Remote Modes

In embedded mode, HiveServer2 runs within the Hive client rather than in a separate
process. No host or port number is necessary for the JDBC connection. In remote mode,
HiveServer2 runs as a separate daemon on a specified host and port, and the JDBC client
and HiveServer2 interact using remote procedure calls with the Thrift protocol.

Embedded Mode

jdbc:hive2:// 

Remote Mode

jdbc:hive2://<host>:<port>/<dbName>;<sessionConfs>?<hiveConfs>#<hiveVars> 

Note

The rest of the example JDBC connection URLs in this topic are valid only for
HiveServer2 configured in remote mode.

TCP and HTTP Transport

The JDBC client and HiveServer2 can use either HTTP or TCP-based transport to exchange
RPC messages. Specify the transport used by HiveServer2 with the transportMode and
httpPath session configuration variables. The default transport is TCP.

transportMode Variable Value Description

http Connect to HiveServer2 using HTTP transport.

binary Connect to HiveServer2 using TCP transport.

HTTP Transport

jdbc:hive2://<host>:<port>/<dbName>;transportMode=http;httpPath=
<http_endpoint>;<otherSessionConfs>?<hiveConfs>#<hiveVars> 
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Note

The JDBC driver assumes a value of cliservice if the httpPath
configuration variable is not specified.

TCP Transport

jdbc:hive2://<host>:<port>/<dbName>;<otherSessionConfs>?
<hiveConfs>#<hiveVars> 

Because the default transport is TCP, there is no need to specify transportMode=binary
if TCP transport is desired.

User Authentication

HiveServer2 supports Kerberos, LDAP, Pluggable Authentication Modules (PAM), and
custom plugins for authenticating the JDBC user connecting to HiveServer2. The format
of the JDBC connection URL for authentication with Kerberos differs from the format for
other authentication models.

User Authentication Variable Description

principal A string that uniquely identifies a Kerberos user.

saslQop Quality of protection for the SASL framework. The level of
quality is negotiated between the client and server during
authentication. Used by Kerberos authentication with TCP
transport.

user Username for non-Kerberos authentication model.

password Password for non-Kerberos authentication model.

Kerberos Authentication

jdbc:hive2://<host>:<port>/<dbName>;principal=
<HiveServer2_kerberos_principal>;<otherSessionConfs>?<hiveConfs>#<hiveVars> 

Kerberos Authentication with Sasl QOP

jdbc:hive2://<host>:<port>/<dbName>;principal=
<HiveServer2_kerberos_principal>;saslQop=<qop_value>;<otherSessionConfs>?
<hiveConfs>#<hiveVars> 

Non-Kerberos Authentication

jdbc:hive2://<host>:<port>/<dbName>;user=<username>;password=
<password>;<otherSessionConfs>?<hiveConfs>#<hiveVars> 

Transport Layer Security

HiveServer2 supports SSL and Sasl QOP for transport-layer security. The format of the JDBC
connection URL for SSL differs from the format used by Sasl QOP.

SSL Variable Description

ssl Specifies whether to use SSL

sslTrustStore The path to the SSL TrustStore.

trustStorePassword The password to the SSL TrustStore.

jdbc:hive2://<host>:<port>/<dbName>;ssl=true;sslTrustStore=
<ssl_truststore_path>;trustStorePassword=
<truststore_password>;<otherSessionConfs>?<hiveConfs>#<hiveVars> 
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When using TCP for transport and Kerberos for security, HiveServer2 uses Sasl QOP for
encryption rather than SSL.

Sasl QOP Variable Description

principal A string that uniquely identifies a Kerberos user.

saslQop The level of protection desired. For authentication,
checksum, and encryption, specify auth-conf. The other
valid values do not provide encryption.

jdbc:hive2://<host>:<port>/<dbName>;principal=
<HiveServer2_kerberos_principal>;saslQop=auth-conf;<otherSessionConfs>?
<hiveConfs>#<hiveVars> 

1.5. Configuring HiveServer2 for Transactions
(ACID Support)

Hive supports transactions that adhere to traditional relational database ACID
characteristics: atomicity, consistency, isolation, and durability. See the article about ACID
characteristics on Wikipedia for more information.

Limitations

Currently, ACID support in Hive has the following limitations:

• BEGIN, COMMIT, and ROLLBACK are not yet supported.

• Only the ORC file format is supported.

• Transactions are configured to be off by default.

• Tables that use transactions, must be bucketed. For a discussion of bucketed tables, see
the Apache site.

• Hive ACID only supports Snapshot Isolation. Transactions only support auto-commit
mode and may include exactly one SQL statement.

• ZooKeeper and in-memory lock managers are not compatible with transactions. See the
Apache site for a discussion of how locks are stored for transactions.

• Schema changes made by using ALTER TABLE are not supported. HIVE-11421 is
tracking this issue.

To configure HiveServer2 for transactions:

Important

• Ensure that the hive.txn.timeout property is set to the same value in
the hive-site.xml file for HiveServer2 that you configure in Step 1 below
and the hive-site.xml file for the standalone Hive metastore that you
configure in Step 2.

• The following listed properties are the minimum that are required to enable
transaction support on HiveServer2. For additional information about

https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/ACID
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL+BucketedTables
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-BasicDesign
https://issues.apache.org/jira/browse/HIVE-11421


Hortonworks Data Platform March 1, 2016

24

configuring this feature and for information about additional configuration
parameters, see Hive Transactions on the Apache web site.

1. Set the following parameters in the hive-site.xml file:

<property>
     <name>hive.support.concurrency</name>
     <value>true</value>
</property>
        
<property>
     <name>hive.txn.manager</name>
     <value>org.apache.hadoop.hive.ql.lockmgr.DbTxnManager</value>
</property>

<property>
     <name>name>hive.enforce.bucketing</name>
     <value>true</value>
</property>

<property>
     <name>hive.exec.dynamic.partition.mode</name>
     <value>nostrict</value>
</property>

2. Ensure that a standalone Hive metastore is running with the following parameters set in
its hive-site.xml file:

<property>
     <name>hive.compactor.initiator.on</name>
     <value>true</value>
</property>
        
<property>
     <name>hive.compactor.worker.threads</name>
     <value><positive_number></value>
</property>

Important

These are the minimum properties required to enable transactions in the
standalone Hive metastore. See Hive Transactions on the Apache web site
for information about configuring Hive for transactions and additional
configuration parameters.

Even though HiveServer2 runs with an embedded metastore, a standalone
Hive metastore is required for ACID support to function properly. If you are
not using ACID support with HiveServer2, you do not need a standalone
metastore.

The default value for hive.compactor.worker.threads is 0. Set this to a positive
number to enable Hive transactions. Worker threads spawn MapReduce jobs to perform
compactions, but they do not perform the compactions themselves. Increasing the
number of worker threads decreases the time that it takes tables or partitions to be
compacted. However, increasing the number of worker threads also increases the
background load on the Hadoop cluster because they cause more MapReduce jobs to
run in the background.

https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-Configuration
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-Configuration
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1.6. Configuring HiveServer2 for LDAP and for
LDAP over SSL

HiveServer2 supports authentication with LDAP and LDAP over SSL (LDAPS):

• ???TITLE??? [25]

• ???TITLE??? [26]

To configure HiveServer2 to use LDAP:

1. Add the following properties to the hive-site.xml file to set the server
authentication mode to LDAP:

<property>
     <name>hive.server2.authentication</name>
     <value>LDAP</value>
</property>

<property>
     <name>hive.server2.authentication.ldap.url</name>
     <value>LDAP_URL</value>
</property>

Where LDAP_URL is the access URL for your LDAP server. For example, ldap://
ldap_host_name@xyz.com:389.

2. Depending on whether or not you use Microsoft Active Directory as your directory
service, add the following additional properties to the hive-site.xml file:

• Other LDAP service types including OpenLDAP:

<property>
     <name>hive.server2.authentication.ldap.baseDN</name>
     <value>LDAP_BaseDN</value>
</property>

Where LDAP_BaseDN is the base LDAP distinguished name for your LDAP server. For
example, ou=dev, dc=xyz, dc=com.

• Active Directory (AD):

<property>
     <name>hive.server2.authentication.ldap.Domain</name>
     <value>AD_Domain</value>
</property>

Where AD_Domain is the domain name of the AD server. For example,
corp.domain.com.

3. Test the LDAP authentication. For example, if you are using the Beeline client, type the
following commands at the Beeline prompt:

beeline>!connect
jdbc:hive2://node1:<port>/default:user=<LDAP_USERID>;password=
<LDAP_PASSWORD>
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The Beeline client prompts for the user ID and password again. Enter those values to run
the command.

To configure HiveServer2 to use LDAP over SSL (LDAPS):

To enable Hive and the Beeline client to use LDAPS, perform the following actions.

Note

Two types of certificates can be used for LDAP over SSL with HiveServer2:

• CA Certificates, which are digital certificates that are signed by a Certificate
Authority (CA).

• Self-signed certificates.

1. Add the following properties to the hive-site.xml file to set the server
authentication mode to LDAP:

<property>
     <name>hive.server2.authentication</name>
     <value>LDAP</value>
</property>

<property>
     <name>hive.server2.authentication.ldap.url</name>
     <value>LDAP_URL</value>
</property>

Where LDAP_URL is the access URL for your LDAP server. For example, ldap://
ldap_host_name@xyz.com:389.

2. Depending on whether or not you use Microsoft Active Directory as your directory
service, add the following additional properties to the hive-site.xml file:

• Other LDAP service types including OpenLDAP:

<property>
     <name>hive.server2.authentication.ldap.baseDN</name>
     <value>LDAP_BaseDN</value>
</property>

Where LDAP_BaseDN is the base LDAP distinguished name for your LDAP server. For
example, ou=dev, dc=xyz, dc=com.

• Active Directory (AD):

<property>
     <name>hive.server2.authentication.ldap.Domain</name>
     <value>AD_Domain</value>
</property>

Where AD_Domain is the domain name of the AD server. For example,
corp.domain.com.

3. Depending on which type of certificate you are using, perform one of the following
actions:
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• CA certificate:

If you are using a certificate that is signed by a CA, the certificate is already included
in the default Java trustStore located at ${JAVA_HOME}/jre/lib/security/
cacerts on all of your nodes. If the CA certificate is not present, you must import the
certificate to your Java cacert trustStore using the following command:

keytool -import -trustcacerts -alias <MyHiveLdaps> 
-storepass <password> -noprompt -file <myCert>.pem -keystore ${JAVA_HOME}/
jre/lib/security/cacerts

If you want to import the CA certificate into another trustStore location, replace
${JAVA_HOME}/jre/lib/security/cacerts with the cacert location that you
want to use.

• Self-signed certificate:

If you are using a self-signed digital certificate, you must import it into your Java
cacert trustStore. For example, if you want to import the certificate to a Java
cacert location of /etc/pki/java/cacerts, use the following command to
import your self-signed certificate:

keytool -import -trustcacerts -alias <MyHiveLdaps> 
-storepass <password> -noprompt -file <myCert>.pem -keystore /etc/pki/
java/cacerts

4. If your trustStore is not ${JAVA_HOME}/jre/lib/security/cacerts, you must
set the HADOOP_OPTS environment variable to point to your CA certificate so that the
certificate loads when the HDP platform loads.

Note

There is no need to modify the hadoop-env template if you use the default
Java trustStore of ${JAVA_HOME}/jre/lib/security/cacerts.

To set this in Ambari:

a. In the list of services on the left, click HDFS.

b. Select the Configs tab.

c. On the Configs tab page, select the Advanced tab.

d. Scroll down, and expand the Advanced hadoop-env section.

e. Add the following configuration information to the hadoop-env template text box:

export HADOOP_OPTS="-Djava_net_preferIPv4Stack=true
-Djavax.net.ssl.trustStore=/etc/pki/java/cacerts 
-Djavax.net.ssl.trustStorePassword=changeit ${HADOOP_OPTS}"

f. Click Save.

5. Restart the HDFS and Hive services.
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To restart these services in Ambari:

a. Click the service name on the left margin of the page.

b. On the service page, click Service Actions.

c. Choose Restart All.

For more information about restarting components in Ambari, see "Managing Services"
in the Ambari User's Guide.

6. Test the LDAPS authentication. For example, if you are using the Beeline client, type the
following commands at the Beeline prompt:

beeline>!connect jdbc:hive2://node1:10000/default

The Beeline client prompts for the user ID and password again. Enter those values to run
the command.

Note

• Components such as Apache Knox and Apache Ranger do not use the
hadoop-env.sh.template. The configuration files for these components
must be set for LDAPS and manually restarted.

• Ambari Hive View does not work with LDAP or LDAPS.

1.7. Troubleshooting Hive
• Error Related to Character Set Used for MySQL: "Specified key was too long; max key

length is 767 bytes"

MySQL is the default database used by the Hive metastore. Depending on several factors,
such as the version and configuration of MySQL, Hive developers may encounter an error
message similar to the following:

An exception was thrown while adding/validating classes) : Specified key was
 too long; max key length is 767 bytes 

Administrators can resolve this issue by altering the Hive metastore database to use the
Latin1 character set, as shown in the following example:

mysql> ALTER DATABASE <metastore_database_name> character set latin1; 

• Limitations When Using the timestamp.formats SerDe Parameter

The timestamp.formats SerDe parameter, introduced in HDP 2.3, produces the
following behaviors:

• Displays only 3 decimal digits when it returns values, but it accepts more decimal digits.

For example, if you run the following commands:

drop table if exists src_hbase_ts;

https://docs.hortonworks.com/HDPDocuments/Ambari-2.2.2.18/bk_ambari-user-guide/content/ch_managing_services.html
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create table src_hbase_ts( rowkey string, ts1 string, ts2 string, ts3
 string, ts4 string ) 
STORED BY 'org.apache.hadoop.hive. hbase. HBaseStorageHandler' WITH
 SERDEPROPERTIES 
('hbase.columns.mapping' = 'm:ts1,m:ts2,m:ts3,m:ts4') TBLPROPERTIES
 ('hbase.table.name' = 'hbase_ts');

insert into src_hbase_ts values ('1','2011-01-01T01:01: 01.111111111',
 '2011-01-01T01:01: 01.123456111', 
'2011-01-01T01:01: 01.111111111', '2011-01-01T01:01: 01.134567890');

drop table if exists hbase_ts_1;

create external table hbase_ts_1( rowkey string, ts1 timestamp, ts2
 timestamp, ts3 timestamp, ts4 timestamp ) 
STORED BY 'org.apache.hadoop.hive. hbase. HBaseStorageHandler' WITH
 SERDEPROPERTIES 
( 'hbase.columns.mapping' = 'm:ts1,m:ts2,m:ts3,m:ts4', 'timestamp.formats'
 = "yyyy-MM-dd'T'HH:mm:ss.SSSSSSSSS") 
TBLPROPERTIES ('hbase.table.name' = 'hbase_ts');

select * from hbase_ts_1;

The timestamp.formats parameter displays:

1 2011-01-01 01:01:01.111 2011-01-01 01:01:01.123 2011-01-01 01:01:01.111
 2011-01-01 01:01:01.134

When the expected output is:

1 2011-01-01 01:01:01.111111111 2011-01-01 01:01:01.123456111 2011-01-01
 01:01:01.111111111 2011-0

• The yyyy-MM-dd’T'HH:mm:ss.SSSSSSSSS format accepts any timestamp data
up to .SSSSSSSSS decimal digits (9 places to the left of the decimal) instead of only
reading data with .SSSSSSSSS decimal digits (9 places to the left of the decimal).

For example, if you run the following commands:

drop table if exists src_hbase_ts; create table src_hbase_ts( rowkey
 string, ts1 string, ts2 string, ts3 string, ts4 string ) 
STORED BY 'org.apache.hadoop. hive. hbase.HBaseStorageHandler' WITH
 SERDEPROPERTIES 
('hbase.columns.mapping' = 'm:ts1,m:ts2,m:ts3,m:ts4') TBLPROPERTIES
 ('hbase.table.name' = 'hbase_ts');

insert into src_hbase_ts values ('1','2011-01-01T01:01: 01.111111111',
 '2011-01-01T01:01: 01.111', 
'2011-01-01T01:01: 01.11', '2011-01-01T01:01:01.1');

drop table if exists hbase_ts_1;

create external table hbase_ts_1( rowkey string, ts1 timestamp, ts2
 timestamp, ts3 timestamp, ts4 timestamp ) 
STORED BY 'org.apache.hadoop. hive. hbase.HBaseStorageHandler' WITH
 SERDEPROPERTIES 
( 'hbase.columns.mapping' = 'm:ts1,m:ts2,m:ts3,m:ts4', 'timestamp.formats'
 = "yyyy-MM-dd'T'HH:mm:ss.SSSSSSSSS") 
TBLPROPERTIES ('hbase.table.name' = 'hbase_ts');
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select * from hbase_ts_1;

The actual output is:

1 2011-01-01 01:01:01.111 2011-01-01 01:01:01.111 2011-01-01 01:01:01.11
 2011-01-01 01:01:01.1

When the expected output is:

1 2011-01-01 01:01:01.111 NULL NULL NULL

1.8. Hive JIRAs
Issue tracking for Hive bugs and improvements can be found on the Apache Hive site.

https://issues.apache.org/jira/browse/HIVE
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2. SQL Compliance
This section discusses the ongoing implementation of standard SQL syntax in Hive.
Although SQL in Hive does not yet entirely support the SQL-2011 standard, versions 0.13
and 0.14 provide significant improvements to the parity between SQL as used in Hive and
SQL as used in traditional relational databases.

• INSERT ... VALUES, UPDATE, and DELETE SQL Statements [31]

• SQL Standard-based Authorization with GRANT And REVOKE SQL Statements [33]

• Transactions [34]

• Subqueries [38]

• Common Table Expressions [40]

• Quoted Identifiers in Column Names [41]

• CHAR Data Type Support [42]

2.1. INSERT ... VALUES, UPDATE, and DELETE SQL
Statements

INSERT ... VALUES, UPDATE, and DELETE SQL statements are supported in Apache Hive
0.14 and later. The INSERT ... VALUES statement enable users to write data to Apache Hive
from values provided in SQL statements. The UPDATE and DELETE statements enable users
to modify and delete values already written to Hive. All three statements support auto-
commit, which means that each statement is a separate transaction that is automatically
committed after the SQL statement is executed.

The INSERT ... VALUES, UPDATE, and DELETE statements require the following property
values in the hive-site.xml configuration file:

Configuration Property Required Value

hive.enforce.bucketing true

hive.exec.dynamic.partition.mode nonstrict

Note

Administrators must use a transaction manager that supports ACID and the
ORC file format to use transactions. See Hive Transactions for information
about configuring other properties related to use ACID-based transactions.

INSERT ... VALUES Statement

The INSERT ... VALUES statement is revised to support adding multiple values into table
columns directly from SQL statements. A valid INSERT ... VALUES statement must provide
values for each column in the table. However, users may assign null values to columns
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for which they do not want to assign a value. In addition, the PARTITION clause must be
included in the DML.

INSERT INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]
 VALUES values_row [, values_row...] 

In this syntax, values_row is (value [, value]) and where value is either NULL or
any SQL literal.

The following example SQL statements demonstrate several usage variations of this
statement:

CREATE TABLE students (name VARCHAR(64), age INT, gpa DECIMAL(3,2)) CLUSTERED
 BY (age) INTO 2 BUCKETS STORED AS ORC; 

INSERT INTO TABLE students VALUES ('fred flintstone', 35, 1.28), ('barney
 rubble', 32, 2.32); 

CREATE TABLE pageviews (userid VARCHAR(64), link STRING, from STRING)
 PARTITIONED BY (datestamp STRING) CLUSTERED BY (userid) INTO 256 BUCKETS
 STORED AS ORC; 

INSERT INTO TABLE pageviews PARTITION (datestamp = '2014-09-23') VALUES
 ('jsmith', 'mail.com', 'sports.com'), ('jdoe', 'mail.com', null); 

INSERT INTO TABLE pageviews PARTITION (datestamp) VALUES ('tjohnson',
 'sports.com', 'finance.com', '2014-09-23'), ('tlee', 'finance.com', null,
 '2014-09-21'); 

UPDATE Statement

Use the UPDATE statement to modify data already written to Apache Hive. Depending
on the condition specified in the optional WHERE clause, an UPDATE statement may affect
every row in a table. You must have both the SELECT and UPDATE privileges to use this
statement.

UPDATE tablename SET column = value [, column = value ...] [WHERE
 expression]; 

The UPDATE statement has the following limitations:

• The expression in the WHERE clause must be an expression supported by a Hive SELECT
clause.

• Partition and bucket columns cannot be updated.

• Query vectorization is automatically disabled for UPDATE statements. However, updated
tables can still be queried using vectorization.

• Subqueries are not allowed on the right side of the SET statement.

The following example demonstrates the correct usage of this statement:

UPDATE students SET name = null WHERE gpa <= 1.0; 

DELETE Statement

Use the DELETE statement to delete data already written to Apache Hive.

DELETE FROM tablename [WHERE expression]; 
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The DELETE statement has the following limitation: query vectorization is automatically
disabled for the DELETE operation. However, tables with deleted data can still be queried
using vectorization.

The following example demonstrates the correct usage of this statement:

DELETE FROM students WHERE gpa <= 1,0; 

2.2. SQL Standard-based Authorization with
GRANT And REVOKE SQL Statements

Secure SQL standard-based authorization using the GRANT and REVOKE SQL statements is
supported in Hive 0.13 and later. Hive provides three authorization models: SQL standard-
based authorization, storage-based authorization, and default Hive authorization.
In addition, Ranger provides centralized management of authorization for all HDP
components. Use the following procedure to manually enable standard SQL authorization:

Note

This procedure is unnecessary if your Hive administrator installed Hive using
Ambari.

1. Set the following configuration parameters in hive-site.xml :

Table 2.1. Configuration Parameters for Standard SQL Authorization

Configuration Parameter Required Value

hive.server2.enable.doAs false

hive.users.in.admin.role Comma-separated list of users granted the administrator
role.

2. Start HiveServer2 with the following command-line options:

Table 2.2. HiveServer2 Command-Line Options

Command-Line Option Required Value

-hiveconf
hive.security.authorization.manager

org.apache.hadoop.hive.ql.security.
authorization.
MetaStoreAuthzAPIAuthorizerEmbedOnly

-hiveconf
hive.security.authorization.enabled

true

-hiveconf
hive.security.authenticator.manager

org.apache.hadoop.hive.ql.security.
SessionStateUserAuthenticator

-hiveconf hive.metastore.uris ''(a space inside single quotation marks)

Note

Administrators must also specify a storage-based authorization manager
for Hadoop clusters that also use storage-based authorization. The
hive.security.authorization.manager configuration property allows
multiple authorization managers in comma-delimited format, so the correct
value in this case is:
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hive.security.authorization.manager=org.apache.hadoop.hive.ql.
security.authorization.StorageBasedAuthorizationProvider, 

org.apache.hadoop.hive.ql.security.authorization.
MetaStoreAuthzAPIAuthorizerEmbedOnly

2.3. Transactions
Support for transactions in Hive 0.13 and later enables SQL atomicity of operations at the
row level rather than at the level of a table or partition. This allows a Hive client to read
from a partition at the same time that another Hive client is adding rows to the same
partition. In addition, transactions provide a mechanism for streaming clients to rapidly
update Hive tables and partitions. Hive transactions differ from RDBMS transactions in
that each transaction has an identifier, and multiple transactions are grouped into a single
transaction batch. A streaming client requests a set of transaction IDs after connecting to
Hive and subsequently uses these transaction IDs one at a time during the initialization of
new transaction batches. Clients write one or more records for each transaction and either
commit or abort a transaction before moving to the next transaction.

Important

When Hive is configured to use an Oracle database and
transactions are enabled in Hive, queries might fail with the error
org.apache.hadoop.hive.ql.lockmgr.LockException: No record
of lock could be found, may have timed out. This can be caused
by a bug in the BoneCP connection pooling library. In this case, Hortonworks
recommends that you set the datanucleus.connectionPoolingType
property to dbcp so the DBCP library is used.

ACID is an acronym for four required traits of database transactions: atomicity, consistency,
isolation, and durability.

Transaction Attribute Description

Atomicity An operation either succeeds completely or fails; it does
not leave partial data.

Consistency Once an application performs an operation, the results
of that operation are visible to the application in every
subsequent operation.

Isolation Operations by one user do not cause unexpected side
effects for other users.

Durability Once an operation is complete, it is preserved in case of
machine or system failure.

By default, transactions are disabled in Hive. To use ACID-based transactions,
administrators must use a transaction manager that supports ACID and the ORC file
format. See  Configuring the Hive Transaction Manager [36] later in this section for
instructions on configuring a transaction manager for Hive.

Note

See the Hive wiki for more information about Hive's support of ACID semantics
for transactions.

https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-Configuration
http://www.jolbox.com
http://commons.apache.org/proper/commons-dbcp/
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions
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Understanding Compactions

Hive stores data in base files that cannot be updated by HDFS. Instead, Hive creates a
set of delta files for each transaction that alters a table or partition and stores them in a
separate delta directory. Occasionally, Hive compacts, or merges, the base and delta files.
Hive performs all compactions in the background without affecting concurrent reads and
writes of Hive clients. There are two types of compactions:

Table 2.3. Hive Compaction Types

Compaction Type Description

Minor Rewrites a set of delta files to a single delta file for a
bucket.

Major Rewrites one or more delta files and the base file as a new
base file for a bucket.

By default, Hive automatically compacts delta and base files at regular intervals. However,
Hadoop administrators can configure automatic compactions, as well as perform manual
compactions of base and delta files using the following configuration parameters in hive-
site.xml.

Table 2.4. Hive Transaction Configuration Parameters

Configuration Parameter Description

hive.txn.manager Specifies the class name of the transaction
manager used by Hive. Set this property to
org.apache.hadoop.hive.ql.lockmgr.
DbTxnManager to enable transactions. The default
value is org.apache.hadoop.hive.ql.lockmgr.
DummyTxnManager, which disables transactions.

hive.compactor.initiator.on Specifies whether to run the initiator and cleaner threads
on this Metastore instance. The default value is false.
Must be set to true for exactly one instance of the Hive
metastore service.

hive.compactor.worker.threads Specifies the number of of worker threads to run on this
Metastore instance. The default value is 0, which must
be set to greater than 0 to enable compactions. Worker
threads initialize MapReduce jobs to do compactions.
Increasing the number of worker threads decreases
the time required to compact tables after they cross a
threshold that triggers compactions. However, increasing
the number of worker threads also increases the
background load on a Hadoop cluster.

hive.compactor.worker.timeout Specifies the time period, in seconds, after which a
compaction job is failed and re-queued. The default value
is 86400 seconds, or 24 hours.

hive.compactor.check.interval Specifies the time period, in seconds, between checks to
see if any partitions require compacting. The default value
is 300 seconds. Decreasing this value reduces the time
required to start a compaction for a table or partition.
However, it also increases the background load on the
NameNode since each check requires several calls to the
NameNode.

hive.compactor.delta.num.threshold Specifies the number of delta directories in a partition
that triggers an automatic minor compaction. The default
value is 10.

hive.compactor.delta.pct.threshold Specifies the percentage size of delta files relative to the
corresponding base files that triggers an automatic major
compaction. The default value is.1, which is 10 percent.
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Configuration Parameter Description

hive.compactor.abortedtxn.threshold Specifies the number of aborted transactions on a single
partition that trigger an automatic major compaction.

Configuring the Hive Transaction Manager

Configure the following Hive properties to enable transactions:

• hive.txn.manager

• hive.compactor.initiator.on

• hive.compactor.worker.threads

Tip

To disable automatic compactions for individual tables, set the
NO_AUTO_COMPACTION table property for those tables. This overrides the
configuration settings in hive-site.xml. However, this property does not
prevent manual compactions.

If you experience problems while enabling Hive transactions, check the Hive log file at /
tmp/hive/hive.log.

Performing Manual Compactions

Hive administrators use the ALTER TABLE DDL command to queue requests that compact
base and delta files for a table or partition:

ALTER TABLE tablename [PARTITION (partition_key='partition_value' [,...])]
 COMPACT 'compaction_type'

Use the SHOW COMPACTIONS command to monitor the progress of the compactions:

SHOW COMPACTIONS 

Note

ALTER TABLE will compact tables even if the NO_AUTO_COMPACTION table
property is set.

The SHOW COMPACTIONS command provides the following output for each compaction:

• Database name

• Table name

• Partition name

• Major or minor compaction

• Compaction state:

• Initiated - waiting in queue

• Working - currently compacting
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• Ready for cleaning - compaction completed and old files scheduled for removal

• Thread ID

• Start time of compaction

Hive administrators can also view a list of currently open and aborted transactions with the
the SHOW TRANSACTIONS command. This command provides the following output for
each transaction:

• Transaction ID

• Transaction state

• Hive user who initiated the transaction

• Host machine where transaction was initiated

Lock Manager

DbLockManager, introduced in Hive 0.13, stores all transaction and related lock
information in the Hive Metastore. Heartbeats are sent regularly from lock holders and
transaction initiators to the Hive metastore to prevent stale locks and transactions. The lock
or transaction is aborted if the metastore does not receive a heartbeat within the amount
of time specified by the hive.txn.timeout configuration property. Hive administrators
use the SHOW LOCKS DDL command to view information about locks associated with
transactions.

This command provides the following output for each lock:

• Database name

• Table name

• Partition, if the table is partitioned

• Lock state:

• Acquired - transaction initiator hold the lock

• Waiting - transaction initiator is waiting for the lock

• Aborted - the lock has timed out but has not yet been cleaned

• Lock type:

• Exclusive - the lock may not be shared

• Shared_read - the lock may be shared with any number of other shared_read locks

• Shared_write - the lock may be shared by any number of other shared_read locks but
not with other shared_write locks

• Transaction ID associated with the lock, if one exists
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• Last time lock holder sent a heartbeat

• Time the lock was acquired, if it has been acquired

• Hive user who requested the lock

• Host machine on which the Hive user is running a Hive client

Note

The output of the command reverts to behavior prior to Hive 0.13 if
administrators use ZooKeeper or in-memory lock managers.

Transaction Limitations

HDP currently has the following limitations for ACID-based transactions in Hive:

• The BEGIN, COMMIT, and ROLLBACK SQL statements are not yet supported. All
operations are automatically committed as transactions.

• The user initiating the Hive session must have write permission for the destination
partition or table.

• ZooKeeper and in-memory locks are not compatible with transactions.

• Only ORC files are supported.

• Destination tables must be bucketed and not sorted.

• The only supported isolation level is Snapshot.

2.4. Subqueries
Hive supports subqueries in FROM clauses and in WHERE clauses of SQL statements. A
subquery is a SQL expression that is evaluated and returns a result set. Then that result set
is used to evaluate the parent query. The parent query is the outer query that contains
the child subquery. Subqueries in WHERE clauses are supported in Hive 0.13 and later. The
following example shows a subquery inserted into a WHERE clause:

SELECT state, net_payments
FROM transfer_payments
WHERE transfer_payments.year IN (SELECT year FROM us_census); 

No configuration is required to enable execution of subqueries in Hive. The feature is
available by default. However, several restrictions exist for the use of subqueries in WHERE
clauses.

Understanding Subqueries in SQL

SQL adheres to syntax rules like any programming language. The syntax governing the use
of subqueries in WHERE clauses in SQL depends on the following concepts:

• Query Predicates and Predicate Operators
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A predicate in SQL is a condition that evaluates to a Boolean value. For
example, the predicate in the preceeding example returns true for a row of the
transfer_payments table if at least one row exists in the us_census table with the
same year as the transfer_payments row. The predicate starts with the first WHERE
keyword.

... WHERE transfer_payments.year IN (SELECT year FROM us_census); 

A SQL predicate in a subquery must also contain a predicate operator. Predicate
operators specify the relationship tested in a predicate query. For example, the predicate
operator in the above example is the IN keyword.

• Aggregrated and Correlated Queries

Aggregated queries combine one or more aggregate functions, such as AVG, SUM,
and MAX, with the GROUP BY statement to group query results by one or more table
columns. In the following example, the AVG aggregate function returns the average
salary of all employees in the engineering department grouped by year:

SELECT year, AVG(salary)
FROM Employees
WHERE department = 'engineering' GROUP BY year 

Note

The GROUP BY statement may be either explicit or implicit.

Correlated queries contain a query predicate with the equals (=) operator. One side of
the operator must reference at least one column from the parent query and the other
side must reference at least one column from the subquery. The following query is a
revised and correlated version of the example query that is shown at the beginning of
this section. It is a correlated query because one side of the equals predicate operator in
the subquery references the state column in the transfer_payments table in the
parent query and the other side of the operator references the state column in the
us_census table.

SELECT state, net_payments
FROM transfer_payments
WHERE EXISTS 
   (SELECT year 
   FROM us_census 
   WHERE transfer_payments.state = us_census.state); 

In contrast, an uncorrelated query does not reference any columns in the parent query.

• Conjuncts and Disjuncts

A conjunct is equivalent to the AND condition, while a disjunct is the equivalent of the
OR condition. The following subquery contains a conjunct:

... WHERE transfer_payments.year = "2010" AND us_census.state = "california"

The following subquery contains a disjunct:

... WHERE transfer_payments.year = "2010" OR us_census.state = "california"
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Restrictions on Subqueries in WHERE Clauses

Subqueries in WHERE clauses have the following limitations:

• Subqueries must appear on the right hand side of an expression.

• Nested subqueries are not supported.

• Only one subquery expression is allowed for a single query.

• Subquery predicates must appear as top level conjuncts.

• Subqueries support four logical operators in query predicates: IN, NOT IN, EXISTS, and
NOT EXISTS.

• The IN and NOT IN logical operators may select only one column in a WHERE clause
subquery.

• The EXISTS and NOT EXISTS operators must have at least one correlated predicate.

• The left side of a subquery must qualify all references to table columns.

• References to columns in the parent query are allowed only in the WHERE clause of the
subquery.

• Subquery predicates that reference a column in a parent query must use the equals (=)
predicate operator.

• Subquery predicates may not refer only to columns in the parent query.

• Correlated subqueries with an implied GROUP BY statement may return only one row.

• All unqualified references to columns in a subquery must resolve to tables in the
subquery.

• Correlated subqueries cannot contain windowing clauses.

2.5. Common Table Expressions
A common table expression (CTE) is a set of query results obtained from a simple query
specified within a WITH clause and which immediately preceeds a SELECT or INSERT
keyword. A CTE exists only within the scope of a single SQL statement. One or more CTEs
can be used with the following SQL statements:

• SELECT

• INSERT

• CREATE TABLE AS SELECT

• CREATE VIEW AS SELECT

The following example demonstrates the use of q1 as a CTE in a SELECT statement:

WITH q1 AS (SELECT key from src where key = '5') 
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   SELECT * from q1; 

The following example demonstrates the use of q1 as a CTE in an INSERT statement:

CREATE TABLE s1 LIKE src;
   WITH q1 AS (SELECT key, value FROM src WHERE key = '5') 
   FROM q1 INSERT OVERWRITE TABLE s1 SELECT *; 

The following example demonstrates the use of ql as a CTE in a CREATE TABLE AS SELECT
clause:

CREATE TABLE s2 AS WITH q1 AS (SELECT key FROM src WHERE key = '4') 
   SELECT * FROM q1; 

The following example demonstrates the use of q1 as a CTE in a CREATE TABLE AS VIEW
clause:

CREATE VIEW v1 AS WITH q1 AS (SELECT key FROM src WHERE key='5') 
   SELECT * from q1; 

CTEs are available by default in Hive 0.13. Hive administrators do not need to perform any
configuration to enable them.

Limitations of Common Table Expressions

• Recursive queries are not supported.

• The WITH clause is not supported within subquery blocks.

2.6. Quoted Identifiers in Column Names
Quoted identifiers in the names of table columns are supported in Hive 0.13 and later. An
identifier in SQL is a sequence of alphanumeric and underscore (_) characters surrounded
by backtick (`) characters. Quoted identifiers in Hive are case-insensitive. In the following
example, `x+y` and `a?b` are valid column names for a new table.

CREATE TABLE test (`x+y` String, `a?b` String); 

Quoted identifiers can be used anywhere a column name is expected, including table
partitions and buckets:

CREATE TABLE partition_date-1 (key string, value string) 
PARTITIONED BY (`dt+x` date, region int);

CREATE TABLE bucket_test(`key?1` string, value string) 
CLUSTERED BY (`key?1`) into 5 buckets; 

Note

Use a backtick character to escape a backtick character ( ``).

Enabling Quoted Identifiers

Set the hive.support.quoted.identifiers configuration parameter to column
in hive-site.xml to enable quoted identifiers in SQL column names. For Hive 0.13, the valid
values are none and column.



Hortonworks Data Platform March 1, 2016

42

hive.support.quoted.identifiers = column 

2.7. CHAR Data Type Support
Hive 0.13 supports The CHAR data type is supported in Hive 0.13 and later. This data
type simplifies the process of migrating data from other databases. Hive ignores trailing
whitespace characters for the CHAR data type. However, there is no consensus among
database vendors on the handling of trailing whitespaces. Before you perform a data
migration to Hive, consult the following table to avoid unexpected behavior with values for
CHAR, VARCHAR, and STRING data types.

The following table describes how several types of databases treat trailing whitespaces for
the CHAR, VARCHAR, and STRING data types:

Table 2.5. Trailing Whitespace Characters on Various Databases

Data Type Hive Oracle SQL Server MySQL Teradata

CHAR Ignore Ignore Ignore Ignore Ignore

VARCHAR Compare Compare Configurable Ignore Ignore

STRING Compare N/A N/A N/A N/A
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3. Running Pig with the Tez Execution
Engine

By default, Apache Pig runs against Apache MapReduce, but administrators and scripters
can configure Pig to run against the Apache Tez execution engine to take advantage of
more efficient execution and fewer reads of HDFS. Pig supports Tez in all of the following
ways:

Command Line Use the -x command-line option: pig -x tez

Pig Properties Set the following configuration property in the conf/
pig.properties file: exectype=tez

Java Option Set the following Java Option for Pig: PIG_OPTS="-D
exectype=tez"

Users and administrators can use the same methods to configure Pig to run against the
default MapReduce execution engine.

Command Line Use the -x command-line option: pig -x mr

Pig Properties Set the following configuration property in the conf/
pig.properties file: exectype=tez

Java Option Set the following Java Option for Pig: PIG_OPTS="-D
exectype=tez"

Pig Script Use the set command: set exectype=mr;

There are some limitations to running Pig with the Tez execution engine:

• Queries that include the ORDER BY clause may run slower than if run against the
MapReduce execution engine.

• There is currently no user interface that allows users to view the execution plan for Pig
jobs running with Tez. To diagnose a failing Pig job, users must read the Application
Master and container logs.

Note

Users should configure parallelism before running Pig with Tez. If parallelism is
too low, Pig jobs will run slowly. To tune parallelism, add the PARALLEL clause
to your PIG statements.

Running a Pig-on-Tez Job with Oozie

To run a Pig job on Tez using Oozie, perform the following configurations:

• Add the following property and value to the job.properties file for the Pig-on-Tez
Oozie job:

<property>
     <name>oozie.action.sharelib.for.pig</name>
     <value>pig, hive</value>
</property>
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• Create the $OOZIE_HOME/conf/action-conf/pig directory and copy the tez-
site.xml file into it.
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4. Using HDP for Metadata Services
(HCatalog)

Hortonworks Data Platform (HDP) deploys Apache HCatalog to manage the metadata
services for your Hadoop cluster.

Apache HCatalog is a table and storage management service for data created using Apache
Hadoop. This includes:

• Providing a shared schema and data type mechanism.

• Providing a table abstraction so that users need not be concerned with where or how
their data is stored.

• Providing interoperability across data processing tools such as Pig, MapReduce, and Hive.

Start the HCatalog CLI with the following command:

<hadoop-install-dir>\hcatalog-0.5.0\bin\hcat.cmd 

Note

HCatalog 0.5.0 was the final version released from the Apache Incubator. In
March 2013, HCatalog graduated from the Apache Incubator and became part
of the Apache Hive project. New releases of Hive include HCatalog, starting
with Hive 0.11.0.

HCatalog includes two documentation sets:

1. General information about HCatalog

This documentation covers installation and user features. The next section, Using
HCatalog, provides links to individual documents in the HCatalog documentation set.

2. WebHCat information

WebHCat is a web API for HCatalog and related Hadoop components. The section Using
WebHCat provides links to user and reference documents, and includes a technical
update about standard WebHCat parameters.

For more details on the Apache Hive project, including HCatalog and WebHCat, see "Using
Apache Hive" and the following resources:

• Hive project home page

• Hive wiki home page

• Hive mailing lists

4.1. Using HCatalog
For details about HCatalog, see the following resources in the HCatalog documentation set:

http://hive.apache.org/
https://cwiki.apache.org/confluence/display/Hive/Home
http://hive.apache.org/mailing_lists.html
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• HCatalog Overview

• Installation From Tarball

• HCatalog Configuration Properties

• Load and Store Interfaces

• Input and Output Interfaces

• Reader and Writer Interfaces

• Command Line Interface

• Storage Formats

• Dynamic Partitioning

• Notification

• Storage Based Authorization

4.2. Using WebHCat
WebHCat provides a REST API for HCatalog and related Hadoop components.

Note

WebHCat was originally named Templeton, and both terms may still be used
interchangeably. For backward compatibility the Templeton name still appears
in URLs and log file names.

For details about WebHCat (Templeton), see the following resources:

• Overview

• Installation

• Configuration

• Reference

• Resource List

• GET :version

• GET status

• GET version

• DDL Resources: Summary and Commands

• POST mapreduce/streaming

• POST mapreduce/jar

https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BUsingHCat
https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BInstallHCat
https://cwiki.apache.org/confluence/display/Hive/HCatalog+Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BLoadStore
https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BInputOutput
https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BReaderWriter
https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BCLI
https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BStorageFormats
https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BDynamicPartitions
https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BNotification
https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BAuthorization
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BUsingWebHCat
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BInstallWebHCat
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BConfigure
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference%2BResponseTypes
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference%2BStatus
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference%2BVersion
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference%2BAllDDL
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference%2BMapReduceStream
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference%2BMapReduceJar


Hortonworks Data Platform March 1, 2016

47

• POST pig

• POST hive

• GET queue/:jobid

• DELETE queue/:jobid

4.3. Security for WebHCat
WebHCat currently supports two types of security:

• Default security (without additional authentication)

• Authentication by using Kerberos

Example: HTTP GET :table

The following example demonstrates how to specify the user.name parameter in an HTTP
GET request:

% curl -s 'http://localhost:50111/templeton/v1/ddl/database/default/table/
my_table?user.name=ctdean'

Example: HTTP POST :table

The following example demonstrates how to specify the user.name parameter in an HTTP
POST request

% curl -s -d user.name=ctdean \
       -d rename=test_table_2 \ 
       'http://localhost:50111/templeton/v1/ddl/database/default/table/
          test_table'

Security Error

If the user.name parameter is not supplied when required, the following security error is
returned:

{ 
   "error": "No user found. Missing user.name parameter."
} 

https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference%2BPig
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference%2BHive
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference%2BJobInfo
https://cwiki.apache.org/confluence/display/Hive/WebHCat+Reference+DeleteJob
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5. Using Apache HBase and Apache
Phoenix

Hortonworks Data Platform (HDP) deploys Apache HBase as a NoSQL database for your
Hadoop cluster. HBase scales linearly to handle very large (petabyte scale), column-oriented
data sets. The data store is predicated on a key-value model that supports low latency
reads, writes, and updates in a distributed environment.

As a natively non-relational database, HBase can combine data sources that use a wide
variety of different structures and schemas. It is natively integrated with HDFS for resilient
data storage and is designed for hosting very large tables with sparse data.

HDP support also includes Apache Phoenix, a SQL abstraction layer for interacting with
HBase. Phoenix lets you create and interact with tables in the form of typical DDL/DML
statements via its standard JDBC API. For more information, see the  Apache Phoenix
website.

Supported JDBC client drivers can be obtained from the /usr/hdp/current/phoenix-
client/phoenix-client.jar file on one of your cluster’s edge nodes or in the 
Hortonworks Phoenix server-client repository . If you use the repository, download the JAR
file corresponding to your installed HDP version.

5.1. HBase Installation and Setup
You can install and configure HBase for your HDP cluster by either of the following
methods:

• Ambari Install Wizard: The wizard is the part of the Ambari web-based platform that
guides HDP installation, including deploying the various Hadoop components such as
HBase for the needs of your cluster. See the Ambari Install Guide.

• Manual Installation: You can fetch one of the repositories bundled with HBase and install
it on the command line. See the Non-Ambari Installation Guide.

5.2. Enabling Phoenix
To enable Phoenix:

1. Open Ambari.

2. Select Services tab > HBase > Configs tab.

3. Scroll down to the Phoenix SQL settings.

4. (Optional) Reset the Phoenix Query Timeout.

5. Click the Enable Phoenix slider button.

5.3. Cell-level Access Control Lists (ACLs)
Cell-level access control lists for HBase tables are supported in HBase 0.98 and later.

http://phoenix.apache.org
http://phoenix.apache.org
http://repo.hortonworks.com/content/repositories/releases/org/apache/phoenix/phoenix-server-client/
http://repo.hortonworks.com/content/repositories/releases/org/apache/phoenix/phoenix-server-client/
https://docs.hortonworks.com/HDPDocuments/Ambari-2.2.2.18/bk_ambari-installation/content/ch_Getting_Ready.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_installing_manually_book/content/ch_getting_ready_chapter.html
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Note

This feature is a technical preview and considered under development. Do not
use this feature in your production systems. If you have questions regarding this
feature, contact support by logging a case on the  Hortonworks Support Portal.

5.4. Column Family Encryption
Column family encryption is supported in HBase 0.98 and later.

Note

This feature is a technical preview and considered under development. Do not
use this feature in your production systems. If you have questions regarding this
feature, contact support by logging a case on the  Hortonworks Support Portal.

5.5. Tuning RegionServers
To tune garbage collection (GC) in HBase RegionServers for stability, make the following
configuration changes:

1. Specify the following configurations in the HBASE_REGIONSERVER_OPTS configuration
option in the /conf/hbase-env.sh file:

-XX:+UseConcMarkSweepGC
-Xmn2500m (depends on MAX HEAP SIZE, but should not be less than 1g and more
 than 4g)
-XX:PermSize=128m 
-XX:MaxPermSize=128m 
-XX:SurvivorRatio=4 
-XX:CMSInitiatingOccupancyFraction=50 
-XX:+UseCMSInitiatingOccupancyOnly 
-XX:ErrorFile=/var/log/hbase/hs_err_pid%p.log 
-XX:+PrintGCDetails
-XX:+PrintGCDateStamps

2. Make sure that the block cache size and the memstore size combined do not significantly
exceed 0.5*MAX_HEAP, which is defined in the HBASE_HEAP_SIZE configuration
option of the /conf/hbase-env.sh file.

https://support.hortonworks.com
https://support.hortonworks.com


Hortonworks Data Platform March 1, 2016

50

6. Using HDP for Workflow and
Scheduling (Oozie)

Hortonworks Data Platform deploys Apache Oozie for your Hadoop cluster.

Oozie is a server-based workflow engine specialized in running workflow jobs with actions
that execute Hadoop jobs, such as MapReduce, Pig, Hive, Sqoop, HDFS operations, and sub-
workflows. Oozie supports coordinator jobs, which are sequences of workflow jobs that
are created at a given frequency and start when all of the required input data is available.

A command-line client and a browser interface allow you to manage and administer Oozie
jobs locally or remotely.

After installing an HDP 2.x cluster by using Ambari, access the Oozie web UI at the
following URL:

http://{your.ambari.server.hostname}:11000/oozie

For additional Oozie documentation, use the following resources:

• Quick Start Guide

• Developer Documentation

• Oozie Workflow Overview

• Running the Examples

• Workflow Functional Specification

• Coordinator Functional Specification

• Bundle Functional Specification

• EL Expression Language Quick Reference

• Command Line Tool

• Workflow Rerun

• Email Action

• Writing a Custom Action Executor

• Oozie Client Javadocs

• Oozie Core Javadocs

• Oozie Web Services API

• Administrator Documentation

• Oozie Installation and Configuration

http://oozie.apache.org/docs/4.2.0/
http://oozie.apache.org/docs/4.2.0/DG_QuickStart.html
http://oozie.apache.org/docs/4.2.0/DG_Overview.html
http://oozie.apache.org/docs/4.2.0/DG_Examples.html
http://oozie.apache.org/docs/4.2.0/WorkflowFunctionalSpec.html
http://oozie.apache.org/docs/4.2.0/CoordinatorFunctionalSpec.html
http://oozie.apache.org/docs/4.2.0/BundleFunctionalSpec.html
http://docs.oracle.com/javaee/1.4/tutorial/doc/
http://oozie.apache.org/docs/4.2.0/DG_CommandLineTool.html
http://oozie.apache.org/docs/4.2.0/DG_WorkflowReRun.html
http://oozie.apache.org/docs/4.2.0/DG_EmailActionExtension.html
http://oozie.apache.org/docs/4.2.0/DG_CustomActionExecutor.html
http://oozie.apache.org/docs/4.2.0/client/apidocs/index.html
http://oozie.apache.org/docs/4.2.0/core/apidocs/index.html
http://oozie.apache.org/docs/4.2.0/WebServicesAPI.html
http://oozie.apache.org/docs/4.2.0/AG_Install.html
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• Oozie Monitoring

• Command Line Tool

http://oozie.apache.org/docs/4.2.0/AG_Monitoring.html
http://oozie.apache.org/docs/4.2.0/DG_CommandLineTool.html
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7. Using Apache Sqoop
Hortonworks Data Platform deploys Apache Sqoop for your Hadoop cluster. Sqoop is a tool
designed to transfer data between Hadoop and relational databases. You can use Sqoop
to import data from a relational database management system (RDBMS) such as MySQL
or Oracle into the Hadoop Distributed File System (HDFS), transform the data in Hadoop
MapReduce, and then export the data back into an RDBMS. Sqoop automates most of this
process, relying on the database to describe the schema for the data to be imported. Sqoop
uses MapReduce to import and export the data, which provides parallel operation as well
as fault tolerance.

For additional information see the  Sqoop documentation, including these sections in the
Sqoop User Guide:

• Basic Usage

• Sqoop Tools

• Troubleshooting

7.1. Apache Sqoop Connectors
Sqoop uses a connector-based architecture which supports plugins that provide
connectivity to external systems. Using specialized connectors, Sqoop can connect with
external systems that have optimized import and export facilities, or do not support native
JDBC. Connectors are plugin components based on Sqoop’s extension framework and can
be added to any existing Sqoop installation.

Hortonworks provides the following connectors for Sqoop in the HDP 2 distribution:

• MySQL connector: Instructions for using this connector are available here.

• Netezza connector: See here and below for more information.

• Oracle JDBC connector: Instructions for using this connector are available here.

• PostgreSQL connector: Instructions for using this connector are here.

• Microsoft SQL Server connector: Instructions for using this connector are here.

A Sqoop connector for Teradata is available from the Hortonworks Add-ons page:

• Teradata connector: The connector and its documentation can be downloaded from 
here.

7.2. Sqoop Import Table Commands
When connecting to an Oracle database, the Sqoop import command requires case-
sensitive table names and usernames (typically uppercase). Otherwise the import fails with
error message "Attempted to generate class with no columns!"

http://sqoop.apache.org/docs/1.4.6/index.html
http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html
http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_basic_usage
http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_sqoop_tools
http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_troubleshooting
http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_mysql_jdbc_connector
http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_netezza_connector
http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_data_connector_for_oracle_and_hadoop
http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_postgresql_connector
http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_microsoft_sql_connector
https://hortonworks.com/products/releases/hdp-2-3/#add_ons
https://hortonworks.com/products/releases/hdp-2-3/#add_ons
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Prior to the resolution of the issue  SQOOP-741, import-all-tables would fail for an Oracle
database. See the JIRA for more information.

The import-all-tables command has additional restrictions. See  Chapter 8 in the Sqoop User
Guide.

7.3. Netezza Connector
Netezza connector for Sqoop is an implementation of the Sqoop connector interfaces for
accessing a Netezza data warehouse appliance, so that data can be exported and imported
to a Hadoop environment from Netezza data warehousing environments.

The HDP 2 Sqoop distribution includes Netezza connector software. To deploy it, the only
requirement is that you acquire the JDBC jar file (named nzjdbc.jar) from IBM and copy
it to the /usr/local/nz/lib directory.

Extra Arguments

The following table describes extra arguments supported by the Netezza connector.

Note

All non-Sqoop arguments must be preceded by double dashes (--) to work
correctly.

Argument Description

--partitioned-access Whether each mapper acts on a subset of data slices of a
table or all.

-max-errors Applicable only in direct mode. This option specifies the
error threshold per mapper while transferring data. If the
number of errors encountered exceeds this threshold, the
job fails.

--log-dir Applicable only in direct mode. Specifies the directory
where Netezza external table operation logs are stored

Direct Mode

Netezza connector supports an optimized data transfer facility using the Netezza external
tables feature. Each map task of Netezza connector’s import job works on a subset of the
Netezza partitions and transparently creates and uses an external table to transport data.

Similarly, export jobs use the external table to push data quickly onto the NZ system. Direct
mode does not support staging tables and upsert options.

Direct mode is specified by the --direct Sqoop option.

Here is an example of a complete command line for import using the Netezza external
table feature:

$ sqoop import \
 --direct \
 --connect jdbc:netezza://nzhost:5480/sqoop \
 --table nztable \
 --username nzuser \
 --password nzpass \

https://issues.apache.org/jira/browse/SQOOP-741
http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_literal_sqoop_import_all_tables_literal
http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html
http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html


Hortonworks Data Platform March 1, 2016

54

 --target-dir hdfsdir \
 -- --log-dir /tmp

Here is an example of a complete command line for export with tab (\t) as the field
terminator character:

$ sqoop export \
 --direct \
 --connect jdbc:netezza://nzhost:5480/sqoop \
 --table nztable \
 --username nzuser \
 --password nzpass \
 --export-dir hdfsdir \
 --input-fields-terminated-by "\t"

Null String Handling

In direct mode the Netezza connector supports the null-string features of Sqoop. Null
string values are converted to appropriate external table options during export and import
operations.

Argument Description

--input-null-non-string <null-string> The string to be interpreted as null for non-string columns.

--input-null-non-string <null-string> The string to be interpreted as null for non-string columns.

In direct mode, both the arguments must either be left to the default values or explicitly set
to the same value. The null string value is restricted to 0-4 UTF-8 characters.

On export, for non-string columns, if the chosen null value is a valid representation in the
column domain, then the column might not be loaded as null. For example, if the null string
value is specified as "1", then on export, any occurrence of "1" in the input file will be loaded
as value 1 instead of NULL for int columns.

For performance and consistency, specify the null value as an empty string.

Supported Import Control Arguments

Argument Description

--null-string <null-string> The string to be interpreted as null for string columns

--null-non-string <null-string> The string to be interpreted as null for non-string columns.

In direct mode, both the arguments must either be left to the default values or explicitly set
to the same value. The null string value is restricted to 0-4 UTF-8 characters.

On import, for non-string columns in the current implementation, the chosen null value
representation is ignored for non-character columns. For example, if the null string value is
specified as "\N", then on import, any occurrence of NULL for non-char columns in the table
will be imported as an empty string instead of \N, the chosen null string representation.

For performance and consistency, specify the null value as an empty string.

7.4. Sqoop-HCatalog Integration
This section describes the interaction between HCatalog with Sqoop.



Hortonworks Data Platform March 1, 2016

55

HCatalog is a table and storage management service for Hadoop that enables users with
different data processing tools – Pig, MapReduce, and Hive – to more easily read and write
data on the grid. HCatalog’s table abstraction presents users with a relational view of data
in the Hadoop distributed file system (HDFS) and ensures that users need not worry about
where or in what format their data is stored: RCFile format, text files, or SequenceFiles.

HCatalog supports reading and writing files in any format for which a Hive SerDe (serializer-
deserializer) has been written. By default, HCatalog supports RCFile, CSV, JSON, and
SequenceFile formats. To use a custom format, you must provide the InputFormat and
OutputFormat as well as the SerDe.

The ability of HCatalog to abstract various storage formats is used in providing RCFile (and
future file types) support to Sqoop.

Exposing HCatalog Tables to Sqoop

HCatalog interaction with Sqoop is patterned on an existing feature set that supports Avro
and Hive tables. This section introduces five command line options. Some command line
options defined for Hive are reused.

Relevant Command-Line Options

Command-line Option Description

--hcatalog-database Specifies the database name for the HCatalog table. If
not specified, the default database name ‘default’ is
used. Providing the --hcatalog-database option without --
hcatalog-table is an error. This is not a required option.

-hcatalog-table The argument value for this option is the HCatalog
tablename. The presence of the --hcatalog-table option
signifies that the import or export job is done using
HCatalog tables, and it is a required option for HCatalog
jobs.

--hcatalog-home The home directory for the HCatalog installation. The
directory is expected to have a lib subdirectory and a
share/hcatalog subdirectory with necessary HCatalog
libraries. If not specified, the system environment variable
HCAT_HOME will be checked and failing that, a system
property hcatalog.home will be checked. If none of these
are set, the default value will be used and currently the
default is set to /usr/lib/hcatalog. This is not a required
option.

--create-hcatalog-table This option specifies whether an HCatalog table should be
created automatically when importing data. By default,
HCatalog tables are assumed to exist. The table name will
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Command-line Option Description

be the same as the database table name translated to
lower case. Further described in Automatic Table Creation.

--hcatalog-storage- stanza This option specifies the storage stanza to be appended to
the table. Further described in Automatic Table Creation.

Supported Sqoop Hive Options

The following Sqoop options are also used along with the --hcatalog-table option to
provide additional input to the HCatalog jobs. Some of the existing Hive import job options
are reused with HCatalog jobs instead of creating HCatalog-specific options for the same
purpose.

Command-line Option Description

--map-column-hive This option maps a database column to HCatalog with a
specific HCatalog type.

--hive-home The Hive home location.

--hive-partition-key Used for static partitioning filter. The partitioning key
should be of type STRING. There can be only one static
partitioning key.

--hive-partition-value The value associated with the partition.

Direct Mode Support

HCatalog integration in Sqoop has been enhanced to support direct mode connectors.
Direct mode connectors are high performance connectors specific to a database. The
Netezza direct mode connector is enhanced to use this feature for HCatalog jobs.

Important

Only the Netezza direct mode connector is currently enabled to work with
HCatalog.

Unsupported Sqoop Hive Import Options

Sqoop Hive options that are not supported with HCatalog jobs:

• --hive-import

• --hive-overwrite

In addition, the following Sqoop export and import options are not supported with
HCatalog jobs:

• --direct

• --export-dir

• --target-dir

• --warehouse-dir

• --append

• --as-sequencefile
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• --as-avrofile

Ignored Sqoop Options

All input delimiter options are ignored.

Output delimiters are generally ignored unless either --hive-drop-import-delims or
--hive-delims-replacement is used. When the --hive-drop-import-delims or
--hive-delims-replacement option is specified, all database columns of type CHAR
are post-processed to either remove or replace the delimiters, respectively. (See  Delimited
Text Formats and Field and Line Delimiter Characters.) This is only needed if the HCatalog
table uses text format.

7.5. Controlling Transaction Isolation
Sqoop uses read-committed transaction isolation in its mappers to import data. However,
this may not be ideal for all ETL workflows, and you might want to reduce the isolation
guarantees. Use the --relaxed-isolation option to instruct Sqoop to use read-
uncommitted isolation level.

The read-uncommitted transaction isolation level is not supported on all databases, such
as Oracle. Specifying the --relaxed-isolation may also not be supported on all
databases.

Note

There is no guarantee that two identical and subsequent uncommitted reads
will return the same data.

7.6. Automatic Table Creation
One of the key features of Sqoop is to manage and create the table metadata when
importing into Hadoop. HCatalog import jobs also provide for this feature with the option
--create-hcatalog-table. Furthermore, one of the important benefits of the
HCatalog integration is to provide storage agnosticism to Sqoop data movement jobs. To
provide for that feature, HCatalog import jobs provide an option that lets a user specifiy
the storage format for the created table.

The option --create-hcatalog-table is used as an indicator that a table has to be
created as part of the HCatalog import job.

The option --hcatalog-storage-stanza can be used to specify the storage format
of the newly created table. The default value for this option is "stored as rcfile". The value
specified for this option is assumed to be a valid Hive storage format expression. It will be
appended to the CREATE TABLE command generated by the HCatalog import job as part
of automatic table creation. Any error in the storage stanza will cause the table creation to
fail and the import job will be aborted.

Any additional resources needed to support the storage format referenced in the option
--hcatalog-storage-stanza should be provided to the job either by placing them in
$HIVE_HOME/lib or by providing them in HADOOP_CLASSPATH and LIBJAR files.
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If the option --hive-partition-key is specified, then the value of this option is used as
the partitioning key for the newly created table. Only one partitioning key can be specified
with this option.

Object names are mapped to the lowercase equivalents as specified below when mapped
to an HCatalog table. This includes the table name (which is the same as the external store
table name converted to lower case) and field names.

7.7. Delimited Text Formats and Field and Line
Delimiter Characters

HCatalog supports delimited text format as one of the table storage formats. But when
delimited text is used and the imported data has fields that contain those delimiters, then
the data may be parsed into a different number of fields and records by Hive, thereby
losing data fidelity.

For this case, one of these existing Sqoop import options can be used:

• --hive-delims-replacement

• --hive-drop-import-delims

If either of these options is provided on input, then any column of type STRING will be
formatted with the Hive delimiter processing and then written to the HCatalog table.

7.8. HCatalog Table Requirements
The HCatalog table should be created before using it as part of a Sqoop job if the default
table creation options (with optional storage stanza) are not sufficient. All storage formats
supported by HCatalog can be used with the creation of the HCatalog tables. This makes
this feature readily adopt new storage formats that come into the Hive project, such as
ORC files.

7.9. Support for Partitioning
The Sqoop HCatalog feature supports the following table types:

• Unpartitioned tables

• Partitioned tables with a static partitioning key specified

• Partitioned tables with dynamic partition keys from the database result set

• Partitioned tables with a combination of a static key and additional dynamic partitioning
keys

7.10. Schema Mapping
Sqoop currently does not support column name mapping. However, the user is allowed to
override the type mapping. Type mapping loosely follows the Hive type mapping already
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present in Sqoop except that the SQL types FLOAT and REAL are mapped to the HCatalog
type “float.” In the Sqoop type mapping for Hive, these two SQL types are mapped to
“double.” Type mapping is primarily used for checking the column definition correctness
only and can be overridden with the --map-column-hive option.

All types except binary are assignable to a string type.

Any field of number type (int, shortint, tinyint, bigint and bigdecimal, float and double) is
assignable to another field of any number type during exports and imports. Depending on
the precision and scale of the target type of assignment, truncations can occur.

Furthermore, date/time/timestamps are mapped to string (the full date/time/timestamp
representation) or bigint (the number of milliseconds since epoch) during imports and
exports.

BLOBs and CLOBs are only supported for imports. The BLOB/CLOB objects when imported
are stored in a Sqoop-specific format and knowledge of this format is needed for
processing these objects in a Pig/Hive job or another Map Reduce job.

Database column names are mapped to their lowercase equivalents when mapped to the
HCatalog fields. Currently, case-sensitive database object names are not supported.

Projection of a set of columns from a table to an HCatalog table or loading to a column
projection is allowed (subject to table constraints). The dynamic partitioning columns, if
any, must be part of the projection when importing data into HCatalog tables.

Dynamic partitioning fields should be mapped to database columns that are defined with
the NOT NULL attribute (although this is not validated). A null value during import for a
dynamic partitioning column will abort the Sqoop job.

7.11. Support for HCatalog Data Types
All the primitive HCatalog types are supported. Currently all the complex HCatalog types
are unsupported.

BLOB/CLOB database types are only supported for imports.

7.12. Providing Hive and HCatalog Libraries for
the Sqoop Job

With the support for HCatalog added to Sqoop, any HCatalog job depends on a set of jar
files being available both on the Sqoop client host and where the Map/Reduce tasks run.
To run HCatalog jobs, the environment variable HADOOP_CLASSPATH must be set up as
shown below before launching the Sqoop HCatalog jobs:

HADOOP_CLASSPATH=$(hcat -classpath) 
export HADOOP_CLASSPATH

The necessary HCatalog dependencies will be copied to the distributed cache automatically
by the Sqoop job.
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7.13. Examples
Create an HCatalog table, such as:

hcat -e "create table txn(txn_date string, cust_id string, amount
float, store_id int) partitioned by (cust_id string) stored as
rcfile;"

Then use Sqoop to import and export the "txn" HCatalog table as follows:

Import

$SQOOP_HOME/bin/sqoop import --connect <jdbc-url> -table <table-
name> --hcatalog-table txn

Export

$SQOOP_HOME/bin/sqoop export --connect <jdbc-url> -table <table-
name> --hcatalog-table txn
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