
Hortonworks Data Platform

 (August 29, 2016)

Security

docs.cloudera.com

http://docs.cloudera.com

hdp-security August 29, 2016

ii

Hortonworks Data Platform: Security
Copyright © 2012-2016 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
Contact Us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/hadoop-support/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

hdp-security August 29, 2016

iii

Table of Contents
1. HDP Security Overview .. 1

1.1. Understanding Data Lake Security .. 1
1.2. HDP Security Features ... 3

1.2.1. Administration ... 4
1.2.2. Authentication and Perimeter Security ... 4
1.2.3. Authorization ... 5
1.2.4. Audit .. 7
1.2.5. Data Protection .. 7

2. Authentication ... 8
2.1. Enabling Kerberos Authentication Using Ambari ... 8

2.1.1. Kerberos Overview ... 8
2.1.2. Kerberos Principals ... 9
2.1.3. Installing and Configuring the KDC ... 10
2.1.4. Enabling Kerberos Security ... 15
2.1.5. Kerberos Client Packages .. 20
2.1.6. Disabling Kerberos Security .. 20
2.1.7. Customizing the Attribute Template ... 21
2.1.8. Managing Admin Credentials ... 21

2.2. Configuring HDP Components for Kerberos Using Ambari 22
2.2.1. Configuring Kafka for Kerberos Using Ambari 22
2.2.2. Configuring Storm for Kerberos Using Ambari 36

2.3. Configuring Ambari Authentication with LDAP or AD 42
2.3.1. Configuring Ambari for LDAP or Active Directory Authentication 42
2.3.2. Configuring Ranger Authentication with UNIX, LDAP, or AD 48
2.3.3. Encrypting Database and LDAP Passwords in Ambari 56

2.4. Configuring LDAP Authentication in Hue ... 58
2.4.1. Enabling the LDAP Backend ... 58
2.4.2. Enabling User Authentication with Search Bind 58
2.4.3. Setting the Search Base to Find Users and Groups 59
2.4.4. Specifying the URL of the LDAP Server ... 60
2.4.5. Specifying LDAPS and StartTLS Support .. 60
2.4.6. Specifying Bind Credentials for LDAP Searches 60
2.4.7. Synchronizing Users and Groups ... 60
2.4.8. Setting Search Bind Authentication and Importing Users and
Groups ... 61
2.4.9. Setting LDAP Users' Filter ... 61
2.4.10. Setting an LDAP Groups Filter .. 62
2.4.11. Setting Multiple LDAP Servers ... 62

2.5. Advanced Security Options for Ambari .. 63
2.5.1. Configuring Ambari for Non-Root ... 63
2.5.2. Optional: Ambari Web Inactivity Timeout ... 66
2.5.3. Optional: Set Up Kerberos for Ambari Server .. 67
2.5.4. Optional: Set Up Two-Way SSL Between Ambari Server and Ambari
Agents ... 68
2.5.5. Optional: Configure Ciphers and Protocols for Ambari Server 68
2.5.6. Optional: HTTP Cookie Persistence .. 68

2.6. Enabling SPNEGO Authentication for Hadoop ... 69
2.6.1. Configure Ambari Server for Authenticated HTTP 69

hdp-security August 29, 2016

iv

2.6.2. Configuring HTTP Authentication for HDFS, YARN, MapReduce2,
HBase, Oozie, Falcon and Storm .. 69
2.6.3. Enabling Browser Access to a SPNEGO-enabled Web UI 70

2.7. Setting Up Kerberos Authentication for Non-Ambari Clusters 71
2.7.1. Preparing Kerberos ... 71
2.7.2. Configuring HDP for Kerberos .. 77
2.7.3. Setting up One-Way Trust with Active Directory 105
2.7.4. Configuring Proxy Users .. 107

2.8. Perimeter Security with Apache Knox .. 107
2.8.1. Apache Knox Gateway Overview .. 107
2.8.2. Configuring the Knox Gateway ... 109
2.8.3. Defining Cluster Topologies .. 114
2.8.4. Configuring a Hadoop Server for Knox ... 115
2.8.5. Mapping the Internal Nodes to External URLs 120
2.8.6. Configuring Authentication .. 123
2.8.7. Configuring Identity Assertion .. 139
2.8.8. Configuring Service Level Authorization .. 144
2.8.9. Audit Gateway Activity ... 147
2.8.10. Gateway Security .. 149
2.8.11. Setting Up Knox Services for HA ... 153
2.8.12. Knox CLI Testing Tools .. 156

2.9. Knox SSO .. 157
2.9.1. Identity Providers (IdP) ... 157
2.9.2. Setting up Knox SSO for Ambari ... 162
2.9.3. Setting up Knox SSO for Ranger ... 163

3. Configuring Authorization in Hadoop .. 166
3.1. Installing Ranger Using Ambari ... 166

3.1.1. Overview .. 166
3.1.2. Installation Prerequisites ... 166
3.1.3. Ranger Installation ... 172
3.1.4. Enabling Ranger Plugins ... 212
3.1.5. Ranger Plugins - Kerberos Overview .. 241

3.2. Using Ranger to Provide Authorization in Hadoop ... 245
3.2.1. About Ranger Policies ... 245
3.2.2. Using the Ranger Console ... 250
3.2.3. Configuring Resource-Based Services ... 254
3.2.4. Resource-Based Policy Management ... 270
3.2.5. Row-level Filtering and Column Masking in Hive 290
3.2.6. Adding Tag-based Service ... 299
3.2.7. Adding Tag-based Policies ... 302
3.2.8. Users/Groups and Permissions Administration 311
3.2.9. Reports Administration ... 322
3.2.10. Special Requirements for High Availability Environments 327
3.2.11. Adding a New Component to Apache Ranger 328
3.2.12. Developing a Custom Authorization Module 330
3.2.13. Apache Ranger Public REST API .. 331

4. Data Protection: Wire Encryption ... 366
4.1. Enabling RPC Encryption ... 366
4.2. Enabling Data Transfer Protocol .. 367
4.3. Enabling SSL: Understanding the Hadoop SSL Keystore Factory 367
4.4. Creating and Managing SSL Certificates ... 369

hdp-security August 29, 2016

v

4.4.1. Obtain a Certificate from a Trusted Third-Party Certification Authority
(CA) ... 369
4.4.2. Create and Set Up an Internal CA (OpenSSL) 370
4.4.3. Installing Certificates in the Hadoop SSL Keystore Factory (HDFS,
MapReduce, and YARN) .. 374
4.4.4. Using a CA-Signed Certificate .. 375

4.5. Enabling SSL for HDP Components .. 376
4.6. Enable SSL for WebHDFS, MapReduce Shuffle, Tez, and YARN 376
4.7. Enable SSL for HttpFS .. 379
4.8. Enable SSL on Oozie .. 380

4.8.1. Configure the Oozie Client to Connect Using SSL 381
4.8.2. Connect to the Oozie Web UI Using SSL ... 382
4.8.3. Configure Oozie HCatalogJob Properties .. 382

4.9. Enable SSL on the HBase REST Server .. 382
4.10. Enable SSL on the HBase Web UI .. 383
4.11. Enable SSL on HiveServer2 ... 385

4.11.1. Setting up SSL with self-signed certificates .. 386
4.11.2. Selectively disabling SSL protocol versions ... 386

4.12. Enable SSL for Kafka Clients .. 387
4.12.1. Configuring the Kafka Broker ... 387
4.12.2. Configuring Kafka Producer and Kafka Consumer 389

4.13. Enable SSL for Accumulo ... 390
4.13.1. Generate a Certificate Authority ... 390
4.13.2. Generate a Certificate/Keystore Per Host .. 391
4.13.3. Configure Accumulo Servers ... 391
4.13.4. Configure Accumulo Clients .. 392

4.14. Enable SSL for Apache Atlas .. 393
4.14.1. Configuring Apache Atlas SSL ... 393
4.14.2. Credential Provider Utility Script ... 394

4.15. SPNEGO setup for WebHCat .. 395
4.16. Configure SSL for Hue ... 395

4.16.1. Enabling SSL on Hue by Using a Private Key 396
4.16.2. Enabling SSL on Hue Without Using a Private Key 396

4.17. Configure SSL for Knox ... 396
4.17.1. Self-Signed Certificate with Specific Hostname for Evaluations 397
4.17.2. CA-Signed Certificates for Production .. 397
4.17.3. Setting Up Trust for the Knox Gateway Clients 398

4.18. Securing Phoenix ... 398
4.19. Set Up SSL for Ambari ... 398

4.19.1. Set Up Truststore for Ambari Server .. 399
4.20. Configure Ambari Ranger SSL .. 400

4.20.1. Configuring Ambari Ranger SSL Using Public CA Certificates 400
4.20.2. Configuring Ambari Ranger SSL Using a Self-Signed Certificate 413

4.21. Configure Non-Ambari Ranger SSL .. 428
4.21.1. Configuring Non-Ambari Ranger SSL Using Public CA Certificates 428
4.21.2. Configuring Non-Ambari Ranger SSL Using a Self Signed
Certificate .. 431

4.22. Connecting to SSL-Enabled Components .. 435
4.22.1. Connect to SSL Enabled HiveServer2 using JDBC 436
4.22.2. Connect to SSL Enabled Oozie Server .. 436

5. Auditing in Hadoop ... 438

hdp-security August 29, 2016

vi

5.1. Using Apache Solr for Ranger Audits ... 438
5.1.1. Prerequisites ... 439
5.1.2. Installing Externally Managed SolrCloud ... 439
5.1.3. Configuring Externally Managed SolrCloud ... 440
5.1.4. Configuring Externally Managed Solr Standalone 443
5.1.5. Configuring SolrCloud for Kerberos .. 444

5.2. Migrating Audit Logs from DB to Solr in Ambari Clusters 448
5.3. Manually Enabling Audit Settings in Ambari Clusters 449

5.3.1. Manually Updating Ambari Solr Audit Settings 450
5.3.2. Manually Updating HDFS Audit Settings (for Ambari installs) 451

5.4. Enabling Audit Logging in Non-Ambari Clusters ... 452
5.5. Managing Auditing in Ranger ... 453

5.5.1. View Operation Details ... 454
5.5.2. Access ... 455
5.5.3. Admin .. 456
5.5.4. Login Sessions ... 457
5.5.5. Plugins .. 458

6. Data Protection: HDFS Encryption .. 459
6.1. Ranger KMS Administration .. 459

6.1.1. Installing the Ranger Key Management Service 459
6.1.2. Store Master Key in a Hardware Security Module (HSM) 467
6.1.3. Enable Ranger KMS Audit .. 475
6.1.4. Enabling SSL for Ranger KMS ... 478
6.1.5. Install Multiple Ranger KMS .. 483
6.1.6. Using the Ranger Key Management Service .. 484
6.1.7. Ranger KMS Properties ... 489
6.1.8. Troubleshooting Ranger KMS ... 493

6.2. HDFS "Data at Rest" Encryption ... 493
6.2.1. HDFS Encryption Overview ... 493
6.2.2. Configuring and Starting the Ranger Key Management Service
(Ranger KMS) .. 496
6.2.3. Configuring and Using HDFS Data at Rest Encryption 496
6.2.4. Configuring HDP Services for HDFS Encryption 504
6.2.5. Appendix: Creating an HDFS Admin User .. 512

7. Addendum ... 514
7.1. ZooKeeper ACLs Best Practices .. 514

7.1.1. Accumulo ... 515
7.1.2. Ambari Solr .. 516
7.1.3. Atlas ... 517
7.1.4. HBase ... 517
7.1.5. HDFS/WebHDFS ... 518
7.1.6. Hive/HCatalog .. 520
7.1.7. Kafka ... 521
7.1.8. Oozie .. 522
7.1.9. Ranger ... 523
7.1.10. Ranger KMS/Hadoop KMS .. 524
7.1.11. Slider .. 525
7.1.12. Storm ... 525
7.1.13. WebHCat .. 526
7.1.14. YARN ... 526
7.1.15. YARN Registry .. 527

hdp-security August 29, 2016

vii

7.1.16. ZooKeeper .. 528

hdp-security August 29, 2016

viii

List of Figures
3.1. Installing Ranger - Main Dashboard View .. 173
3.2. Installing Ranger - Add Service .. 174
3.3. Installing Ranger - Choose Service .. 175
3.4. Installing Ranger - Ranger Requirements ... 176
3.5. Installing Ranger Assign Masters ... 177
3.6. Knox Service Manager ... 244
3.7. Knox Service Edit ... 244
6.1. HDFS Encryption Components ... 495

hdp-security August 29, 2016

ix

List of Tables
2.1. Browser Settings for Storm UI ... 39
2.2. UNIX Authentication Settings .. 48
2.3. Active Directory Authentication Settings ... 49
2.4. Active Directory Custom ranger-admin-site Settings ... 51
2.5. LDAP Authentication Settings ... 53
2.6. LDAP Custom ranger-admin-site Settings ... 55
2.7. Active Directory Authentication Settings ... 56
2.8. Service Principals ... 75
2.9. Service Keytab File Names ... 76
2.10. General core-site.xml, Knox, and Hue .. 80
2.11. core-site.xml Master Node Settings -- Knox Gateway .. 81
2.12. core-site.xml Master Node Settings -- Hue .. 81
2.13. hdfs-site.xml File Property Settings ... 82
2.14. yarn-site.xml Property Settings ... 86
2.15. mapred-site.xml Property Settings ... 88
2.16. hbase-site.xml Property Settings for HBase Server and Phoenix Query
Server ... 89
2.17. hive-site.xml Property Settings ... 93
2.18. oozie-site.xml Property Settings ... 93
2.19. webhcat-site.xml Property Settings .. 94
2.20. Supported Hadoop Services ... 108
2.21. Supported Hadoop UIs .. 109
2.22. Apache Service Gateway Directories .. 110
2.23. Cluster Topology Provider and Service Roles .. 114
2.24. gateway-site.xml Configuration Elements ... 138
2.25. LDAP Authentication and Authorization Arguments .. 157
3.1. Ranger DB Host .. 178
3.2. Driver Class Name ... 179
3.3. Ranger DB Username Settings ... 179
3.4. JDBC Connect String .. 179
3.5. DBA Credential Settings .. 180
3.6. UNIX User Sync Properties ... 190
3.7. LDAP/AD Common Configs ... 192
3.8. LDAP/AD User Configs .. 193
3.9. LDAP/AD Group Configs ... 195
3.10. Atlas Tag Source Properties ... 197
3.11. AtlasREST Source Properties .. 198
3.12. File Tag Source Properties ... 198
3.13. UNIX Authentication Settings .. 199
3.14. LDAP Authentication Settings .. 200
3.15. AD Settings ... 204
3.16. LDAP Advanced ranger-ugsync-site Settings ... 209
3.17. AD Advanced ranger-ugsync-site Settings .. 209
3.18. Advanced ranger-ugsync-site Settings for LDAP and AD 209
3.19. HDFS Plugin Properties .. 242
3.20. Hive Plugin Properties ... 242
3.21. HBase Plugin Properties ... 243
3.22. Knox Plugin Properties .. 243

hdp-security August 29, 2016

x

3.23. Knox Configuration Properties ... 245
3.24. Service Details ... 256
3.25. Config Properties ... 256
3.26. Service Details ... 258
3.27. Config Properties ... 258
3.28. Service Details ... 260
3.29. Config Properties ... 260
3.30. Service Details ... 261
3.31. Config Properties ... 262
3.32. Service Details ... 263
3.33. Config Properties ... 263
3.34. Service Details ... 264
3.35. Config Properties ... 265
3.36. Service Details ... 266
3.37. Config Properties ... 266
3.38. Service Details ... 267
3.39. Config Properties ... 268
3.40. Service Details ... 269
3.41. Config Properties ... 269
3.42. Policy Details ... 271
3.43. Allow Conditions ... 272
3.44. Policy Details ... 274
3.45. Allow Conditions ... 274
3.46. Policy Details ... 276
3.47. Allow Conditions ... 277
3.48. Policy Details ... 279
3.49. Allow Conditions ... 279
3.50. Policy Details ... 281
3.51. Allow Conditions ... 281
3.52. Policy Details ... 283
3.53. Allow Conditions ... 283
3.54. Policy Details ... 285
3.55. Allow Conditions ... 285
3.56. Storm User and Group Permissions .. 286
3.57. Policy Details ... 287
3.58. Allow Conditions ... 288
3.59. Policy Details ... 289
3.60. Allow Conditions ... 290
3.61. Policy Details ... 292
3.62. Row Filter Conditions .. 292
3.63. Policy Details ... 296
3.64. Mask Conditions .. 296
3.65. Policy Details ... 304
3.66. Allow, Exclude from Allow, Deny, and Exclude from Deny Conditions 305
3.67. Policy Details ... 307
3.68. Allow Conditions ... 308
3.69. Deny Conditions .. 308
3.70. Exclude from Allow Conditions .. 308
4.1. Components that Support SSL ... 367
4.2. Configure SSL Data Protection for HDP Components ... 376
4.3. Configuration Properties in ssl-server.xml ... 378

hdp-security August 29, 2016

xi

4.4. Atlas Advanced application-properties ... 393
4.5. Atlas Advanced application-properties ... 393
5.1. Solr install.properties Values for setup.sh script .. 440
5.2. Solr install.properties Values .. 440
5.3. Solr install.properties Values .. 443
5.4. JDBC Audit String .. 449
5.5. Search Criteria ... 455
5.6. Search Criteria ... 456
5.7. Search Criteria ... 457
5.8. Agents Search Criteria ... 458
6.1. Properties in Advanced dbks-site Menu (dbks-site.xml) .. 489
6.2. Properties in Advanced kms-env .. 489
6.3. Properties in Advanced kms-properties (install.properties) 489
6.4. Properties in Advanced kms-site (kms-site.xml) .. 490
6.5. Properties in Advanced ranger-kms-audit (ranger-kms-audit.xml) 491
6.6. Properties in Advanced ranger-kms-policymgr-ssl ... 492
6.7. Properties in Advanced ranger-kms-security ... 492
6.8. Troubleshooting Suggestions ... 493

hdp-security August 29, 2016

xii

List of Examples
2.1. Example Search Filter to Find the Client Bind DN ... 126
2.2. knoxsso.xml with Shiro provider .. 158
2.3. knoxsso.xml with Okta .. 160
2.4. Example Knox SSO for Ambari .. 163

hdp-security August 29, 2016

1

1. HDP Security Overview
Security is essential for organizations that store and process sensitive data in the Hadoop
ecosystem. Many organizations must adhere to strict corporate security polices.

Hadoop is a distributed framework used for data storage and large-scale processing on
clusters using commodity servers. Adding security to Hadoop is challenging because not all
of the interactions follow the classic client-server pattern.

• In Hadoop, the file system is partitioned and distributed, requiring authorization checks
at multiple points.

• A submitted job is executed at a later time on nodes different than the node on which
the client authenticated and submitted the job.

• Secondary services such as a workflow system access Hadoop on behalf of users.

• A Hadoop cluster scales to thousands of servers and tens of thousands of concurrent
tasks.

A Hadoop-powered "Data Lake" can provide a robust foundation for a new generation
of Big Data analytics and insight, but can also increase the number of access points to an
organization's data. As diverse types of enterprise data are pulled together into a central
repository, the inherent security risks can increase.

Hortonworks understands the importance of security and governance for every business.
To ensure effective protection for its customers, Hortonworks uses a holistic approach
based on five core security features:

• Administration

• Authentication and perimeter security

• Authorization

• Audit

• Data protection

This chapter provides an overview of the security features implemented in the Hortonworks
Data Platform (HDP). Subsequent chapters in this guide provide more details on each of
these security features.

1.1. Understanding Data Lake Security
The general consensus in nearly every industry is that data is an essential new driver of
competitive advantage. Hadoop plays a critical role in the modern data architecture by
providing low-cost, large-scale data storage and processing. The successful Hadoop journey
typically starts with data architecture optimization or new advanced analytic applications,
which leads to the formation of what is known as a Data Lake. As new and existing types
of data from machine sensors, server logs, clickstream data, and other sources flow into the
Data Lake, it serves as a central repository based on shared Hadoop services that power
deep organizational insights across a broad and diverse set of data.

hdp-security August 29, 2016

2

The need to protect the Data Lake with comprehensive security is clear. As large and
growing volumes of diverse data are channeled into the Data Lake, it will store vital
and often highly sensitive business data. However, the external ecosystem of data and
operational systems feeding the Data Lake is highly dynamic and can introduce new
security threats on a regular basis. Users across multiple business units can access the Data
Lake freely and refine, explore, and enrich its data, using methods of their own choosing,
further increasing the risk of a breach. Any breach of this enterprise-wide data can result
in catastrophic consequences: privacy violations, regulatory infractions, or the compromise
of vital corporate intelligence. To prevent damage to the company’s business, customers,
finances, and reputation, a Data Lake should meet the same high standards of security as
any legacy data environment.

Piecemeal protections are no more effective for a Data Lake than they would be in a
traditional repository. Effective Hadoop security depends on a holistic approach that
revolves around five pillars of security: administration, authentication and perimeter
security, authorization, auditing, and data protection.

Requirements for Enterprise-Grade Security

Security administrators must address questions and provide enterprise-grade coverage
across each of these areas as they design the infrastructure to secure data in Hadoop.
If any of these pillars is vulnerable, it becomes a risk factor in the company’s Big Data
environment. A Hadoop security strategy must address all five pillars, with a consistent
implementation approach to ensure effectiveness.

You cannot achieve comprehensive protection across the Hadoop stack by using an
assortment of point solutions. Security must be an integral part of the platform on which
your Data Lake is built. This bottom-up approach makes it possible to enforce and manage
security across the stack through a central point of administration, thereby preventing gaps
and inconsistencies. This approach is especially important for Hadoop implementations
in which new applications or data engines are always emerging in the form of new Open
Source projects — a dynamic scenario that can quickly exacerbate any vulnerability.

Hortonworks helps customers maintain high levels of protection for enterprise data by
building centralized security administration and management into the infrastructure of
the Hortonworks Data Platform. HDP provides an enterprise-ready data platform with

hdp-security August 29, 2016

3

rich capabilities spanning security, governance, and operations. HDP includes powerful
data security functionality that works across component technologies and integrates with
preexisting EDW, RDBMS, and MPP systems. By implementing security at the platform level,
Hortonworks ensures that security is consistently administered to all of the applications
across the stack, simplifying the process of adding or removing Hadoop applications.

The Hortonworks Data Platform

1.2. HDP Security Features
HDP uses Apache Ranger to provide centralized security administration and management.
The Ranger Administration Portal is the central interface for security administration. You
can use Ranger to create and update policies, which are then stored in a policy database.
Ranger plug-ins (lightweight Java programs) are embedded within the processes of each
cluster component. For example, the Ranger plug-in for Apache Hive is embedded within
HiveServer2:

hdp-security August 29, 2016

4

Apache Ranger Architecture

These plug-ins pull policies from a central server and store them locally in a file. When a user
request comes through the component, these plug-ins intercept the request and evaluate
it against the security policy. Plug-ins also collect data from the user request and follow a
separate thread to send this data back to the audit server.

1.2.1. Administration
To deliver consistent security administration and management, Hadoop administrators
require a centralized user interface they can use to define, administer and manage security
policies consistently across all of the Hadoop stack components:

Ranger Centralized Security Administration

The Apache Ranger administration console provides a central point of administration for
the other four pillars of Hadoop security.

Ranger Administration Console

1.2.2. Authentication and Perimeter Security
Establishing user identity with strong authentication is the basis for secure access in
Hadoop. Users need to reliably identify themselves and then have that identity propagated
throughout the Hadoop cluster to access cluster resources. Hortonworks uses Kerberos for
authentication. Kerberos is an industry standard used to authenticate users and resources
within a Hadoop cluster. HDP also includes Ambari, which simplifies Kerberos setup,
configuration, and maintenance.

Apache Knox Gateway is used to help ensure perimeter security for Hortonworks
customers. With Knox, enterprises can confidently extend the Hadoop REST API to new

hdp-security August 29, 2016

5

users without Kerberos complexities, while also maintaining compliance with enterprise
security policies. Knox provides a central gateway for Hadoop REST APIs that have varying
degrees of authorization, authentication, SSL, and SSO capabilities to enable a single access
point for Hadoop.

Apache Knox Features

1.2.3. Authorization

Ranger manages access control through a user interface that ensures consistent policy
administration across Hadoop data access components. Security administrators can
define security policies at the database, table, column, and file levels, and can administer
permissions for specific LDAP-based groups or individual users. Rules based on dynamic
conditions such as time or geolocation can also be added to an existing policy rule. The
Ranger authorization model is pluggable and can be easily extended to any data source
using a service-based definition.

Administrators can use Ranger to define a centralized security policy for the following
Hadoop components:

• HDFS

• YARN

• Hive

• HBase

• Storm

• Knox

• Solr

• Kafka

Ranger works with standard authorization APIs in each Hadoop component and can
enforce centrally administered policies for any method used to access the Data Lake.

hdp-security August 29, 2016

6

Ranger Security Policy Definitions

Ranger provides administrators with the deep visibility into the security administration
process that is required for auditing. The combination of a rich user interface and deep
audit visibility makes Ranger highly intuitive to use, enhancing productivity for security
administrators.

hdp-security August 29, 2016

7

Ranger Security Policy Overview

1.2.4. Audit

As customers deploy Hadoop into corporate data and processing environments, metadata
and data governance must be vital parts of any enterprise-ready data lake. For this reason,
Hortonworks established the Data Governance Initiative (DGI) with Aetna, Merck, Target,
and SAS to introduce a common approach to Hadoop data governance into the open
source community. This initiative has since evolved into a new open source project named
Apache Atlas. Apache Atlas is a set of core governance services that enables enterprises to
meet their compliance requirements within Hadoop, while also enabling integration with
the complete enterprise data ecosystem. These services include:

• Dataset search and lineage operations

• Metadata-driven data access control

• Indexed and searchable centralized auditing

• Data lifecycle management from ingestion to disposition

• Metadata interchange with other tools

Ranger also provides a centralized framework for collecting access audit history and
reporting this data, including filtering on various parameters. HDP enhances audit
information that is captured within different components within Hadoop and provides
insights through this centralized reporting capability.

1.2.5. Data Protection

The data protection feature makes data unreadable both in transit over the network
and at rest on a disk. HDP satisfies security and compliance requirements by using both
transparent data encryption (TDE) to encrypt data for HDFS files, along with a Ranger-
embedded open source Hadoop key management store (KMS). Ranger enables security
administrators to manage keys and authorization policies for KMS. Hortonworks is also
working extensively with its encryption partners to integrate HDFS encryption with
enterprise-grade key management frameworks.

Encryption in HDFS, combined with KMS access policies maintained by Ranger, prevents
rogue Linux or Hadoop administrators from accessing data, and supports segregation of
duties for both data access and encryption.

https://hortonworks.com/press-releases/hortonworks-establishes-data-governance-initiative/
https://hortonworks.com/press-releases/hortonworks-establishes-data-governance-initiative/
https://hortonworks.com/kb/hdfs-transparent-data-encryption/

hdp-security August 29, 2016

8

2. Authentication

2.1. Enabling Kerberos Authentication Using
Ambari

This chapter describes how to configure Kerberos for strong authentication for Hadoop
users and hosts in an Ambari-managed cluster.

• Kerberos Overview [8]

• Kerberos Principals [9]

• Installing and Configuring the KDC [10]

• Enabling Kerberos Security [15]

2.1.1. Kerberos Overview

Strongly authenticating and establishing a user’s identity is the basis for secure access in
Hadoop. Users need to be able to reliably “identify” themselves and then have that identity
propagated throughout the Hadoop cluster. Once this is done, those users can access
resources (such as files or directories) or interact with the cluster (like running MapReduce
jobs). Besides users, Hadoop cluster resources themselves (such as Hosts and Services) need
to authenticate with each other to avoid potential malicious systems or daemon’s “posing
as” trusted components of the cluster to gain access to data.

Hadoop uses Kerberos as the basis for strong authentication and identity propagation for
both user and services. Kerberos is a third party authentication mechanism, in which users
and services rely on a third party - the Kerberos server - to authenticate each to the other.
The Kerberos server itself is known as the Key Distribution Center, or KDC. At a high level,
it has three parts:

• A database of the users and services (known as principals) that it knows about and their
respective Kerberos passwords

• An Authentication Server (AS) which performs the initial authentication and issues a
Ticket Granting Ticket (TGT)

• A Ticket Granting Server (TGS) that issues subsequent service tickets based on the initial
TGT

A user principal requests authentication from the AS. The AS returns a TGT that is
encrypted using the user principal's Kerberos password, which is known only to the
user principal and the AS. The user principal decrypts the TGT locally using its Kerberos
password, and from that point forward, until the ticket expires, the user principal can use
the TGT to get service tickets from the TGS. Service tickets are what allow a principal to
access various services.

Because cluster resources (hosts or services) cannot provide a password each time to
decrypt the TGT, they use a special file, called a keytab, which contains the resource

hdp-security August 29, 2016

9

principal's authentication credentials. The set of hosts, users, and services over which the
Kerberos server has control is called a realm.

Terminology

Term Description

Key Distribution Center, or
KDC

The trusted source for authentication in a Kerberos-enabled environment.

Kerberos KDC Server The machine, or server, that serves as the Key Distribution Center (KDC).

Kerberos Client Any machine in the cluster that authenticates against the KDC.

Principal The unique name of a user or service that authenticates against the KDC.

Keytab A file that includes one or more principals and their keys.

Realm The Kerberos network that includes a KDC and a number of Clients.

KDC Admin Account An administrative account used by Ambari to create principals and
generate keytabs in the KDC.

2.1.2. Kerberos Principals

Each service and sub-service in Hadoop must have its own principal. A principal name in
a given realm consists of a primary name and an instance name, in this case the instance
name is the FQDN of the host that runs that service. As services do not log in with a
password to acquire their tickets, their principal's authentication credentials are stored in a
keytab file, which is extracted from the Kerberos database and stored locally in a secured
directory with the service principal on the service component host.

Principal and Keytab Naming Conventions

Asset Convention Example

Principals $service_component_name/
$FQDN@EXAMPLE.COM

nn/
c6401.ambari.apache.org@EXAMPLE.COM

Keytabs $service_component_abbreviation.service.keytab/etc/security/keytabs/nn.service.keytab

Notice in the preceding example the primary name for each service principal. These
primary names, such as nn or hive for example, represent the NameNode or Hive service,
respectively. Each primary name has appended to it the instance name, the FQDN of the

hdp-security August 29, 2016

10

host on which it runs. This convention provides a unique principal name for services that
run on multiple hosts, like DataNodes and NodeManagers. Adding the host name serves to
distinguish, for example, a request from DataNode A from a request from DataNode B. This
is important for the following reasons:

• Compromised Kerberos credentials for one DataNode do not automatically lead to
compromised Kerberos credentials for all DataNodes.

• If multiple DataNodes have exactly the same principal and are simultaneously connecting
to the NameNode, and if the Kerberos authenticator being sent happens to have same
timestamps, then the authentication is rejected as a replay request.

In addition to the Hadoop Service Principals, Ambari itself also requires a set of Ambari
Principals to perform service “smoke” checks, perform alert health checks and to retrieve
metrics from cluster components. Keytab files for the Ambari Principals reside on each
cluster host, just as keytab files for the service principals.

Ambari Principals Description

Smoke and “Headless” Service users Used by Ambari to perform service “smoke” checks and run alert health checks.

Ambari Server user When a cluster is enabled for Kerberos, the component REST endpoints (such as the
YARN ATS component) require SPNEGO authentication. Ambari Server needs access
to these APIs and requires a Kerberos principal in order to authenticate via SPNEGO
against these APIs.

2.1.3. Installing and Configuring the KDC

Ambari is able to configure Kerberos in the cluster to work with an existing MIT KDC, or
existing Active Directory installation. This section describes the steps necessary to prepare
for this integration.

Note

If you do not have an existing KDC (MIT or Active Directory), install a new MIT
KDC. Please be aware that installing a KDC on a cluster host after installing the
Kerberos client may overwrite the krb5.conf file generated by Ambari.

You can choose to have Ambari connect to the KDC and automatically create the necessary
Service and Ambari principals, generate and distribute the keytabs (“Automated Kerberos
Setup”). Ambari also provides an advanced option to manually configure Kerberos. If you
choose this option, you must create the principals, generate and distribute the keytabs.
Ambari will not do this automatically (“Manual Kerberos Setup”).

Supported Key Distribution Center (KDC) Versions

• Microsoft Active Directory 2008 and above

• MIT Kerberos v5

• Use an Existing MIT KDC [11]

• Use an Existing Active Directory [11]

• Use Manual Kerberos Setup [11]

hdp-security August 29, 2016

11

2.1.3.1. Use an Existing MIT KDC

To use an existing MIT Kerberos v5 KDC for the cluster, you must prepare the following:

• Ambari Server and cluster hosts have network access to both the KDC and KDC admin
hosts.

• KDC administrative credentials are on-hand.

Proceed with Enabling Kerberos Security in Ambari.

2.1.3.2. Use an Existing Active Directory

To use an existing domain from Microsoft Active Directory 2008 and later for the cluster
with Automated Kerberos Setup, you must prepare the following:

• Ambari Server and cluster hosts have network access to, and be able to resolve the DNS
names of, the Domain Controllers.

• Active Directory secure LDAP (LDAPS) connectivity has been configured.

• Active Directory User container for service principals has been created and is on-hand. For
example, "OU=Hadoop,OU=People,dc=apache,dc=org"

• Active Directory administrative credentials with delegated control of “Create, delete, and
manage user accounts” on the previously mentioned User container are on-hand.

Proceed with Enabling Kerberos Security in Ambari.

Note

You will be prompted to enter the KDC Admin Account credentials during the
Kerberos setup so that Ambari can contact the KDC and perform the necessary
principal and keytab generation. By default, Ambari will not retain the KDC
credentials unless you have configured Ambari for encrypted passwords. Refer
to Managing Admin Credentials for more information.

Note

If Centrify is installed and being used on any of the servers in the cluster, it
is critical that you refer to Centrify's integration guide before attempting
to enable Kerberos Security on your cluster. The documentation can be
found in the Centrify Server Suite documentation library. A direct link to the
Hortonworks-specific configuration guide can be found here.

2.1.3.3. Use Manual Kerberos Setup

To perform Manual Kerberos Setup, you must prepare the following:

• Cluster hosts have network access to the KDC.

• Kerberos client utilities (such as kinit) have been installed on every cluster host.

• The Java Cryptography Extensions (JCE) have been setup on the Ambari Server host and
all hosts in the cluster.

https://docs.centrify.com/en/css/suite2016/centrify-hortonworks-guide.pdf?_ga=1.204708053.455705619.1372369226

hdp-security August 29, 2016

12

• The Service and Ambari Principals will be manually created in the KDC before completing
this wizard.

• The keytabs for the Service and Ambari Principals will be manually created and
distributed to cluster hosts before completing this wizard.

Proceed with Enabling Kerberos Security in Ambari.

2.1.3.4. (Optional) Install a new MIT KDC

The following gives a very high level description of the KDC installation process. To
get more information see specific Operating Systems documentation, such as RHEL
documentation, CentOS documentation, or SLES documentation.

Note

Because Kerberos is a time-sensitive protocol, all hosts in the realm must be
time-synchronized, for example, by using the Network Time Protocol (NTP).
If the local system time of a client differs from that of the KDC by as little as 5
minutes (the default), the client will not be able to authenticate.

Install the KDC Server

1. Install a new version of the KDC server:

RHEL/CentOS/Oracle Linux

yum install krb5-server krb5-libs krb5-workstation

SLES

zypper install krb5 krb5-server krb5-client

Ubuntu/Debian

apt-get install krb5-kdc krb5-admin-server

2. Using a text editor, open the KDC server configuration file, located by default here:

vi /etc/krb5.conf

3. Change the [realms] section of this file by replacing the default “kerberos.example.com”
setting for the kdc and admin_server properties with the Fully Qualified Domain Name
of the KDC server host. In the following example, “kerberos.example.com” has been
replaced with “my.kdc.server”.

[realms]
 EXAMPLE.COM = {
 kdc = my.kdc.server
 admin_server = my.kdc.server
}

Note

For Ubuntu/Debian, the setup of the default realm for the KDC and KDC
Admin hostnames is performed during the KDC server install. You can re-run

https://www.google.com/url?q=https%3A%2F%2Faccess.redhat.com%2Fknowledge%2Fdocs%2Fen-US%2FRed_Hat_Enterprise_Linux%2F6%2Fhtml%2FManaging_Smart_Cards%2Finstalling-kerberos.html&sa=D&sntz=1&usg=AFQjCNFw2D_K9FlzrLPGPjnIqDvIfSsZXg
https://www.google.com/url?q=https%3A%2F%2Faccess.redhat.com%2Fknowledge%2Fdocs%2Fen-US%2FRed_Hat_Enterprise_Linux%2F6%2Fhtml%2FManaging_Smart_Cards%2Finstalling-kerberos.html&sa=D&sntz=1&usg=AFQjCNFw2D_K9FlzrLPGPjnIqDvIfSsZXg
http://www.google.com/url?q=http%3A%2F%2Fwww.centos.org%2Fdocs%2F5%2Fhtml%2F5.2%2FDeployment_Guide%2Fs1-kerberos-server.html&sa=D&sntz=1&usg=AFQjCNFMy250xcdq0sf7Ls461e2M7dt0AQ
https://www.suse.com/documentation/suse91/suselinux-adminguide/html/ch18s04.html

hdp-security August 29, 2016

13

setup using dpkg-reconfigure krb5-kdc. Therefore, Steps 2 and 3 above are not
needed for Ubuntu/Debian.

Create the Kerberos Database

• Use the utility kdb5_util to create the Kerberos database.

RHEL/CentOS/Oracle Linux

kdb5_util create -s

SLES

kdb5_util create -s

Ubuntu/Debian

krb5_newrealm

Start the KDC

• Start the KDC server and the KDC admin server.

RHEL/CentOS/Oracle Linux 6

/etc/rc.d/init.d/krb5kdc start

/etc/rc.d/init.d/kadmin start

RHEL/CentOS/Oracle Linux 7

systemctl start krb5kdc

systemctl start kadmin

SLES

rckrb5kdc start

rckadmind start

Ubuntu/Debian

service krb5-kdc restart

service krb5-admin-server restart

Important

When installing and managing your own MIT KDC, it is very important to set
up the KDC server to auto-start on boot. For example:

RHEL/CentOS/Oracle Linux 6

chkconfig krb5kdc on

hdp-security August 29, 2016

14

chkconfig kadmin on

RHEL/CentOS/Oracle Linux 7

systemctl enable krb5kdc

systemctl enable kadmin

SLES

chkconfig rckrb5kdc on

chkconfig rckadmind on

Create a Kerberos Admin

Kerberos principals can be created either on the KDC machine itself or through the
network, using an “admin” principal. The following instructions assume you are using the
KDC machine and using the kadmin.local command line administration utility. Using
kadmin.local on the KDC machine allows you to create principals without needing to
create a separate "admin" principal before you start.

Note

You will need to provide these admin account credentials to Ambari when
enabling Kerberos. This allows Ambari to connect to the KDC, create the cluster
principals and generate the keytabs.

1. Create a KDC admin by creating an admin principal.

kadmin.local -q "addprinc admin/admin"

2. Confirm that this admin principal has permissions in the KDC ACL. Using a text editor,
open the KDC ACL file:

RHEL/CentOS/Oracle Linux

vi /var/kerberos/krb5kdc/kadm5.acl

SLES

vi /var/lib/kerberos/krb5kdc/kadm5.acl

Ubuntu/Debian

vi /etc/krb5kdc/kadm5.acl

3. Ensure that the KDC ACL file includes an entry so to allow the admin principal to
administer the KDC for your specific realm. When using a realm that is different than
EXAMPLE.COM, be sure there is an entry for the realm you are using. If not present,
principal creation will fail. For example, for an admin/admin@HADOOP.COM principal,
you should have an entry:

*/admin@HADOOP.COM *

hdp-security August 29, 2016

15

4. After editing and saving the kadm5.acl file, you must restart the kadmin process.

RHEL/CentOS/Oracle Linux 6

/etc/rc.d/init.d/kadmin restart

RHEL/CentOS/Oracle Linux 7

systemctl restart kadmin

SLES

rckadmind restart

Ubuntu/Debian

service krb5-admin-server restart

2.1.4. Enabling Kerberos Security

Whether you choose automated or manual Kerberos setup, Ambari provides a wizard to
help with enabling Kerberos in the cluster. This section provides information on preparing
Ambari before running the wizard, and the steps to run the wizard.

• Installing the JCE [16]

• Creating Mappings Between Principals and UNIX Usernames [78]

• Running the Kerberos Security Wizard [16]

Important

Prerequisites for enabling Kerberos are having the JCE installed on all hosts
on the cluster (including the Ambari Server) and having the Ambari Server
host as part of the cluster. This means the Ambari Server host should be
running an Ambari Agent.

You should also create mappings between principals and UNIX user names.
Creating mappings can help resolve access issues related to case mismatches
between principal and local user names.

Note

Ambari Metrics will not be secured with Kerberos unless it is configured for
distributed metrics storage. By default, it uses embedded metrics storage
and will not be secured as part of the Kerberos Wizard. If you wish to
have Ambari Metrics secured with Kerberos, please see this topic to enable
distributed metrics storage prior to running the Kerberos Wizard.

Note

If Centrify is installed and being used on any of the servers in the cluster, it
is critical that you refer to Centrify's integration guide before attempting

https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-user-guide/content/ams_metrics_collector_modes.html

hdp-security August 29, 2016

16

to enable Kerberos Security on your cluster. The documentation can be
found in the Centrify Server Suite documentation library. A direct link to the
Hortonworks-specific configuration guide can be found here.

2.1.4.1. Installing the JCE

Before enabling Kerberos in the cluster, you must deploy the Java Cryptography Extension
(JCE) security policy files on the Ambari Server and on all hosts in the cluster.

Important

If you are using Oracle JDK, you must distribute and install the JCE on all hosts
in the cluster, including the Ambari Server. Be sure to restart Ambari Server
after installing the JCE. If you are using OpenJDK, some distributions of the
OpenJDK (such as RHEL/CentOS and Ubuntu) come with unlimited strength JCE
automatically and therefore, installation of JCE is not required.

2.1.4.1.1. Install the JCE

1. On the Ambari Server, obtain the JCE policy file appropriate for the JDK version in your
cluster.

• For Oracle JDK 1.8:

http://www.oracle.com/technetwork/java/javase/downloads/jce8-
download-2133166.html

• For Oracle JDK 1.7:

http://www.oracle.com/technetwork/java/javase/downloads/jce-7-
download-432124.html

2. Save the policy file archive in a temporary location.

3. On Ambari Server and on each host in the cluster, add the unlimited security policy JCE
jars to $JAVA_HOME/jre/lib/security/.

For example, run the following to extract the policy jars into the JDK installed on your
host:

unzip -o -j -q jce_policy-8.zip -d /usr/jdk64/jdk1.8.0_40/jre/lib/security/

4. Restart Ambari Server: sudo ambari-server restart.

5. Proceed to Running the Security Wizard.

2.1.4.2. Running the Kerberos Security Wizard

Ambari provides three options for enabling Kerberos:

• Existing MIT KDC

• Existing Active Directory

https://docs.centrify.com/en/css/suite2016/centrify-hortonworks-guide.pdf?_ga=1.204708053.455705619.1372369226
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html

hdp-security August 29, 2016

17

• Manage Kerberos principals and keytabs manually

When choosing Existing MIT KDC or Existing Active Directory, the Kerberos Wizard
prompts for information related to the KDC, the KDC Admin Account and the Service and
Ambari principals. Once provided, Ambari will automatically create principals, generate
keytabs and distribute keytabs to the hosts in the cluster. The services will be configured for
Kerberos and the service components are restarted to authenticate against the KDC. This is
the Automated Setup option. See Launching the Kerberos Wizard (Automated Setup) for
more details.

When choosing Manage Kerberos principals and keytabs manually, you must create the
principals, generate and distribute the keytabs; including you performing the Ambari Server
Kerberos setup. Ambari will not do this automatically. This is the Manual Setup option. See
Launching the Kerberos Wizard (Manual Setup) for more details.

2.1.4.2.1. Launching the Kerberos Wizard (Automated Setup)

1. Be sure you have Installed and Configured your KDC and have prepared the JCE on each
host in the cluster.

2. Log in to Ambari Web and Browse to Admin > Kerberos.

3. Click “Enable Kerberos” to launch the wizard.

4. Select the type of KDC you are using and confirm you have met the prerequisites.

5. Provide information about the KDC and admin account.

a. In the KDC section, enter the following information:

• In the KDC Host field, the IP address or FQDN for the KDC host. Optionally a port
number may be included.

• In the Realm name field, the default realm to use when creating service principals.

• (Optional) In the Domains field, provide a list of patterns to use to map hosts in the
cluster to the appropriate realm. For example, if your hosts have a common domain
in their FQDN such as host1.hortonworks.local and host2.hortonworks.local, you
would set this to:

.hortonworks.local,hortonworks.local

b. In the Kadmin section, enter the following information:

• In the Kadmin Host field, the IP address or FQDN for the KDC administrative host.
Optionally a port number may be included.

• The Admin principal and password that will be used to create principals and
keytabs.

• (Optional) If you have configured Ambari for encrypted passwords, the Save
Admin Credentials option will be enabled. With this option, you can have Ambari
store the KDC Admin credentials to use when making cluster changes. Refer to
Managing Admin Credentials for more information on this option.

hdp-security August 29, 2016

18

6. Modify any advanced Kerberos settings based on your environment.

a. (Optional) To manage your Kerberos client krb5.conf manually (and not have Ambari
manage the krb5.conf), expand the Advanced krb5-conf section and uncheck the
"Manage" option. You must have the krb5.conf configured on each host.

Note

When manually managing the krb5.conf it is recommended to ensure
that DNS is not used for looking up KDC, and REALM entries. Relying on
DNS can cause negative performance, and functional impact. To ensure
that DNS is not used, ensure the following entries are set in the libdefaults
section of your configuration.

[libdefaults]
dns_lookup_kdc = false
dns_lookup_realm = false

b. (Optional) to configure any additional KDC's to be used for this environment, add an
entry for each additional KDC to the realms section of the Advanced krb5-conf's krb5-
conf template.

kdc = {{kdc_host}}
kdc = otherkdc.example.com

c. (Optional) To not have Ambari install the Kerberos client libraries on all hosts, expand
the Advanced kerberos-env section and uncheck the “Install OS-specific Kerberos
client package(s)” option. You must have the Kerberos client utilities installed on
each host.

d. (Optional) If your Kerberos client libraries are in non-standard path locations, expand
the Advanced kerberos-env section and adjust the “Executable Search Paths” option.

e. (Optional) If your KDC has a password policy, expand the Advanced kerberos-env
section and adjust the Password options.

f. (Optional) Ambari will test your Kerberos settings by generating a test principal and
authenticating with that principal. To customize the test principal name that Ambari
will use, expand the Advanced kerberos-env section and adjust the Test Kerberos
Principal value. By default, the test principal name is a combination of cluster name
and date (${cluster_name}-${short_date}). This test principal will be deleted after
the test is complete.

g. (Optional) If you need to customize the attributes for the principals Ambari will
create, when using Active Directory, see Customizing the Attribute Template for more
information. When using MIT KDC, you can pass Principal Attributes options in the
Advanced kerberos-env section. For example, you can set options related to pre-auth
or max. renew life by passing:

-requires_preauth -maxrenewlife "7 days"

7. Proceed with the install.

8. Ambari will install Kerberos clients on the hosts and test access to the KDC by testing
that Ambari can create a principal, generate a keytab and distribute that keytab.

hdp-security August 29, 2016

19

9. Customize the Kerberos identities used by Hadoop and proceed to kerberize the cluster.

Important

On the Configure Identities step, be sure to review the principal names,
particularly the Ambari Principals on the General tab. These principal names,
by default, append the name of the cluster to each of the Ambari principals.
You can leave this as default or adjust these by removing the "-${cluster-
name}" from principal name string. For example, if your cluster is named
HDP and your realm is EXAMPLE.COM, the hdfs principal will be created as
hdfs-HDP@EXAMPLE.COM.

10.Confirm your configuration. You can optionally download a CSV file of the principals and
keytabs that Ambari will automatically create.

11.Click Next to start the process.

12.After principals have been created and keytabs have been generated and distributed,
Ambari updates the cluster configurations, then starts and tests the Services in the
cluster.

13.Exit the wizard when complete.

14.Ambari Server communicates with components in the cluster, and now with Kerberos
setup, you need to make sure Ambari Server is setup for Kerberos. As part of the
automated Kerberos setup process, Ambari Server has been given a keytab and setup is
performed. All you need to do is restart Ambari Server for that to take affect. Therefore,
restart Ambari Server at this time.

2.1.4.2.2. Launching the Kerberos Wizard (Manual Setup)

1. Be sure you have Installed and Configured your KDC and have prepared the JCE on each
host in the cluster.

2. Log in to Ambari Web and Browse to Admin > Kerberos.

3. Click “Enable Kerberos” to launch the wizard.

4. Select the Manage Kerberos principals and keytabs manually option and confirm you
have met the prerequisites.

5. Provide information about the KDC and admin account.

a. If your Kerberos client libraries are in non-standard path locations, expand the
Advanced kerberos-env section and adjust the “Executable Search Paths” option.

6. Customize the Kerberos identities used by Hadoop and proceed to kerberize the cluster.

Important

On the Configure Identities step, be sure to review the principal names,
particularly the Ambari Principals on the General tab. These principal names,
by default, append the name of the cluster to each of the Ambari principals.

hdp-security August 29, 2016

20

You can leave this as default or adjust these by removing the "-${cluster-
name}" from principal name string. For example, if your cluster is named
HDP and your realm is EXAMPLE.COM, the hdfs principal will be created as
hdfs-HDP@EXAMPLE.COM.

7. Confirm your configuration. Since you have chosen the Manual Kerberos Setup option,
obtain the CSV file for the list of principals and keytabs required for the cluster to work
with Kerberos. Do not proceed until you have manually created and distributed the
principals and keytabs to the cluster hosts.

8. Click Next to continue.

9. Ambari updates the cluster configurations, then starts and tests the Services in the
cluster.

10.Exit the wizard when complete.

11.Finish by setting up Ambari Server for Kerberos.

2.1.5. Kerberos Client Packages

If you chose to enable Kerberos using the Automated Kerberos Setup option, as part of
the enabling Kerberos process, Ambari installs the Kerberos clients on the cluster hosts.
Depending on your operating system, the following packages are installed:

Packages installed by Ambari for the Kerberos Client

Operating System Packages

RHEL/CentOS/Oracle Linux 7 krb5-workstation

RHEL/CentOS/Oracle Linux 6 krb5-workstation

SLES 11 krb5-client

Ubuntu/Debian krb5-user, krb5-config

2.1.6. Disabling Kerberos Security

After Enabling Kerberos Security, you can disable Kerberos.

1. Log in to Ambari Web and Browse to Admin > Kerberos.

2. Click Disable Kerberos to launch the wizard.

3. Complete the wizard.

Note

If you have enabled Kerberos with an Automated Setup option, Ambari will
attempt to contact the KDC and remove the principals created by Ambari.
If the KDC is unavailable, the wizard will fail on the Unkerberize step. You
can choose to ignore the failure and continue, but the principals will not be
removed from the KDC.

hdp-security August 29, 2016

21

2.1.7. Customizing the Attribute Template

If you are using the Kerberos Automated setup with Active Directory, depending on your
KDC policies, you can customize the attributes that Ambari sets when creating principals.
On the Configure Kerberos step of the wizard, in the Advanced kerberos-env section,
you have access to the Ambari Attribute Template. This template (which is based on the
Apache Velocity templating syntax) can be modified to adjust which attributes are set on
the principals and how those attribute values are derived.

The following table lists the set of computed attribute variables available if you choose to
modify the template:

Attribute Variables Example

$normalized_principal nn/c6401.ambari.apache.org@EXAMPLE.COM

$principal_name nn/c6401.ambari.apache.org

$principal_primary nn

$principal_digest SHA1 hash of the $normalized_principal

$principal_digest_256 SHA256 hash of the $normalized_principal

$principal_digest_512 SHA512 hash of the $normalized_principal

$principal_instance c6401.ambari.apache.org

$realm EXAMPLE.COM

$password password

2.1.8. Managing Admin Credentials

When you enable Kerberos, if you choose to use an Existing MIT KDC or Existing Active
Directory, the Kerberos Wizard prompts for information related to the KDC, the KDC
Admin Account credentials, and the Service and Ambari principals. Once provided, Ambari
will automatically create principals, generate keytabs and distribute keytabs to the hosts
in the cluster. The services will be configured for Kerberos and the service components are
restarted to authenticate against the KDC. This is the Kerberos Automated Setup option.

By default, Ambari will not retain the KDC Admin Account credentials you provide unless
you have encrypted the passwords stored in Ambari. If you have not configured Ambari
for password encryption, you will be prompted to provide KDC Admin Account credentials
whenever cluster changes are made that require KDC principal and/or keytab changes
(such as adding services, components and hosts).

If you have configured Ambari for password encryption, you will have an option to Save
Admin Credentials. Ambari will use the retained KDC Admin Account credentials to make
the KDC changes automatically.

Important

If you do not have password encryption enabled for Ambari, the Save Admin
Credentials option will not be enabled.

http://velocity.apache.org/engine/devel/vtl-reference-guide.html

hdp-security August 29, 2016

22

Updating KDC Credentials

If you have chosen to Save Admin Credentials when enabling Kerberos, you can update or
remove the credentials from Ambari using the following:

1. In Ambari Web, browse to Admin > Kerberos and click the Manage KDC Credentials
button. The Manage KDC Credentials dialog is displayed.

2. If credentials have been previously saved, click Remove to remove the credentials
currently stored in Ambari. Once removed, if cluster changes that require KDC principal
and/or keytab changes (such as adding services, components and hosts), you will be
prompted to enter the KDC Admin Account credentials.

3. Alternatively, to update the KDC Admin Account credentials, enter the Admin principal
and password values and click Save.

2.2. Configuring HDP Components for Kerberos
Using Ambari

This section describes how to configure Kerberos for strong authentication for HDP
components in an Ambari-managed cluster.

2.2.1. Configuring Kafka for Kerberos Using Ambari

This section describes how to configure Kafka for Kerberos security on an Ambari-managed
cluster.

Kerberos security for Kafka is an optional feature. When security is enabled, features
include:

• Authentication of client connections (consumer, producer) to brokers

• ACL-based authorization

2.2.1.1. Preparing the Cluster

Before you enable Kerberos, your cluster must meet the following prerequisites:

Prerequisite References*

Ambari-managed cluster with Kafka installed.

• Ambari Version 2.1.0.0 or later

• Stack version HDP 2.3.2 or later

Installing, Configuring, and Deploying a HDP Cluster in
Automated Install with Ambari

Key Distribution Center (KDC) server installed and running Installing and Configuring the KDC

JCE installed on all hosts on the cluster (including the
Ambari server)

Enabling Kerberos Authentication Using Ambari

Links are for Ambari 2.1.2.0.

When all prerequisites are fulfilled, enable Kerberos security. (For more information see
Launching the Kerberos Wizard (Automated Setup).)

https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-installation/content/ch_Deploy_and_Configure_a_HDP_Cluster.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/_installing_and_configuring_the_kdc.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/configuring_amb_hdp_for_kerberos.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/_launching_the_kerberos_wizard_automated_setup.html

hdp-security August 29, 2016

23

2.2.1.2. Configuring the Kafka Broker for Kerberos

During the installation process, Ambari configures a series of Kafka settings and creates a
JAAS configuration file for the Kafka server.

It is not necessary to modify these settings, but for more information see Appendix A,
Kafka Configuration Options.

2.2.1.3. Creating Kafka Topics

When you use a script, command, or API to create a topic, an entry is created under
ZooKeeper. The only user with access to ZooKeeper is the service account running Kafka
(by default, kafka). Therefore, the first step toward creating a Kafka topic on a secure
cluster is to run kinit, specifying the Kafka service keytab. The second step is to create the
topic.

1. Run kinit, specifying the Kafka service keytab. For example:

kinit -k -t /etc/security/keytabs/kafka.service.keytab kafka/
c6401.ambari.apache.org@EXAMPLE.COM

2. Next, create the topic. Run the kafka-topics.sh command-line tool with the
following options:

/bin/kafka-topics.sh --zookeeper <hostname>:<port> --create
--topic <topic-name> --partitions <number-of-partitions> --
replication-factor <number-of-replicating-servers>

For example:

/bin/kafka-topics.sh --zookeeper c6401.ambari.apache.org:2181 --create --
topic test_topic --partitions 2 --replication-factor 2

Created topic "test_topic".

For more information about kafka-topics.sh parameters, see Basic Kafka
Operations on the Apache Kafka website.

Permissions

By default, permissions are set so that only the Kafka service user has access; no other user
can read or write to the new topic. In other words, if your Kafka server is running with
principal $KAFKA-USER, only that principal will be able to write to ZooKeeper.

For information about adding permissions, see Authorizing Access when Kerberos is
Enabled.

2.2.1.4. Producing Events/Messages to Kafka on a Secured Cluster

Prerequisite: Make sure that you have enabled access to the topic (via Ranger or native
ACLs) for the user associated with the producer process. We recommend that you use
Ranger to manage permissions. For more information, see the Apache Ranger User Guide
for Kafka.

https://kafka.apache.org/081/ops.html
https://kafka.apache.org/081/ops.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/secure-kafka-auth-cli.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/secure-kafka-auth-cli.html
https://cwiki.apache.org/confluence/display/RANGER/Apache+Ranger+0.5+-+User+Guide#ApacheRanger0.5-UserGuide-AddingKAFKAPolicies
https://cwiki.apache.org/confluence/display/RANGER/Apache+Ranger+0.5+-+User+Guide#ApacheRanger0.5-UserGuide-AddingKAFKAPolicies

hdp-security August 29, 2016

24

During the installation process, Ambari configures a series of Kafka client and producer
settings, and creates a JAAS configuration file for the Kafka client. It is not necessary
to modify these settings, but for more information about them see Appendix A, Kafka
Configuration Options.

Note: Only the Kafka Java API is supported for Kerberos. Third-party clients are not
supported.

To produce events/messages:

1. Specify the path to the JAAS configuration file as one of your JVM parameters:

-Djava.security.auth.login.config=/usr/hdp/current/kafka-broker/
config/kafka_client_jaas.conf

For more information about the kafka_client_jaas file, see "JAAS Configuration
File for the Kafka Client" in Kafka Configuration Options.

2. kinit with the principal's keytab.

3. Launch kafka-console-producer.sh with the following configuration options.
(Note: these settings are the same as in previous versions, except for the addition of --
security-protocol SASL_PLAINTEXT.)

./bin/kafka-console-producer.sh --broker-list <hostname:port
[,hostname:port, …]> --topic <topic-name> --security-protocol
SASL_PLAINTEXT

For example:

./bin/kafka-console-producer.sh --broker-list
c6401.ambari.apache.org:6667,c6402.ambari.apache.org:6667 --
topic test_topic --security-protocol SASL_PLAINTEXT

Producer Code Example for a Kerberos-Enabled Cluster

The following example shows sample code for a producer in a Kerberos-enabled
Kafka cluster. Note that the SECURITY_PROTOCOL_CONFIG property is set to
SASL_PLAINTEXT.

package com.hortonworks.example.kafka.producer;

import org.apache.kafka.clients.CommonClientConfigs;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;

import java.util.Properties;
import java.util.Random;

public class BasicProducerExample {

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/secure-kafka-config-options.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/secure-kafka-config-options.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/secure-kafka-config-options.html

hdp-security August 29, 2016

25

 public static void main(String[] args){

 Properties props = new Properties();
 props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "kafka.example.
com:6667");

 // specify the protocol for SSL Encryption
 props.put(CommonClientConfigs.SECURITY_PROTOCOL_CONFIG,
 "SASL_PLAINTEXT");

 props.put(ProducerConfig.ACKS_CONFIG, "all");
 props.put(ProducerConfig.RETRIES_CONFIG, 0);
 props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.
kafka.common.serialization.StringSerializer");
 props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.
kafka.common.serialization.StringSerializer");

 Producer<String, String> producer = new KafkaProducer<String,
 String>(props);
 TestCallback callback = new TestCallback();
 Random rnd = new Random();
 for (long i = 0; i < 100 ; i++) {
 ProducerRecord<String, String> data = new ProducerRecord<String,
 String>(
 "test-topic", "key-" + i, "message-"+i);
 producer.send(data, callback);
 }

 producer.close();
 }

 private static class TestCallback implements Callback {
 @Override
 public void onCompletion(RecordMetadata recordMetadata, Exception e) {
 if (e != null) {
 System.out.println("Error while producing message to topic :" +
 recordMetadata);
 e.printStackTrace();
 } else {
 String message = String.format("sent message to topic:%s
 partition:%s offset:%s", recordMetadata.topic(), recordMetadata.partition(),
 recordMetadata.offset());
 System.out.println(message);
 }
 }
 }

}

To run the example, issue the following command:

$ java -Djava.security.auth.login.config=/usr/hdp/current/kafka-broker/
config/kafka_client_jaas.conf com.hortonworks.example.kafka.producer.
BasicProducerExample

Troubleshooting

Issue: If you launch the producer from the command-line interface without specifying the
security-protocol option, you will see the following error:

hdp-security August 29, 2016

26

2015-07-21 04:14:06,611] ERROR fetching topic metadata for topics
[Set(test_topic)] from broker
[ArrayBuffer(BrokerEndPoint(0,c6401.ambari.apache.org,6667),
BrokerEndPoint(1,c6402.ambari.apache.org,6667))] failed
(kafka.utils.CoreUtils$)
kafka.common.KafkaException: fetching topic metadata for topics
[Set(test_topic)] from broker
[ArrayBuffer(BrokerEndPoint(0,c6401.ambari.apache.org,6667),
BrokerEndPoint(1,c6402.ambari.apache.org,6667))] failed
 at kafka.client.ClientUtils$.fetchTopicMetadata(ClientUtils.scala:73)
Caused by: java.io.EOFException: Received -1 when reading from channel, socket
 has likely been closed.
 at kafka.utils.CoreUtils$.read(CoreUtils.scala:193)
 at kafka.network.BoundedByteBufferReceive.
readFrom(BoundedByteBufferReceive.scala:54)

Solution: Add --security-protocol SASL_PLAINTEXT to the kafka-console-
producer.sh runtime options.

2.2.1.5. Consuming Events/Messages from Kafka on a Secured Cluster

Prerequisite: Make sure that you have enabled access to the topic (via Ranger or native
ACLs) for the user associated with the consumer process. We recommend that you use
Ranger to manage permissions. For more information, see the Apache Ranger User Guide
for Kafka.

During the installation process, Ambari configures a series of Kafka client and producer
settings, and creates a JAAS configuration file for the Kafka client. It is not necessary to
modify these values, but for more information see see Appendix A, Kafka Configuration
Options.

Note: Only the Kafka Java API is supported for Kerberos. Third-party clients are not
supported.

To consume events/messages:

1. Specify the path to the JAAS configuration file as one of your JVM parameters. For
example:

-Djava.security.auth.login.config=/usr/hdp/current/kafka-broker/
config/kafka_client_jaas.conf

For more information about the kafka_client_jaas file, see "JAAS Configuration
File for the Kafka Client" in Kafka Configuration Options.

2. kinit with the principal's keytab.

3. Launch kafka-console-consumer.sh with the following configuration settings.
(Note: these settings are the same as in previous versions, except for the addition of --
security-protocol SASL_PLAINTEXT.)

./bin/kafka-console-consumer.sh --zookeeper
c6401.ambari.apache.org:2181 --topic test_topic --from-beginning
--security-protocol SASL_PLAINTEXT

Consumer Code Example for a Kerberos-Enabled Cluster

https://cwiki.apache.org/confluence/display/RANGER/Apache+Ranger+0.5+-+User+Guide#ApacheRanger0.5-UserGuide-AddingKAFKAPolicies
https://cwiki.apache.org/confluence/display/RANGER/Apache+Ranger+0.5+-+User+Guide#ApacheRanger0.5-UserGuide-AddingKAFKAPolicies
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/secure-kafka-config-options.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/secure-kafka-config-options.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/secure-kafka-config-options.html

hdp-security August 29, 2016

27

The following example shows sample code for a producer in a Kerberos-enabled
Kafka cluster. Note that the SECURITY_PROTOCOL_CONFIG property is set to
SASL_PLAINTEXT.

package com.hortonworks.example.kafka.consumer;

import org.apache.kafka.clients.CommonClientConfigs;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRebalanceListener;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;

import java.util.Collection;
import java.util.Collections;
import java.util.Properties;

public class BasicConsumerExample {

 public static void main(String[] args) {

 Properties consumerConfig = new Properties();
 consumerConfig.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "kafka.
example.com:6667");

 // specify the protocol for SSL Encryption
 consumerConfig.put(CommonClientConfigs.SECURITY_PROTOCOL_CONFIG,
 "SASL_PLAINTEXT");

 consumerConfig.put(ConsumerConfig.GROUP_ID_CONFIG, "my-group");
 consumerConfig.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,
 "earliest");
 consumerConfig.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
 "org.apache.kafka.common.serialization.StringDeserializer");
 consumerConfig.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.
apache.kafka.common.serialization.StringDeserializer");
 KafkaConsumer<byte[], byte[]> consumer = new
 KafkaConsumer<>(consumerConfig);
 TestConsumerRebalanceListener rebalanceListener = new
 TestConsumerRebalanceListener();
 consumer.subscribe(Collections.singletonList("test-topic"),
 rebalanceListener);

 while (true) {
 ConsumerRecords<byte[], byte[]> records = consumer.poll(1000);
 for (ConsumerRecord<byte[], byte[]> record : records) {
 System.out.printf("Received Message topic =%s, partition =%s,
 offset = %d, key = %s, value = %s\n", record.topic(), record.partition(),
 record.offset(), record.key(), record.value());
 }

 consumer.commitSync();
 }

 }

 private static class TestConsumerRebalanceListener implements
 ConsumerRebalanceListener {
 @Override

hdp-security August 29, 2016

28

 public void onPartitionsRevoked(Collection<TopicPartition> partitions)
 {
 System.out.println("Called onPartitionsRevoked with partitions:" +
 partitions);
 }

 @Override
 public void onPartitionsAssigned(Collection<TopicPartition> partitions)
 {
 System.out.println("Called onPartitionsAssigned with partitions:" +
 partitions);
 }
 }

}

To run the example, issue the following command:

java -Djava.security.auth.login.config=/usr/hdp/current/kafka-broker/
config/kafka_client_jaas.conf com.hortonworks.example.kafka.consumer.
BasicConsumerExample

Troubleshooting

Issue: If you launch the consumer from the command-line interface without specifying the
security-protocol option, you will see the following error:

2015-07-21 04:14:06,611] ERROR fetching topic metadata for topics
[Set(test_topic)] from broker
[ArrayBuffer(BrokerEndPoint(0,c6401.ambari.apache.org,6667),
BrokerEndPoint(1,c6402.ambari.apache.org,6667))] failed
(kafka.utils.CoreUtils$)
kafka.common.KafkaException: fetching topic metadata for topics
[Set(test_topic)] from broker
[ArrayBuffer(BrokerEndPoint(0,c6401.ambari.apache.org,6667),
BrokerEndPoint(1,c6402.ambari.apache.org,6667))] failed
 at kafka.client.ClientUtils$.fetchTopicMetadata(ClientUtils.scala:73)
Caused by: java.io.EOFException: Received -1 when reading from channel, socket
 has likely been closed.
 at kafka.utils.CoreUtils$.read(CoreUtils.scala:193)
 at kafka.network.BoundedByteBufferReceive.
readFrom(BoundedByteBufferReceive.scala:54)

Solution: Add --security-protocol SASL_PLAINTEXT to the kafka-console-
consumer.sh runtime options.

2.2.1.6. Authorizing Access when Kerberos is Enabled

Kafka ships with a pluggable Authorizer and an out-of-box authorizer implementation that
uses ZooKeeper to store Access Control Lists (ACLs). Authorization can be done via Ranger
(see the Kafka section of the Ranger Install Guide) or with native ACLs.

A Kafka ACL entry has the following general format:

Principal P is [Allowed/Denied] Operation O From Host H On
Resource R

where

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/kafka_plugin.html

hdp-security August 29, 2016

29

• A principal is any entity that can be authenticated by the system, such as a user account,
a thread or process running in the security context of a user account, or security
groups of such accounts. Principal is specified in the PrincipalType:PrincipalName
(user:dev@EXAMPLE.COM) format. Specify user:* to indicate all principals.

Principal is a comma-separated list of principals. Specify * to indicate all principals. (A
principal is any entity that can be authenticated by the system, such as a user account, a
thread or process running in the security context of a user account, or security groups of
such accounts.)

• Operation can be one of: READ, WRITE, CREATE, DESCRIBE, or ALL.

• Resource is a topic name, a consumer group name, or the string “kafka-cluster” to
indicate a cluster-level resource (only used with a CREATE operation).

• Host is the client host IP address. Specify * to indicate all hosts.

Note

For more information about ACL structure, including mappings between
Operations values and Kafka protocol APIs, see the Apache KIP-11
Authorization Interface document.

2.2.1.6.1. Kafka Authorization Command Line Interface

The Kafka Authorization CLI script, kafka-acls.sh, resides in the bin directory.

The following table lists ACL actions supported by the CLI script:

Action Type Description

--add Add an ACL.

--remove Remove an ACL.

--list List ACLs.

The following table lists additional options for the Authorization CLI:

Option Description Default Option Type

--authorizer The fully-qualified class
name of the authorizer.

kafka.security.auth.SimpleAclAuthorizerConfiguration

--authorizer-
properties

A list of key=value pairs that
will be passed to authorizer
for initialization. Use this
option multiple times to
specify multiple properties.

Configuration

--cluster Specifies the cluster as
resource.

Resource

--topic <topic-name> Specifies the topic as
resource.

Resource

--consumer-group
<consumer-group>

Specifies the consumer
group as resource.

Resource

--allow-principal These principals will be used
to generate an ACL with
Allow permission.

Specify principal in
PrincipalType:name

Principal

https://cwiki.apache.org/confluence/display/KAFKA/KIP-11+-+Authorization+Interface
https://cwiki.apache.org/confluence/display/KAFKA/KIP-11+-+Authorization+Interface

hdp-security August 29, 2016

30

Option Description Default Option Type

format, such as
user:devadmin.

To specify more than
one principal in a single
command, specify this
option multiple times. For
example:

--allow-
principal user:
test1@EXAMPLE.COM

--allow-principal
user:test2@EXAMPLE.COM

--deny-principal These principals will be used
to generate an ACL with
Deny permission.

Principal is in
PrincipalType:name
format.

Multiple principals can
be specified (see the --
allow-principal
option).

Principal

--allow-host IP address of the host from
which the principals listed
in --allow-principal
will have access. To specify
multiple hosts, specify this
option multiple times.

if --allow-principal
is specified, this defaults to
*, which translates to "all
hosts"

Host

--deny-host IP address of the host from
which the principals listed in
--deny-principal will
be denied access. To specify
multiple hosts, specify this
option multiple times.

if --deny-principal is
specified, this defaults to
*, which translates to "all
hosts"

Host

--operation An operation that will be
allowed or denied based on
principal options.

Valid values: Read, Write,
Create, Delete, Alter,
Describe, ClusterAction, All

All Operation

--producer Convenience option to
add or remove ACLs for
the producer role. This will
generate ACLs that allow
WRITE, DESCRIBE on topic,
and CREATE on cluster.

Convenience

--consumer Convenience option to add/
remove ACLs for consumer
role. This will generate ACLs
that allows READ, DESCRIBE
on topic, and READ on
consumer-group.

Convenience

2.2.1.6.2. Authorization Examples

By default, if a principal does not have an explicit ACL that allows access for an operation
to a resource, access requests from the principal will be denied.

hdp-security August 29, 2016

31

The following examples show how to add, remove, and list ACLs.

2.2.1.6.2.1. Grant Read/Write Access to a Topic

To add the following ACL:

"Principals user:bob and user:alice are allowed to perform Operation Read and Write on
Topic Test-Topic from Host1 and Host2"

run the CLI with the following options:

bin/kafka-acls.sh --add --allow-principal user:bob --allow-
principal user:alice --allow-host host1 --allow-host host2 --
operation Read --operation Write --topic test-topic

2.2.1.6.2.2. Grant Full Access to Topic, Cluster, and Consumer Group

To add ACLs to a topic, specify --topic <topic-name> as the resource option. Similarly,
to add ACLs to cluster, specify --cluster; to add ACLs to a consumer group, specify --
consumer-group <group-name>.

The following examples grant full access for principal bob to topic test-topic and
consumer group 10, across the cluster. Substitute your own values for principal name, topic
name, and group name.

bin/kafka-acls.sh --topic test-topic --add --allow-principal
user:bob --operation ALL --config /usr/hdp/current/kafka-broker/
config/server.properties

bin/kafka-acls.sh --consumer-group 10 --add --allow-principal
user:bob --operation ALL --config /usr/hdp/current/kafka-broker/
config/server.properties

bin/kafka-acls.sh --cluster --add --allow-principal user:bob --
operation ALL --config /usr/hdp/current/kafka-broker/config/
server.properties

2.2.1.6.2.3. Add a Principal as Producer or Consumer

The most common use case for ACL management is to add or remove a principal as
producer or consumer. The following convenience options handle these cases.

To add user:bob as a producer of Test-topic, run the following command:

bin/kafka-acls.sh --add --allow-principal user:bob --producer --
topic test-topic

Similarly, to add user:alice as a consumer of test-topic with consumer group
group-1, pass the --consumer option.

Note

When using the consumer option you must specify the consumer group.

bin/kafka-acls.sh --add --allow-principal user:bob --consumer --
topic test-topic --consumer-group group-1

hdp-security August 29, 2016

32

2.2.1.6.2.4. Deny Access to a Principal

In rare cases you might want to define an ACL that allows access to all but one or more
principals. In this case, use the --deny-principal and --deny-host options.

For example, to allow all users to read from test-topic except user bob from host bad-
host:

bin/kafka-acls.sh --add --allow-principal user:* --allow-host * --
deny-principal user:bob --deny-host bad-host --operation Read --
topic test-topic

2.2.1.6.2.5. Remove Access

Removing ACLs is similar to adding ACLs. The only difference is that you need to specify the
--remove option instead of the --add option.

To remove the ACLs for principals bob and alice (added in "Grant Read/Write Access to a
Topic"), run the CLI with the following options:

bin/kafka-acls.sh --remove --allow-principal user:bob --allow-
principal user:alice --allow-host host1 --allow-host host2 --
operation Read --operation Write --topic test-topic

Similarly, to remove a principal from a producer or consumer role, specify the --remove
option instead of --add:

bin/kafka-acls.sh --remove --allow-principal user:bob --producer
--topic test-topic

2.2.1.6.2.6. List ACLs

To list ACLs for any resource, specify the --list option with the resource. For example, to
list all ACLs for Test-topic, run the CLI with following options:

bin/kafka-acls.sh --list --topic test-topic

2.2.1.6.2.7. Configure Authorizer Settings

To specify which authorizer to use, include the --authorizer option. For example:

--authorizer kafka.security.auth.SimpleAclAuthorizer ...

To specify one or more authorizer initialization settings, include the --authorizer-properties
option; for example:

--authorizer-properties zookeeper.connect=localhost:2181 ...

2.2.1.6.3. Troubleshooting Authorizer Settings

Frequently-asked Questions:

When should I use Deny?

By default, all principals that are not explicitly granted permissions get rejected. You should
not need to use Deny. (Note: when defined, DENY takes precedence over ALLOW.)

Then why do we have deny?

hdp-security August 29, 2016

33

Deny was introduced into Kafka for advanced use cases where negation was required.
Deny should only be used to negate a large allow, where listing all principals or hosts is
cumbersome.

Can I define ACLs with principal as user@<realm>?

You can if you are not using principal.to.local.class, but if you have set this
configuration property you must define your ACL with users without REALM. This is a
known issue in HDP 2.3.

I just gave a user CREATE Permissions on a cluster, but the user still can't create topics. Why?

Right now, Kafka create topic is not implemented as an API, but as a script that directly
modifies ZooKeeper entries. In a secure environment only the Kafka broker user is allowed
to write to ZooKeeper entries. Granting a user CREATE access does not allow that user to
modify ZooKeeper entries.

However, if that user makes a producer request to the topic and has
auto.create.topics.enable set to true, a topic will be created at the broker level.

2.2.1.7. Appendix: Kafka Configuration Options

2.2.1.7.1. Server.properties key-value pairs

Ambari configures the following Kafka values during the installation process. Settings are
stored as key-value pairs stored in an underlying server.properties configuration file.

listeners

A comma-separated list of URIs that Kafka will listen on, and their protocols.

Required property with three parts:

<protocol>:<hostname>:<port>

Set <protocol> to SASL_PLAINTEXT, to specify the protocol that server accepts
connections. SASL authentication will be used over a plaintext channel. Once SASL
authentication is established between client and server, the session will have the client’s
principal as an authenticated user. The broker can only accept SASL (Kerberos) connections,
and there is no wire encryption applied. (Note: For a non-secure cluster, <protocol>
should be set to PLAINTEXT.)

Set hostname to the hostname associated with the node you are installing. Kerberos
uses this value and "principal" to construct the Kerberos service name. Specify hostname
0.0.0.0 to bind to all interfaces. Leave hostname empty to bind to the default interface.

Set port to the Kafka service port. When Kafka is installed using Ambari, the default port
number is 6667.

Examples of legal listener lists::

listeners=SASL_PLAINTEXT://kafka1.host1.com:6667

listeners=PLAINTEXT://myhost:9092, TRACE://:9091,
SASL_PLAINTEXT://0.0.0.0:9093

hdp-security August 29, 2016

34

advertised.listeners

A list of listeners to publish to ZooKeeper for clients to use, if different than the listeners
specified in the preceding section.

In IaaS environments, this value might need to be different from the interface to which the
broker binds.

If advertised.listeners is not set, the value for listeners will be used.

Required value with three parts:

<protocol>:<hostname>:<port>

Set protocol to SASL_PLAINTEXT, to specify the protocol that server accepts
connections. SASL authentication will be used over a plaintext channel. Once SASL
authentication is established between client and server, the session will have the client’s
principal as an authenticated user. The broker can only accept SASL (Kerberos) connections,
and there is no wire encryption applied. (Note: For a non-secure cluster, <protocol>
should be set to PLAINTEXT.)

Set hostname to the hostname associated with the node you are installing. Kerberos uses
this and "principal" to construct the Kerberos service name.

Set port to the Kafka service port. When Kafka is installed using Ambari, the default port
number is 6667.

For example:

advertised.listeners=SASL_PLAINTEXT://kafka1.host1.com:6667

security.inter.broker.protocol

Specifies the inter-broker communication protocol. In a Kerberized cluster, brokers are
required to communicate over SASL. (This approach supports replication of topic data.) Set
the value to SASL_PLAINTEXT:

security.inter.broker.protocol=SASL_PLAINTEXT

authorizer.class.name

Configures the authorizer class.

Set this value to kafka.security.auth.SimpleAclAuthorizer:

authorizer.class.name=kafka.security.auth.SimpleAclAuthorizer

For more information, see "Authorizing Access when Kerberos is Enabled."

principal.to.local.class

Transforms Kerberos principals to their local Unix usernames.

Set this value to kafka.security.auth.KerberosPrincipalToLocal:

hdp-security August 29, 2016

35

principal.to.local.class=kafka.security.auth.KerberosPrincipalToLocal

super.users

Specifies a list of user accounts that will have all cluster permissions. By default, these super
users have all permissions that would otherwise need to be added through the kafka-
acls.sh script. Note, however, that their permissions do not include the ability to create
topics through kafka-topics.sh, as this involves direct interaction with ZooKeeper.

Set this value to a list of user:<account> pairs separated by semicolons. Note that
Ambari adds user:kafka when Kerberos is enabled.

Here is an example:

super.users=user:bob;user:alice

2.2.1.7.2. JAAS Configuration File for the Kafka Server

The Java Authentication and Authorization Service (JAAS) API supplies user authentication
and authorization services for Java applications.

After enabling Kerberos, Ambari sets up a JAAS login configuration file for the Kafka
server. This file is used to authenticate the Kafka broker against Kerberos. The file is stored
at:

/usr/hdp/current/kafka-broker/config/kafka_server_jaas.conf

Ambari adds the following settings to the file. (Note: serviceName="kafka" is required for
connections from other brokers.)

KafkaServer {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/etc/security/keytabs/kafka.service.keytab"
 storeKey=true
 useTicketCache=false
 serviceName="kafka"
 principal="kafka/c6401.ambari.apache.org@EXAMPLE.COM";
 };

Client { // used for zookeeper connection
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/etc/security/keytabs/kafka.service.keytab"
 storeKey=true
 useTicketCache=false
 serviceName="zookeeper"
 principal="kafka/c6401.ambari.apache.org@EXAMPLE.COM";
 };

2.2.1.7.3. Configuration Setting for the Kafka Producer

After enabling Kerberos, Ambari sets the following key-value pair in the
server.properties file:

security.protocol=SASL_PLAINTEXT

hdp-security August 29, 2016

36

2.2.1.7.4. JAAS Configuration File for the Kafka Client

After enabling Kerberos, Ambari sets up a JAAS login configuration file for the Kafka client.
Settings in this file will be used for any client (consumer, producer) that connects to a
Kerberos-enabled Kafka cluster. The file is stored at:

/usr/hdp/current/kafka-broker/config/kafka_client_jaas.conf

Ambari adds the following settings to the file. (Note: serviceName=kafka is required for
connections from other brokers.)

Note

For command-line utilities like kafka-console-producer and kafka-console-
consumer, use kinit. If you use a long-running process (for example, your
own Producer), use keytab.

Kafka client configuration with keytab, for producers:

KafkaClient {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/etc/security/keytabs/storm.service.keytab"
 storeKey=true
 useTicketCache=false
 serviceName="kafka"
 principal="storm@EXAMPLE.COM";
 };

Kafka client configuration without keytab, for producers:

KafkaClient {
 com.sun.security.auth.module.Krb5LoginModule required
 useTicketCache=true
 renewTicket=true
 serviceName="kafka";
 };

Kafka client configuration for consumers:

 KafkaClient {
 com.sun.security.auth.module.Krb5LoginModule required
 useTicketCache=true
 renewTicket=true
 serviceName="kafka";
 };

2.2.2. Configuring Storm for Kerberos Using Ambari
This section describes how to configure Storm for Kerberos security on an Ambari-managed
cluster.

2.2.2.1. Prerequisites

Before you enable Kerberos, your cluster must meet the following prerequisites. (Note:
Links point to Ambari version 2.2.1.0. If your cluster runs a different version of Ambari,
refer to the Ambari document for your version of software.)

hdp-security August 29, 2016

37

Prerequisite References

Ambari-managed cluster with Storm installed and running.

• Ambari Version 2.2.1.0 or later

• Stack version HDP 2.4.0 or later

Installing, Configuring, and Deploying a HDP Cluster in
Automated Install with Ambari

Key Distribution Center (KDC) server installed and running. Installing and Configuring the KDC

JCE installed on all hosts on the cluster (including the
Ambari server).

Enabling Kerberos Authentication Using Ambari

When all prerequisites are fulfilled, enable Kerberos security. For more information, see
Running the Kerberos Security Wizard.

2.2.2.2. Designating a Storm Client Node

At this point in the configuration process there is no notion of a Storm client node (you
won’t be able to select “client” via Ambari).

To specify a Storm client node, choose one of the following two approaches, described in
the following subsections:

• Dedicate or use an existing independent gateway node as a storm client

• Use one of your existing storm nodes (such as nimbus, supervisors, or drpc) as a client.
Choose this option if you prefer not to add a gateway node for Storm.

2.2.2.2.1. Dedicate or Use an Existing Gateway Node

To dedicate or use an existing gateway node (edge node):

1. Install the storm package on the node:

sudo yum install storm_<version>

For example, for HDP 2.4:

sudo yum install storm_2_4*

2. Create a file at /etc/storm/conf/client_jaas.conf, and add the following entry
to it:

StormClient {
 com.sun.security.auth.module.Krb5LoginModule required
 useTicketCache=true
 renewTicket=true
 serviceName="nimbus"
 };

3. Add the following settings to the /etc/storm/conf/storm.yaml configuration file:

nimbus.seeds: <nimbus-host-array>
nimbus.thrift.port: 6667
java.security.auth.login.config: "/etc/storm/conf/client_jaas.conf"
storm.thrift.transport: "org.apache.storm.security.auth.kerberos.
KerberosSaslTransportPlugin"

https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-installation/content/ch_Deploy_and_Configure_a_HDP_Cluster.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/_installing_and_configuring_the_kdc.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/configuring_amb_hdp_for_kerberos.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/_running_the_kerberos_wizard.html

hdp-security August 29, 2016

38

where <nimbus-host-array> is an array of hostnames running Nimbus. (The value
should come from /etc/storm/conf/storm.yaml.) For example:

 nimbus.seeds: ["c6401.ambari.apache.org",
"c6402.ambari.apache.org"]

2.2.2.2.2. Use an Existing Storm Node

To use one of your existing Storm nodes (such as nimbus, supervisors, or drpc) as a Storm
client node, complete the following steps for every user who requires Storm access (for
example, to run Storm commands or deploy topologies):

1. Create a .storm directory in the user's home directory. For example, user john should
have a directory called /home/john/.storm/.

2. Add the following settings to the /etc/storm/conf/storm.yaml configuration file:

nimbus.seeds: <nimbus-host-array>
nimbus.thrift.port: 6667
java.security.auth.login.config: "/etc/storm/conf/client_jaas.conf"
storm.thrift.transport: "org.apache.storm.security.auth.kerberos.
KerberosSaslTransportPlugin"

where <nimbus-host-array> is an array of hostnames running Nimbus (the value
should come from /etc/storm/conf/storm.yaml). For example:

 nimbus.seeds: ["c6401.ambari.apache.org",
"c6402.ambari.apache.org"]

As mentioned earlier, repeat these steps for every user who requires Storm access.

2.2.2.2.3. Running Storm Commands

After configuring the client/gateway node, run kinit (with the principal's keytab) before
issuing Storm commands.

2.2.2.3. Running Workers as Users

In Storm secure mode, workers can run as the user (owner of the topology) who deployed
the topology. To enable, complete the following steps:

1. Make sure all users who are going to deploy topologies have a UNIX account on all of
the Storm nodes. Workers will run under the UNIX account for topologies deployed by
the user.

Example: For user testuser1 and principal testuser1/
c6401.ambari.apache.org, make sure there is a corresponding testuser1 UNIX
account.

2. Add the following configuration under "Custom storm-site" in the Ambari Storm
configuration screen:

supervisor.run.worker.as.user : true

hdp-security August 29, 2016

39

3. Restart Storm components.

2.2.2.4. Accessing the Storm UI

The Storm UI uses SPNEGO AUTH when in Kerberos mode.

Before accessing the UI, configure your browser for SPNEGO authorization, as shown in the
following table.

Then kinit before accessing the Storm UI.

Table 2.1. Browser Settings for Storm UI

Browser Configuration

Safari No changes needed.

Firefox 1. Go to about:config and search for
network.negotiate-auth.trusted-uris.

2. Double-click and add the following value: "http://
storm-ui-hostname:ui-port"

3. Replace the storm-ui-hostname value with the
hostname where your UI is running.

4. Replace the ui-port value with the Storm UI port.

Chrome From the command line, issue:

google-chrome --auth-server-
whitelist="<storm-ui-hostname>" --auth-
negotiate-delegate-whitelist="<storm-ui-
hostname>"

Internet Explorer • Configure trusted websites to include "storm-ui-
hostname".

• Allow negotiation for the UI website.

2.2.2.5. Accessing the Storm UI (Active Directory Trust Configuration)

If your cluster is configured with Active Directory Trust, use the Active Directory ticket to
communicate with MIT KDC for secure negotiation. Here are the additional configuration
steps:

1. Make sure UI Kerberos authentication-to-local rules are configured properly. Once a
principal from Active Directory is used for negotiation with MIT KDC, you need a rule to
translate it to the local account on the Storm UI node. Many times those can be copied
from core-site.xml.

For example:

ui.filter.params:
 "type": "kerberos"
 "kerberos.principal": "HTTP/nimbus.host1.com"
 "kerberos.keytab": "/vagrant/keytabs/http.keytab"
 "kerberos.name.rules": "RULE:[2:$1@$0]([jt]t@.*EXAMPLE.COM)s/.*/
$MAPRED_USER/ RULE:[2:$1@$0]([nd]n@.*EXAMPLE.COM)s/.*/$HDFS_USER/DEFAULT"

Note: Rules are listed as strings, and are not separated by commas.

hdp-security August 29, 2016

40

2. Create mappings for MIT domain KDC and associated resources used for the domain, in
this case Storm UI.

On a Windows workstation, you would run the following commands from the command
line:

ksetup /AddKDC $DOMAIN $KDC

ksetup /AddHostToRealmMap $hadoop_resource $Domain

Note: this step adds registry entries in HKLM\System\CurrentControlSet\Control
\Lsa\Kerberos\HostToRealm.

Troubleshooting

To troubleshoot configuration issues, try accessing the Storm UI within the cluster using the
curl command.

For example:

curl -i --negotiate -u:anyUser -b ~/cookiejar.txt -c ~/
cookiejar.txt http://storm-ui-hostname:8080/api/v1/cluster/summary

This will help you determine whether the Kerberos UI configuration is working.

To isolate the issue, use Storm service keytabs and user principals.

Two other important things to check are:

• Make sure that the trust is working properly.

• Make sure that the encryption types match on both KDCs.

2.2.2.6. Storm Security Properties

The following table lists important Storm security properties.

Configuration Property Description Example

nimbus.authorizer This is a pluggable authorizer
for a Storm Nimbus node.
SimpleACLAuthorizer is the default
implementation.

Note: Admins can also grant
permissions via the Ranger authorizer
UI. For more information, see the
Ranger User's Guide.

"org.apache.storm.security.auth.authorizer.SimpleACLAuthorizer"

nimbus.admins Add Nimbus admin users. These users
will have super user permissions on
all topologies deployed, and will
be able to perform other admin
operations (such as rebalance,

"John"

"Abc"

hdp-security August 29, 2016

41

activate, deactivate and kill), even
if they are not the owners of the
topology.

By default, only users who deployed
the topologies have access to admin
operations such as rebalance,
activate, deactivate, and kill.

topology.users: This and the following config can
be added as part of the topology
file. The users listed in this setting
will have owner privileges for the
specified topology.

Config conf = new Config()
conf.put(”topology.users”,Lists.
newArrayList(“test_user1”,
”test_user2"));
StormSubmitter.
submitTopology(topologyName,
 conf, builder.
createTopology());

topology.groups Similar to topology.users. Use this
to add group-level permissions to a
topology.

Config conf = new Config()
conf.put(”topology.groups”,
Lists.newArrayList(“test_group1”,
”test_group2"));
StormSubmitter.
submitTopology(topologyName,
 conf, builder.
createTopology());

2.2.2.7. Known Issues

Issue: Ambari does not show the security configuration on the Storm configuration tab, so
you cannot add users to nimbus.admins.

Workaround: To give permissions to other users, use topology.users or
topology.groups.

Issue: In AD+MIT setup, when trying to access Nimbus on a Kerberized cluster a HTTP 413
full HEAD error is received. (STORM-633)

Workaround: Add ui.header.buffer.bytes : “65536” under “Custom storm-site"
on the Ambari Storm configuration tab.

Issue: Log viewer. We recommend against creating HTTP principal keytabs for supervisors.
This can cause the SPNEGO protocol to fail.

Workaround:

1. Add the HTTP principal for Storm supervisor nodes too. For example:

sudo /usr/sbin/kadmin.local -q 'addprinc -randkey HTTP/
<supervisor-hostname>

where

<supervisor-hostname> is your hostname and domain for Kerberos; for example:
supervisor1.host1.com@HOST1.COM

2. Add this principal for all hosts that run supervisor machines.

For example:

https://issues.apache.org/jira/browse/STORM-633

hdp-security August 29, 2016

42

sudo /usr/sbin/kadmin.local -q "ktadd -k /etc/security/keytabs/
spnego.service.keytab HTTP/supervisor1.host1.com@HOST1.COM"

3. Add the newly created HTTP principals to the spnego.service.keytab file.

4. Make sure that the spnego.service.keytab file has “storm” user privileges for read
operations.

5. Distribute this keytab to all supervisor hosts.

6. On the supervisor node, edit /etc/storm/conf/storm.yaml. Change the
ui.filter.parameters as follows, replacing <supervisor-hostname> with the
hostname of your supervisor process:

"type": "kerberos"

"kerberos.principal": "HTTP/<supervisor-hostname>"

"kerberos.keytab": "/vagrant/keytabs/http.keytab"

7. On each supervisor machine change the Kerberos.principal hostname to that supervisor’s
hostname.

8. Restart the log viewer.

9. Add supervisor hosts to network.negotiate-auth.trusted-uris (similar to the
steps needed to access the Storm UI).

2.3. Configuring Ambari Authentication with
LDAP or AD

2.3.1. Configuring Ambari for LDAP or Active Directory
Authentication

By default Ambari uses an internal database as the user store for authentication
and authorization. If you want to configure LDAP or Active Directory (AD) external
authentication, you need to collect the following information and run a setup command.

Also, you must synchronize your LDAP users and groups into the Ambari DB to be able to
manage authorization and permissions against those users and groups.

Note

When synchronizing LDAP users and groups, Ambari uses LDAP results
paging controls to synchronize large numbers of LDAP objects. Most
modern LDAP servers support these control, but for those that do
not, such as Oracle Directory Server Enterprise Edition 11g, Ambari
introduces a configuration parameter to disable pagination. The
authentication.ldap.pagination.enabled property can be set to

hdp-security August 29, 2016

43

false in the /etc/ambari-server/conf/ambari-properties file to
disable result paging controls. This will limit the maximum number of entities
that can be imported at any given time to the maximum result limit of the
LDAP server. To work around this, import sets of users or groups using the -
users and -groups options covered in section 3.1.4 - Specific Set of Users and
Groups.

2.3.1.1. Setting Up LDAP User Authentication

The following table details the properties and values you need to know to set up LDAP
authentication.

Note

If you are going to set bindAnonymously to false (the default), you need
to make sure you have an LDAP Manager name and password set up. If you
are going to use SSL, you need to make sure you have already set up your
certificate and keys.

Ambari Server LDAP Properties

Property Values Description

authentication.ldap.primaryUrl server:port The hostname and port for the LDAP or AD server. Example:
my.ldap.server:389

authentication.ldap.secondaryUrlserver:port The hostname and port for the secondary LDAP or AD server.
Example: my.secondary.ldap.server:389 This is an optional
value.

authentication.ldap.useSSL true or false If true, use SSL when connecting to the LDAP or AD server.

authentication.ldap.usernameAttribute[LDAP attribute] The attribute for username. Example: uid

authentication.ldap.baseDn [Distinguished Name] The root Distinguished Name to search in the directory for
users. Example: ou=people,dc=hadoop,dc=apache,dc=org

authentication.ldap.referral [Referral method] Determines if LDAP referrals should be followed, or ignored.

authentication.ldap.bindAnonymouslytrue or false If true, bind to the LDAP or AD server anonymously

authentication.ldap.managerDn[Full Distinguished Name] If Bind anonymous is set to false, the Distinguished
Name (“DN”) for the manager. Example:
uid=hdfs,ou=people,dc=hadoop,dc=apache,dc=org

authentication.ldap.managerPassword[password] If Bind anonymous is set to false, the password for the
manager

authentication.ldap.userObjectClass[LDAP Object Class] The object class that is used for users. Example:
organizationalPerson

authentication.ldap.groupObjectClass[LDAP Object Class] The object class that is used for groups. Example:
groupOfUniqueNames

authentication.ldap.groupMembershipAttr[LDAP attribute] The attribute for group membership. Example: uniqueMember

authentication.ldap.groupNamingAttr[LDAP attribute] The attribute for group name.

2.3.1.2. Configure Ambari to use LDAP Server

Note

Only if you are using LDAPS, and the LDAPS server certificate is signed by a
trusted Certificate Authority, there is no need to import the certificate into

hdp-security August 29, 2016

44

Ambari so this section does not apply to you. If the LDAPS server certificate
is self-signed, or is signed by an unrecognized certificate authority such as
an internal certificate authority, you must import the certificate and create
a keystore file. The following example creates a keystore file at /keys/ldaps-
keystore.jks, but you can create it anywhere in the file system:

Run the LDAP setup command on the Ambari server and answer the prompts,
using the information you collected above:

1. mkdir /etc/ambari-server/keys

where the keys directory does not exist, but should be created.

2. $JAVA_HOME/bin/keytool -import -trustcacerts -alias root -file
$PATH_TO_YOUR_LDAPS_CERT -keystore /etc/ambari-server/keys/
ldaps-keystore.jks

3. Set a password when prompted. You will use this during ambari-server setup-ldap.

ambari-server setup-ldap

1. At the Primary URL* prompt, enter the server URL and port you collected above.
Prompts marked with an asterisk are required values.

2. At the Secondary URL* prompt, enter the secondary server URL and port. This value is
optional.

3. At the Use SSL* prompt, enter your selection. If using LDAPS, enter true.

4. At the User object class* prompt, enter the object class that is used for users.

5. At the User name attribute* prompt, enter your selection. The default value is
uid.

6. At the Group object class* prompt, enter the object class that is used for groups.

7. At the Group name attribute* prompt, enter the attribute for group name.

8. At the Group member attribute* prompt, enter the attribute for group
membership.

9. At the Distinguished name attribute* prompt, enter the attribute that is used
for the distinguished name.

10.At the Base DN* prompt, enter your selection.

11.At the Referral method* prompt, enter to follow or ignore LDAP referrals.

12.At the Bind anonymously* prompt, enter your selection.

13.At the Manager DN* prompt, enter your selection if you have set bind.Anonymously
to false.

hdp-security August 29, 2016

45

14.At the Enter the Manager Password* prompt, enter the password for your LDAP
manager DN.

15.If you set Use SSL* = true in step 3, the following prompt appears: Do you want to
provide custom TrustStore for Ambari?

Consider the following options and respond as appropriate.

• More secure option: If using a self-signed certificate that you do not want imported
to the existing JDK keystore, enter y.

For example, you want this certificate used only by Ambari, not by any other
applications run by JDK on the same host.

If you choose this option, additional prompts appear. Respond to the additional
prompts as follows:

• At the TrustStore type prompt, enter jks.

• At the Path to TrustStore file prompt, enter /keys/ldaps-
keystore.jks (or the actual path to your keystore file).

• At the Password for TrustStore prompt, enter the password that you
defined for the keystore.

• Less secure option: If using a self-signed certificate that you want to import and store
in the existing, default JDK keystore, enter n.

• Convert the SSL certificate to X.509 format, if necessary, by executing the following
command:

openssl x509 -in slapd.pem -out <slapd.crt>

Where <slapd.crt> is the path to the X.509 certificate.

• Import the SSL certificate to the existing keystore, for example the default jre
certificates storage, using the following instruction:

/usr/jdk64/jdk1.7.0_45/bin/keytool -import -trustcacerts -
file slapd.crt -keystore /usr/jdk64/jdk1.7.0_45/jre/lib/
security/cacerts

Where Ambari is set up to use JDK 1.7. Therefore, the certificate must be imported
in the JDK 7 keystore.

16.Review your settings and if they are correct, select y.

17.Start or restart the Server

ambari-server restart

The users you have just imported are initially granted the Ambari User privilege.
Ambari Users can read metrics, view service status and configuration, and browse
job information. For these new users to be able to start or stop services, modify
configurations, and run smoke tests, they need to be Admins. To make this change,

hdp-security August 29, 2016

46

as an Ambari Admin, use Manage Ambari > Users > Edit. For instructions, see
Managing Users and Groups.

2.3.1.2.1. Example Active Directory Configuration

Directory Server implementations use specific object classes and attributes for storing
identities. In this example, configurations specific to Active Directory are displayed as an
example. Only those properties that are specific to Active Directory are displayed.

Run ambari-server setup-ldap and provide the following information about your
Domain.

Prompt Example AD Values

User object class* (posixAccount) user

User name attribute* (uid) sAMAccountName

Group object class* (posixGroup) group

Group member attribute* (memberUid) member

Distinguished name attribute* (dn) distinguishedName

2.3.1.3. Synchronizing LDAP Users and Groups

Run the LDAP synchronize command and answer the prompts to initiate the sync:

ambari-server sync-ldap [option]

Note

To perform this operation, your Ambari Server must be running.

• When prompted, you must provide credentials for an Ambari Admin.

• When syncing ldap, Local user accounts with matching username will switch
to LDAP type, which means their authentication will be against the external
LDAP and not against the Local Ambari user store.

• LDAP sync only syncs up-to-1000 users. If your LDAP contains over 1000 users
and you plan to import over 1000 users, you must use the --users option
when syncing and specify a filtered list of users to perform import in batches.

The utility provides three options for synchronization:

• Specific set of users and groups, or

• Synchronize the existing users and groups in Ambari with LDAP, or

• All users and groups

Review log files for failed synchronization attempts, at /var/log/ambari-server/
ambari-server.log on the Ambari Server host.

Note

When synchronizing LDAP users and groups, Ambari uses LDAP results
paging controls to synchronize large numbers of LDAP objects. Most

hdp-security August 29, 2016

47

modern LDAP servers support these control, but for those that do
not, such as Oracle Directory Server Enterprise Edition 11g, Ambari
introduces a configuration parameter to disable pagination. The
authentication.ldap.pagination.enabled property can be set to
false in the /etc/ambari-server/conf/ambari-properties file to
disable result paging controls. This will limit the maximum number of entities
that can be imported at any given time to the maximum result limit of the
LDAP server. To work around this, import sets of users or groups using the -
users and -groups options covered in section 3.1.4 - Specific Set of Users and
Groups.

2.3.1.4. Specific Set of Users and Groups

ambari-server sync-ldap --users users.txt --groups groups.txt

Use this option to synchronize a specific set of users and groups from LDAP into Ambari.
Provide the command a text file of comma-separated users and groups. The comma
separated entries in each of these files should be based off of the values in LDAP of the
attributes chosen during setup. The "User name attribute" should be used for the users.txt
file, and the "Group name attribute" should be used for the groups.txt file. This command
will find, import, and synchronize the matching LDAP entities with Ambari.

Note

Group membership is determined using the Group Membership Attribute
(groupMembershipAttr) specified during setup-ldap. User name is determined
by using the Username Attribute (usernameAttribute) specified during setup-
ldap.

2.3.1.5. Existing Users and Groups

ambari-server sync-ldap --existing

After you have performed a synchronization of a specific set of users and groups, you use
this option to synchronize only those entities that are in Ambari with LDAP. Users will be
removed from Ambari if they no longer exist in LDAP, and group membership in Ambari
will be updated to match LDAP.

Note

Group membership is determined using the Group Membership Attribute
specified during setup-ldap.

2.3.1.6. All Users and Groups

Important

Only use this option if you are sure you want to synchronize all users and
groups from LDAP into Ambari. If you only want to synchronize a subset of
users and groups, use a specific set of users and groups option.

ambari-server sync-ldap --all

hdp-security August 29, 2016

48

This will import all entities with matching LDAP user and group object classes
into Ambari.

2.3.2. Configuring Ranger Authentication with UNIX, LDAP,
or AD

2.3.2.1. UNIX Authentication Settings

The following figure shows the UNIX authentication settings, and the table below describes
each of these properties.

Table 2.2. UNIX Authentication Settings

Configuration Property Description Default
Value

Example Value Required?

Allow remote Login Flag to enable/disable
remote login via UNIX
Authentication Mode.

TRUE TRUE No.

ranger.unixauth.service.hostnameThe FQDN where the
ranger-usersync module
is running (along with
the UNIX Authentication
Service).

localhost myunixhost.domain.com Yes, if UNIX
authentication is
selected.

ranger.unixauth.service.portThe port number where
the ranger-usersync
module is running the
UNIX Authentication
Service.

5151 5151 Yes, if UNIX
authentication is
selected.

2.3.2.2. Active Directory Authentication Settings

This section describes how to configure settings for Active Directory authentication.

hdp-security August 29, 2016

49

Note

In addition to these settings, you may also need to configure the Active
Directory properties described in Configuring Usersync Settings.

2.3.2.2.1. AD Settings

The following figure shows the Active Directory (AD) authentication settings, and the table
below describes each of these properties.

Table 2.3. Active Directory Authentication Settings

Configuration
Property Name

Description Default Value Example Value Required?

ranger.ldap.ad.domain Server domain name
(or IP address) where
ranger-usersync
module is running
(along with the
AD Authentication
Service). The default
value of "localhost"
must be changed to
the domain name.

localhost example.com Yes, if Active Directory
authentication is
selected.

ranger.ldap.ad.url The URL and port
number where ranger-
usersync module
is running the AD
Authentication
Service. The default
value is a placeholder
and must be changed

ldap://
ad.xasecure.net:389

ldap://127.0.0.1:389 Yes, if Active Directory
authentication is
selected.

hdp-security August 29, 2016

50

Configuration
Property Name

Description Default Value Example Value Required?

to point to the AD
server.

2.3.2.2.2. Custom ranger-admin-site Settings for Active Directory (Optional)

The following Custom ranger-admin-site settings for Active Directory authentication are
optional.

To add a Custom ranger-admin-site property:

1. Select Custom ranger-admin-site, then click Add Property.

2. On the Add Property pop-up, type the property name in the Key box, type the property
value in the Value box, then click Add.

hdp-security August 29, 2016

51

The following figure shows the Custom ranger-admin-site settings required for Active
Directory (AD) authentication, and the table below describes each of these properties.

Table 2.4. Active Directory Custom ranger-admin-site Settings

Custom Property Name Sample Values for AD Authentication

ranger.ldap.ad.base.dn dc=example,dc=com

ranger.ldap.ad.bind.dn cn=adadmin,cn=Users,dc=example,dc=com

ranger.ldap.ad.bind.password secret123!

ranger.ldap.ad.referral follow | ignore | throw

There are three possible values for ranger.ldap.ad.referral: follow, throw, and
ignore. The recommended setting is follow.

When searching a directory, the server might return several search results, along with a
few continuation references that show where to obtain further results. These results and
references might be interleaved at the protocol level.

• When this property is set to follow, the AD service provider processes all of the normal
entries first, and then follows the continuation references.

hdp-security August 29, 2016

52

• When this property is set to throw, all of the normal entries are returned in the
enumeration first, before the ReferralException is thrown. By contrast, a "referral"
error response is processed immediately when this property is set to follow or throw.

• When this property is set to ignore, it indicates that the server should return referral
entries as ordinary entries (or plain text). This might return partial results for the search.
In the case of AD, a PartialResultException is returned when referrals are
encountered while search results are processed.

2.3.2.3. LDAP Authentications Settings

This section describes how to configure LDAP and Advanced ranger-ugsync-site settings for
Active Directory authentication.

Note

In addition to these settings, you must also configure the LDAP properties
described in Configuring Usersync Settings.

2.3.2.3.1. LDAP Settings

The following figure shows the LDAP authentication settings, and the table below describes
each of these properties.

hdp-security August 29, 2016

53

Table 2.5. LDAP Authentication Settings

Configuration
Property Name

Description Default Value Example Value Required?

ranger.ldap.url The URL and
port number
where ranger-
usersync
module is
running
the LDAP
Authentication
Service.

ldap://71.127.43.33:389 ldap://127.0.0.1:389 Yes, if LDAP
authentication
is selected.

ranger.ldap.user.
dnpattern

The domain
name pattern.

uid={0},ou=users,
dc=xasecure,dc=net

cn=ldapadmin,ou=Users,
dc=example,dc=com

Yes, if LDAP
authentication
is selected.

ranger.ldap.group.
roleattribute

The LDAP
group role
attribute.

cn cn Yes, if LDAP
authentication
is selected.

hdp-security August 29, 2016

54

2.3.2.3.2. Custom ranger-admin-site Settings for LDAP (Optional)

The following Custom ranger-admin-site settings for LDAP are optional.

To add a Custom ranger-admin-site property:

1. Select Custom ranger-admin-site, then click Add Property.

2. On the Add Property pop-up, type the property name in the Key box, type the property
value in the Value box, then click Add.

hdp-security August 29, 2016

55

The following figure shows the Custom ranger-admin-site settings required for LDAP
authentication, and the table below describes each of these properties.

Table 2.6. LDAP Custom ranger-admin-site Settings

Custom Property Name Sample Values for AD or LDAP Authentication

ranger.ldap.base.dn dc=example,dc=com

ranger.ldap.bind.dn cn=adadmin,cn=Users,dc=example,dc=com

ranger.ldap.bind.password secret123!

ranger.ldap.referral follow | ignore | throw

There are three possible values for ranger.ldap.referral: follow, throw, and
ignore. The recommended setting is follow.

When searching a directory, the server might return several search results, along with a
few continuation references that show where to obtain further results. These results and
references might be interleaved at the protocol level.

hdp-security August 29, 2016

56

• When this property is set to follow, the LDAP service provider processes all of the
normal entries first, and then follows the continuation references.

• When this property is set to throw, all of the normal entries are returned in the
enumeration first, before the ReferralException is thrown. By contrast, a "referral"
error response is processed immediately when this property is set to follow or throw.

• When this property is set to ignore, it indicates that the server should return referral
entries as ordinary entries (or plain text). This might return partial results for the search.

2.3.2.3.3. Advanced ranger-admin-site Settings

The following Advanced ranger-admin-site properties apply only to LDAP authentication.

Table 2.7. Active Directory Authentication Settings

Property Name Sample values for LDAP Authentication

ranger.ldap.group.searchbase dc=example,dc=com

ranger.ldap.group.searchfilter (member=cn={0},ou=Users,dc=example,dc=com)

2.3.3. Encrypting Database and LDAP Passwords in Ambari

By default the passwords to access the Ambari database and the LDAP server are stored
in a plain text configuration file. To have those passwords encrypted, you need to run a
special setup command.

Ambari Server should not be running when you do this: either make the edits before you
start Ambari Server the first time or bring the server down to make the edits.

1. On the Ambari Server, run the special setup command and answer the prompts:

ambari-server setup-security

a. Select Option 2: Choose one of the following options:

• [1] Enable HTTPS for Ambari server.

• [2] Encrypt passwords stored in ambari.properties file.

• [3] Setup Ambari kerberos JAAS configuration.

b. Provide a master key for encrypting the passwords. You are prompted to enter the
key twice for accuracy.

If your passwords are encrypted, you need access to the master key to start Ambari
Server.

c. You have three options for maintaining the master key:

• Persist it to a file on the server by pressing y at the prompt.

• Create an environment variable AMBARI_SECURITY_MASTER_KEY and set it to the
key.

hdp-security August 29, 2016

57

• Provide the key manually at the prompt on server start up.

d. Start or restart the Server

ambari-server restart

2.3.3.1. Reset Encryption

There may be situations in which you want to:

• Remove Encryption Entirely [57]

• Change the current master key, either because the key has been forgotten or because
you want to change the current key as a part of a security routine.

Ambari Server should not be running when you do this.

2.3.3.2. Remove Encryption Entirely

To reset Ambari database and LDAP passwords to a completely unencrypted state:

1. On the Ambari host, open /etc/ambari-server/conf/ambari.properties with
a text editor and set this property

security.passwords.encryption.enabled=false

2. Delete /var/lib/ambari-server/keys/credentials.jceks

3. Delete /var/lib/ambari-server/keys/master

4. You must now reset the database password and, if necessary, the LDAP password. Run
ambari-server setup and ambari-server setup-ldap again.

2.3.3.3. Change the Current Master Key

To change the master key:

• If you know the current master key or if the current master key has been persisted:

1. Re-run the encryption setup command and follow the prompts.

ambari-server setup-security

a. Select Option 2: Choose one of the following options:

• [1] Enable HTTPS for Ambari server.

• [2] Encrypt passwords stored in ambari.properties file.

• [3] Setup Ambari kerberos JAAS configuration.

b. Enter the current master key when prompted if necessary (if it is not persisted or
set as an environment variable).

hdp-security August 29, 2016

58

c. At the Do you want to reset Master Key prompt, enter yes.

d. At the prompt, enter the new master key and confirm.

• If you do not know the current master key:

• Remove encryption entirely, as described here.

• Re-run ambari-server setup-security as described here.

• Start or restart the Ambari Server.

ambari-server restart

2.4. Configuring LDAP Authentication in Hue
You can configure Hue to authenticate users by using LDAP, including importing users and
groups from the LDAP directory service, OpenLDAP, or through Active Directory (AD).

Integrating Hue with LDAP enables users to leverage existing authentication credentials'
group permissions directly from their LDAP profiles.

For you to configure LDAP authentication in Hue, Hue must be running and the Hue UI
must be accessible.

Each of the following subsections describes a property that needs to by setup for Hue to
work with LDAP.

2.4.1. Enabling the LDAP Backend

To use LDAP, you must specify the following Hue values in the Hue configuration file, /
etc/hue/conf/hue.ini. Specifying this configuration enables Hue to validate login
credentials against the LDAP directory service:

[desktop]
 [[auth]]
 ……
 ……
 backend=desktop.auth.backend.LdapBackend
 .…..

2.4.2. Enabling User Authentication with Search Bind

Settings related to LDAP are in the LDAP section of the Hue configuration file, /etc/hue/
conf/hue.ini:

[desktop]
 [[ldap]]

There are two ways to authenticate users by using the LDAP directory service in Hue:

hdp-security August 29, 2016

59

• Search Bind (default)

Setting the search_bind_authentication property to true in /etc/hue/conf/
hue.ini enables LDAP search using the bind credentials specified for the bind_dn and
bind_password properties.

Search bind performs an LDAP search against the directory service and then binds
the results by using the found Distinguished Name (DN) and provided password. The
search process starts from the base DN specified for the base_dn property and continues
to search the base DN for an entry with an attribute that matches the specified in
user_name_attr of the username provided at login.

You can restrict the results of this search process by using the user_filter (default
value objectclass=*) and user_name_attr (default value sAMAccountName)
properties in the [desktop] > [[ldap]] > [[[users]]] section of /etc/hue/
conf/hue.ini.

If you use the default values of user_filter and user_name_attr, the LDAP search
filter appears as follows, where <username> is the user name provided on the Hue login
page:

(&(objectClass=*)(sAMAccountName=<username>))

• Direct Bind

Setting the search_bind_authentication property to false in /etc/hue/conf/
hue.ini enables the LDAP direct bind mechanism to authenticate users. Hue binds to
the LDAP server using the user name and password provided on the login page.

Depending on the value of the nt_domain property, there are two ways that direct bind
works:

• If nt_domain is specified, the nt_domain property is intended to be used only with
Active Directory (AD) service.

This property allows Hue to authenticate with AD without having to follow LDAP
references to other partitions.

Hue forms the User Principal Name (UPN) as a concatenation of the user name
provided on the Hue login page and the nt_domain property value: for example,
<username>@<nt_domain>. The ldap_username_pattern property is ignored.

• If nt_domain is not specified, the nt_domain property is intended to be used for all
other directory services.

Without the nt_domain property specified, the ldap_username_pattern appears as
follows, where <username> is the user name provided on the Hue login page:

uid=<username>,ou=People,dc=mycompany,dc=com

2.4.3. Setting the Search Base to Find Users and Groups

You must set the correct base_dn value in the /etc/hue/conf/hue.ini file to enable
Hue to find users and groups:

hdp-security August 29, 2016

60

The search base for finding users and groups
base_dn="DC=mycompany,DC=com"

2.4.4. Specifying the URL of the LDAP Server
Specify the following URL in the /etc/hue/conf/hue.ini file to specify the endpoint of
the corporate LDAP server:

URL of the LDAP server
ldap_url=ldap://auth.mycompany.com

2.4.5. Specifying LDAPS and StartTLS Support
LDAPS (secure communication with LDAP) is provided using the SSL/TLS and StartTLS
protocols. Using these protocols allows Hue to validate the directory service with which it is
going to interact. Optionally, specify the path to the certificate for authentication over TLS
in the /etc/hue/conf/hue.ini file:

A PEM-format file containing certificates for the CA's that
Hue will trust for authentication over TLS.
The certificate for the CA that signed the
LDAP server certificate must be included among these certificates.
See more here http://www.openldap.org/doc/admin24/tls.html.
ldap_cert=<path/to/cert/file
use_start_tls=true

2.4.6. Specifying Bind Credentials for LDAP Searches
If the LDAP server does not support anonymous searches, you must specify the
distinguished name of the user to bind and the bind password in the /etc/hue/conf/
hue.ini file:

Distinguished name of the user to bind as -- not necessary if the LDAP
 server
supports anonymous searches
bind_dn="CN=ServiceAccount,DC=mycompany,DC=com"

Password of the bind user -- not necessary if the LDAP server supports
anonymous searches
bind_password=your_password

2.4.7. Synchronizing Users and Groups
You can use the LDAP username pattern to restrict users when performing searches. Using
this pattern provides a template for the DN that is sent to the directory service when
authenticating. Replace the <username> parameter with the user name provided on the
Hue login page. Specify this pattern in the /etc/hue/conf/hue.ini file:

Pattern for searching for usernames -- Use <username> for the parameter
For use when using LdapBackend for Hue authentication
ldap_username_pattern="uid=<username>,ou=People,dc=mycompany,dc=com"

hdp-security August 29, 2016

61

When performing the authentication, Hue must import users to its database to work
properly. In this case, passwords are never imported.

By default, the LDAP authentication backend automatically creates users that do not exist
in Hue database. The purpose of disabling the automatic import process is to allow only a
predefined list of manually imported users to log in.

Create users in Hue when they try to login with their LDAP credentials
For use when using LdapBackend for Hue authentication
create_users_on_login = true

You can specify that user groups be synchronized when a user logs in (to keep the user
permission up to date):

Synchronize a users groups when they login
sync_groups_on_login=false

You can configure Hue to ignore username lettercasing or to force lowercasing:

Ignore the case of usernames when searching for existing users in Hue.
ignore_username_case=false

Force usernames to lowercase when creating new users from LDAP.
force_username_lowercase=false

2.4.8. Setting Search Bind Authentication and Importing
Users and Groups

Hue uses search bind authentication by default. To enable direct bind authentication, set
the search_bind_authentication property to false in the /etc/hue/conf/hue.ini file:

Do not use search bind authentication.
search_bind_authentication=false

When you set search bind authentication and you also need to set the kind of subgrouping
and referrals for users and groups in the /etc/hue/conf/hue.ini file:

Choose which kind of subgrouping to use: nested or suboordinate(deprecated).

subgroups=suboordinate

Define the number of levels to search for nested members.
nested_members_search_depth=10

Whether or not to follow referrals
follow_referrals=false

2.4.9. Setting LDAP Users' Filter
You can restrict user access by setting the LDAP filter (user_filter attribute) and the
username attribute in the LDAP schema (user_name_attr attribute) in the /etc/hue/
conf/hue.ini file. The typical attributes for search in the LDAP schema are uid and
sAMAccountName:

hdp-security August 29, 2016

62

[[[users]]]

Base filter for searching for users
user_filter="objectclass=*"

The username attribute in the LDAP schema
user_name_attr=sAMAccountName

2.4.10. Setting an LDAP Groups Filter

You can restrict the synchronization of LDAP directory groups when using the Hue
useradmin application by setting a base filter (group_filter attribute) and the
username attribute in the LDAP schema (group_name_attr attribute) of the /etc/hue/
conf/hue.ini file:

[[[groups]]]

Base filter for searching for groups
group_filter="objectclass=*"

The username attribute in the LDAP schema
group_name_attr=cn

2.4.11. Setting Multiple LDAP Servers

Hue enables you to configure multiple LDAP servers by providing the multiple server
declaration in/etc/hue/conf/hue.ini:

[[[ldap_servers]]]

 [[[[mycompany]]]]

 # The search base for finding users and groups
 base_dn="DC=mycompany,DC=com"

 # URL of the LDAP server
 ldap_url=ldap://auth.mycompany.com

 # A PEM-format file containing certificates for the CA's that
 # Hue will trust for authentication over TLS.
 # The certificate for the CA that signed the
 # LDAP server certificate must be included among these certificates.
 # See more here http://www.openldap.org/doc/admin24/tls.html.
 ## ldap_cert=
 ## use_start_tls=true

 # Distinguished name of the user to bind as -- not necessary if the LDAP
 server
 # supports anonymous searches
 bind_dn="CN=ServiceAccount,DC=mycompany,DC=com"

 # Password of the bind user -- not necessary if the LDAP server supports
 # anonymous searches
 bind_password=your_password

 # Pattern for searching for usernames -- Use <username> for the parameter

hdp-security August 29, 2016

63

 # For use when using LdapBackend for Hue authentication
 ldap_username_pattern="uid=<username>,ou=People,dc=mycompany,dc=com"

 # Whether or not to follow referrals
 ## follow_referrals=false

 [[[[[users]]]]]

 # Base filter for searching for users
 user_filter="objectclass=Person"

 # The username attribute in the LDAP schema
 user_name_attr=sAMAccountName

 [[[[[groups]]]]]

 # Base filter for searching for groups
 group_filter="objectclass=groupOfNames"

 # The username attribute in the LDAP schema
 group_name_attr=cn

2.5. Advanced Security Options for Ambari
This section describes several security options for an Ambari-monitored-and-managed
Hadoop cluster.

• Configuring Ambari for Non-Root [63]

• Optional: Ambari Web Inactivity Timeout [66]

• Optional: Set Up Kerberos for Ambari Server [67]

• Optional: Set Up Two-Way SSL Between Ambari Server and Ambari Agents [68]

• Optional: Configure Ciphers and Protocols for Ambari Server [68]

• Optional: HTTP Cookie Persistence [68]

2.5.1. Configuring Ambari for Non-Root
In most secure environments, restricting access to and limiting services that run as root is a
hard requirement. For these environments, Ambari can be configured to operate without
direct root access. Both Ambari Server and Ambari Agent components allow for non-root
operation, and the following sections will walk you through the process.

• How to Configure Ambari Server for Non-Root [63]

• How to Configure an Ambari Agent for Non-Root [64]

2.5.1.1. How to Configure Ambari Server for Non-Root

You can configure the Ambari Server to run as a non-root user.

During the ambari-server setup process, when prompted to Customize user account
for ambari-server daemon?, choose y.

https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-installation/content/set_up_the_ambari_server.html

hdp-security August 29, 2016

64

The setup process prompts you for the appropriate, non-root user to run the Ambari Server
as; for example: ambari.

Note

The non-root user you choose to run the Ambari Server should be part of the
Hadoop group. This group must match the service Hadoop group accounts
referenced in the Customize Services > Misc tab during the Install Wizard
configuration step. The default group name is hadoop but if you customized
this value during cluster install, be sure to make the non-root user a part of that
group. See Customizing HDP Services for more information on service account
users and groups.

Note

If Ambari Server is running as a non-root user, such as 'ambari', and you are
planning on using Ambari Views, the following properties in Services > HDFS >
Configs > Advanced core-site must be added:

hadoop.proxyuser.ambari.groups=*
hadoop.proxyuser.ambari.hosts=*

2.5.1.2. How to Configure an Ambari Agent for Non-Root

You can configure the Ambari Agent to run as a non-privileged user as well. That user
requires specific sudo access in order to su to Hadoop service accounts and perform specific
privileged commands. Configuring Ambari Agents to run as non-root requires that you
manually install agents on all nodes in the cluster. For these details, see Installing Ambari
Agents Manually. After installing each agent, you must configure the agent to run as the
desired, non-root user. In this example we will use the ambari user.

Change the run_as_user property in the /etc/ambari-agent/conf/ambari-
agent.ini file, as illustrated below:

run_as_user=ambari

Once this change has been made, the ambari-agent must be restarted to begin running as
the non-root user.

The non-root functionality relies on sudo to run specific commands that require elevated
privileges as defined in the Sudoer Configuration. The sudo configuration is split into three
sections: Customizable Users, Commands, and Sudo Defaults.

2.5.1.2.1. Sudoer Configuration - Ambari Agents

The Customizable Users - Ambari Agents, Commands - Ambari Agents, and Sudo Defaults
- Ambari Agents sections will cover how sudo should be configured to enable Ambari to
run as a non-root user. Each of the sections includes the specific sudo entries that should be
placed in /etc/sudoers by running the visudo command.

2.5.1.2.2. Customizable Users - Ambari Agents

This section contains the su commands and corresponding Hadoop service accounts that
are configurable on install:

https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-reference/content/ch_amb_ref_customizing_hdp_services.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-reference/content/ch_amb_ref_installing_ambari_agents_manually.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-reference/content/ch_amb_ref_installing_ambari_agents_manually.html

hdp-security August 29, 2016

65

Ambari Customizable Users
ambari ALL=(ALL) NOPASSWD:SETENV: /bin/su hdfs *,/bin/su ambari-qa *,/bin/su
 ranger *,/bin/su zookeeper *,/bin/su knox *,/bin/su falcon *,/bin/su ams *,
 /bin/su flume *,/bin/su hbase *,/bin/su spark *,/bin/su accumulo *,/bin/su
 hive *,/bin/su hcat *,/bin/su kafka *,/bin/su mapred *,/bin/su oozie *,/bin/
su sqoop *,/bin/su storm *,/bin/su tez *,/bin/su atlas *,/bin/su yarn *,/bin/
su kms *,/bin/su activity_analyzer *,/bin/su livy *,/bin/su zeppelin *,/bin/su
 infra-solr *,/bin/su logsearch *

Note

These user accounts must match the service user accounts referenced in the
Customize Services > Misc tab during the Install Wizard configuration
step. For example, if you customize YARN to run as xyz_yarn, modify the su
command above to be /bin/su xyz_yarn.

These user accounts must match the service user accounts referenced in the Customize
Services > Misc tab during the Install Wizard configuration step. For example, if
you customize YARN to run as xyz_yarn, modify the su command above to be /bin/su
xyz_yarn.

2.5.1.2.3. Commands - Ambari Agents

This section contains the specific commands that must be issued for standard agent
operations:

Ambari: Core System Commands
ambari ALL=(ALL) NOPASSWD:SETENV: /usr/bin/yum,/usr/bin/zypper,/usr/bin/apt-
get, /bin/mkdir, /usr/bin/test, /bin/ln, /bin/ls, /bin/chown, /bin/chmod, /
bin/chgrp, /bin/cp, /usr/sbin/setenforce, /usr/bin/test, /usr/bin/stat, /bin/
mv, /bin/sed, /bin/rm, /bin/kill, /bin/readlink, /usr/bin/pgrep, /bin/cat,
 /usr/bin/unzip, /bin/tar, /usr/bin/tee, /bin/touch, /usr/bin/mysql, /sbin/
service mysqld *, /usr/bin/dpkg *, /bin/rpm *, /usr/sbin/hst *

Ambari: Hadoop and Configuration Commands
ambari ALL=(ALL) NOPASSWD:SETENV: /usr/bin/hdp-select, /usr/bin/conf-select,
 /usr/hdp/current/hadoop-client/sbin/hadoop-daemon.sh, /usr/lib/hadoop/bin/
hadoop-daemon.sh, /usr/lib/hadoop/sbin/hadoop-daemon.sh, /usr/bin/ambari-
python-wrap *

Ambari: System User and Group Commands
ambari ALL=(ALL) NOPASSWD:SETENV: /usr/sbin/groupadd, /usr/sbin/groupmod, /
usr/sbin/useradd, /usr/sbin/usermod

Ambari: Knox Commands
ambari ALL=(ALL) NOPASSWD:SETENV: /usr/bin/python2.6 /var/lib/ambari-agent/
data/tmp/validateKnoxStatus.py *, /usr/hdp/current/knox-server/bin/knoxcli.sh

Ambari: Ranger Commands
ambari ALL=(ALL) NOPASSWD:SETENV: /usr/hdp/*/ranger-usersync/setup.sh, /usr/
bin/ranger-usersync-stop, /usr/bin/ranger-usersync-start, /usr/hdp/*/ranger-
admin/setup.sh *, /usr/hdp/*/ranger-knox-plugin/disable-knox-plugin.sh *, /
usr/hdp/*/ranger-storm-plugin/disable-storm-plugin.sh *, /usr/hdp/*/ranger-
hbase-plugin/disable-hbase-plugin.sh *, /usr/hdp/*/ranger-hdfs-plugin/disable-
hdfs-plugin.sh *, /usr/hdp/current/ranger-admin/ranger_credential_helper.py, /
usr/hdp/current/ranger-kms/ranger_credential_helper.py, /usr/hdp/*/ranger-*/
ranger_credential_helper.py

Ambari Infra and LogSearch Commands

hdp-security August 29, 2016

66

ambari ALL=(ALL) NOPASSWD:SETENV: /usr/lib/ambari-infra-solr/bin/solr *, /usr/
lib/ambari-logsearch-logfeeder/run.sh *, /usr/sbin/ambari-metrics-grafana *, /
usr/lib/ambari-infra-solr-client/solrCloudCli.sh *

Important

Do not modify the command lists, only the usernames in the Customizable
Users section may be modified.

To re-iterate, you must do this sudo configuration on every node in the cluster. To ensure
that the configuration has been done properly, you can su to the ambari user and run sudo
-l. There, you can double check that there are no warnings, and that the configuration
output matches what was just applied.

2.5.1.2.4. Sudo Defaults - Ambari Agents

Some versions of sudo have a default configuration that prevents sudo from being invoked
from a non-interactive shell. In order for the agent to run it's commands non-interactively,
some defaults need to be overridden.

Defaults exempt_group = ambari
Defaults !env_reset,env_delete-=PATH
Defaults: ambari !requiretty

To re-iterate, this sudo configuration must be done on every node in the cluster. To ensure
that the configuration has been done properly, you can su to the ambari user and run sudo
-l. There, you can double-check that there are no warnings, and that the configuration
output matches what was just applied.

2.5.2. Optional: Ambari Web Inactivity Timeout
Ambari is capable of automatically logging a user out of Ambari Web after a period of
inactivity. After a configurable amount of time, the user’s session will be terminated and
they will be redirected to the login page.

This capability can be separately configured for Operators and Read-Only users. This allows
you to distinguish a read-only user (useful when Ambari Web is used as a monitoring
dashboard) from other operators. Alternatively, you can set both inactivity timeout values
to be the same so that regardless of the user type, automatic logout will occur after a set
period of time.

By default, the Ambari Web inactivity timeout is not enabled (i.e. is set to 0). The following
instructions should be used to enable inactivity timeout and set as the amount of time in
seconds before users are automatically logged out.

Ensure the Ambari Server is completely stopped before making changes to the inactivity
timeout. Either make these changes before you start Ambari Server the first time, or bring
the server down before making these changes.

1. On the Ambari Server host, open

/etc/ambari-server/conf/ambari.properties with a text editor.

2. There are two properties for the inactivity timeout setting. Both are initially set to 0
(which means this capability is disabled).

hdp-security August 29, 2016

67

Property Description

user.inactivity.timeout.default Sets the inactivity timeout (in seconds) for all users except Read-Only users.

user.inactivity.timeout.role.readonly.defaultSets the inactivity timeout (in seconds) for all Read-Only users.

3. Modify the values to enable the capability. The values are in seconds.

4. Save changes and restart Ambari Server.

5. After a user logs into Ambari Web, once a period of inactivity occurs, the user will be
presented with an Automatic Logout dialog 60 seconds from logout. The user can click
to remain logged in or if no activity occurs, Ambari Web will automatically log the user
out and redirect the application to the login page.

2.5.3. Optional: Set Up Kerberos for Ambari Server

Note

This section describes how to set up and configure Ambari Server to have a
Kerberos principal and keytab. If you performed the Automated Kerberos
Setup, these steps are performed automatically (and therefore, you do not
need to perform the steps below). If you performed the Manual Kerberos
Setup, perform the steps below as well.

When a cluster is enabled for Kerberos, the component REST endpoints (such as the YARN
ATS component) require SPNEGO authentication.

Depending on the Services in your cluster, Ambari Web needs access to these APIs. As well,
views such as the Tez View need access to ATS. Therefore, the Ambari Server requires a
Kerberos principal in order to authenticate via SPNEGO against these APIs. This section
describes how to configure Ambari Server with a Kerberos principal and keytab to allow
views to authenticate via SPNEGO against cluster components.

1. Create a principal in your KDC for the Ambari Server. For example, using kadmin:

addprinc -randkey ambari-server@EXAMPLE.COM

2. Generate a keytab for that principal.

xst -k ambari.server.keytab ambari-server@EXAMPLE.COM

3. Place that keytab on the Ambari Server host. Be sure to set the file permissions so the
user running the Ambari Server daemon can access the keytab file.

/etc/security/keytabs/ambari.server.keytab

4. Stop the ambari server.

ambari-server stop

5. Run the setup-security command.

ambari-server setup-security

6. Select 3 for Setup Ambari kerberos JAAS configuration.

https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-views/content/ch_using_tez_view.html

hdp-security August 29, 2016

68

7. Enter the Kerberos principal name for the Ambari Server you set up earlier.

8. Enter the path to the keytab for the Ambari principal.

9. Restart Ambari Server.

ambari-server restart

2.5.4. Optional: Set Up Two-Way SSL Between Ambari
Server and Ambari Agents

Two-way SSL provides a way to encrypt communication between Ambari Server and
Ambari Agents. By default Ambari ships with Two-way SSL disabled. To enable Two-way
SSL:

Ambari Server should not be running when you do this: either make the edits before you
start Ambari Server the first time or bring the server down to make the edits.

1. On the Ambari Server host, open /etc/ambari-server/conf/
ambari.properties with a text editor.

2. Add the following property:

security.server.two_way_ssl = true

3. Start or restart the Ambari Server.

ambari-server restart

The Agent certificates are downloaded automatically during Agent Registration.

2.5.5. Optional: Configure Ciphers and Protocols for Ambari
Server

Ambari provides control of ciphers and protocols that are exposed via Ambari Server.

1. To disable specific ciphers, you can optionally add a list of the following format to
ambari.properties. If you specify multiple ciphers, separate each cipher using a vertical
bar |.

security.server.disabled.ciphers=TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

2. To disable specific protocols, you can optionally add a list of the following format to
ambari.properties. If you specify multiple protocols, separate each protocol using a
vertical bar |.

security.server.disabled.protocols=SSL|SSLv2|SSLv3

2.5.6. Optional: HTTP Cookie Persistence
During HTTP authentication, a cookie is dropped. This is a persistent cookie that is valid
across browser sessions. For clusters that require enhanced security, it is desirable to have a
session cookie that gets deleted when the user closes the browser session.

hdp-security August 29, 2016

69

In HDP-2.3.4 and higher versions, you can use the following property in the etc/hadoop/
conf/core-site.xml file to specify cookie persistence across browser sessions.

<property>
 <name>hadoop.http.authentication.cookie.persistent</name>
 <value>true</value>
</property>

The default value for this property is false.

2.6. Enabling SPNEGO Authentication for Hadoop
By default, access to the HTTP-based services and UI’s for the cluster are not configured
to require authentication. Kerberos authentication can be configured for the Web UIs for
HDFS, YARN, MapReduce2, HBase, Oozie, Falcon and Storm.

• Configure Ambari Server for Authenticated HTTP [69]

• Configuring HTTP Authentication for HDFS, YARN, MapReduce2, HBase, Oozie, Falcon
and Storm [69]

2.6.1. Configure Ambari Server for Authenticated HTTP
In order for Ambari to work with a cluster in which authenticated HTTP access to the
Web UIs is required, you must configure the Ambari Server for Kerberos. Refer to Set Up
Kerberos for Ambari Server for more information.

2.6.2. Configuring HTTP Authentication for HDFS, YARN,
MapReduce2, HBase, Oozie, Falcon and Storm

1. Create a secret key used for signing authentication tokens. This file should contain
random data and be placed on every host in the cluster. It should also be owned by the
hdfs user and group owned by the hadoop group. Permissions should be set to 440. For
example:

dd if=/dev/urandom of=/etc/security/http_secret bs=1024 count=1

chown hdfs:hadoop /etc/security/http_secret

chmod 440 /etc/security/http_secret

2. In Ambari Web, browse to Services > HDFS > Configs .

3. Add or modify the following configuration properties to Advanced core-site .

Property New Value

hadoop.http.authentication.simple.anonymous.allowed false

hadoop.http.authentication.signature.secret.file /etc/security/http_secret

hadoop.http.authentication.type kerberos

hadoop.http.authentication.kerberos.keytab /etc/security/keytabs/spnego.service.keytab

hadoop.http.authentication.kerberos.principal HTTP/_HOST@EXAMPLE.COM

hadoop.http.filter.initializers org.apache.hadoop.security.AuthenticationFilterInitializer

hdp-security August 29, 2016

70

Property New Value

hadoop.http.authentication.cookie.domain hortonworks.local

Important

The entries listed in the above table in bold and italicized are site-specific.
The hadoop.http.authentication.cookie.domain property is based off
of the fully qualified domain names of the servers in the cluster. For
example if the FQDN of your NameNode is host1.hortonworks.local,
the hadoop.http.authentication.cookie.domain should be set to
hortonworks.local.

4. Save the configuration, then restart the affected services.

2.6.3. Enabling Browser Access to a SPNEGO-enabled Web
UI

1. Install Kerberos on your local machine (search for instructions on how to install a
Kerberos client on your local environment).

2. Configure the krb5.conf file on your local machine. For testing on a HDP cluster, copy
the /etc/krb5.conf file from one of the cluster hosts to your local machine at /etc/
krb5.conf.

3. Create your own keytabs and run kinit. For testing on a HDP cluster,
copy the "ambari_qa" keytab file from /etc/security/keytabs/
smokeuser.headless.keytab on one of the cluster hosts to your local machine,
then run the following command:

kinit -kt smokeuser.headless.keytab ambari-qa@EXAMPLE.COM

4. Use the following steps to enable your web browser with Kerberos SPNEGO.

For Chrome on Mac:

Run the following command from the same shell in which you ran the previous kinit
command to launch Chrome:

/Applications/Google\ Chrome.app/Contents/MacOS/Google\ Chrome --auth-
server-whitelist="*.hwx.site"

• Replace .hwx.site with your own domain name.

• If you get the following error, try closing and relaunching all Chrome browser
windows.

[14617:36099:0810/152439.802775:ERROR:browser_gpu_channel_host_factory.
cc(103)] Failed to launch GPU process.

For FireFox:

a. Navigate to the about:config URL (type about:config in the address box, then
press the Enter key).

hdp-security August 29, 2016

71

b. Scroll down to network.negotiate-auth.trusted-uris and change its value
to your cluster domain name (For example, .hwx.site).

c. Change the value of network.negotiate-auth.delegation-uris to your
cluster domain name (For example, .hwx.site).

2.7. Setting Up Kerberos Authentication for Non-
Ambari Clusters

This section provides information for enabling security for a manually installed version of
HDP.

• Preparing Kerberos [71]

• Configuring HDP for Kerberos [77]

• Configuring HBase and ZooKeeper [95]

• Configuring Phoenix Query Server [102]

• Configuring Hue [103]

• Setting up One-Way Trust with Active Directory [105]

• Configuring Proxy Users [107]

2.7.1. Preparing Kerberos
This subsection provides information on setting up Kerberos for an HDP installation.

2.7.1.1. Kerberos Overview

To create secure communication among its various components, HDP uses Kerberos.
Kerberos is a third-party authentication mechanism, in which users and services that
users wish to access rely on the Kerberos server to authenticate each to the other. This
mechanism also supports encrypting all traffic between the user and the service.

The Kerberos server itself is known as the Key Distribution Center, or KDC. At a high level, it
has three parts:

• A database of users and services (known as principals) and their respective Kerberos
passwords

• An authentication server (AS) which performs the initial authentication and issues a
Ticket Granting Ticket (TGT)

• A Ticket Granting Server (TGS) that issues subsequent service tickets based on the initial
TGT.

A user principal requests authentication from the AS. The AS returns a TGT that is
encrypted using the user principal's Kerberos password, which is known only to the
user principal and the AS. The user principal decrypts the TGT locally using its Kerberos

hdp-security August 29, 2016

72

password, and from that point forward, until the ticket expires, the user principal can use
the TGT to get service tickets from the TGS.

Because a service principal cannot provide a password each time to decrypt the TGT, it uses
a special file, called a keytab, which contains its authentication credentials.

The service tickets allow the principal to access various services. The set of hosts, users, and
services over which the Kerberos server has control is called a realm.

Note

Because Kerberos is a time-sensitive protocol, all hosts in the realm must be
time-synchronized, for example, by using the Network Time Protocol (NTP).
If the local system time of a client differs from that of the KDC by as little as 5
minutes (the default), the client will not be able to authenticate.

2.7.1.2. Installing and Configuring the KDC

To use Kerberos with HDP, either use an existing KDC or install a new one for HDP only.
The following gives a very high level description of the installation process. For more
information, see RHEL documentation , CentOS documentation, SLES documentation. or
Ubuntu and Debian documentation.

1. Install the KDC server:

• On RHEL, CentOS, or Oracle Linux, run:

yum install krb5-server krb5-libs krb5-auth-dialog krb5-workstation

• On SLES, run:

zypper install krb5 krb5-server krb5-client

• On Ubuntu or Debian, run:

apt-get install krb5 krb5-server krb5-client

Note

The host on which you install the KDC must itself be secure.

2. When the server is installed you must edit the two main configuration files.

Update the KDC configuration by replacing EXAMPLE.COM with your domain and
kerberos.example.com with the FQDN of the KDC host. Configuration files are in the
following locations:

• On RHEL, CentOS, or Oracle Linux:

/etc/krb5.conf
/var/kerberos/krb5kdc/kdc.conf

• On SLES:

/etc/krb5.conf

https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Managing_Smart_Cards/installing-kerberos.html
http://www.centos.org/docs/5/html/5.2/Deployment_Guide/s1-kerberos-server.html
http://doc.opensuse.org/documentation/leap/security/html/book.security/cha.security.kerberos.html
https://help.ubuntu.com/14.04/serverguide/kerberos.html

hdp-security August 29, 2016

73

/var/lib/kerberos/krb5kdc/kdc.conf

• On Ubuntu or Debian:

/etc/krb5.conf
/var/kerberos/krb5kdc/kdc.conf

3. Copy the updated krb5.conf to every cluster node.

2.7.1.3. Creating the Database and Setting Up the First Administrator

1. Use the utility kdb5_util to create the Kerberos database:

• On RHEL, CentOS, or Oracle Linux:

/usr/sbin/kdb5_util create -s

• On SLES:

kdb5_util create -s

• On Ubuntu or Debian:

kdb5_util -s create

Note

The -s option stores the master server key for the database in a stash
file. If the stash file is not present, you must log into the KDC with the
master password (specified during installation) each time it starts. This will
automatically regenerate the master server key.

2. Set up the KDC Access Control List (ACL):

• On RHEL, CentOS, or Oracle Linux add administrators to /var/kerberos/
krb5kdc/kadm5.acl.

• On SLES, add administrators to /var/lib/kerberos/krb5kdc/kadm5.acl.

Note

For example, the following line grants full access to the database for users
with the admin extension: */admin@EXAMPLE.COM *

3. Start kadmin for the change to take effect.

4. Create the first user principal. This must be done at a terminal window on the KDC
machine itself, while you are logged in as root. Notice the .local. Normal kadmin
usage requires that a principal with appropriate access already exist. The kadmin.local
command can be used even if no principals exist:

/usr/sbin/kadmin.local -q "addprinc $username/admin

Now this user can create additional principals either on the KDC machine or through the
network. The following instruction assumes that you are using the KDC machine.

hdp-security August 29, 2016

74

5. On the KDC, start Kerberos:

• On RHEL, CentOS, or Oracle Linux:

/sbin/service krb5kdc start
/sbin/service kadmin start

• On SLES:

rckrb5kdc start
rckadmind start

• On Ubuntu or Debian:

/etc/init.d/krb5-kdc start
/etc/init.d/kadmin start

2.7.1.4. Creating Service Principals and Keytab Files for HDP

Each service in HDP must have its own principal. Because services do not login with a
password to acquire their tickets, their principal's authentication credentials are stored in
a keytab file, which is extracted from the Kerberos database and stored locally with the
service principal.

First create the principal, using mandatory naming conventions. Then create the keytab
file with that principal's information, and copy the file to the keytab directory on the
appropriate service host.

1. To create a service principal you will use the kadmin utility. This is a command-line driven
utility into which you enter Kerberos commands to manipulate the central database. To
start kadmin, enter:

'kadmin $USER/admin@REALM'

To create a service principal, enter the following:

kadmin: addprinc -randkey $principal_name/$service-host-FQDN@$hadoop.realm

You must have a principal with administrative permissions to use this command. The
randkey is used to generate the password.

The $principal_name part of the name must match the values in the following table.

In the example each service principal's name has appended to it the fully qualified
domain name of the host on which it is running. This is to provide a unique principal
name for services that run on multiple hosts, like DataNodes and TaskTrackers. The
addition of the hostname serves to distinguish, for example, a request from DataNode A
from a request from DataNode B.

This is important for two reasons:

a. If the Kerberos credentials for one DataNode are compromised, it does not
automatically lead to all DataNodes being compromised

b. If multiple DataNodes have exactly the same principal and are simultaneously
connecting to the NameNode, and if the Kerberos authenticator being sent happens

hdp-security August 29, 2016

75

to have same timestamp, then the authentication would be rejected as a replay
request.

Note: The NameNode, Secondary NameNode, and Oozie require two principals each.

If you are configuring High Availability (HA) for a Quorom-based NameNode, you
must also generate a principle (jn/$FQDN) and keytab (jn.service.keytab) for each
JournalNode. JournalNode also requires the keytab for its HTTP service. If the
JournalNode is deployed on the same host as a NameNode, the same keytab file
(spnego.service.keytab) can be used for both. In addition, HA requires two NameNodes.
Both the active and standby NameNodes require their own principle and keytab files.
The service principles of the two NameNodes can share the same name, specified with
the dfs.namenode.kerberos.principal property in hdfs-site.xml, but the NameNodes still
have different fully qualified domain names.

Table 2.8. Service Principals

Service Component Mandatory Principal Name

HDFS NameNode nn/$FQDN

HDFS NameNode HTTP HTTP/$FQDN

HDFS SecondaryNameNode nn/$FQDN

HDFS SecondaryNameNode HTTP HTTP/$FQDN

HDFS DataNode dn/$FQDN

MR2 History Server jhs/$FQDN

MR2 History Server HTTP HTTP/$FQDN

YARN ResourceManager rm/$FQDN

YARN NodeManager nm/$FQDN

Oozie Oozie Server oozie/$FQDN

Oozie Oozie HTTP HTTP/$FQDN

Hive Hive Metastore

HiveServer2

hive/$FQDN

Hive WebHCat HTTP/$FQDN

HBase MasterServer hbase/$FQDN

HBase RegionServer hbase/$FQDN

Storm Nimbus server

DRPC daemon

nimbus/$FQDN **

Storm Storm UI daemon

Storm Logviewer daemon

Nodes running process controller
(such as Supervisor)

storm/$FQDN **

Kafka KafkaServer kafka/$FQDN

Hue Hue Interface hue/$FQDN

ZooKeeper ZooKeeper zookeeper/$FQDN

JournalNode Server* JournalNode jn/$FQDN

Gateway Knox knox/$FQDN

* Only required if you are setting up NameNode HA.

hdp-security August 29, 2016

76

** For more information, see Configure Kerberos Authentication for Storm.

For example: To create the principal for a DataNode service, issue this command:

kadmin: addprinc -randkey dn/$datanode-host@$hadoop.realm

2. Extract the related keytab file and place it in the keytab directory of the appropriate
respective components. The default directory is /etc/krb5.keytab.

kadmin: xst -k $keytab_file_name $principal_name/fully.qualified.domain.name

You must use the mandatory names for the $keytab_file_name variable shown in the
following table.

Table 2.9. Service Keytab File Names

Component Principal Name Mandatory Keytab File Name

NameNode nn/$FQDN nn.service.keytab

NameNode HTTP HTTP/$FQDN spnego.service.keytab

SecondaryNameNode nn/$FQDN nn.service.keytab

SecondaryNameNode HTTP HTTP/$FQDN spnego.service.keytab

DataNode dn/$FQDN dn.service.keytab

MR2 History Server jhs/$FQDN nm.service.keytab

MR2 History Server HTTP HTTP/$FQDN spnego.service.keytab

YARN rm/$FQDN rm.service.keytab

YARN nm/$FQDN nm.service.keytab

Oozie Server oozie/$FQDN oozie.service.keytab

Oozie HTTP HTTP/$FQDN spnego.service.keytab

Hive Metastore

HiveServer2

hive/$FQDN hive.service.keytab

WebHCat HTTP/$FQDN spnego.service.keytab

HBase Master Server hbase/$FQDN hbase.service.keytab

HBase RegionServer hbase/$FQDN hbase.service.keytab

Storm storm/$FQDN storm.service.keytab

Kafka kafka/$FQDN kafka.service.keytab

Hue hue/$FQDN hue.service.keytab

ZooKeeper zookeeper/$FQDN zk.service.keytab

Journal Server* jn/$FQDN jn.service.keytab

Knox Gateway** knox/$FQDN knox.service.keytab

* Only required if you are setting up NameNode HA.

** Only required if you are using a Knox Gateway.

For example: To create the keytab files for the NameNode, issue these commands:

kadmin: xst -k nn.service.keytab nn/$namenode-host kadmin: xst -k spnego.
service.keytab HTTP/$namenode-host

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_command-line-installation/content/configure_kerberos_for_storm.html

hdp-security August 29, 2016

77

When you have created the keytab files, copy them to the keytab directory of the
respective service hosts.

3. Verify that the correct keytab files and principals are associated with the correct service
using the klist command. For example, on the NameNode:

klist –k -t /etc/security/nn.service.keytab

Do this on each respective service in your cluster.

For information on manually configuring Apache Atlas in a Kerberos environment, see
Configuring Atlas in a Kerberized Cluster.

2.7.2. Configuring HDP for Kerberos

Configuring HDP for Kerberos has two parts:

• Creating a mapping between service principals and UNIX usernames.

Hadoop uses group memberships of users at various places, such as to determine group
ownership for files or for access control.

A user is mapped to the groups it belongs to using an implementation of the
GroupMappingServiceProvider interface. The implementation is pluggable and is
configured in core-site.xml.

By default Hadoop uses ShellBasedUnixGroupsMapping, which is an implementation
of GroupMappingServiceProvider. It fetches the group membership for a username
by executing a UNIX shell command. In secure clusters, since the usernames are
actually Kerberos principals, ShellBasedUnixGroupsMapping will work only if the
Kerberos principals map to valid UNIX usernames. Hadoop provides a feature that
lets administrators specify mapping rules to map a Kerberos principal to a local UNIX
username.

• Adding information to three main service configuration files.

There are several optional entries in the three main service configuration files that must
be added to enable security on HDP.

This section provides information on configuring HDP for Kerberos.

• Creating Mappings Between Principals and UNIX Usernames [78]

• Adding Security Information to Configuration Files [79]

• Configuring HBase and ZooKeeper [95]

• Configuring Hue [103]

Note

You must adhere to the existing upper and lower case naming conventions in
the configuration file templates.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_command-line-installation/content/configuring_atlas_in_kerberized_cluster.html

hdp-security August 29, 2016

78

2.7.2.1. Creating Mappings Between Principals and UNIX Usernames

HDP uses a rule-based system to create mappings between service principals and their
related UNIX usernames. The rules are specified in the core-site.xml configuration file
as the value to the optional key hadoop.security.auth_to_local.

The default rule is simply named DEFAULT. It translates all principals in your default domain
to their first component. For example, myusername@APACHE.ORG and myusername/
admin@APACHE.ORG both become myusername, assuming your default domain is
APACHE.ORG.

While mapping the Kerberos principals, if the Kerberos principal names are in the
UPPERCASE or CaMeLcase, the names will not be recognized on the Linux machine (as
Linux users are always in lower case). You must add the extra switch "/L" in the rule
definition to force the conversion to lower case.

Creating Rules

To accommodate more complex translations, you can create a hierarchical set of rules to
add to the default. Each rule is divided into three parts: base, filter, and substitution.

• The Base

The base begins with the number of components in the principal name (excluding the
realm), followed by a colon, and the pattern for building the username from the sections
of the principal name. In the pattern section $0 translates to the realm, $1 translates to
the first component, and $2 to the second component.

For example:

[1:$1@$0] translates myusername@APACHE.ORG to myusername@APACHE.ORG
[2:$1] translates myusername/admin@APACHE.ORG to myusername
[2:$1%$2] translates myusername/admin@APACHE.ORG to “myusername%admin"

• The Filter

The filter consists of a regular expression (regex) in a parentheses. It must match the
generated string for the rule to apply.

For example:

(.*%admin) matches any string that ends in %admin
(.*@SOME.DOMAIN) matches any string that ends in @SOME.DOMAIN

• The Substitution

The substitution is a sed rule that translates a regex into a fixed string. For example:

s/@ACME\.COM// removes the first instance of @ACME.DOMAIN
s/@[A-Z]*\.COM// remove the first instance of @ followed by a name followed
 by COM.
s/X/Y/g replace all of X's in the name with Y

hdp-security August 29, 2016

79

2.7.2.1.1. Examples

• If your default realm was APACHE.ORG, but you also wanted to take all principals from
ACME.COM that had a single component joe@ACME.COM, the following rule would do
this:

RULE:[1:$1@$0](.@ACME.COM)s/@.//
DEFAULT

• To translate names with a second component, you could use these rules:

RULE:[1:$1@$0](.@ACME.COM)s/@.//
RULE:[2:$1@$0](.@ACME.COM)s/@.// DEFAULT

• To treat all principals from APACHE.ORG with the extension /admin as admin, your rules
would look like this:

RULE[2:$1%$2@$0](.%admin@APACHE.ORG)s/./admin/
DEFAULT

• To force username conversion from CaMeLcase or UPPERCASE to lowercase, you could
model the following auth_to_local rule examples which have the lowercase switch
added:

RULE:[1:$1]/L
RULE:[2:$1]/L
RULE:[2:$1;$2](^.*;admin$)s/;admin$///L
RULE:[2:$1;$2](^.*;guest$)s/;guest$//g/L

And based on these rules, here are the expected output for the following inputs:

"JOE@FOO.COM" to "joe"
"Joe/root@FOO.COM" to "joe"
"Joe/admin@FOO.COM" to "joe"
"Joe/guestguest@FOO.COM" to "joe"

2.7.2.2. Adding Security Information to Configuration Files

To enable security on HDP, you must add optional information to various configuration
files.

Before you begin, set JSVC_Home in hadoop-env.sh.

• For RHEL/CentOS/Oracle Linux:

export JSVC_HOME=/usr/libexec/bigtop-utils

• For SLES and Ubuntu:

export JSVC_HOME=/usr/hdp/current/bigtop-utils

2.7.2.2.1. core-site.xml

Add the following information to the core-site.xml file on every host in your cluster:

hdp-security August 29, 2016

80

Table 2.10. General core-site.xml, Knox, and Hue

Property Name Property Value Description

hadoop.security.authentication kerberos Set the authentication type for the
cluster. Valid values are: simple or
kerberos.

hadoop.rpc.protection authentication; integrity; privacy This is an [OPTIONAL] setting. If not
set, defaults to authentication.

authentication = authentication
only; the client and server mutually
authenticate during connection setup.

integrity = authentication and integrity;
guarantees the integrity of data
exchanged between client and server
as well as authentication.

privacy = authentication, integrity, and
confidentiality; guarantees that data
exchanged between client and server
is encrypted and is not readable by a
“man in the middle”.

hadoop.security.authorization true Enable authorization for different
protocols.

hadoop.security.auth_to_local The mapping rules. For example:

RULE:[2:$1@$0]
([jt]t@.*EXAMPLE.COM)s/.*/
mapred/ RULE:[2:$1@$0]
([nd]n@.*EXAMPLE.COM)s/.*/
hdfs/ RULE:[2:$1@$0]
(hm@.*EXAMPLE.COM)s/.*/
hbase/ RULE:[2:$1@$0]
(rs@.*EXAMPLE.COM)s/.*/
hbase/ DEFAULT

The mapping from Kerberos principal
names to local OS user names. See
Creating Mappings Between Principals
and UNIX Usernames for more
information.

Following is the XML for these entries:

<property>
 <name>hadoop.security.authentication</name>
 <value>kerberos</value>
 <description> Set the authentication for the cluster.
 Valid values are: simple or kerberos.</description>
</property>

<property>
 <name>hadoop.security.authorization</name>
 <value>true</value>
 <description>Enable authorization for different protocols.</description>
</property>

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[2:$1@$0]([jt]t@.*EXAMPLE.COM)s/.*/mapred/
 RULE:[2:$1@$0]([nd]n@.*EXAMPLE.COM)s/.*/hdfs/
 RULE:[2:$1@$0](hm@.*EXAMPLE.COM)s/.*/hbase/
 RULE:[2:$1@$0](rs@.*EXAMPLE.COM)s/.*/hbase/
 DEFAULT
 </value>
 <description>The mapping from kerberos principal names
 to local OS user names.</description>

hdp-security August 29, 2016

81

</property>

Note

Phoenix Query Server sites: See Configuring Phoenix Query Server for an
additional required property setting in the core-site.xml file to complete
Kerberos security configuration.

When using the Knox Gateway, add the following to the core-site.xml file on the
master nodes host in your cluster:

Table 2.11. core-site.xml Master Node Settings -- Knox Gateway

Property Name Property Value Description

hadoop.proxyuser.knox.groups users Grants proxy privileges for Knox user.

hadoop.proxyuser.knox.hosts $knox_host_FQDN Identifies the Knox Gateway host.

When using Hue, add the following to the core-site.xml file on the master nodes host
in your cluster:

Table 2.12. core-site.xml Master Node Settings -- Hue

Property Name Property Value Description

hue.kerberos.principal.shortname hue Group to which all the Hue users
belong. Use the wild card character to
select multiple groups, for example cli*.

hadoop.proxyuser.hue.groups * Group to which all the Hue users
belong. Use the wild card character to
select multiple groups, for example cli*.

hadoop.proxyuser.hue.hosts *

hadoop.proxyuser.knox.hosts $hue_host_FQDN Identifies the Knox Gateway host.

Following is the XML for both Knox and Hue settings:

<property>
 <name>hadoop.security.authentication</name>
 <value>kerberos</value>
 <description>Set the authentication for the cluster.
 Valid values are: simple or kerberos.</description>
</property>

<property>
 <name>hadoop.security.authorization</name>
 <value>true</value>
 <description>Enable authorization for different protocols.
 </description>
</property>

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[2:$1@$0]([jt]t@.*EXAMPLE.COM)s/.*/mapred/
 RULE:[2:$1@$0]([nd]n@.*EXAMPLE.COM)s/.*/hdfs/
 RULE:[2:$1@$0](hm@.*EXAMPLE.COM)s/.*/hbase/
 RULE:[2:$1@$0](rs@.*EXAMPLE.COM)s/.*/hbase/
 DEFAULT
 </value>
 <description>The mapping from kerberos principal names

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/kerb-config-secure-phoenix.html

hdp-security August 29, 2016

82

 to local OS user names.</description>
</property>

<property>
 <name>hadoop.proxyuser.knox.groups</name>
 <value>users</value>
</property>

<property>
 <name>hadoop.proxyuser.knox.hosts</name>
 <value>Knox.EXAMPLE.COM</value>
</property>

2.7.2.2.1.1. HTTP Cookie Persistence

During HTTP authentication, a cookie is dropped. This is a persistent cookie that is valid
across browser sessions. For clusters that require enhanced security, it is desirable to have a
session cookie that gets deleted when the user closes the browser session.

You can use the following core-site.xml property to specify cookie persistence across
browser sessions.

<property>
 <name>hadoop.http.authentication.cookie.persistent</name>
 <value>true</value>
</property>

The default value for this property is false.

2.7.2.2.2. hdfs-site.xml

To the hdfs-site.xml file on every host in your cluster, you must add the following
information:

Table 2.13. hdfs-site.xml File Property Settings

Property Name Property Value Description

dfs.permissions.enabled true If true, permission checking in HDFS is
enabled. If false, permission checking
is turned off, but all other behavior
is unchanged. Switching from one
parameter value to the other does not
change the mode, owner or group of
files or directories.

dfs.permissions.supergroup hdfs The name of the group of super-users.

dfs.block.access.token.enable true If true, access tokens are used as
capabilities for accessing DataNodes. If
false, no access tokens are checked on
accessing DataNodes.

dfs.namenode.kerberos.principal nn/_HOST@EXAMPLE.COM Kerberos principal name for the
NameNode.

dfs.secondary.namenode.kerberos.
principal

nn/_HOST@EXAMPLE.COM Kerberos principal name for the
secondary NameNode.

dfs.web.authentication.kerberos.
principal

HTTP/_HOST@EXAMPLE.COM The HTTP Kerberos principal used by
Hadoop-Auth in the HTTP endpoint.

The HTTP Kerberos principal MUST
start with 'HTTP/' per Kerberos HTTP
SPNEGO specification.

hdp-security August 29, 2016

83

Property Name Property Value Description

dfs.web.authentication.kerberos.
keytab

/etc/security/keytabs/
spnego.service.keytab

The Kerberos keytab file with the
credentials for the HTTP Kerberos
principal used by Hadoop-Auth in the
HTTP endpoint.

dfs.datanode.kerberos.principal dn/_HOST@EXAMPLE.COM The Kerberos principal that the
DataNode runs as. "_HOST" is replaced
by the real host name.

dfs.namenode.keytab.file /etc/security/keytabs/
nn.service.keytab

Combined keytab file containing the
NameNode service and host principals.

dfs.secondary.namenode.keytab.file /etc/security/keytabs/
nn.service.keytab

Combined keytab file containing the
NameNode service and host principals.
<question?>

dfs.datanode.keytab.file /etc/security/keytabs/
dn.service.keytab

The filename of the keytab file for the
DataNode.

dfs.https.port 50470 The HTTPS port to which the
NameNode binds.

dfs.namenode.https-address Example:

ip-10-111-59-170.ec2.internal:50470

The HTTPS address to which the
NameNode binds.

dfs.datanode.data.dir.perm 750 The permissions that must be set
on the dfs.data.dir directories. The
DataNode will not come up if all
existing dfs.data.dir directories do not
have this setting. If the directories do
not exist, they will be created with this
permission.

dfs.cluster.administrators hdfs ACL for who all can view the default
servlets in the HDFS.

dfs.namenode.kerberos.internal.
spnego.principal

${dfs.web.authentication.kerberos.principal}

dfs.secondary.namenode.kerberos.
internal.spnego.principal

${dfs.web.authentication.kerberos.principal}

Following is the XML for these entries:

<property>
 <name>dfs.permissions</name>
 <value>true</value>
 <description> If "true", enable permission checking in
 HDFS. If "false", permission checking is turned
 off, but all other behavior is
 unchanged. Switching from one parameter value to the other does
 not change the mode, owner or group of files or
 directories. </description>
</property>

<property>
 <name>dfs.permissions.supergroup</name>
 <value>hdfs</value>
 <description>The name of the group of
 super-users.</description>
</property>

<property>
 <name>dfs.namenode.handler.count</name>
 <value>100</value>
 <description>Added to grow Queue size so that more
 client connections are allowed</description>

hdp-security August 29, 2016

84

</property>

<property>
 <name>ipc.server.max.response.size</name>
 <value>5242880</value>
</property>

<property>
 <name>dfs.block.access.token.enable</name>
 <value>true</value>
 <description> If "true", access tokens are used as capabilities
 for accessing datanodes. If "false", no access tokens are checked on
 accessing datanodes. </description>
</property>

<property>
 <name>dfs.namenode.kerberos.principal</name>
 <value>nn/_HOST@EXAMPLE.COM</value>
 <description> Kerberos principal name for the
 NameNode </description>
</property>

<property>
 <name>dfs.secondary.namenode.kerberos.principal</name>
 <value>nn/_HOST@EXAMPLE.COM</value>
 <description>Kerberos principal name for the secondary NameNode.
 </description>
</property>

<property>
 <!--cluster variant -->
 <name>dfs.secondary.http.address</name>
 <value>ip-10-72-235-178.ec2.internal:50090</value>
 <description>Address of secondary namenode web server</description>
</property>

<property>
 <name>dfs.secondary.https.port</name>
 <value>50490</value>
 <description>The https port where secondary-namenode
 binds</description>
</property>

<property>
 <name>dfs.web.authentication.kerberos.principal</name>
 <value>HTTP/_HOST@EXAMPLE.COM</value>
 <description> The HTTP Kerberos principal used by Hadoop-Auth in the HTTP
 endpoint.
 The HTTP Kerberos principal MUST start with 'HTTP/' per Kerberos HTTP
 SPNEGO specification.
 </description>
</property>

<property>
 <name>dfs.web.authentication.kerberos.keytab</name>
 <value>/etc/security/keytabs/spnego.service.keytab</value>
 <description>The Kerberos keytab file with the credentials for the HTTP
 Kerberos principal used by Hadoop-Auth in the HTTP endpoint.
 </description>
</property>

hdp-security August 29, 2016

85

<property>
 <name>dfs.datanode.kerberos.principal</name>
 <value>dn/_HOST@EXAMPLE.COM</value>
 <description>
 The Kerberos principal that the DataNode runs as. "_HOST" is replaced by
 the real
 host name.
 </description>
</property>

<property>
 <name>dfs.namenode.keytab.file</name>
 <value>/etc/security/keytabs/nn.service.keytab</value>
 <description>
 Combined keytab file containing the namenode service and host
 principals.
 </description>
</property>

<property>
 <name>dfs.secondary.namenode.keytab.file</name>
 <value>/etc/security/keytabs/nn.service.keytab</value>
 <description>
 Combined keytab file containing the namenode service and host
 principals.
 </description>
</property>

<property>
 <name>dfs.datanode.keytab.file</name>
 <value>/etc/security/keytabs/dn.service.keytab</value>
 <description>
 The filename of the keytab file for the DataNode.
 </description>
</property>

<property>
 <name>dfs.https.port</name>
 <value>50470</value>
 <description>The https port where namenode
 binds</description>
</property>

<property>
 <name>dfs.https.address</name>
 <value>ip-10-111-59-170.ec2.internal:50470</value>
 <description>The https address where namenode binds</description>
</property>

<property>
 <name>dfs.datanode.data.dir.perm</name>
 <value>750</value>
 <description>The permissions that should be there on
 dfs.data.dir directories. The datanode will not come up if the
 permissions are different on existing dfs.data.dir directories. If
 the directories don't exist, they will be created with this
 permission.</description>
</property>

hdp-security August 29, 2016

86

<property>
 <name>dfs.access.time.precision</name>
 <value>0</value>
 <description>The access time for HDFS file is precise upto this
 value.The default value is 1 hour. Setting a value of 0
 disables access times for HDFS.
 </description>
</property>

<property>
 <name>dfs.cluster.administrators</name>
 <value> hdfs</value>
 <description>ACL for who all can view the default
 servlets in the HDFS</description>
</property>

<property>
 <name>ipc.server.read.threadpool.size</name>
 <value>5</value>
 <description></description>
</property>

<property>
 <name>dfs.namenode.kerberos.internal.spnego.principal</name>
 <value>${dfs.web.authentication.kerberos.principal}</value>
</property>

<property>
 <name>dfs.secondary.namenode.kerberos.internal.spnego.principal</name>
 <value>${dfs.web.authentication.kerberos.principal}</value>
</property>

In addition, you must set the user on all secure DataNodes:

export HADOOP_SECURE_DN_USER=hdfs
export HADOOP_SECURE_DN_PID_DIR=/grid/0/var/run/hadoop/$HADOOP_SECURE_DN_USER

2.7.2.2.3. yarn-site.xml

You must add the following information to the yarn-site.xml file on every host in your
cluster:

Table 2.14. yarn-site.xml Property Settings

Property Value Description

yarn.resourcemanager.principal yarn/localhost@EXAMPLE.COM The Kerberos principal for the
ResourceManager.

yarn.resourcemanager.keytab /etc/krb5.keytab The keytab for the ResourceManager.

yarn.nodemanager.principal yarn/localhost@EXAMPLE.COM The Kerberos principal for the
NodeManager.

yarn.nodemanager.keytab /etc/krb5.keytab The keytab for the NodeManager.

yarn.nodemanager.container-
executor.class

org.apache.hadoop.yarn.server.
nodemanager.LinuxContainer
Executor

The class that will execute (launch) the
containers.

yarn.nodemanager.linux-container-
executor.path

hadoop-3.0.0-SNAPSHOT/bin/
container-executor

The path to the Linux container
executor.

yarn.nodemanager.linux-container-
executor.group

hadoop A special group (e.g., hadoop) with
executable permissions for the
container executor, of which the

hdp-security August 29, 2016

87

Property Value Description

NodeManager UNIX user is the group
member and no ordinary application
user is. If any application user belongs
to this special group, security will
be compromised. This special group
name should be specified for the
configuration property.

yarn.timeline-service.principal yarn/localhost@EXAMPLE.COM The Kerberos principal for the Timeline
Server.

yarn.timeline-service.keytab /etc/krb5.keytab The Kerberos keytab for the Timeline
Server.

yarn.resourcemanager.webapp.
delegation-token-auth-filter.enabled

true Flag to enable override of the default
Kerberos authentication filter with
the RM authentication filter to allow
authentication using delegation tokens
(fallback to Kerberos if the tokens are
missing). Only applicable when the
http authentication type is Kerberos.

yarn.timeline-service.http-
authentication.type

kerberos Defines authentication used
for the Timeline Server HTTP
endpoint. Supported values
are: simple | kerberos |
$AUTHENTICATION_HANDLER
_CLASSNAME

yarn.timeline-service.http-
authentication.kerberos.principal

HTTP/localhost@EXAMPLE.COM The Kerberos principal to be used for
the Timeline Server HTTP endpoint.

yarn.timeline-service.http-
authentication.kerberos.keytab

authentication.kerberos.keytab /etc/
krb5.keytab

The Kerberos keytab to be used for the
Timeline Server HTTP endpoint.

Following is the XML for these entries:

<property>
 <name>yarn.resourcemanager.principal</name>
 <value>yarn/localhost@EXAMPLE.COM</value>
</property>

<property>
 <name>yarn.resourcemanager.keytab</name>
 <value>/etc/krb5.keytab</value>
</property>

<property>
 <name>yarn.nodemanager.principal</name>
 <value>yarn/localhost@EXAMPLE.COM</value>
</property>

<property>
 <name>yarn.nodemanager.keytab</name>
 <value>/etc/krb5.keytab</value>
</property>

<property>
 <name>yarn.nodemanager.container-executor.class</name>
 <value>org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor</
value>
</property>

<property>
 <name>yarn.nodemanager.linux-container-executor.path</name>

hdp-security August 29, 2016

88

 <value>hadoop-3.0.0-SNAPSHOT/bin/container-executor</value>
</property>

<property>
 <name>yarn.nodemanager.linux-container-executor.group</name>
 <value>hadoop</value>
</property>

<property>
 <name>yarn.timeline-service.principal</name>
 <value>yarn/localhost@EXAMPLE.COM</value>
</property>

<property>
 <name>yarn.timeline-service.keytab</name>
 <value>/etc/krb5.keytab</value>
</property>

<property>
 <name>yarn.resourcemanager.webapp.delegation-token-auth-filter.enabled</
name>
 <value>true</value>
</property>

<property>
 <name>yarn.timeline-service.http-authentication.type</name>
 <value>kerberos</value>
</property>

<property>
 <name>yarn.timeline-service.http-authentication.kerberos.principal</name>
 <value>HTTP/localhost@EXAMPLE.COM</value>
</property>

<property>
 <name>yarn.timeline-service.http-authentication.kerberos.keytab</name>
 <value>/etc/krb5.keytab</value>
</property>

2.7.2.2.4. mapred-site.xml

You must add the following information to the mapred-site.xml file on every host in
your cluster:

Table 2.15. mapred-site.xml Property Settings

Property Name Property Value Description

mapreduce.jobhistory.keytab /etc/security/keytabs/
jhs.service.keytab

Kerberos keytab file for the
MapReduce JobHistory Server.

mapreduce.jobhistory.principal jhs/_HOST@TODO-KERBEROS-
DOMAIN

Kerberos principal name for the
MapReduce JobHistory Server.

mapreduce.jobhistory.webapp.address TODO-JOBHISTORYNODE-
HOSTNAME:19888

MapReduce JobHistory Server Web UI
host:port

mapreduce.jobhistory.webapp.https.
address

TODO-JOBHISTORYNODE-
HOSTNAME:19889

MapReduce JobHistory Server HTTPS
Web UI host:port

mapreduce.jobhistory.webapp.spnego-
keytab-file

/etc/security/keytabs/
spnego.service.keytab

Kerberos keytab file for the spnego
service.

hdp-security August 29, 2016

89

Property Name Property Value Description

mapreduce.jobhistory.webapp.spnego-
principal

HTTP/_HOST@TODO-KERBEROS-
DOMAIN

Kerberos principal name for the
spnego service.

Following is the XML for these entries:

<property>
 <name>mapreduce.jobhistory.keytab</name>
 <value>/etc/security/keytabs/jhs.service.keytab</value>
</property>

<property>
 <name>mapreduce.jobhistory.principal</name>
 <value>jhs/_HOST@TODO-KERBEROS-DOMAIN</value>
</property>

<property>
 <name>mapreduce.jobhistory.webapp.address</name>
 <value>TODO-JOBHISTORYNODE-HOSTNAME:19888</value>
</property>

<property>
 <name>mapreduce.jobhistory.webapp.https.address</name>
 <value>TODO-JOBHISTORYNODE-HOSTNAME:19889</value>
</property>

<property>
 <name>mapreduce.jobhistory.webapp.spnego-keytab-file</name>
 <value>/etc/security/keytabs/spnego.service.keytab</value>
</property>

<property>
 <name>mapreduce.jobhistory.webapp.spnego-principal</name>
 <value>HTTP/_HOST@TODO-KERBEROS-DOMAIN</value>
</property>

2.7.2.2.5. hbase-site.xml

For HBase to run on a secured cluster, HBase must be able to authenticate itself
to HDFS. Add the following information to the hbase-site.xml file on your
HBase server. However, include the phoenix.queryserver.kerberos.principal and
phoenix.queryserver.kerberos.keytab property entries only if you will be configuring
Kerberos authentication for a Phoenix Query Server.

Note

There are no default values for the property settings. The entries in the "Sample
Setting" column are only examples.

Table 2.16. hbase-site.xml Property Settings for HBase Server and
Phoenix Query Server

Property Name Sample Setting Description

hbase.master.keytab.file /etc/security/keytabs/
hbase.service.keytab

The keytab for the HMaster service
principal.

hbase.master.kerberos.principal hbase/_HOST@EXAMPLE.COM The Kerberos principal name that
should be used to run the HMaster
process. If _HOST is used as the

hdp-security August 29, 2016

90

Property Name Sample Setting Description

hostname portion, it will be replaced
with the actual hostname of the
running instance.

hbase.regionserver.keytab.file /etc/security/keytabs/
hbase.service.keytab

The keytab for the HRegionServer
service principal.

hbase.regionserver.kerberos.principal hbase/_HOST@EXAMPLE.COM The Kerberos principal name
that should be used to run the
HRegionServer process. If _HOST is
used as the hostname portion, it will be
replaced with the actual hostname of
the running instance.

hbase.superuser hbase A comma-separated list of users or
groups that are allowed full privileges,
regardless of stored ACLs, across the
cluster. Only used when HBase security
is enabled.

hbase.coprocessor.region.classes Setting 1:org.apache.hadoop.hbase.

security.token.TokenProvider,

Setting 2:org.apache.hadoop.hbase.

security.access.SecureBulkLoadEndpoint,

Setting 3:org.apache.hadoop.hbase.

security.access.AccessController

A comma-separated list of coprocessors
that are loaded by default on all tables.
For any implemented coprocessor
methods, the listed classes will be
called in order. After implementing
your own coprocessor, add the class
to HBase's classpath and add the fully
qualified class name here. Coprocessors
can also be loaded programmatically
using HTableDescriptor.

hbase.coprocessor.master.classes org.apache.hadoop.hbase.security.

access.AccessController

A comma-separated list of
MasterObserver coprocessors that are
loaded by the active HMaster process.
For any implemented coprocessor
methods, the listed classes will be
called in order. After implementing
your own MasterObserver, add the
class to HBase's classpath and add the
fully qualified class name here.

hbase.coprocessor.regionserver.classes org.apache.hadoop.hbase.security.

access.AccessController

A comma-separated list of
RegionServerObserver coprocessors
that are loaded by the HRegionServer
processes. For any implemented
coprocessor methods, the listed
classes will be called in order.
After implementing your own
RegionServerObserver, add the class to
the HBase classpath and fully qualified
class name here.

phoenix.queryserver.kerberos.principal HTTP/_HOST@EXAMPLE.COM The Kerberos principal for the
Phoenix Query Server process. The
Phoenix Query Server is an optional
component; this property only needs
to be set when the query server is
installed.

phoenix.queryserver.kerberos.keytab /etc/security/keytabs/
spnego.service.keytab

The path to the Kerberos keytab
file for the Phoenix Query Server
process. The Phoenix Query Server is an
optional component; this property only
needs to be set when the query server
is installed.

hdp-security August 29, 2016

91

Tip

Phoenix Query Server users: See Configuring Phoenix Query Server for the
required setting in the core-site.xml file to complete Kerberos setup of the
query server.

The following lists the XML for the hbase-site.xml file entries:

<property>
 <name>hbase.master.keytab.file</name>
 <value>/etc/security/keytabs/hbase.service.keytab</value>
 <description>Full path to the Kerberos keytab file to use for logging
 in the configured HMaster server principal.
 </description>
</property>

<property>
 <name>hbase.master.kerberos.principal</name>
 <value>hm/_HOST@EXAMPLE.COM</value>
 <description>Ex. "hbase/_HOST@EXAMPLE.COM".
 The Kerberos principal name that should be used to run the HMaster
 process. The principal name should be in the form: user/hostname@DOMAIN.
 If "_HOST" is used as the hostname portion, it will be replaced with
 the actual hostname of the running instance.
 </description>
</property>

<property>
 <name>hbase.regionserver.keytab.file</name>
 <value>/etc/security/keytabs/hbase.service.keytab</value>
 <description>Full path to the kerberos keytab file to use for logging
 in the configured HRegionServer server principal.
 </description>
</property>

<property>
 <name>hbase.regionserver.kerberos.principal</name>
 <value>hbase/_HOST@EXAMPLE.COM</value>
 <description>Ex. "hbase/_HOST@EXAMPLE.COM".
 The kerberos principal name that
 should be used to run the HRegionServer process. The
 principal name should be in the form:
 user/hostname@DOMAIN. If _HOST
 is used as the hostname portion, it will be replaced
 with the actual hostname of the running
 instance. An entry for this principal must exist
 in the file specified in hbase.regionserver.keytab.file
 </description>
</property>

<!--Additional configuration specific to HBase security -->

<property>
 <name>hbase.superuser</name>
 <value>hbase</value>
 <description>List of users or groups (comma-separated), who are
 allowed full privileges, regardless of stored ACLs, across the cluster.
 Only used when HBase security is enabled.
 </description>

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/kerb-config-secure-phoenix.html

hdp-security August 29, 2016

92

</property>

<property>
 <name>hbase.coprocessor.region.classes</name>
 <value>org.apache.hadoop.hbase.security.token.TokenProvider,
 org.apache.hadoop.hbase.security.access.SecureBulkLoadEndpoint,
 org.apache.hadoop.hbase.security.access.AccessController</value>
 <description>A comma-separated list of coprocessors that are loaded
 by default on all tables. For any override coprocessor method,
 these classes will be called in order. After implementing your
 own coprocessor, just put it in HBase's classpath and add the
 fully qualified class name here. A coprocessor can also be loaded on
 demand by setting HTableDescriptor.
 </description>
</property>

<property>
 <name>hbase.coprocessor.master.classes</name>
 <value>org.apache.hadoop.hbase.security.access.AccessController</value>
 <description>A comma-separated list of MasterObserver coprocessors that
 are loaded by the active HMaster process. For any implemented coprocessor
 methods, the listed classes will be called in order. After implementing
 your
 own MasterObserver, add the class to HBase's classpath and add the fully
 qualified class name here.
 </description>
</property>

<property>
 <name>hbase.coprocessor.regionserver.classes</name>
 <value>org.apache.hadoop.hbase.security.access.AccessController</value>
 <description>A comma-separated list of RegionServerObserver coprocessors
 that are loaded by the HRegionServer processes. For any implemented
 coprocessor methods, the listed classes will be called in order. After
 implementing your own RegionServerObserver, add the class to the HBase
 classpath and fully qualified class name here.
 </description>
</property>
<property>
 <name>phoenix.queryserver.kerberos.principal</name>
 <value>HTTP/_HOST@EXAMPLE.COM</value>
 <description>The Kerberos principal for the Phoenix Query Server
 process. The Phoenix Query Server is an optional component; this
 property only needs to be set when the query server is installed.
 </description>
</property>

<property>
 <name>phoenix.queryserver.kerberos.keytab</name>
 <value>/etc/security/keytabs/spnego.service.keytab</value>
 <description>The path to the Kerberos keytab file for the
 Phoenix Query Server process. The Phoenix Query Server is an optional
 component; this property only needs to be set when the query server
 is installed.</description>
</property>

2.7.2.2.6. hive-site.xml

HiveServer2 supports Kerberos authentication for all clients.

hdp-security August 29, 2016

93

Add the following information to the hive-site.xml file on every host in your cluster:

Table 2.17. hive-site.xml Property Settings

Property Name Description

hive.metastore.sasl.enabled If true, the Metastore Thrift interface will be secured with
SASL and clients must authenticate with Kerberos.

hive.metastore.kerberos.keytab.file The keytab for the Metastore Thrift service principal.

hive.metastore.kerberos.principal The service principal for the Metastore Thrift server. If
_HOST is used as the hostname portion, it will be replaced
with the actual hostname of the running instance.

Following is the XML for these entries:

<property>
 <name>hive.metastore.sasl.enabled</name>
 <value>true</value>
 <description>If true, the metastore thrift interface will be secured with
 SASL.
 Clients must authenticate with Kerberos.</description>
</property>

<property>
 <name>hive.metastore.kerberos.keytab.file</name>
 <value>/etc/security/keytabs/hive.service.keytab</value>
 <description>The path to the Kerberos Keytab file containing the
 metastore thrift server's service principal.
 </description>
</property>

<property>
 <name>hive.metastore.kerberos.principal</name>
 <value>hive/_HOST@EXAMPLE.COM</value>
 <description>The service principal for the metastore thrift server. The
 special string _HOST will be replaced automatically with the correct
 hostname.</description>
</property>

2.7.2.2.7. oozie-site.xml

To the oozie-site.xml file, add the following information:

Table 2.18. oozie-site.xml Property Settings

Property Name Property Value Description

oozie.service.AuthorizationService.
security.enabled

true Specifies whether security (user name/
admin role) is enabled or not. If it is
disabled any user can manage the
Oozie system and manage any job.

oozie.service.HadoopAccessorService.
kerberos.enabled

true Indicates if Oozie is configured to use
Kerberos.

local.realm EXAMPLE.COM Kerberos Realm used by Oozie and
Hadoop. Using local.realm to be
aligned with Hadoop configuration.

oozie.service.HadoopAccessorService.
keytab.file

/etc/security/keytabs/
oozie.service.keytab

The keytab for the Oozie service
principal.

oozie.service.HadoopAccessorService.
kerberos.principaloozie/
_HOSTl@EXAMPLE.COM

oozie/_HOSTl@EXAMPLE.COM Kerberos principal for Oozie service.

hdp-security August 29, 2016

94

Property Name Property Value Description

oozie.authentication.type kerberos

oozie.authentication.kerberos.
principal

HTTP/_HOST@EXAMPLE.COM Whitelisted job tracker for Oozie
service.

oozie.authentication.kerberos.keytab /etc/security/keytabs/
spnego.service.keytab

Location of the Oozie user keytab file.

oozie.service.HadoopAccessorService.
nameNode.whitelist

oozie.authentication.kerberos.
name.rules

RULE:[2:$1@$0]
([jt]t@.*EXAMPLE.COM)s/.*/
mapred/ RULE:[2:$1@$0]
([nd]n@.*EXAMPLE.COM)s/.*/
hdfs/ RULE:[2:$1@$0]
(hm@.*EXAMPLE.COM)s/.*/
hbase/ RULE:[2:$1@$0]
(rs@.*EXAMPLE.COM)s/.*/hbase/
DEFAULT

The mapping from Kerberos principal
names to local OS user names. See
Creating Mappings Between Principals
and UNIX Usernames for more
information.

oozie.service.ProxyUserService.
proxyuser.knox.groups

users Grant proxy privileges to the Knox
user. Note only required when using a
Knox Gateway.

oozie.service.ProxyUserService.
proxyuser.knox.hosts

$knox_host_FQDN Identifies the Knox Gateway. Note only
required when using a Knox Gateway.

2.7.2.2.8. webhcat-site.xml

To the webhcat-site.xml file, add the following information:

Table 2.19. webhcat-site.xml Property Settings

Property Name Property Value Description

templeton.kerberos.principal HTTP/_HOST@EXAMPLE.COM

templeton.kerberos.keytab /etc/security/keytabs/
spnego.service.keytab

templeton.kerberos.secret secret

hadoop.proxyuser.knox.groups users Grant proxy privileges to the Knox
user. Note only required when using a
Knox Gateway.

hadoop.proxyuser.knox.hosts $knox_host_FQDN Identifies the Knox Gateway. Note only
required when using a Knox Gateway.

2.7.2.2.9. limits.conf

Adjust the Maximum Number of Open Files and Processes

In a secure cluster, if the DataNodes are started as the root user, JSVC downgrades the
processing using setuid to hdfs. However, the ulimit is based on the ulimit of the root user,
and the default ulimit values assigned to the root user for the maximum number of open
files and processes may be too low for a secure cluster. This can result in a “Too Many Open
Files” exception when the DataNodes are started.

Therefore, when configuring a secure cluster you should increase the following root ulimit
values:

• nofile: The maximum number of open files. Recommended value: 32768

• nproc: The maximum number of processes. Recommended value: 65536

hdp-security August 29, 2016

95

To set system-wide ulimits to these values, log in as root and add the following lines to the
/etc/security/limits.conf file on every host in your cluster:

* - nofile 32768
* - nproc 65536

To set only the root user ulimits to these values, log in as root and add the following lines
to the /etc/security/limits.conf file.

root - nofile 32768
root - nproc 65536

You can use the ulimit -a command to view the current settings:

[root@node-1 /]# ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 14874
max locked memory (kbytes, -l) 64
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 10240
cpu time (seconds, -t) unlimited
max user processes (-u) 14874
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

You can also use the ulimit command to dynamically set these limits until the next
reboot. This method sets a temporary value that will revert to the settings in the /etc/
security/limits.conf file after the next reboot, but it is useful for experimenting
with limit settings. For example:

[root@node-1 /]# ulimit -n 32768

The updated value can then be displayed:

[root@node-1 /]# ulimit -n
32768

2.7.2.3. Configuring HBase and ZooKeeper

Use the following instructions to set up secure HBase and ZooKeeper:

1. Configure HBase Master [96]

2. Create JAAS configuration files [98]

3. Start HBase and ZooKeeper services [99]

4. Configure secure client side access for HBase [100]

5. Optional: Configure client-side operation for secure operation - Thrift Gateway [101]

6. Optional: Configure client-side operation for secure operation - REST Gateway [101]

hdp-security August 29, 2016

96

7. Configure HBase for Access Control Lists (ACL) [102]

2.7.2.3.1. Configure HBase Master

Edit $HBASE_CONF_DIR/hbase-site.xml file on your HBase Master server to add
the following information ($HBASE_CONF_DIR is the directory to store the HBase
configuration files. For example, /etc/hbase/conf) :

Note

There are no default values. The following are all examples.

 <property>
 <name>hbase.master.keytab.file</name>
 <value>/etc/security/keytabs/hbase.service.keytab</value>
 <description>Full path to the Kerberos keytab file to use
 for logging in the configured HMaster server principal.

 </description>
</property>

<property>
 <name>hbase.master.kerberos.principal</name>
 <value>hbase/_HOST@EXAMPLE.COM</value>
 <description>Ex. "hbase/_HOST@EXAMPLE.COM".
 The Kerberos principal name that should be used to run the HMaster
 process.
 The principal name should be in the form: user/hostname@DOMAIN.
 If "_HOST" is used as the hostname portion,
 it will be replaced with the actual hostname of the running instance.

 </description>
</property>

<property>
 <name>hbase.regionserver.keytab.file</name>
 <value>/etc/security/keytabs/hbase.service.keytab</value>
 <description>Full path to the Kerberos keytab file to use for logging
 in the configured HRegionServer server principal.
 </description>
</property>

<property>
 <name>hbase.regionserver.kerberos.principal</name>
 <value>hbase/_HOST@EXAMPLE.COM</value>
 <description>Ex. "hbase/_HOST@EXAMPLE.COM".
The Kerberos principal name that
should be used to run the HRegionServer process.
The
principal name should be in the form:
user/hostname@DOMAIN.
If _HOST
is used as the hostname portion, it will be replaced
with the actual hostname of the running
instance.
An entry for this principal must exist
in the file specified in hbase.regionserver.keytab.file
 </description>
</property>

hdp-security August 29, 2016

97

<!--Additional configuration specific to HBase security -->

<property>
 <name>hbase.superuser</name>
 <value>hbase</value>
 <description>List of users or groups (comma-separated), who are
 allowed full privileges, regardless of stored ACLs, across the cluster.
Only used when HBase security is enabled.
 </description>
</property>

<property>
 <name>hbase.coprocessor.region.classes</name>
 <value>org.apache.hadoop.hbase.security.token.TokenProvider,
org.apache.hadoop.hbase.security.access.SecureBulkLoadEndpoint,
org.apache.hadoop.hbase.security.access.AccessController </value>
 <description>A comma-separated list of Coprocessors that are loaded by
 default on all tables.
 </description>
</property>

<property>
 <name>hbase.security.authentication</name>
 <value>kerberos</value>

</property>

<property>
 <name>hbase.rpc.engine</name>
 <value>org.apache.hadoop.hbase.ipc.SecureRpcEngine</value>

</property>

<property>
 <name>hbase.security.authorization</name>
 <value>true</value>
 <description>Enables HBase authorization.
Set the value of this property to false to disable HBase authorization.
 </description>

</property>

<property>
 <name>hbase.coprocessor.master.classes</name>
 <value>org.apache.hadoop.hbase.security.access.AccessController</
value>

</property>

<property>
 <name>hbase.bulkload.staging.dir</name>
 <value>/apps/hbase/staging</value>
 <description>Directory in the default filesystem,
owned by the hbase user, and has permissions(-rwx--x--x, 711) </description>

</property>

For more information on bulk loading in secure mode, see HBase Secure BulkLoad. Note
that the hbase.bulkload.staging.dir is created by HBase.

http://hbase.apache.org/book/hbase.secure.bulkload.html

hdp-security August 29, 2016

98

2.7.2.3.2. Create JAAS configuration files

1. Create the following JAAS configuration files on the HBase Master, RegionServer, and
HBase client host machines.

These files must be created under the $HBASE_CONF_DIR directory:

where $HBASE_CONF_DIR is the directory to store the HBase configuration files. For
example, /etc/hbase/conf.

• On each machine running an HBase server, create the hbase-server.jaas file
under the /etc/hbase/conf directory. HBase servers include the HMaster and
RegionServer. In this file, add the following content:

Client {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=true
storeKey=true
useTicketCache=false
keyTab="/etc/security/keytabs/hbase.service.keytab"
principal="hbase/$fully.qualified.domain.name";
};

• On HBase client machines, create the hbase-client.jaas file under the /etc/
hbase/conf directory and add the following content:

Client {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=false
useTicketCache=true;
};

2. Create the following JAAS configuration files on the ZooKeeper Server and client host
machines.

These files must be created under the $ZOOKEEPER_CONF_DIR directory, where
$ZOOKEEPER_CONF_DIR is the directory to store the HBase configuration files. For
example, /etc/zookeeper/conf:

• On ZooKeeper server host machines, create the zookeeper-server.jaas file
under the /etc/zookeeper/conf directory and add the following content:

Server {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=true
storeKey=true
useTicketCache=false
keyTab="/etc/security/keytabs/zookeeper.service.keytab"
principal="zookeeper/$ZooKeeper.Server.hostname";
};

• On ZooKeeper client host machines, create the zookeeper-client.jaas file under
the /etc/zookeeper/conf directory and add the following content:

hdp-security August 29, 2016

99

Client {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=false
useTicketCache=true;
};

3. Edit the hbase-env.sh file on your HBase server to add the following information:

export HBASE_OPTS ="-Djava.security.auth.login.config=
$HBASE_CONF_DIR/hbase-client.jaas"
export HBASE_MASTER_OPTS ="-Djava.security.auth.login.config=
$HBASE_CONF_DIR/hbase-server.jaas"
export HBASE_REGIONSERVER_OPTS="-Djava.security.auth.login.config=
$HBASE_CONF_DIR/hbase-server.jaas"

where HBASE_CONF_DIR is the HBase configuration directory. For example, /etc/
hbase/conf.

4. Edit zoo.cfg file on your ZooKeeper server to add the following information:

authProvider.1=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
jaasLoginRenew=3600000
kerberos.removeHostFromPrincipal=true
kerberos.removeRealmFromPrincipal=true

5. Edit zookeeper-env.sh file on your ZooKeeper server to add the following
information:

export SERVER_JVMFLAGS ="-Djava.security.auth.login.
config=$ZOOKEEPER_CONF_DIR/zookeeper-server.jaas"
export CLIENT_JVMFLAGS ="-Djava.security.auth.login.
config=$ZOOKEEPER_CONF_DIR/zookeeper-client.jaas"

where $ZOOKEEPER_CONF_DIR is the ZooKeeper configuration directory. For example,
/etc/zookeeper/conf.

2.7.2.3.3. Start HBase and ZooKeeper services

Start the HBase and ZooKeeper services using the instructions provided in the HDP
Reference Manual, Starting HDP Services.

If the configuration is successful, you should see the following in your ZooKeeper server
logs:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_reference/content/starting_hdp_services.html

hdp-security August 29, 2016

100

11/12/05 22:43:39 INFO zookeeper.Login: successfully logged in.
11/12/05 22:43:39 INFO server.NIOServerCnxnFactory: binding to port 0.0.0.0/0.
0.0.0:2181
11/12/05 22:43:39 INFO zookeeper.Login: TGT refresh thread started.
11/12/05 22:43:39 INFO zookeeper.Login: TGT valid starting at: Mon Dec
 05 22:43:39 UTC 2011
11/12/05 22:43:39 INFO zookeeper.Login: TGT expires: Tue Dec
 06 22:43:39 UTC 2011
11/12/05 22:43:39 INFO zookeeper.Login: TGT refresh sleeping until: Tue Dec 06
 18:36:42 UTC 2011
..
11/12/05 22:43:59 INFO auth.SaslServerCallbackHandler:
 Successfully authenticated client: authenticationID=hbase/ip-10-166-175-249.
us-west-1.compute.internal@HADOOP.LOCALDOMAIN;
 authorizationID=hbase/ip-10-166-175-249.us-west-1.compute.internal@HADOOP.
LOCALDOMAIN.
11/12/05 22:43:59 INFO auth.SaslServerCallbackHandler: Setting authorizedID:
 hbase
11/12/05 22:43:59 INFO server.ZooKeeperServer: adding SASL authorization for
 authorizationID: hbase

2.7.2.3.4. Configure secure client side access for HBase

HBase configured for secure client access is expected to be running on top of a secure HDFS
cluster. HBase must be able to authenticate to HDFS services.

1. Provide a Kerberos principal to the HBase client user using the instructions provided
here.

• Option I: Provide Kerberos principal to normal HBase clients.

For normal HBase clients, Hortonworks recommends setting up a password to the
principal.

• Set maxrenewlife.

The client principal's maxrenewlife should be set high enough so that it allows
enough time for the HBase client process to complete. Client principals are not
renewed automatically.

For example, if a user runs a long-running HBase client process that takes at most
three days, we might create this user's principal within kadmin with the following
command:

addprinc -maxrenewlife 3days

• Option II: Provide Kerberos principal to long running HBase clients.

a. Set-up a keytab file for the principal and copy the resulting keytab files to where
the client daemon will execute.

Ensure that you make this file readable only to the user account under which the
daemon will run.

2. On every HBase client, add the following properties to the $HBASE_CONF_DIR/
hbase-site.xml file:

hdp-security August 29, 2016

101

<property>
 <name>hbase.security.authentication</name>
 <value>kerberos</value>
</property>

Note

The client environment must be logged in to Kerberos from KDC or keytab
via the kinit command before communication with the HBase cluster
is possible. Note that the client will not be able to communicate with the
cluster if the hbase.security.authentication property in the client-
and server-side site files fails to match.

<property>
 <name>hbase.rpc.engine</name>
 <value>org.apache.hadoop.hbase.ipc.SecureRpcEngine</value>

</property>

2.7.2.3.5. Optional: Configure client-side operation for secure operation - Thrift
Gateway

Add the following to the $HBASE_CONF_DIR/hbase-site.xml file for every Thrift
gateway:

 <property>
 <name>hbase.thrift.keytab.file</name>
 <value>/etc/hbase/conf/hbase.keytab</value>
 </property>
 <property>
 <name>hbase.thrift.kerberos.principal</name>
 <value>$USER/_HOST@HADOOP.LOCALDOMAIN</value>
 </property>

Substitute the appropriate credential and keytab for $USER and $KEYTAB respectively.

The Thrift gateway will authenticate with HBase using the supplied credential. No
authentication will be performed by the Thrift gateway itself. All client access via the Thrift
gateway will use the Thrift gateway's credential and have its privilege.

2.7.2.3.6. Optional: Configure client-side operation for secure operation - REST
Gateway

Add the following to the $HBASE_CONF_DIR/hbase-site.xml file for every REST
gateway:

 <property>
 <name>hbase.rest.keytab.file</name>
 <value>$KEYTAB</value>
 </property>
 <property>
 <name>hbase.rest.kerberos.principal</name>
 <value>$USER/_HOST@HADOOP.LOCALDOMAIN</value>
 </property>

hdp-security August 29, 2016

102

Substitute the appropriate credential and keytab for $USER and $KEYTAB respectively.

The REST gateway will authenticate with HBase using the supplied credential. No
authentication will be performed by the REST gateway itself. All client access via the REST
gateway will use the REST gateway's credential and have its privilege.

2.7.2.3.7. Configure HBase for Access Control Lists (ACL)

Use the following instructions to configure HBase for ACL:

1. Open kinit as HBase user.

a. Create a keytab for principal hbase@REALM and store it in the
hbase.headless.keytab file. See instructions provided here for creating principal
and keytab file.

b. Open kinit as HBase user. Execute the following command on your HBase Master:

kinit -kt hbase.headless.keytab hbase

2. Start the HBase shell. On the HBase Master host machine, execute the following
command:

hbase shell

3. Set ACLs using HBase shell:

grant '$USER', '$permissions'

where

• $USER is any user responsible for create/update/delete operations in HBase.

Note

You must set the ACLs for all those users who will be responsible for
create/update/delete operations in HBase.

• $permissions is zero or more letters from the set "RWCA": READ('R'), WRITE('W'),
CREATE('C'), ADMIN('A').

2.7.2.4. Configuring Phoenix Query Server

The HBase configuration provides most of the settings that enable secure Kerberos
environments for Phoenix. However, there are additional configuration properties that
complete the setup of Kerberos security for the Phoenix Query Server.

Prerequisite: The value of the hbase.security.authentication property in the
$HBASE_CONF_DIR/hbase-site.xmlfile must be set to kerberos.

1. Provide the Kerberos principal and keytab for the Phoenix Query Server in the
$HBASE_CONF_DIR/hbase-site.xml file.

<property>

hdp-security August 29, 2016

103

 <name>phoenix.queryserver.kerberos.principal</name>
 <value>HTTP/_HOST@EXAMPLE.COM</value>
 <description>The Kerberos principal name that should be used to run the
 Phoenix Query Server process.
 The principal name should be in the form: user/hostname@DOMAIN. If
 "_HOST" is used as the hostname
 portion, it will be replaced with the actual hostname of the running
 instance.
 </description>
</property>

<property>
 <name>phoenix.queryserver.kerberos.keytab</name>
 <value>/etc/security/keytabs/spnego.service.keytab</value>
 <description>Full path to the Kerberos keytab file to use for logging
 in the configured Phoenix Query Server service principal.
 </description>
</property>

2. Add the fully-qualified domain name for each host running the Phoenix Query Server
to the list of hosts that can impersonate end users in the $HADOOP_CONF_DIR/core-
site.xml file. Alternatively, insert an asterisk (*) instead of host names if you want to
allow all hosts to impersonate end users.

<property>
 <name>hadoop.proxyuser.HTTP.hosts</name>
 <value>server1.domain.com,server2.domain.com</value>
 <description>A comma-separated list of fully-qualified
 domain names of hosts running services with the Hadoop
 user "HTTP" that can impersonate end users.
 Alternatively, insert an asterisk (*) instead of
 listing host names if you want to allow all hosts to
 impersonate end users.</description>
</property>

2.7.2.5. Configuring Hue

Before you can configure Hue to work with an HDP cluster that is configured for Kerberos,
you must refer to and complete the instructions for Configuring Ambari and Hadoop for
Kerberos or Setting Up Kerberos Security for Manual Installs.

To enable Hue to work with an HDP cluster configured for Kerberos, make the following
changes to Hue and Kerberos.:

1. Where $FQDN is the host name of the Hue server and EXAMPLE.COM is the Hadoop
realm, create a principal for the Hue server:

kadmin.local
kadmin.local: addprinc -randkey hue/$FQDN@EXAMPLE.COM

2. Where $FQDN is the host name of the Hue server and EXAMPLE.COM is the Hadoop
realm, generate a keytab for the Hue principal:

kadmin.local: xst -k hue.service.keytab hue/$FQDN@EXAMPLE.COM

3. Put the hue.service.keytab file on the host where the Hue server is installed, in the
directory /etc/security/keytabs.

https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-security/content/ch_configuring_amb_hdp_for_kerberos.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-security/content/ch_configuring_amb_hdp_for_kerberos.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_command-line-installation/content/ch_security_for_manual_installs_chapter.html

hdp-security August 29, 2016

104

4. Set the permissions and ownership of the /etc/security/keytabs/
hue.service.keytab file as follows:

chown hue:hadoop /etc/security/keytabs/hue.service.keytab
chmod 600 /etc/security/keytabs/hue.service.keytab

5. Where $FQDN is the host name of the Hue server and EXAMPLE.COM is the
Hadoop realm, use kinit to confirm that the /etc/security/keytabs/
hue.service.keytab file is accessible to Hue:

su - hue kinit -k -t /etc/security/keytabs/hue.service.keytab hue/
$FQDN@EXAMPLE.COM

6. Where $FQDN is the host name of the Hue server and EXAMPLE.COM is the Hadoop
realm, add the following to the [kerberos] section in the /etc/hue/conf/hue.ini
configuration file:

[[kerberos]]
Path to Hue's Kerberos keytab file
hue_keytab=/etc/security/keytabs/hue.service.keytab
Kerberos principal name for Hue
hue_principal=hue/$FQDN@EXAMPLE.COM

7. Set the path to kinit, based on the OS.

If you do not know the full path to kinit, you can find it by issuing the command where
is kinit.

The following is an example of setting the path to kinit for RHEL/CentOS 6.x:

Path to kinit
For RHEL/CentOS 6.x, kinit_path is /usr/bin/kinit
kinit_path=/usr/kerberos/bin/kinit

8. Optionally, for faster performance, you can keep Kerberos credentials cached:

ccache_path=/tmp/hue_krb5_ccache

9. Edit the /etc/hue/conf/hue.ini configuration file and set set
security_enabled=true for every component in the configuration file.

10.Save the /etc/hue/conf/hue.ini configuration file.

11.Restart Hue:

/etc/init.d/hue start

12.Validate the Hue installation.

a. To view the current configuration of your Hue server, select About > Configuration or
http://hue.server:8000/dump_config.

b. To ensure that Hue server was configured properly, select About > Check for
misconfiguration or http://hue.server:8000/debug/check_config.

If you detect any potential misconfiguration, fix it and restart Hue.

hdp-security August 29, 2016

105

2.7.3. Setting up One-Way Trust with Active Directory

In environments where users from Active Directory (AD) need to access Hadoop Services,
set up one-way trust between Hadoop Kerberos realm and the AD (Active Directory)
domain.

Important

Hortonworks recommends setting up one-way trust after fully configuring and
testing your Kerberized Hadoop Cluster.

2.7.3.1. Configure Kerberos Hadoop Realm on the AD DC

Configure the Hadoop realm on the AD DC server and set up the one-way trust.

1. Add the Hadoop Kerberos realm and KDC host to the DC:

ksetup /addkdc $hadoop.realm $KDC-host

2. Establish one-way trust between the AD domain and the Hadoop realm:

netdom trust $hadoop.realm /Domain:$AD.domain /add /realm /passwordt:
$trust_password

3. (Optional) If Windows clients within the AD domain need to access Hadoop Services,
and the domain does not have a search route to find the services in Hadoop realm, run
the following command to create a hostmap for Hadoop service host:

ksetup /addhosttorealmmap $hadoop-service-host $hadoop.realm

Note

Run the above for each $hadoop-host that provides services that need to be
accessed by Windows clients. For example, Oozie host, WebHCat host, etc.

4. (Optional) Define the encryption type:

ksetup /SetEncTypeAttr $hadoop.realm $encryption_type

Set encryption types based on your security requirements. Mismatched encryption types
cause problems.

Note

Run ksetup /GetEncTypeAttr $krb_realm to list the available encryption
types. Verify that the encryption type is configured for the Hadoop realm in
the krb5.conf.

2.7.3.2. Configure the AD Domain on the KDC and Hadoop Cluster Hosts

Add the AD domain as a realm to the krb5.conf on the Hadoop cluster hosts. Optionally
configure encryption types and UDP preferences.

hdp-security August 29, 2016

106

1. Open the krb5.conf file with a text editor and make the following changes:

• To libdefaults, add the following properties.

• Set the Hadoop realm as default:

[libdefaults]
default_domain = $hadoop.realm

• Set the encryption type:

[libdefaults]
default_tkt_enctypes = $encryption_types
default_tgs_enctypes = $encryption_types
permitted_enctypes = $encryption_types

where the $encryption_types match the type supported by your environment.

For example:

default_tkt_enctypes = aes256-cts aes128-cts rc4-hmac arcfour-hmac-md5
 des-cbc-md5 des-cbc-crc
default_tgs_enctypes = aes256-cts aes128-cts rc4-hmac arcfour-hmac-md5
 des-cbc-md5 des-cbc-crc
permitted_enctypes = aes256-cts aes128-cts rc4-hmac arcfour-hmac-md5
 des- cbc-md5 des-cbc-crc

• If TCP is open on the KDC and AD Server:

[libdefaults]
udp_preference_limit = 1

• Add a realm for the AD domain:

[realms]
$AD.DOMAIN = {
kdc = $AD-host-FQDN
admin_server = $AD-host-FQDN
default_domain = $AD-host-FQDN
}

• Save the krb5.conf changes to all Hadoop Cluster hosts.

2. Add the trust principal for the AD domain to the Hadoop MIT KDC:

kadmin
kadmin:addprinc krbtgt/$hadoop.realm@$AD.domain

This command will prompt you for the trust password. Use the same password as the
earlier step.

Note

If the encryption type was defined, then use the following command to
configure the AD principal:

kadmin:addprinc -e "$encryption_type"krbtgt/$hadoop. realm@$AD.
domain

hdp-security August 29, 2016

107

When defining encryption, be sure to also enter the encryption type (e.g.,
'normal')

2.7.4. Configuring Proxy Users

For information about configuring a superuser account that can submit jobs or access HDFS
on behalf of another user, see the following information on the Apache site:

Proxy user - Superusers Acting on Behalf of Other Users.

2.8. Perimeter Security with Apache Knox

2.8.1. Apache Knox Gateway Overview

The Apache Knox Gateway (“Knox”) is a system to extend the reach of Apache™Hadoop®
services to users outside of a Hadoop cluster without reducing Hadoop Security. Knox also
simplifies Hadoop security for users who access the cluster data and execute jobs.

Knox integrates with Identity Management and SSO systems used in enterprises and allows
identity from these systems be used for access to Hadoop clusters.

Knox Gateways provides security for multiple Hadoop clusters, with these advantages:

• Simplifies access: Extends Hadoop’s REST/HTTP services by encapsulating Kerberos to
within the Cluster.

• Enhances security: Exposes Hadoop’s REST/HTTP services without revealing network
details, providing SSL out of the box.

• Centralized control: Enforces REST API security centrally, routing requests to multiple
Hadoop clusters.

• Enterprise integration: Supports LDAP, Active Directory, SSO, SAML and other
authentication systems.

http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/Superusers.html

hdp-security August 29, 2016

108

Typical Security Flow: Firewall, Routed Through Knox Gateway

Knox can be used with both unsecured Hadoop clusters, and Kerberos secured clusters. In
an enterprise solution that employs Kerberos secured clusters, the Apache Knox Gateway
provides an enterprise security solution that:

• Integrates well with enterprise identity management solutions

• Protects the details of the Hadoop cluster deployment (hosts and ports are hidden from
end users)

• Simplifies the number of services with which a client needs to interact

2.8.1.1. Knox Gateway Deployment Architecture

Users who access Hadoop externally do so either through Knox, via the Apache REST API,
or through the Hadoop CLI tools.

The following diagram shows how Apache Knox fits into a Hadoop deployment.

NN=NameNode, RM=Resource Manager, DN=DataNote, NM=NodeManager

2.8.1.2. Supported Hadoop Services

Apache Knox Gateway supports the following Hadoop services versions in both Kerberized
and Non-Kerberized clusters:

Table 2.20. Supported Hadoop Services

Service Version

YARN 2.7.0

WebHDFS 2.7.0

WebHCat/Templeton 0.13.0

Oozie 4.2.0

HBase/Stargate 1.1

Hive (via WebHCat) 1.2.0

Hive (via JDBC) 1.2.0

Ambari 2.4.0

hdp-security August 29, 2016

109

Service Version

Ranger 0.6.0

Table 2.21. Supported Hadoop UIs

Service

Ambari UI

Ranger Admin Console

Note

UIs in the Apache Knox project that are not listed above are considered
Community Features.

Community Features are developed and tested by the Apache Knox community
but are not officially supported by Hortonworks. These features are excluded
for a variety of reasons, including insufficient reliability or incomplete test
case coverage, declaration of non-production readiness by the community at
large, and feature deviation from Hortonworks best practices. Do not use these
features in your production environments.

2.8.1.3. Knox Gateway Samples

There are a number of different methods you can use to deploy the Knox Gateway
in your cluster. Each of these methods consists of different ways you can use to install
and configure the Knox Gateway. For more information on these methods, refer to the
following Apache documentation:

• http://knox.apache.org/books/knox-0-5-0/knox-0-5-0.html#Gateway+Samples

2.8.2. Configuring the Knox Gateway

This section describes how to configure the Knox Gateway. This section describes how you
can:

• Create and Secure the Gateway Directories [109]

• Customize the Gateway Port and Path [110]

• Manage the Master Secret [111]

• Manually Redeploy Cluster Topologies [111]

• Manually Start and Stop Apache Knox [113]

2.8.2.1. Create and Secure the Gateway Directories

Installing Knox Gateway with the platform-specific installers creates the following
directories:

• HADOOP_NODE_INSTALL_ROOT

• knox-X.X.X.X.X.X.X-XXXX -- the $gateway directory.

http://knox.apache.org/books/knox-0-5-0/knox-0-5-0.html#Gateway+Samples

hdp-security August 29, 2016

110

For example, D:/hdp/knox-0.4.0.2.1.1.0-1557 The directory contains the following files:

Table 2.22. Apache Service Gateway Directories

Directory/Filename Description

conf/topologies Contains global gateway configuration files.

bin Contains the executable shell scripts, batch files, and
JARs for clients and servers.

deployments Contains cluster topology descriptor files that define
Hadoop clusters.

lib Contains the JARs for all the components that make up
the gateway.

dep Contains the JARs for all of the component upon which
the gateway depends.

ext A directory where user-supplied extensions JARs can be
placed to extends the gateway functionality.

samples Contains a number of samples that can be used to
explore the functionality of the gateway.

templates Contains default configuration files that can be copied
and customized.

README Provides basic information about the Apache Knox
Gateway.

ISSUES Describes significant known issues.

CHANGES Enumerates the changes between releases.

LICENSE Documents the license under which this software is
provided.

NOTICE Documents required attribution notices for included
dependencies.

DISCLAIMER Documents that this release is from a project undergoing
incubation at Apache.

• SystemDrive/hadoop/logs knox

This contains the output files from the Knox Gateway.

2.8.2.2. Customize the Gateway Port and Path

The Knox Gateway properties effect the URL used by the external clients to access the
internal cluster. By default the port is set to 8443 and the context path is gateway.

To change the context path or port:

1. Edit gateway-site.xml and modify the following properties:

• propertyname

• gateway.port namevalue

• gateway.portvalue

where:

• $gateway_port is the HTTP port for the gateway (default port=8443)

hdp-security August 29, 2016

111

• $gateway is the context path in the external URL (preconfigured value=gateway). For
example, https://knox.hortonworks.com:8443/hadoop/,where hadoop is the context
path.

2. Restart the gateway:

cd $gateway.bin/gateway.sh stop bin/gateway.sh start

The gateway loads the new configuration on startup.

2.8.2.3. Manage the Master Secret

The master secret is required to start the gateway. The secret protects artifacts used by the
gateway instance, such as the keystore, trust stores and credential stores.

You configure the gateway to persist the master secret, which is saved in the $gateway /
data/security/master file. Ensure that this directory has the appropriate permissions
set for your environment. To set the master secret, enter:

cd $gateway bin/knoxcli.cmd create-master

A warning displays indicating that persisting the secret is less secure than providing it at
startup. Knox protects the password by encrypting it with AES 128 bit encryption; where
possible, the file permissions are set to be accessible only by the knox user.

Warning

Ensure that the security directory, $gateway/data/security, and its
contents are readable and writable only by the knox user. This is the most
important layer of defense for master secret. Do not assume that the
encryption is sufficient protection.

Changing the Master Secret

The Master Secret can be changed under dire situations where the Administrator has to
redo all the configurations for every gateway instance in a deployment, and no longer
knows the Master Secret. Recreating the Master Secret requires not only recreating the
master, but also removing all existing keystores and reprovisioning the certificates and
credentials.

1. To change the Master Secret:

cd $gateway bin/knoxcli.cmd create-master--force

2. If there is an existing keystore, update the keystore.

2.8.2.4. Manually Redeploy Cluster Topologies

You are not required to manually redeploy clusters after updating cluster properties. The
gateway monitors the topology descriptor files in the $gateway/conf/topologies
directory and automatically redeploys the cluster if any descriptor changes or a new one is
added. (The corresponding deployment is in $gateway/data/deployments.)

hdp-security August 29, 2016

112

However, you must redeploy the clusters after changing any of the following gateway
properties or gateway-wide settings:

• Time settings on the gateway host

• Implementing or updating Kerberos

• Implementing or updating SSL certificates

• Changing a cluster alias

Redeploying all clusters at the same time

When making gateway-wide changes (such as implementing Kerberos or SSL), or if you
change the system clock, you must redeploy all the Cluster Topologies. Do the following:

1. To verify the timestamp on the currently deployed clusters enter: cd $gatewaydir
data/deployments. The system displays something similar to:

Directory of C:/hdp/knox-0.4.0.2.1.1.0-1557/data/deployments

04/17/2014 05:30 PM <DIR> .
04/17/2014 05:30 PM <DIR> ..
04/17/2014 05:30 PM <DIR> cluster.war.145514f4dc8
04/17/2014 05:30 PM <DIR> myCluster.war.145514f4dc8
04/11/2014 08:35 AM <DIR> sandbox.war.145514f4dc8
 0 File(s) 0 bytes
 5 Dir(s) 9,730,977,792 bytes free

2. To redeploy all clusters, enter /bin/knoxcli.cmd redeploy.

3. To verify that a new cluster WAR was created, enter cd $gatewaydir data/
deployments.The system displays something similar to:

Directory of C:/hdp/knox-0.4.0.2.1.1.0-1557/data/deployments

04/17/2014 05:34 PM <DIR> .
04/17/2014 05:34 PM <DIR> ..
04/17/2014 05:30 PM <DIR> cluster.war.145514f4dc8
04/17/2014 05:34 PM <DIR> cluster.war.1457241b5dc
04/17/2014 05:30 PM <DIR> myCluster.war.145514f4dc8
04/17/2014 05:34 PM <DIR> myCluster.war.1457241b5dc
04/11/2014 08:35 AM <DIR> sandbox.war.145514f4dc8
04/17/2014 05:34 PM <DIR> sandbox.war.1457241b5dc
 0 File(s) 0 bytes
 8 Dir(s) 9,730,850,816 bytes free

A new file is created for each cluster, with the current timestamp.

Redeploy only specific clusters

When making changes that impact a single cluster, such as changing an alias or restoring
from an earlier cluster topology descriptor file, you only redeploy the effected cluster. Do
the following:

1. To verify the timestamp on the currently deployed Cluster Topology WAR files, enter: cd
$gatewaydir data/deployments.The system displays something similar to:

hdp-security August 29, 2016

113

Directory of C:/hdp/knox-0.4.0.2.1.1.0-1557/data/deployments

04/17/2014 05:30 PM <DIR> .
04/17/2014 05:30 PM <DIR> ..
04/17/2014 05:30 PM <DIR> cluster.war.145514f4dc8
04/17/2014 05:30 PM <DIR> myCluster.war.145514f4dc8
04/11/2014 08:35 AM <DIR> sandbox.war.145514f4dc8
 0 File(s) 0 bytes
 5 Dir(s) 9,730,977,792 bytes free

2. To redeploy a specific cluster, enter:

cd $gateway bin/knoxcli.cmd redeploy --cluster $cluster_name

where $cluster_name is the name of the cluster topology descriptor (without the
.xml extension). For example, myCluster.

3. To verify that the cluster was deployed, enter: cd $gatewaydir data/
deployments. The system displays something similar to:

Directory of C:/hdp/knox-0.4.0.2.1.1.0-1557/data/deployments

04/17/2014 05:30 PM <DIR> .
04/17/2014 05:30 PM <DIR> ..
04/17/2014 05:30 PM <DIR> cluster.war.145514f4dc8
04/17/2014 05:30 PM <DIR> myCluster.war.145514f4dc8
04/17/2014 05:34 PM <DIR> myCluster.war.1457241b5dc
04/11/2014 08:35 AM <DIR> sandbox.war.145514f4dc8
 0 File(s) 0 bytes
 5 Dir(s) 9,730,977,792 bytes free

You should see that existing cluster war files are unchanged, but the war file for
myCluster was updated (has a current timestamp).

2.8.2.5. Manually Start and Stop Apache Knox

Except for changes to ../ ../conf/topology/*.xml, changes to the Knox Gateway global
settings in $gateway /conf/gateway-site.xml cannot be loaded before the
Gateway is restarted.

To manually stop Knox:

cd $gateway/bin/gateway.sh stop

This is known as a clean shutdown, as the gateway script cleans out all .outand .err files
in the logs directory.

To manually start Knox for the first time, or re-start Knox after a clean shutdown:

cd $gateway /bin/gateway.sh start

To manually re-start Knox after an unclean shutdown:

cd $gateway/bin/gateway.sh clean /bin/gateway.sh start

This command eliminates old .outand .err files in the logs directory.

hdp-security August 29, 2016

114

2.8.3. Defining Cluster Topologies
The Knox Gateway supports one or more Hadoop clusters. Each Hadoop cluster
configuration is defined in a topology deployment descriptor file in the $gateway/conf/
topologies directory and is deployed to a corresponding WAR file in the $gateway/
data/deployments directory. These files define how the gateway communicates with
each Hadoop cluster.

The descriptor is an XML file contains the following sections:

• gateway/provider -- configuration settings enforced by the Knox Gateway while
providing access to the Hadoop cluster.

• service -- defines the Hadoop service URLs used by the gateway to proxy
communications from external clients.

The gateway automatically redeploys the cluster whenever it detects a new topology
descriptor file, or detects a change in an existing topology descriptor file.

The following table provides an overview of the providers and services:

Table 2.23. Cluster Topology Provider and Service Roles

Type Role Description

gateway/provider hostmap Maps external to internal node
hostnames, replacing the internal
hostname with the mapped external
name when the hostname is
embedded in a response from the
cluster.

 authentication Integrates an LDAP store to
authenticate external requests
accessing the cluster via the Knox
Gateway. Refer to Set Up LDAP
Authentication for more information.

 federation Defines HTTP header authentication
fields for an SSO or federation solution
provider. Refer to Set up HTTP Header
Authentication for Federation/SSO

 identity-assertion Responsible for the way that the
authenticated user's identity is asserted
to the service that the request is
intended for. Also maps external
authenticated users to an internal
cluster that the gateway asserts as the
current session user or group. Refer to
Configure Identity Assertion for more
information.

 authorization Service level authorization that restricts
cluster access to specified users,
groups, and/or IP addresses. Refer to
Configure Service Level Authorization
for more information.

 webappspec Configures a web application security
plugin that provides protection
filtering against Cross Site Request
Forgery Attacks. Refer to Configure
Web Application Security for more
information.

hdp-security August 29, 2016

115

Type Role Description

HA provider high availability Syncs all Knox instances to use the
same topologies credentials keystores.

service $service_name Binds a Hadoop service with an internal
URL that the gateway uses to proxy
requests from external clients to the
internal cluster services. Refer to
Configure Hadoop Service URLs for
more information.

Cluster topology descriptors have the following XML format:

<topology>
 <gateway>
 <provider>
 <role></role>
 <name></name>
 <enabled></enabled>
 <param>
 <name></name>
 <value></value>
 </param>
 </provider>
 </gateway>
 <service></service>
</topology>

2.8.4. Configuring a Hadoop Server for Knox
The Apache Knox Gateway redirects external requests to an internal Hadoop service using
service name and URL of the service definition.

This chapter describes:

• Setting up Hadoop Service URLs [115]

• Example Service Definitions [116]

• Validating Service Connectivity [117]

• Adding a New Service to the Knox Gateway [119]

2.8.4.1. Setting up Hadoop Service URLs

To configure access to an internal Hadoop service through the Knox Gateway:

1. Edit $gateway/conf/topologies$cluster-name.xml to add an entry similar to
the following, for each Hadoop service:

<topology>
 <gateway>
 ...
 </gateway>
 <service>
 <role> $service_name </role>
 <url> $schema://$hostname:$port</url>
 </service>
</topology>

hdp-security August 29, 2016

116

where:

• $service_name is either WEBHDFS, WEBHCAT, WEBHBASE, OOZIE, HIVE,
NAMENODE, AMBARI, AMBARIUI, RANGER. AMBARIUI, or JOBTRACKER.

• <url> is the complete internal cluster URL required to access the service, including:

• $schema -- the service protocol

• $hostname -- the resolvable internal host name

• $port -- the service listening port

2. Save the file.

The gateway creates a new WAR file with modified timestamp in $gateway/data/
deployments.

Note

It is not necessary to restart the Knox server after making changes to the
topology/Hadoop Cluster services.

2.8.4.2. Example Service Definitions

Configure each service that you want to expose externally, being careful to define the
internal hostname and service ports of your cluster.

The following example uses the defaults ports and supported service names.

<service
 <role>NAMENODE</role>
 <url>hdfs://namenode-host:8020</url>
</service>

<service>
 <role>JOBTRACKER</role>
 <url>rpc://jobtracker-host:8050</url>
</service>

<service>
 <role>RESOURCEMANAGER</role>
 <url>http://red3:8088/ws</url>
</service>

<service>
 <role>WEBHDFS</role>
 <url>http://localhost:50070/webhdfs</url>
</service>

<service>
 <role>WEBHCAT</role>
 <url>http://webcat-host:50111/templeton</url>
</service>

<service>

hdp-security August 29, 2016

117

 <role>OOZIE</role>
 <url>http://oozie-host:11000/oozie</url>
</service>

<service>
 <role>WEBHBASE</role>
 <url>http://webhbase-host:60080</url>
</service>

<service>
 <role>HIVE</role>
 <url>http://hive-host:10001/cliservice</url>
</service>

<service>
 <role>AMBARI</role>
 <url>http://knoxsso-erietp-clone-1.openstacklocal:8080</url>
</service>

<service>
 <role>AMBARIUI</role>
 <url>http://knoxsso-erietp-clone-1.openstacklocal:8080</url>
</service>

<service>
 <role>RANGER</role>
 <url>http://knoxsso-erietp-clone-2.openstacklocal:6080</url>
</service>

<service>
 <role>RANGERUI</role>
 <url>http://knoxsso-erietp-clone-2.openstacklocal:6080</url>
</service>

2.8.4.3. Validating Service Connectivity

Use the commands in this section to test connectivity between the gateway host and the
Hadoop service, and then test connectivity between an external client to the Hadoop
service through the gateway.

Tip

If the communication between the gateway host and an internal Hadoop
service fails, telnet to the service port to verify that the gateway is able to
access the cluster node. Use the hostname and ports you specified in the service
definition.

Testing WebHDFS by getting the home directory

• At the gateway host, enter the following command:

curl http://$webhdfs-host:50070/webhdfs/v1?op=GETHOMEDIRECTORY

The host displays:

{"Path":"/user/gopher"}

• At an external client, enter the following command:

hdp-security August 29, 2016

118

curl https://$gateway-host:$gateway_port/$gateway/$cluster_name/
$webhdfs_service_name/v1?op=GETHOMEDIRECTORY

The external client displays:

{"Path":"/user/gopher"}

Testing WebHCat/Templeton by getting the version

• At the gateway host, enter the following command:

curl http://$webhdfs-host:50111/templeton/v1/version

The host displays:

{"supportedVersions":["v1"],"version":"v1"}

• At an external client, enter the following command:

curl https://$gateway-host:$gateway_port/$gateway/$cluster_name/
$webhcat_service_name/v1/version

The external client displays:

{"supportedVersions":["v1"],"version":"v1"}

Testing Oozie by getting the version

• At the gateway host, enter the following command:

curl http://$oozie-host:11000/oozie/v1/admin/build-version

The host displays:

{"buildVersion":"4.0.0.2.1.1.0-302"}

• At an external client, enter the following command:

curl https://$gateway-host:$gateway_port/$gateway/$cluster_name/
$oozie_service_name/v1/admin/build-version

The external client displays:

{"buildVersion":"4.0.0.2.1.1.0-302"}

Testing HBase/Stargate by getting the version

• At the gateway host, enter the following command:

curl http://$hbase-host:17000/version

The host displays:

rest 0.0.2 JVM: Oracle Corporation 1.7.0_51-24.45-b08 OS: Linux 3.8.0-29-
generic amd64 Server:jetty/6.1.26 Jersey:1.8:

• At an external client, enter the following command:

curl http://$hbase-host:17000/version

The external client displays:

hdp-security August 29, 2016

119

rest 0.0.2 JVM: Oracle Corporation 1.7.0_51-24.45-b08 OS: Linux 3.8.0-29-
generic amd64 Server:jetty/6.1.26 Jersey:1.8

Testing HiveServer2

Both of the following URLs return an authentication error, which users can safely ignore.

1. At the gateway host, enter:

curl http://$hive-host:10001/cliservice

2. At an external client, enter:

curl https://$gateway-host:$gateway_port/$gateway/$cluster_name/
$hive_service_name/cliservice

2.8.4.4. Adding a New Service to the Knox Gateway

Services and service additions in the Knox Gateway are defined as extensions to existing
Knox Gateway functionality that enable you to extend the gateway’s capabilities. You use
these services to convert information contained in the topology file to runtime descriptors.

The Knox Gateway supports a declarative way for you to “plug in” a new service into the
gateway simply and easily by using the following two files:

• service.xml- file that contains the routes (paths) that the service will provide and the
rewrite rules to bind these paths.

• rewrite.xml – file that contains the rewrite rules for the service.

Note

The service.xml file is required, whereas the rewrite.xml file is optional.

2.8.4.4.1. Service Directory Structure

The Knox Gateway consists of a directory structure that you should become familiar with
before attempting to add a new service to the gateway.

If you navigate to the data directory in your Knox home directory ({GATEWAY_HOME}/
data}, you will see the following directory structure:

Services
 Service name
 Version
 service.xml
 rewrite.xml

For example, if you were to navigate to the WebHDFS Service directory, you would see the
following directory structure:

Services
 WebHDFS
 2.4.0
 service.xml

hdp-security August 29, 2016

120

 rewrite.xml

2.8.4.4.2. Adding a New Service to the Knox Gateway

Adding a new service to the Knox gateway is a very easy and straightforward process, only
requiring you to perform a few simple steps, which are listed below.

1. Navigate to the services directory in your Knox gateway HOME directory
({GATEWAY_HOME}/data/services)

2. Add the service.xml and rewrite.xml files to the directory.

Note

If you want to add the service to the Knox build, then add the
service.xml and rewrite files to the gateway-services-definitions
module.

2.8.5. Mapping the Internal Nodes to External URLs

Hostmapping is an advanced configuration topic. Generally, it is only required in
deployments in virtualized environments, such as Cloud deployments and some
development and testing environments.

The isolation of the Hadoop cluster is accomplished through virtualization that will
hide the internal networking details (such as IP addresses and/or hostnames) from the
outside world, while exposing other IP addresses and/or hostnames for use by clients
accessing the cluster from outside of the virtualized environment. The exposed IP addresses
and hostnames are available for use in the topology descriptor service definitions.
This configuration works great for requests that are initiated from the external clients
themselves which only ever use the Knox Gateway exposed endpoints.

Difficulties from these virtualized environments arise when the Hadoop cluster redirects
client requests to other nodes within the cluster and indicates the internal hostname
locations, rather than those designated to be exposed externally. Since the Hadoop services
don't know or care whether a request is coming from an external or internal client, it uses
its only view of the cluster, which is the internal details of the virtualized environment.

The Knox Gateway needs to know how to route a request that has been redirected by the
Hadoop service to an address that is not actually accessible by the gateway. Hostmapping
acts as an adapter that intercepts the redirects from the Hadoop service and converts the
indicated internal address to a known external address that Knox will be able to route
to once the client resends the request through the client facing gateway endpoint. The
gateway uses the hostmap to replace the internal hostname within the routing policy for
the particular request with the externally exposed hostname. This enables the dispatching
from the Knox Gateway to successfully connect to the Hadoop service within the virtualized
environment. Otherwise, attempting to route to an internal-only address will result in
connection failures.

A number of the REST API operations require multi-step interactions that facilitate the
client's interaction with multiple nodes within a distributed system such as Hadoop.
External clients performing multi-step operations use the URL provided by the gateway in

hdp-security August 29, 2016

121

the responses to form the next request. Since the routing policy is hidden by the gateway
from the external clients, the fact that the subsequent requests in the multi-stepped
interaction are mapped to the appropriate externally exposed endpoints is not exposed to
the client.

For example, when uploading a file with WebHDFS service:

1. The external client sends a request to the gateway WebHDFS service.

2. The gateway proxies the request to WebHDFS using the service URL.

3. WebHDFS determines which DataNodes to create the file on and returns the path for
the upload as a Location header in a HTTP redirect, which contains the datanode host
information.

4. The gateway augments the routing policy based on the datanode hostname in the
redirect by mapping it to the externally resolvable hostname.

5. The external client continues to upload the file through the gateway.

6. The gateway proxies the request to the datanode by using the augmented routing
policy.

7. The datanode returns the status of the upload and the gateway again translates the
information without exposing any internal cluster details.

2.8.5.1. Setting Up a Hostmap Provider

Add the hostmap provider to the cluster topology descriptor and a parameter for each
DataNode in the cluster, as follows:

1. Open the cluster topology descriptor file, $cluster-name.xml, in a text editor.

2. Add the Hostmap provider to topology/gateway using the following format:

<provider>
 <role>hostmap</role>
 <name>static</name>
 <enabled>true</enabled>
 <param>
 <name>$external-name</name>
 <value>$internal-dn-host</value>
 </param>
</provider>

where:

• $cluster-name.xml is the name of the topology descriptor file, located in
$gateway /conf/topologies.

• $external-name is the value that the gateway uses to replace $internal_host host
names in responses.

• $internal-dn-host is a comma-separated list of host names that the gateway will
replace when rewriting responses.

hdp-security August 29, 2016

122

3. To the hostmap provider, add a param for each additional DataNode in your cluster:

<param> <name> $external-name2 </name> <value> $internal-dn2-host </
value> </param>

4. Save the file.

Saving the results automatically deploys the topology with the change. The result is the
creation of a new WAR file with modified timestamp in $gateway/data/deployments.

2.8.5.2. Example of an EC2 Hostmap Provider

In this EC2 example two VMs have been allocated. Each VM has an external hostname by
which it can be accessed via the internet. However the EC2 VM is unaware of this external
host name, and instead is configured with the internal hostname.

• External hostnames - ec2-23-22-31-165.compute-1.amazonaws.com,
ec2-23-23-25-10.compute-1.amazonaws.com

• Internal hostnames - ip-10-118-99-172.ec2.internal, ip-10-39-107-209.ec2.internal

The following shows the Hostmap definition required to allow access external to the
Hadoop cluster via the Apache Knox Gateway.

<topology>
 <gateway>
 ...
 <provider>
 <role>hostmap</role>
 <name>static</name>
 <enabled>true</enabled>
 <!-- For each host enter a set of parameters -->
 <param>
 <name>ec2-23-22-31-165.compute-1.amazonaws.com</name>
 <value>ip-10-118-99-172.ec2.internal</value>
 </param>
 <param>
 <name>ec2-23-23-25-10.compute-1.amazonaws.com</name>
 <value>ip-10-39-107-209.ec2.internal</value>
 </param>
 </provider>
 ...
 </gateway>
 <service>
 ...
 </service>
 ...
</topology>

2.8.5.3. Example of Sandbox Hostmap Provider

Hortonwork’s Sandbox 2.x poses a different challenge for hostname mapping. This
Sandbox version uses port mapping to make Sandbox appear as though it is accessible via
localhost. However, Sandbox is internally configured to consider sandbox.hortonworks.com
as the hostname. So from the perspective of a client accessing Sandbox the external host
name is localhost.

hdp-security August 29, 2016

123

The following shows the hostmap definition required to allow access to Sandbox from the
local machine:

<topology>
 <gateway>
 ...
 <provider>
 <role>hostmap</role>
 <name>static</name>
 <enabled>true</enabled>
 <param>
 <name>localhost</name>
 <value>sandbox,sandbox.hortonworks.com</value>
 </param>
 </provider>
 ...
 <gateway>
 ...
</topology>

2.8.5.4. Enabling Hostmap Debugging

Warning

Changing the rootLogger value from ERROR to DEBUG generates a large
amount of debug logging.

Enable additional logging by editing the gateway-log4j.properties file in the
directory.

1. Edit the $gateway /conf/gateway-log4j.propertiesgateway-
log4j.properties file to enable additional logging.

2. Change ERROR to DEBUG on the following line:

log4j.rootLogger=ERROR, drfa

Warning

Changing the rootLogger value from ERROR to DEBUG generates a large
amount of debug logging.

3. Stop and then restart the gateway:

cd $gateway bin/gateway.sh stop bin/gateway.sh start

2.8.6. Configuring Authentication
Apache Knox Gateway supports authentication using either an LDAP or federation
provider for each configured cluster. This section explains how to configure authentication:

• Authentication Providers [124]

• Setting Up LDAP Authentication [124]

• Configuring Advanced LDAP Authentication [126]

hdp-security August 29, 2016

124

• Setting Up SPNEGO Authentication [129]

• LDAP Authentication Caching [131]

• Example Active Directory Configuration [133]

• Example OpenLDAP Configuration [135]

• Testing an LDAP Provider [136]

• Setting Up HTTP Header Authentication for Federation_SSO [136]

• Example SiteMinder Configuration [138]

• Testing HTTP Header Tokens [138]

• Setting Up 2-Way SSL Authentication [138]

Note

For information on how to configure an identity assertion provider, see
Configuring Identity Assertion.

2.8.6.1. Authentication Providers

There are two types of providers supported in Knox for establishing a user’s identity:

• Authentication Providers

• Federation Providers

Authentication providers directly accept a user’s credentials and validates them against
some particular user store. Federation providers, on the other hand, validate a token that
has been issued for the user by a trusted Identity Provider (IdP).

Providers have a name-value based configuration. There are different authentication
providers:

• Anonymous

• Used by Knox to let the proxied service or UI do its own authentication.

• ShiroProvider

• For LDAP/AD authentication with username and password. No SPNEGO/Kerberos
support.

• HadoopAuth

• For SPNEGO/Kerberos authentication with delegation tokens. No LDAP/AD support.

2.8.6.2. Setting Up LDAP Authentication

LDAP authentication is configured by adding a "ShiroProvider" authentication provider
to the cluster's topology file. When enabled, the Knox Gateway uses Apache Shiro
(org.apache.shiro.realm.ldap.JndiLdapRealm) to authenticate users against the configured
LDAP store.

hdp-security August 29, 2016

125

Note

Knox Gateway provides HTTP BASIC authentication against an LDAP user
directory. It currently supports only a single Organizational Unit (OU) and does
not support nested OUs.

To enable LDAP authentication:

1. Open the cluster topology descriptor file, $cluster-name.xml, in a text editor.

2. Add the ShiroProvider authentication provider to /topology/gateway as
follows:

<provider>
 <role>authentication</role>
 <name>ShiroProvider</name>
 <enabled>true</enabled>
 <param>
 <name>main.ldapRealm</name>
 <value>org.apache.shiro.realm.ldap.JndiLdapRealm</value>
 <param>
 <param>
 <name>main.ldapRealm.userDnTemplate</name>
 <value>$USER_DN</value>
 </param>
 <param>
 <name>main.ldapRealm.contextFactory.url</name>
 <value>$protocol://$ldaphost:$port</value>
 </param>
 <param>
 <name>main.ldapRealm.contextFactory.authenticationMechanism</name>
 <value>simple</value>
 </param>
 <param>
 <name>urls./**</name>
 <value>$auth_type</value>
 </param>
 <param>
 <name>sessionTimeout</name>
 <value>$minutes</value>
 </param>
</provider>

where:

• $USER_DN

is a comma-separated list of attribute and value pairs that define the User
Distinguished Name (DN). The first pair must be set to " $attribute_name ={0}"
indicating that the $attribute_name is equal to the user token parsed from the
request. For example, the first attribute in an OpenLdap definition is UID={0}. The
main.ldapRealm.userDnTemplate parameter is only required when authenticating
against an LDAP store that requires a full User DN.

• $protocol :// $ldaphost : $port

is the URL of the LDAP service, Knox Gateway supports LDAP or LDAPS protocols.

hdp-security August 29, 2016

126

• $auth_type

is either authcBasic, which provides basic authentication for both secured and non-
secured requests, or SSL authcBasic, which rejects non-secured requests and provides
basic authentication of secured requests.

• $minutes

is the session idle time in minutes, the default timeout is 30 minutes.

3. Save the file.

The gateway creates a new WAR file with modified timestamp in $gateway/data/
deployments.

Note

If the Active Directory and Kerberos names differ in case (e.g. the Active
Directory name is in upper case and the Kerberos name is lower case), the Knox
Gateway enables you to resolve this conflict using the auth_to_local flag.

You can also configure LDAP authentication over SSL by following the steps below.

1. Change the LDAP protocol from ladp :// to ldaps://.

2. If LDAP is using a self-signed certificate, then import the LDAP's certificate into the
CACerts file of the Java Virtual Machine (JVM) being used to run the Apache Knox
Gateway. To import the LDAP certificate, enter the following commands:

%JAVA_HOME%\bin\keytool
-import -trustcerts -alias ldap_ssl -file C:\temp\FileFromLDAP.cert -
keystore %JAVA_HOME%/jre/lib/security/cacerts -storepass "changeit"

2.8.6.3. Configuring Advanced LDAP Authentication

The default configuration computes the bind Distinguished Name (DN) for incoming user
based on userDnTemplate. This does not work in enterprises where users could belong to
multiple branches of LDAP tree. You could instead enable advanced configuration that
would compute bind DN of incoming user with an LDAP search.

2.8.6.3.1. Using Advanced LDAP Authentication

With advanced LDAP authentication, we find the bind DN of the user by searching LDAP
directory instead of interpolating bind DN from userDNTemplate.

Example 2.1. Example Search Filter to Find the Client Bind DN

Assuming:

• ldapRealm.userSearchAttributeName=uid

• ldapRealm.userObjectClass=person

• client specified login id = “guest”

LDAP Filter for doing a search to find the bind DN would be:

hdp-security August 29, 2016

127

(&(uid=guest)(objectclass=person))

This could find the bind DN to be:

uid=guest,ou=people,dc=hadoop,dc=apache,dc=org

Please note that the userSearchAttributeName need not be part of bindDN.

For example, you could use

• ldapRealm.userSearchAttributeName=email

• ldapRealm.userObjectClass=person

• client specified login id = "john_doe@gmail.com

”

LDAP Filter for doing a search to find the bind DN would be:

(&(email=john_doe@gmail.com)(objectclass=person))

This could find bind DN to be

uid=johnd,ou=contractors,dc=hadoop,dc=apache,dc=org

2.8.6.3.2. Advanced LDAP Configuration Parameters

The table below provides a description and sample of the available advanced bind and
search configuration parameters:

Parameter Description Default Sample

principalRegex Parses the principal for
insertion into templates via
regex.

(.*) (.*?)\\(.*) (e.g. match
US\tom: {0}=US\tom,
{1}=US, {2}=tom)

userDnTemplate Direct user bind DN
template.

{0} cn={2},dc={1},dc=qa,dc=company,dc=com

userSearchBase Search based template.
Used with config below.

none dc={1},dc=qa,dc=company,dc=com

userSearchAttributeNameAttribute name for
simplified search filter.

none sAMAccountName

userSearchAttributeTemplateAttribute template for
simplified search filter.

{0} {2}

userSearchFilter Advanced search filter
template. Note & is &
in XML.

none (&
(objectclass=person)
(sAMAccountName={2}))

userSearchScope Search scope: subtree,
onelevel, object.

subtree onelevel

2.8.6.3.3. Advanced LDAP Configuration Combinations

There are a limited number of valid combinations of advanced LDAP configuration
parameters:

• User DN Template

• userDnTemplate (Required)

• principalRegex (Optional)

hdp-security August 29, 2016

128

• User Search by Attribute

• userSearchBase (Required)

• userAttributeName (Required)

• userAttributeTemplate (Optional)

• userSearchScope (Optional)

• principalRegex (Optional)

• User Search by Filter

• userSearchBase (Required)

• userSearchFilter (Required)

• userSearchScope (Optional)

• principalRegex (Optional)

Advanced LDAP Configuration Precedence

The presence of multiple configuration combinations should be avoided. The rules below
clarify which combinations take precedence when present.

• userSearchBase takes precedence over userDnTemplate

• userSearchFilter takes precedence over userSearchAttributeName

2.8.6.3.4. Advanced LDAP Authentication Errata

2.8.6.3.4.1. Problem with userDnTemplate-Based Authentication

UserDnTemplate based authentication uses configuration parameter
ldapRealm.userDnTemplate. Typical value of userDNTemplate would look like
uid={0},ou=people,dc=hadoop,dc=apache,dc=org.

To compute bind DN of the client, we swap the place holder {0} with login id provided by
the client. For example, if the login id provided by the client is "guest’, the computed bind
DN would be uid=guest,ou=people,dc=hadoop,dc=apache,dc=org.

This keeps configuration simple.

However, this does not work if users belong to different branches of LDAP DIT. For
example, if there are some users under ou=people,dc=hadoop,dc=apache,dc=org
and some users under ou=contractors,dc=hadoop,dc=apache,dc=org,

We can not come up with userDnTemplate that would work for all the users.

2.8.6.3.4.2. Special Note on Parameter main.ldapRealm.contextFactory.systemPassword

The value for this could have one of the following two formats:

• plaintextpassword

hdp-security August 29, 2016

129

• ${ALIAS=ldcSystemPassword}

The first format specifies the password in plain text in the provider configuration. Use of
this format should be limited for testing and troubleshooting.

We strongly recommend using the second format ${ALIAS=ldcSystemPassword}
in production. This format uses an alias for the password stored in credential store. In
the example ${ALIAS=ldcSystemPassword}, ldcSystemPassword is the alias for the
password stored in credential store.

Assuming the plain text password is “hadoop”, and your topology file name is “hdp.xml”,
you would use following command to create the right password alias in credential store.

{GATEWAY_HOME}/bin/knoxcli.sh create-alias ldcSystemPassword --cluster hdp --
value hadoop

2.8.6.4. Setting Up SPNEGO Authentication

SNPEGO/Kerberos authentication is configured by adding a "HadoopAuth" authentication
provider to the cluster's topology file. When enabled, the Knox Gateway uses Kerberos/
SPNEGO to authenticate users to Knox.

To enable SNPEGO authentication:

1. Open the cluster topology descriptor file, $cluster-name.xml, in a text editor.

2. Add the HadoopAuth authentication provider to /topology/gateway as follows:

<provider>
 <role>authentication</role>
 <name>HadoopAuth</name>
 <enabled>true</enabled>
 <param>
 <name>config.prefix</name>
 <value>hadoop.auth.config</value>
 </param>
 <param>
 <name>hadoop.auth.config.signature.secret</name>
 <value>knox-signature-secret</value>
 </param>
 <param>
 <name>hadoop.auth.config.type</name>
 <value>kerberos</value>
 </param>
 <param>
 <name>hadoop.auth.config.simple.anonymous.allowed</name>
 <value>false</value>
 </param>
 <param>
 <name>hadoop.auth.config.token.validity</name>
 <value>1800</value>
 </param>
 <param>
 <name>hadoop.auth.config.cookie.domain</name>
 <value>novalocal</value>
 </param>
 <param>
 <name>hadoop.auth.config.cookie.path</name>
 <value>gateway/default</value>

hdp-security August 29, 2016

130

 </param>
 <param>
 <name>hadoop.auth.config.kerberos.principal</name>
 <value>HTTP/localhost@LOCALHOST</value>
 </param>
 <param>
 <name>hadoop.auth.config.kerberos.keytab</name>
 <value>/etc/security/keytabs/spnego.service.keytab</value>
 </param>
 <param>
 <name>hadoop.auth.config.kerberos.name.rules</name>
 <value>DEFAULT</value>
 </param>
</provider>

Configuration parameter descrptions:

Name Description Default

config.prefix If specified, all other configuration
parameter names must start with
the prefix.

none

signature.secret This is the secret used to sign the
delegation token in the hadoop.auth
cookie. This same secret needs to
be used across all instances of the
Knox gateway in a given cluster.
Otherwise, the delegation token will
fail validation and authentication will
be repeated each request.

a simple random number

type This parameter needs to be set to
kerberos.

none, would throw exception

simple.anonymous.allowed This should always be false for a
secure deployment.

true

token.validity The validity -in seconds- of the
generated authentication token. This
is also used for the rollover interval
when signer.secret.provider is set to
random or zookeeper.

36000 seconds

cookie.domain domain to use for the HTTP cookie
that stores the authentication token

null

cookie.path path to use for the HTTP cookie that
stores the authentication token

null

kerberos.principal The web-application Kerberos
principal name. The Kerberos
principal name must start with
HTTP/…. For example: HTTP/
localhost@LOCALHOST

null

kerberos.keytab The path to the keytab file
containing the credentials for the
kerberos principal. For example: /
Users/lmccay/lmccay.keytab

null

kerberos.name.rules The name of the ruleset for
extracting the username from the
kerberos principal.

DEFAULT

3. Save the file.

The gateway creates a new WAR file with modified timestamp in $gateway/data/
deployments.

hdp-security August 29, 2016

131

REST Invocation

Once a user logs in with kinit, their Kerberos session may be used across client requests with
things such as curl. The following curl command can be used to request a directory listing
from HDFS while authenticating with SPNEGO via the –negotiate flag:

curl -k -i --negotiate -u : https://localhost:8443/gateway/sandbox/webhdfs/v1/
tmp?op=LISTSTATUS

2.8.6.5. LDAP Authentication Caching

You can also configure the Apache Knox Gateway to cache LDAP authentication
information by leveraging built-in caching mechanisms that the Shiro EhCache Manager
provides. The ability to cache LDAP authentication information is useful in eliminating the
need to authenticate against the LDAP server each time you use.

Note

When the authentication information is cached, the Knox gateway will not
authenticate the user again until the cache expires.

To enable LDAP authentication caching using the Shiro Provider, follow the steps listed
below.

1. Use the org.apache.hadoop.gateway.ShiroRealm.knoxLdapRealm in the Shiro
configuration.

2. Set the main.ldaprealm.authenticationcachingEnabled property similar to
the example shown below.

<provider>
 <role>authentication</role>
 <enabled>true</enabled>
 <param>
 <name>main.ldapRealm</name>
 <value>org.apache.hadoop.gateway.shirorealm.KnoxLdapRealm</value>
 </param>
 <param>
 <name>main.ldapGroupContextFactory</name>
 <value>org.apache.hadoop.gateway.shirorealm.KnoxLdapContextFactory</
value>
 </param>
 <param>
 <name>main.ldapRealm.ContextFactory</name>
 <value>$ldapGroupContextFactory</value>
 </param>
 <param>
 <name>main.ldapRealm.ContextFactory.url</name>
 <value>$ldap://localhost:33389</value>
 </param>
 <param>
 <name>main.ldapRealm.authorizationEnabled</name>
 <value>true</value>
 </param>
 <param>
 <name>main.ldapRealm.searchBase</name>
 <value>ou-groups,dc=hadoop,dc=apache,dc=org</value>
 </param>

hdp-security August 29, 2016

132

 <param>
 <name>main.cacheManager</name>
 <value>org.apache.shiro.cache.ehcache.EhCacheManager</value>
 </param>
 <param>
 <name>main.securityManager.cacheManager</name>
 <value>$cacheManager</value>
 </param>
 <param>
 <name>main.ldapRealm.authenticationCachingEnabled</name>
 <value>true</value>
 </param>
 <param>
 <name>main.ldapRealm.memberAttributeValueTemplate</name>
 <value>uid={0}ou=people,dc=hadoop,dc=apache,dc=org</value>
 </param>
 <param>
 <name>main.ldapRealm.contextFactory.systemUsername</name>
 <value>uid=guest,ou=people,dc=hadoop,dc=apache,dc=org</value>
 </param>
 <param>
 <name>main.ldapRealm.contextFactory.systemPassword</name>
 <value>guest=password</value>
 </param>
 <param>
 <name>urls./**</name>
 <value>authBasic</value>
 </param>
</provider>

In this example, you need to configure these properties to set the Knox Gateway for
LDAP authentication caching. The Knox Gateway also includes several template topology
files that you can use to test the caching function. You can locate these template files in
the templates directory. To test the caching function, perform the steps listed below.

a. Navigate to the Knox gateway HOME directory.

cd {GATEWAY_HOME}

b. Copy the templates files to your sandbox.

cp templates/sandbox.knoxrealm.ehcache.xml
conf.topologies/sandbox.xml

c. Start the LDAP authentication provider.

bin/ldap.sh start

d. Start the Knox gateway.

bin/gateway.sh start

e. Once the gateway is started, make the following WebHDFS API call:

curl -ivk -u tom:tom-password -X GET
https://localhost:8443/gateway/sandbox/webhdfs/v1?op=GETHOMEDIRECTORY

f. To see LDAP authentication caching working, shut down the LDAP authentication
provider.

hdp-security August 29, 2016

133

bin/ldap.sh stop

g. Run the WebHDFS API call again.

curl -ivk -u tom:tom=password -X GET
https://localhost:8443/gateway/sandbox/webhdfs/v1?op=GETHOMEDIRECTORY

2.8.6.6. Example Active Directory Configuration

Typically the AD main.ldapRealm.userDnTemplate value looks slightly different than
OpenLDAP. The value for main.ldapRealm.userDnTemplate is only required if AD
authentication requires the full User DN.

Note

If Active Directory allows authentication based on the Common
Name (CN) and password only, then no value will be required for
main.ldapRealm.userDnTemplate.

<topology>

 <gateway>

 <provider>
 <role>authentication</role>
 <name>ShiroProvider</name>
 <enabled>true</enabled>
 <param>
 <name>sessionTimeout</name>
 <value>30</value>
 </param>
 <param>
 <name>main.ldapRealm</name>
 <value>org.apache.hadoop.gateway.shirorealm.
KnoxLdapRealm</value>
 </param>

<!-- changes for AD/user sync -->

<param>
 <name>main.ldapContextFactory</name>
 <value>org.apache.hadoop.gateway.shirorealm.KnoxLdapContextFactory</value>
</param>

<!-- main.ldapRealm.contextFactory needs to be placed before other main.
ldapRealm.contextFactory* entries -->
<param>
 <name>main.ldapRealm.contextFactory</name>
 <value>$ldapContextFactory</value>
</param>

<!-- AD url -->
<param>
 <name>main.ldapRealm.contextFactory.url</name>
 <value>ldap://ad01.lab.hortonworks.net:389</value>
</param>

<!-- system user -->

hdp-security August 29, 2016

134

<param>
 <name>main.ldapRealm.contextFactory.systemUsername</name>
 <value>cn=ldap-reader,ou=ServiceUsers,dc=lab,dc=hortonworks,dc=net</value>
</param>

<!-- pass in the password using the alias created earlier -->
<param>
 <name>main.ldapRealm.contextFactory.systemPassword</name>
 <value>${ALIAS=knoxLdapSystemPassword}</value>
</param>

 <param>
 <name>main.ldapRealm.contextFactory.
authenticationMechanism</name>
 <value>simple</value>
 </param>
 <param>
 <name>urls./**</name>
 <value>authcBasic</value>
 </param>

<!-- AD groups of users to allow -->
<param>
 <name>main.ldapRealm.searchBase</name>
 <value>ou=CorpUsers,dc=lab,dc=hortonworks,dc=net</value>
</param>
<param>
 <name>main.ldapRealm.userObjectClass</name>
 <value>person</value>
</param>
<param>
 <name>main.ldapRealm.userSearchAttributeName</name>
 <value>sAMAccountName</value>
</param>

<!-- changes needed for group sync-->
<param>
 <name>main.ldapRealm.authorizationEnabled</name>
 <value>true</value>
</param>
<param>
 <name>main.ldapRealm.groupSearchBase</name>
 <value>ou=CorpUsers,dc=lab,dc=hortonworks,dc=net</value>
</param>
<param>
 <name>main.ldapRealm.groupObjectClass</name>
 <value>group</value>
</param>
<param>
 <name>main.ldapRealm.groupIdAttribute</name>
 <value>cn</value>
</param>

 </provider>

 <provider>
 <role>identity-assertion</role>
 <name>Default</name>
 <enabled>true</enabled>

hdp-security August 29, 2016

135

 </provider>

 <provider>
 <role>authorization</role>
 <name>XASecurePDPKnox</name>
 <enabled>true</enabled>
 </provider>

 </gateway>

 <service>
 <role>NAMENODE</role>
 <url>hdfs://{{namenode_host}}:{{namenode_rpc_port}}</url>
 </service>

 <service>
 <role>JOBTRACKER</role>
 <url>rpc://{{rm_host}}:{{jt_rpc_port}}</url>
 </service>

 <service>
 <role>WEBHDFS</role>
 <url>http://{{namenode_host}}:{{namenode_http_port}}/webhdfs</
url>
 </service>

 <service>
 <role>WEBHCAT</role>
 <url>http://{{webhcat_server_host}}:{{templeton_port}}/
templeton</url>
 </service>

 <service>
 <role>OOZIE</role>
 <url>http://{{oozie_server_host}}:{{oozie_server_port}}/
oozie</url>
 </service>

 <service>
 <role>WEBHBASE</role>
 <url>http://{{hbase_master_host}}:{{hbase_master_port}}</url>
 </service>

 <service>
 <role>HIVE</role>
 <url>http://{{hive_server_host}}:{{hive_http_port}}/
{{hive_http_path}}</url>
 </service>

 <service>
 <role>RESOURCEMANAGER</role>
 <url>http://{{rm_host}}:{{rm_port}}/ws</url>
 </service>
 </topology>

2.8.6.7. Example OpenLDAP Configuration

<provider>
 <role>authentication</role>
 <name>ShiroProvider</name>

hdp-security August 29, 2016

136

 <enabled>true</enabled>
 <param>
 <name>main.ldapRealm</name>
 <value>org.apache.hadoop.gateway.shiorealm.KnoxLdapRealm</value>
 </param>
 <param>
 <name>main.ldapContextFactory</name>
 <value>org.apache.hadoop.gateway.shirorealm.KnoxLdapContectFactory</
value>
 </param>
 <param>
 <name>mainLdapRealm.contextFactory</name>
 <value>$ldapContextFactory</value>
 </param>
</provider>

2.8.6.8. Testing an LDAP Provider

Using cURL, you can test your LDAP configuration as follows:

1. Open the command line on an external client.

Note

cURL is not a built-in command line utility in Windows.

2. Enter the following command to list the contents of the directory tmp/test:

curl -i -k -u ldap_user : password -X GET / 'https:// gateway_host :8443/
 gateway_path / cluster_name /webhdfs/api/v1/tmp/test?op=LISTSTATUS

If the directory exists, a content list displays; if the user cannot be authenticated, the
request is rejected with an HTTP status of 401 unauthorized.

2.8.6.9. Setting Up HTTP Header Authentication for Federation_SSO

The Knox Gateway supports federation solution providers by accepting HTTP header
tokens. This section explains how to configure HTTP header fields for SSO or Federation
solutions that have simple HTTP header-type tokens. For further information, see the
Authentication chapter of the Apache Knox 0.6.0 User's Guide.

The gateway extracts the user identifier from the HTTP header field. The gateway can also
extract the group information and propagate it to the Identity-Assertion provider.

Important

The Knox Gateway federation plug-in, HeaderPreAuth, trusts that the
content provided in the authenticated header is valid. Using this provider
requires proper network security.

Only use the HeaderPreAuth federation provider in environments where the identity
system does not allow direct access to the Knox Gateway. Allowing direct access
exposes the gateway to identity spoofing. Hortonworks recommends defining the
preauth.ip.addresses parameter to ensure requests come from a specific IP addresses
only.

https://knox.apache.org/books/knox-0-6-0/user-guide.html#Authentication

hdp-security August 29, 2016

137

To configure the HTTP header tokens:

1. Open the cluster topology descriptor file, $cluster-name.xml, in a text editor.

2. Add a HeaderPreAuth federation provider to topology/gateway as follows:

<provider>
 <role>federation</role>
 <name>HeaderPreAuth</name>
 <enabled>true</enabled>
 <param>
 <name>preauth.validation.method</name>
 <value>$validation_type</value>
 </param>
 <param>
 <name>preauth.ip.addresses</name>
 <value>$trusted_ip</value>
 </param>
 <param>
 <name>preauth.custom.header</name>
 <value>$user_field</value>
 </param>
 <param>
 <name>preauth.custom.group.header</name>
 <value>$group_field</value>
 </param>
</provider>

where the values of the parameters are specific to your environment:

• $validation_type (Optional, recommended)

Indicates the type of trust, use either preauth.ip.validation indicating to trust only
connections from the address defined in preauth.ip.addresses OR null (omitted)
indicating to trust all IP addresses.

• $trusted_ip (Required when the pre-authentication method is set to
preauth.ip.validation)

A comma-separated list of IP addresses, addresses may contain a wild card to indicate
a subnet, such as 10.0.0.*.

• $user_field

The name of the field in the header that contains the user name that the gateway
extracts. Any incoming request that is missing the field is refused with HTTP status
401, unauthorized. If not otherwise specified, the default value is SM_USER.

• $group_field (Optional)

The name of the field in the header that contains the group name that the gateway
extracts. Any incoming request that is missing the field results in no group name being
extracted and the connection is allowed.

3. Save the file.

hdp-security August 29, 2016

138

The gateway creates a new WAR file with modified timestamp in $gateway/data/
deployments.

2.8.6.10. Example SiteMinder Configuration

The following example is the bare minimum configuration for SiteMinder (with no IP
address validation):

<provider>
 <role>federation</role>
 <name>HeaderPreAuth</name>
 <enabled>true</enabled>
 <param>
 <name>preauth.custom.header</name>
 <value>SM_USER</value>
 </param>
 <param>
 <name>preauth.ip.addresses</name>
 <value>10.10.0.*</value>
 </param>
</provider>

2.8.6.11. Testing HTTP Header Tokens

Use following cURL command to request a directory listing from HDFS while passing in the
expected header SM_USER, note that the example is specific to sandbox:

curl -k -i --header "SM_USER: guest" -v 'https://localhost:8443/gateway/
sandbox/webhdfs/v1/tmp?op=LISTSTATUS

Omitting the SM_USER: guest–header: guest” above results in a HTTP status 401
unauthorized

2.8.6.12. Setting Up 2-Way SSL Authentication

Mutual authentication with SSL provides the Knox gateway with the means to establish
a strong trust relationship with another party. This is especially useful when applications
that act on behalf of end-users send requests to Knox. While this feature does establish an
authenticated trust relationship with the client application, it does not determine the end-
user identity through this authentication. It will continue to look for credentials or tokens
that represent the end-user within the request and authenticate or federate the identity
accordingly.

To configure your Knox Gateway for 2-way SSL authentication, you must first configure
the trust related elements within gateway-site.xml file. The table below lists the different
elements that you can configure related to 2-way mutual authentication.Use following
cURL command to request a directory listing from HDFS while passing in the expected
header SM_USER, note that the example is specific to sandbox:

Table 2.24. gateway-site.xml Configuration Elements

Name Description Possible Values Default Value

gateway.client.auth.needed Flag used to specify whether
authentication is required

TRUE/FALSE FALSE

hdp-security August 29, 2016

139

Name Description Possible Values Default Value

for client communications to
the server.

gateway.truststore.path The fully-qualified path to
the truststore that will be
used.

 gateway.jks

gateway.truststore.type The type of keystore used
for the truststore.

 JKS

gateway.trust.allcerts Flag used to specify
whether certificates passed
by the client should be
automatically trusted.

TRUE/FALSE FALSE

ssl.include.ciphers A comma separated list of
ciphers to accept for SSL.

See the JSSE Provider
docs>The SunJSSE Provider
>Cipher Suites for possible
ciphers. These can also
contain regular expressions
as shown in the Jetty
documentation.

ssl.exclude.ciphers A comma separated list of
ciphers to reject for SSL.

See the JSSE Provider
docs>The SunJSSE Provider
>Cipher Suites for possible
ciphers. These can also
contain regular expressions
as shown in the Jetty
documentation.

Once you have configured the gateway-site.xml file, all topologies deployed within the
Knox gateway with mutual authentication enabled will require all incoming connections to
present trusted client certificates during the SSL handshake process; otherwise, the server
will be refuse the connection request.

2.8.7. Configuring Identity Assertion

The Knox Gatewayidentity-assertion provider maps an authenticated user to an
internal cluster user and/or group. This allows the Knox Gateway accept requests from
external users without requiring internal cluster user names to be exposed.

The gateway evaluates the authenticated user against the identity-assertion
provider to determine the following:

1. Does the user match any user mapping rules:

• True:The first matching $cluster_user is asserted, that is it becomes the
authenticated user.

• False:The authenticated user is asserted.

2. Does the authenticated user match any group mapping rules:

• True:The authenticated user is a member of all matching groups (for the purpose of
authorization).

• False:The authenticated user is not a member of any mapped groups.

http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SunJSSEProvider
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SunJSSEProvider
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SunJSSEProvider
http://www.eclipse.org/jetty/documentation/current/configuring-ssl.html
http://www.eclipse.org/jetty/documentation/current/configuring-ssl.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SunJSSEProvider
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SunJSSEProvider
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SunJSSEProvider
http://www.eclipse.org/jetty/documentation/current/configuring-ssl.html
http://www.eclipse.org/jetty/documentation/current/configuring-ssl.html

hdp-security August 29, 2016

140

Note

When authenticated by an SSO provider, the authenticated user is a
member of all groups defined in the request as well as any that match the
group.principal.mapping.

2.8.7.1. Structure of the Identity-Assertion Provider

All cluster topology descriptors must contain anidentity-assertion provider in
thetopology/gateway definition.

The following is the complete structure of theidentity-assertion provider. The
parameters are optional.

<provider>
 <role>identity-assertion</role>
 <name>Pseudo</name>
 <enabled>true</enabled>
 <param>
 <name>principal.mapping</name>
 <value> $user_ids = $cluster_user [; $user_ids = $cluster_user1 ;...]</value>
 </param>
 <param>
 <name>group.principal.mapping</name>
 <value> $cluster_users = $group1 ; $cluster_users = $group2 </value>
 </param>
 </provider>

where:

• $user_idsis a comma-separated list of external users or the wildcard (*) indicates all
users.

• $cluster_user the Hadoop cluster user name the gateway asserts, that is the
authenticated user name.

Note

Note that identity-assertion rules are not required; however, whenever an
authentication provider is configured an identity-assertion provider is
also required.

2.8.7.2. Define Pseudo Identity Assertion

When you define the Pseudo identity-assertion provider without parameters,
the authenticated user is asserted as the authenticated user. For example, using simple
assertion if a user authenticates as "guest", the user's identity for grouping, authorization,
and running the request is "guest".

To define a basic identify-assertion provider:

1. Open the cluster topology descriptor file, $cluster-name.xml, in a text editor.

2. Add a Pseudoidentity-assertion provider totopology/gateway as follows:

hdp-security August 29, 2016

141

<provider>
 <role>identity-assertion</role>
 <name>Pseudo</name>
 <enabled>true</enabled>
</provider>

<provider> <role>identity-assertion</role> <name>Pseudo</name>
<enabled>true</enabled> </provider>

3. Save the file.

The gateway creates a new WAR file with modified timestamp in $gateway/data/
deployments.

2.8.7.3. Mapping Authenticated User to Cluster

The principal.mapping parameter of an identity-assertion provider determines
the user name that the gateway asserts (uses as the authenticated user) for grouping,
authorization, and to run the request on the cluster.

Note

If a user does not match a principal mapping definition, the authenticated user
becomes the effective user.

To add user mapping rule to an identity-assertion provider:

1. Open the cluster topology descriptor file, $cluster-name.xml, in a text editor.

2. Add a Pseudo identity-assertion provider to topology/gateway with the
principal.mapping parameter as follows:

<provider>
 <role>identity-assertion</role>
 <name>Pseudo</name>
 <enabled>true</enabled>
 <param>
 <name>principal.mapping</name>
 <value>$user_ids=$cluster_user;$user_ids=$cluster_user1;...</value>
 </param>
</provider>

where the value contains a semi-colon-separated list of external to internal user
mappings, and the following variables match the names in your environment:

• $user_ids

is a comma-separated list of external users or the wildcard (*) indicates all users.

• $cluster_user

is the Hadoop cluster user name the gateway asserts, that is the authenticated user
name.

3. Save the file.

hdp-security August 29, 2016

142

The gateway creates a new WAR file with modified timestamp in $gateway/data/
deployments.

2.8.7.3.1. Principal Mapping Enhancements

Concat Identity Assertion is a new provider for the Knox Gateway that enables you to map
principals by concatenating strings to either the front or the back of a specified username.
The Identity Assertion Provider provides the critical function of determining the Identity
Principal that you will want to use in your Hadoop cluster to represent the identity that
has been authenticated at the gateway. For more information on the Identity Assertion
Provider and how it is used in the Knox Gateway, refer to the Identity Assertion chapter
in the Apache Knox 0.6.x User Guide. If you would like to convert the user principal into a
value that represents an identity from a particular user domain, use a configuration similar
to the below example.

<provider>
 <role>identity-assertion</role>
 <name>Concat</name>
 <enabled>true</enabled>
 <param>
 <name>concat.suffix</name>
 <value>domain1</value>
 </param>
<provider>

Notice in this example that the identity-assertion role has been named Concat and
has been enabled (true) for the Identity Assertion Provider, with the conact.suffix
parameter given a value of domain1 and concatenation will occur at the end of the
username (concat.suffix). You may also use a parameter called concat.prefix to
indicate a value to concatenate to the front of the username.

2.8.7.4. Example User Mapping

The gateway evaluates the list in order, from left to right; therefore a user matching
multiple entries, resolves to the first matching instance.

In the following example, when a user authenticates as, the gateway asserts the user and
all other users as:

<provider>
 <role>identity-assertion</role>
 <name>Pseudo</name>
 <enabled>true</enabled>
 <param>
 <name>principal.mapping</name>
 <value>guest=sam</value>
 </param>
</provider>

The following example shows how to map multiple users to different cluster accounts:

<provider>
 <role>identity-assertion</role>
 <name>Pseudo</name>
 <enabled>true</enabled>

hdp-security August 29, 2016

143

 <param>
 <name>principal.mapping</name>
 <value>guest,joe,brenda,administrator=same;janet,adam,sue-dwayne</
value>
 </param>
</provider>

2.8.7.5. Mapping Authenticated Users to Groups

The Knox Gateway uses group membership for Service Level Authorization only. The
gateway does not propagate the user's group when communicating with the Hadoop
cluster.

The group.principal.mapping parameter of the identity-assertion provider
determines the user's group membership. The gateway evaluates this parameter
after the principal.mapping parameter using the authenticated user. Unlike
principal.mapping, the group mapping applies all the matching values. A user is a
member of all matching groups.

Note

Although user and group mappings are often used together, the instructions in
this section only explain how to add group mappings.

2.8.7.6. Configuring Group Mapping

To map authenticated users to groups:

1. Open the cluster topology descriptor file, $cluster-name.xml, in a text editor.

2. Add a Pseudo identity-assertion provider to topology/gateway with the
group.principal.mapping parameter as follows:

<provider>
 <role>identity-assertion</role>
 <name>Pseudo</name>
 <enabled>true</enabled>
 <param>
 <name>group.principal.mapping</name>
 <value>$group1;$user1,$user2=group2;$user3=group2,group3</value>
 </param>
</provider>

where:

• the value is a semi-colon-separated list of user & group mappings and the variables are
specific to your environment.

• $user1,$user2,$user3 are a comma-separated list of authenticated usernames or
the wildcard (*) indicating all users. A username can be specified only once.

• $group1,$group2,$group3 are the names of the group that the user is in for
Service Level Authorization.

3. Save the file.

hdp-security August 29, 2016

144

The gateway creates a new WAR file with modified timestamp in $gateway/data/
deployments.

2.8.7.7. Examples of Group Mapping

<provider>
 <role>identity-assertion</role>
 <name>Pseudo</name>
 <enabled>true</enabled>
 <param>
 <name>principal.mapping</name>
 <value>guest,alice=hdfs;mary=hive</value>
 </param>
 <param>
 <name>group.principal.mapping</name>
 <value>*=users; same,dwayne,brenda-admins;joe=analysts</value>
 </param>
</provider>

2.8.8. Configuring Service Level Authorization

Note

Group membership is determined by the identity-assertion
parametergroup.principal.mapping.

Group membership is determined by the identity-assertion
parametergroup.principal.mapping.

2.8.8.1. Setting Up an Authorization Provider

The ACLAuthz provider determines who is able to access a service through the Knox
Gateway by comparing the authenticated user, group, and originating IP address of the
request to the rules defined in the authorization provider.

Configure the AclsAuthz provider as follows:

1. Open the cluster topology descriptor file, $cluster-name .xml, in a text editor.

2. Add a AclsAuthz authorization provider to topology/gateway with a parameter
for each service as follows:

<provider>
 <role>authorization</role>
 <name>AclsAuthz</name>
 <enabled>true</enabled>
 <param>
 <name>$service_name.acl.mode</name>
 <value>$mode</value>
 </param>
 <param>
 <name>$service_Name.acl</name>
 <value>$cluster_users;$groups_field;IP_field</value>
 </param>
 ...

hdp-security August 29, 2016

145

</provider>

where:

• $service_name matches the name of a service element. For example,webhdfs.

• $mode determines how the identity context (the effective user, their associated
groups, and the original IP address) is evaluated against the fields as follows:

• AND specifies that the request must match an entry in all three fields of the
corresponding $service_name .acl parameter.

• OR specifies that the request only needs to match an entry in any field,
$users_field OR $groups_field, OR $IP_field.

Note

The $service_name .acl.mode parameter is optional. When it is not
defined, the default mode is AND ; therefore requests to that service must
match all three fields.

• $cluster_users is a comma-separated list of authenticated users. Use a wildcard
(*) to match all users.

• $groups_field is a comma-separated list of groups. Use a wildcard (*) to match all
groups.

• $IP_field is a comma-separated list of IPv4 or IPv6 addresses. An IP address in the
list can contain wildcard at the end to indicate a subnet (for example: 192.168.*). Use
a wildcard (*) to match all addresses.

3. Save the file.

The gateway creates a new WAR file with modified timestamp in $gateway/data/
deployments.

2.8.8.2. Examples of Authorization

The following examples illustrate how to define authorization rule types to restrict access
to requests matching:

• Only users in a specific group and from specific IP addresses

The following rule is restrictive. It only allows the guest user in the admin group to access
WebHDFS from a system with the IP address of either 127.0.0.2 or 127.0.0.3:

<provider>
 <role>authorization</role>
 <name>AclsAuthz</name>
 <enabled>true</enabled>
 <param>
 <name>webhdfs.acl</name>
 <value>guest;admin;127.0.0.2,127.0.0.3</value>
 </param>
</provider>

hdp-security August 29, 2016

146

When the parameter acl.mode is not defined the default behavior is ALL, therefore
following rule is the same as the one above:

<provider>
 <role>authorization</role>
 <name>AclsAuthz</name>
 <enabled>true</enabled>
 <param>
 <name>webhdfs.acl.mode</name>
 <value>AND</value>
 </param>
 <param>
 <name>webhdfs.acl</name>
 <value>guest;admin;127.0.0.2,127.0.0.3</value>
 </param>
</provider>

Note

If Guest is not in the admin group, the request is denied.

• Two of the three conditions

The following rule demonstrates how to require two conditions, user and group but not
IP address, using the Wildcard. The rule allows the guest user that belongs to the admin
group to send requests from anywhere because the IP field contains an asterisk which
matches all IP addresses:

<provider>
 <role>authorization</role>
 <name>AclsAuthz</name>
 <enabled>true</enabled>
 <param>
 <name>webhdfs.acl</name>
 <value>guest;admin;*</value>
 </param>
</provider>

• One of the three conditions

When the $service .acl.mode parameter is set to OR, the request only needs
to match one entry in any of the fields. The request fails with HTTP Status 403
unauthorized, if no conditions are met.

The following example allows:

• guest to send requests to WebHDFS from anywhere.

• Any user in the admin group to send requests to WebHDFS from anywhere.

• Any user, in any group, to send a request to WebHDFS from 127.0.0.2 or 127.0.0.3.

<provider>
 <role>authorization</role>
 <name>AclsAuthz</name>
 <enabled>true</enabled>
 <param>

hdp-security August 29, 2016

147

 <name>webhdfs.acl.mode</name>
 <value>OR</value>
 </param>
 <param>
 <name>webhdfs.acl</name>
 <value>guest;admin;127.0.0.2,127.0.03</value>
 </param>
</provider>

• Allow all requests

The following rule grants all users, in any group, and from any IP addresses to access
WebHDFS:

Note

When a wildcard is used in a field it matches any value. Therefore the Allow
all requests example is the same as not defining an ACL.

<provider>
 <role>authorization</role>
 <name>AclsAuthz</name>
 <enabled>true</enabled>
 <param>
 <name>webhdfs.acl</name>
 <value>*,*,*</value>
 </param>
</provider>

2.8.9. Audit Gateway Activity

The Knox Gateway Audit Facility tracks actions that are executed by Knox Gateway per
user request or that are produced by Knox Gateway internal events, such as topology
deployments.

Tip

The Knox Audit module is based on the Apache log4j. You can customize
the logger by changing the log4j.appender.auditfile.Layout property in
$gateway /conf/gateway-log4j.properties to another class that
extends Log4j. For detailed information see Apache's log4j.

2.8.9.1. Audit Log Fields

Auditing events on the gateway are informational, the default auditing level is
informational (INFO) and it cannot be changed.

The Audit logs located at C:/hadoop/logs/knox/gateway-audit.log have the
following structure:

EVENT_PUBLISHING_TIMEROOT_REQUEST_ID | PARENT_REQUEST_ID | REQUEST_ID
| LOGGER_NAME | TARGET_SERVICE_NAME | USER_NAME | PROXY_USER_NAME |
SYSTEM_USER_NAME | ACTION | RESOURCE_TYPE | RESOURCE_NAME | OUTCOME |
LOGGING_MESSAGE

http://logging.apache.org/log4j/1.2/

hdp-security August 29, 2016

148

where:

• EVENT_PUBLISHING_TIME : contains the timestamp when record was written.

• ROOT_REQUEST_ID : Reserved, the field is empty.

• PARENT_REQUEST_ID : Reserved, the field is empty.

• REQUEST_ID : contains a unique value representing the request.

• LOGGER_NAME : contains the logger name. For example audit.

• TARGET_SERVICE_NAME : contains the name of Hadoop service. Empty indicates that
the audit record is not linked to a Hadoop service. For example, an audit record for
topology deployment.

• USER_NAME : contains the ID of the user who initiated session with Knox Gateway.

• PROXY_USER_NAME : contains the authenticated user name.

• SYSTEM_USER_NAME : Reserved, field is empty.

• ACTION : contains the executed action type. The value is either authentication,
authorization, redeploy, deploy, undeploy, identity-mapping, dispatch, or access.

• RESOURCE_TYPE contains the resource type of the action. The value is either uri,
topology, or principal.

• RESOURCE_NAME : contains the process name of the resource. For example, topology
shows the inbound or dispatch request path and principal shows the name of
mapped user.

• OUTCOME contains the action results, success, failure, or unavailable.

• LOGGING_MESSAGE contains additional tracking information, such as the HTTP status
code.

2.8.9.2. Change Roll Frequency of the Audit Log

Audit records are written to the log file /var/log/knox/gateway-audit.log and by default roll
monthly. When the log rolls, the date that it rolled is appended to the end of the current
log file and a new one is created.

To change the frequency:

1. Open the $gateway /conf/gateway-log4j.properties file in a text editor.

2. Change the log4j.appender.auditfile.DatePattern as follows:

log4j.appender.auditfile.DatePattern = $interval

where $interval is one of the following:

hdp-security August 29, 2016

149

Setting Description

yyyy-MM Rollover at the beginning of each month

yyyy-ww Rollover at the first day of each week. The first day of
the week depends on the locale.

yyyy-MM-dd Rollover at midnight each day.

yyyy-MM-dd-a Rollover at midnight and midday of each day.

yyyy-MM-dd-HH Rollover at the top of every hour.

yyyy-MM-dd-HH-mm Rollover at the beginning of every minute.

Tip

For more examples, see Apache log4j: Class DailyRollingFileAppender.

3. Save the file.

4. Restart the gateway:

cd $gateway bin/gateway.sh stop bin/gateway.sh start

2.8.10. Gateway Security

The Knox Gateway offers the following security features:

• Implementing Web Application Security [149]

• Configuring Knox With a Secured Hadoop Cluster [151]

2.8.10.1. Implementing Web Application Security

The Knox Gateway is a Web API (REST) Gateway for Hadoop clusters. REST interactions are
HTTP based, and therefore the interactions are vulnerable to a number of web application
security vulnerabilities. The web application security provider allows you to configure
protection filter plugins.

Note

The initial vulnerability protection filter is for Cross Site Request Forgery (CSRF).
Others will be added in future releases.

2.8.10.2. Configuring Protection Filter Against Cross Site Request
Forgery Attacks

A Cross Site Request Forgery (CSRF) attack attempts to force a user to execute functionality
without their knowledge. Typically the attack is initiated by presenting the user with a link
or image that when clicked invokes a request to another site with which the user already
has an established an active session. CSRF is typically a browser based attack.

The only way to create a HTTP request from a browser with a custom HTTP header is
to use Javascript XMLHttpRequest or Flash, etc. Browsers have built-in security that

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html

hdp-security August 29, 2016

150

prevent web sites from sending requests to each other unless specifically allowed by
policy. This means that a website www.bad.com cannot send a request to http://
bank.example.com with the custom header X-XSRF-Header unless they use a technology
such as a XMLHttpRequest. That technology would prevent such a request from being
made unless the bank.example.com domain specifically allowed it. This then results in a
REST endpoint that can only be called via XMLHttpRequest (or similar technology).

Note

After enabling CSRF protection within the gateway, a custom header is
required for all clients that interact with it, not just browsers.

To add a CSRF protection filter:

1. Open the cluster topology descriptor file, $cluster-name .xml, in a text editor.

2. Add a WebAppSec webappsec provider to topology/gateway with a parameter for
each service as follows:

<provider>
 <role>webappsec</role>
 <name>WebAppSec</name>
 <enabled>true</enabled>
 <param>
 <name>csrf.enabled</name>
 <value>$csrf_enabled</value>
 </param>
 <param><!-- Optional -->
 <name>csrf.customHeader</name>
 <value>$header_name</value>
 </param>
 <param><!-- Optional -->
 <name>csrf.methodsToIgnore</name>
 <value>$HTTP_methods</value>
 </param>
</provider>

where:

• $csrf_enabled is either true or false.

• $header_name when the optional parameter csrf.customHeader is present the value
contains the name of the header that determines if the request is from a trusted
source. The default, X-XSRF-Header, is described by the NSA in its guidelines for
dealing with CSRF in REST.

$http_methods when the optional parameter csrf.methodsToIgnore is present
the value enumerates the HTTP methods to allow without the custom HTTP header.
The possible values are GET, HEAD, POST, PUT, DELETE, TRACE, OPTIONS, CONNECT,
or PATCH. For example, specifying GET allows GET requests from the address bar of a
browser.

3. Save the file.

The gateway creates a new WAR file with modified timestamp in $gateway /data/
deployments.

hdp-security August 29, 2016

151

Note

Make sure you have properly set your $JAVA_HOME variable in your user
environment.

2.8.10.3. Validate CSRF Filtering

The following curl command can be used to request a directory listing from HDFS while
passing in the expected header X-XSRF-Header.

curl -k -i --header "X-XSRF-Header: valid" -v -u guest:guest-password https://
localhost:8443/gateway/sandbox/webhdfs/v1/tmp?op=LISTSTATUS

Note

The above LISTSTATUS request only works if you remove the GET method from
the csrf.methodsToIgnore list.

Omitting the –header “X-XSRF-Header: valid” above results in an HTTP 400 bad_request.
Disabling the provider, by setting csrf.enabled to false allows a request that is missing the
header.

2.8.10.4. Configuring Knox With a Secured Hadoop Cluster

Once you have a Hadoop cluster that uses Kerberos for authentication, you must configure
Knox to work with that cluster.

To enable the Knox Gateway to interact with a Kerberos-protected Hadoop cluster, add a
knox user and Knox Gateway properties to the cluster.

Do the following:

1. Find the fully-qualified domain name of the host running the gateway:

hostname -f

If the Knox host does not have a static IP address, you can define the knox host as * for
local developer testing.

2. At every Hadoop Master:

• Create a UNIX account for Knox:

useradd -g hadoop knox

• Edit core-site.xml to include the following lines (near the end of the file):

<property>
 <name>hadoop.proxyuser.knox.groups</name>
 <value>users</value>
</property>

<property>
 <name>hadoop.proxyuser.knox.hosts</name>
 <value>$knox-host</value>
</property>

hdp-security August 29, 2016

152

where $knox-host is the fully-qualified domain name of the host running the
gateway.

• Edit webhcat-site.xml to include the following lines (near the end of the file):

<property>
 <name>hadoop.proxyuser.knox.groups</name>
 <value>users</value>
</property>

<property>
 <name>hadoop.proxyuser.knox.hosts</name>
 <value>$knox-host</value>
</property>

where $knox_host is the fully-qualified domain name of the host running the
gateway.

3. At the Oozie host, edit oozie-site.xml to include the following lines (near the end of
the file):

<property>
 <name>oozie.service.ProxyUserService.proxyuser.knox.groups</name>
 <value>users</value>
</property>

<property>
 <name>oozie.service.ProxyUserService.proxyuser.knox.hosts</name>
 <value>$knox-host</value>
</property>

where $knox-host is the fully-qualified domain name of the host running the gateway.

4. At each node running HiveServer2, edit hive-site.xml to include the following
properties and values:

<property>
 <name>hive.server2.enable.doAs</name>
 <value>true</value>
</property>

<property>
 <name>hive.server2.allow.user.substitution</name>
 <value>true</value>
</property>

<property>
 <name>hive.server2.transport.mode</name>
 <value>http</value>
 <description>Server transport mode. "binary" or "http".</description>
</property>

<property>
 <name>hive.server2.thrift.http.port</name>
 <value>10001</value>
 <description>Port number when in HTTP mode.</description>
</property>

hdp-security August 29, 2016

153

<property>
 <name>hive.server2.thrift.http.path</name>
 <value>cliservice</value>
 <description>Path component of URL endpoint when in HTTP mode.</
description>
</property>

2.8.11. Setting Up Knox Services for HA

This chapter describes how to set up the Knox Gateway for HA (high availability). Knox
provides connectivity based failover functionality for service calls that can be made to more
than one server instance in a cluster. Knox supports HA for HBase, Hive, Oozie, WebHCat,
and WebHDFS.

Example:

<provider>
 <role>ha</role>
 <name>HaProvider</name>
 <enabled>true</enabled>
 <param>
 <name>OOZIE</name>
 <value>maxFailoverAttempts=3;failoverSleep=1000;enabled=true</value>
 </param>
 <param>
 <name>HBASE</name>
 <value>maxFailoverAttempts=3;failoverSleep=1000;enabled=true</value>
 </param>
 <param>
 <name>WEBHCAT</name>
 <value>maxFailoverAttempts=3;failoverSleep=1000;enabled=true</value>
 </param>
 <param>
 <name>WEBHDFS</name>
 <value>maxFailoverAttempts=3;failoverSleep=1000;maxRetryAttempts=
300;retrySleep=1000;enabled=true</value>
 </param>
 <param>
 <name>HIVE</name>
 <value>maxFailoverAttempts=3;failoverSleep=1000;enabled=
true;zookeeperEnsemble=machine1:2181,machine2:2181,machine3:2181;
 zookeeperNamespace=hiveserver2</value>
 </param>
</provider>

<service>
 <role>OOZIE</role>
 <url>http://sandbox1:11000/oozie</url>
 <url>http://sandbox2:11000/oozie</url>
</service>
<service>
 <role>HBASE</role>
 <url>http://sandbox3:22000/hbase</url>
 <url>http://sandbox4:22000/hbase</url>
</service>
<service>
 <role>WEBHCAT</role>
 <url>http://sandbox5:33000/webhcat</url>

hdp-security August 29, 2016

154

 <url>http://sandbox6:33000/webhcat</url>
</service>
<service>
 <role>WEBHDFS</role>
 <url>http://sandbox7:44000/webhdfs</url>
 <url>http://sandbox8:44000/webhdfs</url>
</service>
<service>
 <role>HIVE</role>
</service>

2.8.11.1. Prerequisites

Add the following configuration to the Knox>Configs>Advanced>Topology file:

<provider>
 <role>ha</role>
 <name>HaProvider</name>
 <enabled>true</enabled>

2.8.11.2. Configure WebHDFS for Knox

REST API access to HDFS in a Hadoop cluster is provided by WebHDFS. The WebHDFS REST
API documentation is available online. The following properties for Knox WebHDFS must
be enabled in the /etc/hadoop/conf/hdfs-site.xml configuration file. The example
values shown in these properties are from an installed instance of the Hortonworks
Sandbox.

<property>
 <name>dfs.webhdfs.enabled</name>
 <value>true</value>
</property>
<property>
 <name>dfs.namenode.rpc-address</name>
 <value>sandbox.hortonworks.com:8020</value>
</property>
<property>
 <name>dfs.namenode.http-address</name>
 <value>sandbox.hortonworks.com:50070</value>
</property>
<property>
 <name>dfs.https.namenode.https-address</name>
 <value>sandbox.hortonworks.com:50470</value>
</property>

The values above must be reflected in each topology descriptor file deployed to the
gateway. The gateway by default includes a sample topology descriptor file located at
{GATEWAY_HOME}/deployments/sandbox.xml. The values in the following sample
are also configured to work with an installed Hortonworks Sandbox VM.

<service>
 <role>NAMENODE</role>
 <url>hdfs://localhost:8020</url>
</service>
<service>
 <role>WEBHDFS</role>
 <url>http://localhost:50070/webhdfs</url>
</service>

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_hdfs-administration/content/ch11.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/WebHDFS.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/WebHDFS.html

hdp-security August 29, 2016

155

The URL provided for the NAMENODE role does not result in an endpoint being exposed
by the gateway. This information is only required so that other URLs can be rewritten that
reference the Name Node’s RPC address. This prevents clients from needing to be aware of
the internal cluster details.

2.8.11.3. Configure Knox for HA

Knox provides basic failover and retry functionality for REST API calls made to a service
when service HA has been configured and enabled.

To enable HA functionality in Knox the following configuration must be added to the
topology file:

Service Parameter

WebHDFS <param>
 <name>WEBHDFS</name>
 <value>maxFailoverAttempts=3;failoverSleep=
1000;maxRetryAttempts=300;retrySleep=1000;enabled=
true</value>
 </param>

HBase <param>
 <name>HBASE</name>
 <value>maxFailoverAttempts=
3;failoverSleep=1000;enabled=true</value>
 </param>

Hive <param>
 <name>HIVE</name>
 <value>maxFailoverAttempts=
3;failoverSleep=1000;enabled=
true;zookeeperEnsemble=machine1:2181,
machine2:2181,machine3:2181;
 zookeeperNamespace=hiveserver2</value>
 </param>

Oozie <param>
 <name>OOZIE</name>
 <value>maxFailoverAttempts=
3;failoverSleep=1000;enabled=true</value>
 </param>

WebHCat <param>
 <name>WEBHCAT</name>
 <value>maxFailoverAttempts=
3;failoverSleep=1000;enabled=true</value>
 </param>

The various configuration parameters are described below:

• maxFailoverAttempts -- The maximum number of times a failover will be attempted.
The current failover strategy is very simplistic in that the next URL in the list of URLs
provided for the service is used, and the one that failed is put at the bottom of the list.
If the list is exhausted and the maximum number of attempts has not been reached,
the first URL that failed will be tried again (the list will start again from the original top
entry).

• failoverSleep -- The amount of time in milliseconds that the process will wait or sleep
before attempting to failover.

• maxRetryAttempts -- The maximum number of times that a retry request will be
attempted. Unlike failover, the retry is done on the same URL that failed. This is a special
case in HDFS when the node is in safe mode. The expectation is that the node will come
out of safe mode, so a retry is desirable here as opposed to a failover.

hdp-security August 29, 2016

156

• retrySleep -- The amount of time in milliseconds that the process will wait or sleep
before a retry is issued.

• enabled - Flag to turn the particular service on or off for HA.

The additional configuration parameters for Hive are described below:

• zookeeperEnsemble -- A comma separated list of host names (or IP addresses) of
the zookeeper hosts that consist of the ensemble that the Hive servers register their
information with. This value can be obtained from Hive’s config file hive-site.xml as the
value for the parameter ‘hive.zookeeper.quorum’.

• zookeeperNamespace -- This is the namespace under which HiveServer2 information is
registered in the ZooKeeper ensemble. This value can be obtained from Hive’s config file
hive-site.xml as the value for the parameter ‘hive.server2.zookeeper.namespace’.

For the service configuration itself, the additional URLs for standby nodes should be added
to the list. The active URL (at the time of configuration) should ideally be added at the top
of the list. Example for HBase, Oozie, WebHCat, and WebHDFS:

<service>
 <role>{COMPONENT}</role>
 <url>http://{host1}:50070/{component}</url>
 <url>http://{host2}:50070/{component}</url>
</service>

Example for Hive:

<service>
 <role>HIVE</role>
</service>

Please note that there is no <url> tag specified here as the URLs for the Hive servers are
obtained from ZooKeeper.

2.8.12. Knox CLI Testing Tools
This section describes how to use the Knox CLI (Command Line Interface) to run diagnostic
tests.

The Knox CLI is a command line utility that can be used to manage and test various aspects
of a Knox deployment.

The knoxcli.sh command line utility script is located in the {GATEWAY_HOME}/bin
directory.

2.8.12.1. Knox CLI LDAP Authentication and Authorization Testing

You can use the following command format to authenticate a user name and password
against LDAP.

bin/knoxcli.sh user-auth-test [--cluster c] [--u username] [--p password] [--
g] [--d] [--help]

This command will test a topology’s ability to connect, authenticate, and authorize a user
with an LDAP server. The only required argument is the --cluster argument to specify

hdp-security August 29, 2016

157

the name of the topology you wish to use. The topology must be valid (passes a validate-
topology command). If the –u and –p arguments are not specified, you will be prompted
for a user name and password.

If authentication is successful, the command will attempt to use the topology to do
an LDAP group lookup. The topology must be configured correctly to do this. If it is
not, groups will not be returned and no errors will be printed unless the --g argument
is specified. Currently this command only works if a topology supports the use of
ShiroProvider for authentication.

Table 2.25. LDAP Authentication and Authorization Arguments

Argument Description Required?

--cluster The name of the cluster to
authenticate.

Yes

--u The user name to authenticate with. No

--p The password to authenticate with. No

--g Specifies that you want to return a
user’s groups. If not specified, group
lookup errors will not be returned.

No

--d Print extra debug information for a
failed authentication.

No

2.9. Knox SSO
Authentication of the Hadoop component UIs, and those of the overall ecosystem,
is usually limited to Kerberos (which requires SPNEGO to be configured for the user’s
browser) and simple/psuedo. This often results in the UIs not being secured - even in
secured clusters. This is where KnoxSSO provides value by providing WebSSO capabilities to
the Hadoop cluster.

By leveraging the hadoop-auth module in Hadoop common, we have introduced the
ability to consume a common SSO cookie for web UIs while retaining the non-web
browser authentication through Kerberos/SPNEGO. We do this by extending the
AltKerberosAuthenticationHandler class which provides the useragent-based
multiplexing.

The flexibility of the Apache Knox authentication and federation providers allows KnoxSSO
to provide normalization of authentication events through token exchange. resulting in a
common JWT (JSON WebToken)-based token.

KnoxSSO provides an abstraction for integrating any number of authentication systems and
SSO solutions, and enables participating web applications to scale to those solutions more
easily. Without the token exchange capabilities offered by KnoxSSO, each component UI
would need to integrate with each desired solution on its own. With KnoxSSO, they only
need to integrate with the single solution and common token.

2.9.1. Identity Providers (IdP)

Knox has two identity providers: form-based and SAML. It requires that LDAP
authentication be configured for Ambari and that it be the same LDAP server as Knox SSO
is using for form-based IdP.

hdp-security August 29, 2016

158

2.9.1.1. Form-based Identity Provider (IdP)

The form-based identity provider (IdP) is the default identity provider for KnoxSSO out of
the box and is installed by Ambari.

The installed configuration of the provider leverages the Shiro provider which attempts to
authenticate a request by looking for HTTP basic credentials.

Instead of responding with an HTTP basic challenge, however, the browser is redirected to
the KnoxAuth application to present the user with a form in which to submit username and
password.

Example 2.2. knoxsso.xml with Shiro provider

The following knosso.xml topology file illustrates the use of the Shiro provider, the hosting
of the knoxauth application, and the configuration of the KNOXSSO service itself.

The typical Shiro provider configuration is augmented with new parameters for achieving
the behavior described above.

The restrictedCookies parameter is used to add the WWW-Authenticate header in
order to suppress the HTTP basic challenge.

The redirectToUrl parameter is used to indicate where to redirect the browser rather,
than issuing an HTTP basic challenge.

Note, also, the application element which is used to indicate that a given application is
to be hosted by the Knox gateway and how it relates to the redirectToUrl parameter
in the Shiro provider.

The knoxsso.xml topology describes the manner in which a client acquires a KnoxSSO
websso cookie/token. The Shiro provider allows the integration LDAP/AD with HTTP Basic
Auth credentials.

<topology>
 <gateway>
 <provider>
 <role>webappsec</role>
 <name>WebAppSec</name>
 <enabled>true</enabled>
 <param>
 <name>xframe.options.enabled</name>
 <value>true</value>
 </param>
 </provider>
 <provider>
 <role>authentication</role>
 <name>ShiroProvider</name>
 <enabled>true</enabled>
 <param>
 <name>sessionTimeout</name>
 <value>30</value>
 </param>
 <param>
 <name>redirectToUrl</name>
 <value>/gateway/knoxsso/knoxauth/login.html</value>
 </param>
 <param>

hdp-security August 29, 2016

159

 <name>restrictedCookies</name>
 <value>rememberme,WWW-Authenticate</value>
 </param>
 <param>
 <name>main.ldapRealm</name>
 <value>org.apache.hadoop.gateway.shirorealm.KnoxLdapRealm</
value>
 </param>
 <param>
 <name>main.ldapContextFactory</name>
 <value>org.apache.hadoop.gateway.shirorealm.
KnoxLdapContextFactory</value>
 </param>
 <param>
 <name>main.ldapRealm.contextFactory</name>
 <value>$ldapContextFactory</value>
 </param>
 <param>
 <name>main.ldapRealm.userDnTemplate</name>
 <value>uid={0},ou=people,dc=hadoop,dc=apache,dc=org</value>
 </param>
 <param>
 <name>main.ldapRealm.contextFactory.url</name>
 <value>ldap://localhost:33389</value>
 </param>
 <param>
 <name>main.ldapRealm.authenticationCachingEnabled</name>
 <value>false</value>
 </param>
 <param>
 <name>main.ldapRealm.contextFactory.authenticationMechanism</
name>
 <value>simple</value>
 </param>
 <param>
 <name>urls./**</name>
 <value>authcBasic</value>
 </param>
 </provider>
 <provider>
 <role>identity-assertion</role>
 <name>Default</name>
 <enabled>true</enabled>
 </provider>
 <provider>
 <role>hostmap</role>
 <name>static</name>
 <enabled>true</enabled>
 <param><name>localhost</name><value>sandbox,sandbox.hortonworks.
com</value></param>
 </provider>
 </gateway>

 <application>
 <name>knoxauth</name>
 </application>

 <service>
 <role>KNOXSSO</role>
 <param>

hdp-security August 29, 2016

160

 <name>knoxsso.cookie.secure.only</name>
 <value>true</value>
 </param>
 <param>
 <name>knoxsso.token.ttl</name>
 <value>30000</value>
 </param>
 <param>
 <name>knoxsso.redirect.whitelist.regex</name>
 <value>^https?:\/\/(c64\d\d\.ambari\.apache\.org|localhost|127\.0\.
0\.1|0:0:0:0:0:0:0:1|::1):[0-9].*$</value>
 </param>
 </service>
</topology>

2.9.1.2. SAML-based Identity Provider (IdP)

Apache Knox with KnoxSSO + pac4j provider enables the use of a number of new
authentication and SSO solutions for accessing and developing KnoxSSO-enabled
applications (including Ambari, Ranger, Hadoop UIs and custom built applications that
utilize REST APIs through Knox.)

This section illustrates the integration of the Okta identity service offering by leveraging the
pac4j provider SAML capabilities in Apache Knox. A similar flow to what is described below
would be available for Ambari and Ranger, or any KnoxSSO participating application.

As opposed to the KnoxSSO form-based IdP, where the actual form is hosted by a Knox
hosted authentication app, SAML IdPs need to have KnoxSSO instances configured
within the SAML solution as participating in the SAML SSO flow as a service provider. This
generally requires the creation of an “Application” in Okta and other providers which will
contain the required endpoints and metadata required for verifying requests for login and
redirecting users back to KnoxSSO after the authentication event is successful.

Okta information on SAML-based SSO. KnoxSSO is the Service Provider, not the end
application that is participating with KnoxSSO.

Configuring the SAML application using the Okta SAML App Wizard.

Example 2.3. knoxsso.xml with Okta

The knoxsso.xml topology file will need to be changed from the form-based IdP
configuration to the SAML-based IdP by swapping the Shiro provider with the pac4j
provider for Knox.

The knoxsso.xml topology describes the manner in which a client acquires a KnoxSSO
websso cookie/token. The pac4j federation provider allows the integration of a number of
authentication solutions. In this case, the openid connect capability is being leveraged to
integrate the cloud-based PrivaKey identity service.

The following topology file is an example for use with Okta.

<topology>
 <gateway>
 <provider>
 <role>federation</role>
 <name>pac4j</name>
 <enabled>true</enabled>

http://developer.okta.com/standards/SAML/?_ga=1.244618437.1536133741.1475338247
https://support.okta.com/help/articles/Knowledge_Article/Using-the-App-Integration-Wizard?_ga=1.174497250.1536133741.1475338247#SAMLWizard

hdp-security August 29, 2016

161

 <param>
 <name>pac4j.callbackUrl</name>
 <value>https://www.local.com:8443/gateway/knoxsso/api/v1/websso</value>
 </param>

 <param>
 <name>clientName</name>
 <value>SAML2Client</value>
 </param>

 <param>
 <name>saml.identityProviderMetadataPath</name>
 <value>https://dev-122415.oktapreview.com/app/exk5nc5z1xbFKb7nH0h7/
sso/saml/metadata</value>
 </param>

 <param>

 <name>saml.serviceProviderMetadataPath</name>
 <value>/tmp/sp-metadata.xml</value>
 </param>

 <param>
 <name>saml.serviceProviderEntityId</name>
 <value>https://www.local.com:8443/gateway/knoxsso/api/v1/websso?
pac4jCallback=true&client_name=SAML2Client</value>
 </param>
 </provider>
 <provider>
 <role>identity-assertion</role>
 <name>Default</name>
 <enabled>true</enabled>
 <param>
 <name>principal.mapping</name>
 <value>guest@example.com=guest;</value>
 </param>
 </provider>
 </gateway>

 <service>
 <role>KNOXSSO</role>
 <param>
 <name>knoxsso.cookie.secure.only</name>
 <value>true</value>
 </param>
 <param>
 <name>knoxsso.token.ttl</name>
 <value>100000</value>
 </param>
 <param>
 <name>knoxsso.redirect.whitelist.regex</name>
 <value>^https?:\/\/(www\.local\.com|localhost|127\.0\.0\.1|
0:0:0:0:0:0:0:1|::1):[0-9].*$</value>
 </param>
 </service>
</topology>

hdp-security August 29, 2016

162

Note

You must encode the ampersand within the saml.serviceProviderEntityId
parameter as & and include a value for the
saml.serviceProviderMetadataPath - the file location
here doesn't need to exist. There is a bug that will throw an NPE if
saml.serviceProviderMetadataPath is not included even though the
actual metadata will be served up to the IdP via request.

In the above example, we have configured the Okta application to assert the user’s ID
as their email address. In order to leverage this as the identity, we need to map it to a
username that will be valid within the Hadoop cluster. The identity assertion provider
above does a simple mapping from a known email address to a known username. More
appropriate assertion provider usage would likely be to use the regex assertion provider
that would allow you to extract the username from the email address.

We currently do not have support for establishing groups from the SAML assertion and
must rely on the participating applications to do a group lookup based on the username.

2.9.2. Setting up Knox SSO for Ambari

This section describes how to configure Ambari to use Knox SSO (Single Sign-on) to
authenticate users. With this configuration, unauthenticated users who try to access
Ambari are redirected to the Knox SSO login page for authentication.

Use the following steps to configure Knox SSO for Ranger:

1. Log in as the root user

2. Run the following command:

ambari-server setup-sso

3. When prompted, enter y.

4. For the provider URL, enter: https://<hostname>:8443/gateway/knoxsso/
api/v1/websso.

5. Run the following CLI command to export the Knox certificate:

JAVA_HOME/bin/keytool -export -alias gateway-identity -rfc -file <cert.pem>
 -keystore /usr/hdp/current/knox-server/data/security/keystores/gateway.jks

• When prompted, enter the Knox master password.

• Note the location where you save the cert.pem file.

6. When prompted to configure advanced properties, enter n.

7. Leave JWT Cookie name (hadoop-jwt) and JWT audiences list empty.

The prompt returns Ambari Server 'setup-sso' completed successfully.

8. Restart the Ambari Server: ambari-server restart.

hdp-security August 29, 2016

163

Example 2.4. Example Knox SSO for Ambari

ambari-server setup-sso
Setting up SSO authentication properties...
Do you want to configure SSO authentication [y/n] (y)?y
Provider URL [URL] (http://example.com):https://c6402.ambari.apache.org:8443/
gateway/knoxsso/api/v1/websso
Public Certificate pem (empty) (empty line to finish input):
MIICYTCCAcqgAwIBAgIIHd3j94bX9IMwDQYJKoZIhvcNAQEFBQAwczELMAkGA1UEBhMCVVMxDTAL
BgNVBAgTBFRlc3QxDTALBgNVBAcTBFRlc3QxDzANBgNVBAoTBkhhZG9vcDENMAsGA1UECxMEVGVz
dDEmMCQGA1UEAxMda25veHNzby1za29uZXJ1LTItMi5ub3ZhbG9jYWwwHhcNMTYwMzAxMTEzMTQ0
WhcNMTcwMzAxMTEzMTQ0WjBzMQswCQYDVQQGEwJVUzENMAsGA1UECBMEVGVzdDENMAsGA1UEBxME
VGVzdDEPMA0GA1UEChMGSGFkb29wMQ0wCwYDVQQLEwRUZXN0MSYwJAYDVQQDEx1rbm94c3NvLXNr
b25lcnUtMi0yLm5vdmFsb2NhbDCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAlV0Jtd8zmzVZ
UZRbqxXvK9MV5OYIOWTX9/FMthwr99eClHp3JdZ1x3utYr9nwdZ6fjZaUIihzu8a8SGoipbW2ZVU
TShGZ/5VKtu96YcSAoB3VTyc3WWRDGERRs7aKAlEqnURDkQz7KRs2tvItJpBBjrTXZpHKFTOecL4
hCkaalUCAwEAATANBgkqhkiG9w0BAQUFAAOBgQAqvPfl4fivozd+4QI4ZBohFHHvf1z4Y7+DxlY7
iNAnjnau4W3wgwTt6CQ1B9fSx3zVTlhu2PfDJwvumBbuKuth/M+KXpG28AbKIojrL2Odlv+cftrJ
YeJC6Qjee+5Pf2P9G2wd9fahWF+aQpr50YlMZSU+VMiTO2a2FSAXvOdjvA==

Do you want to configure advanced properties [y/n] (n) ?y
JWT Cookie name (hadoop-jwt):
JWT audiences list (comma-separated), empty for any ():
Ambari Server 'setup-sso' completed successfully.

ambari-server restart

2.9.3. Setting up Knox SSO for Ranger

This section describes how to configure Ranger to use Knox SSO (Single Sign-on) to
authenticate users on an Ambari cluster. With this configuration, unauthenticated users
who try to access Ranger are redirected to the Knox SSO login page for authentication.

Note

• Knox SSO is only applied to web UI users.

• Internal Ranger users have the option to bypass Knox SSO and log
in to the Ranger UI directly by using the "locallogin" URL: http://
<ranger_host>:6080/locallogin.

Use the following steps to configure Knox SSO for Ranger:

1. Install Ambari with HDP-2.5 or higher. Install Knox along with the other services.

2. Install Ranger using Ambari.

3. The Knox SSO topology settings are preconfigured in Knox > Configs > Advanced
knoxsso-topology.

4. Run the following CLI command to export the Knox certificate:

JAVA_HOME/bin/keytool -export -alias gateway-identity -rfc -file <cert.pem>
 -keystore /usr/hdp/current/knox-server/data/security/keystores/gateway.jks

• When prompted, enter the Knox master password.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/installing_ranger_using_ambari.html

hdp-security August 29, 2016

164

• Note the location where you save the cert.pem file.

5. Select Ranger > Configs > Advanced > Knox SSO Settings and set the following
properties:

• Enable Ranger SSO – Select this check box to enable Ranger SSO.

• SSO provider url – https://<knox_host>:8443/gateway/knoxsso/api/v1/
websso

• SSO public key – Paste in the contents of the cert.pem certificate file exported from
Knox.

When you paste the contents, exclude the header and footer.

• SSO browser useragent – Preconfigured with Mozilla,chrome.

6. Click Save to save the new configuration, then click through the confirmation pop-ups.

7. Restart Ranger. Select Actions > Restart All Required to restart all other services that
require a restart.

hdp-security August 29, 2016

165

8. Knox SSO should now be enabled. Users who try to access Ranger are redirected to the
Knox SSO login page for authentication.

hdp-security August 29, 2016

166

3. Configuring Authorization in Hadoop

3.1. Installing Ranger Using Ambari

3.1.1. Overview
Apache Ranger can be installed either manually using the Hortonworks Data Platform
(HDP) or the Ambari 2.1 User Interface (UI). Unlike the manual installation process, which
requires you to perform a number of installation steps, installing Ranger using the Ambari
UI is simpler and easier. The Ranger service option will be made available through the Add
Service wizard after the HDP cluster is installed using the installation wizard.

Once Ambari has been installed and configured, you can use the Add Service wizard to
install the following components:

• Ranger Admin

• Ranger UserSync

• Ranger Key Management Service

After these components are installed and started, you can enable Ranger plugins by
navigating to each individual Ranger service (HDFS, HBase, Hiveserver2, Storm, Knox,
YARN, and Kafka) and modifying the configuration under advanced ranger-<service>-
plugin-properties.

Note that when you enable a Ranger plugin, you will need to restart the component.

Note

Enabling Apache Storm or Apace Kafka requires you to enable Kerberos. To
enable Kerberos on your cluster, see Enabling Kerberos Authentication Using
Ambari.

3.1.2. Installation Prerequisites
Before you install Ranger, make sure your cluster meets the following requirements:

Important

As of HDP-2.5, Audit to DB is no longer supported. If you previously used Audit
to DB, you can migrate the logs to Solr using the instructions in Migrating Audit
Logs from DB to Solr in Ambari Clusters.

• It is recommended that you store audits in both HDFS and Solr. The default configuration
for Ranger Audits to Solr uses the shared Solr instance provided under the Ambari Infra
service. For more information about Audits to Solr, see Ranger Audit Settings and Using
Apache Solr for Ranger Audits.

• To ensure that LDAP/AD group level authorization is enforced in Hadoop, you should set
up Hadoop group mapping for LDAP.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/install_ranger_kms.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/configuring_amb_hdp_for_kerberos.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/configuring_amb_hdp_for_kerberos.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/migrating_audit_logs_from_db_to_solr_in_ambari_clusters.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/migrating_audit_logs_from_db_to_solr_in_ambari_clusters.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-user-guide/content/ch_ambari_infra.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/using_apache_solr_for_ranger_audits.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/using_apache_solr_for_ranger_audits.html

hdp-security August 29, 2016

167

• A MySQL, Oracle, or PostgreSQL database instance must be running and available to be
used by Ranger.

The Ranger installation will create two new users (default names: rangeradmin and
rangerlogger) and two new databases (default names: ranger and ranger_audit).

• Configuration of the database instance for Ranger is described in the following sections
for some of the databases supported by Ranger.

• Configuring MySQL for Ranger [169]

• Configuring PostgreSQL for Ranger [170]

• Configuring Oracle for Ranger [172]

• If you choose not to provide system Database Administrator (DBA) account details
to the Ambari Ranger installer, you can use the dba_script.py Python script to
create Ranger DB database users without exposing DBA account information to the
Ambari Ranger installer. You can then run the normal Ambari Ranger installation
without specifying a DBA user name and password. For more information see Setting up
Database Users Without Sharing DBA Credentials.

3.1.2.1. Setting Up Hadoop Group Mapping for LDAP/AD

To ensure that LDAP/AD group level authorization is enforced in Hadoop, you should set
up Hadoop group mapping for LDAP/AD.

Prerequisites: Access to LDAP and the connection details. Note that LDAP settings can vary
depending on what LDAP implementation you are using.

There are three ways to set up Hadoop group mapping:

• Configure Hadoop Group Mapping for LDAP/AD Using SSSD (Recommended) [167]

• Configure Hadoop Group Mapping in core-site.xml [168]

• Manually Create the Users and Groups in the Linux Environment [169]

3.1.2.1.1. Configure Hadoop Group Mapping for LDAP/AD Using SSSD (Recommended)

The recommended method for group mapping is to use SSSD or one of the following
services to connect the Linux OS with LDAP:

• Centrify

• NSLCD

• Winbind

• SAMBA

Note that most of these services allow you to not only look up a user and enumerate their
groups, but also allow you to perform other actions on the host. None of these features
are required for LDAP group mapping on Hadoop -- all that is required is the ability to

https://fedorahosted.org/sssd/

hdp-security August 29, 2016

168

lookup (or "validate") a user within LDAP and enumerate their groups. Therefore, when
evaluating these services, take the time to understand the difference between the NSS
module (which performs user/group resolution) and the PAM module (which performs user
authentication). NSS is required. PAM is not required, and may represent a security risk.

3.1.2.1.2. Configure Hadoop Group Mapping in core-site.xml

You can use the following steps to configure Hadoop to use LDAP-based group mapping in
core-site.xml.

1. Add the properties shown in the example below to the core-site.xml file. You will
need to provide the value for the bind user, the bind password, and other properties
specific to you LDAP instance, and make sure that object class, user, and group filters
match the values specified in your LDAP instance.

<property>
<name>hadoop.security.group.mapping</name>
<value>org.apache.hadoop.security.LdapGroupsMapping</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.bind.user</name>
<value>cn=Manager,dc=hadoop,dc=apache,dc=org</value>
</property>

<!–
<property>
<name>hadoop.security.group.mapping.ldap.bind.password.file</name>
<value>/etc/hadoop/conf/ldap-conn-pass.txt</value>
</property>
–>

<property>
<name>hadoop.security.group.mapping.ldap.bind.password</name>
<value>hadoop</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.url</name>
<value>ldap://localhost:389/</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.base</name>
<value></value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.search.filter.user</name>
<value>(&(|(objectclass=person)(objectclass=applicationProcess))(cn=
{0}))</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.search.filter.group</name>
<value>(objectclass=groupOfNames)</value>
</property>

<property>

hdp-security August 29, 2016

169

<name>hadoop.security.group.mapping.ldap.search.attr.member</name>
<value>member</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.search.attr.group.name</name>
<value>cn</value>
</property>

2. Depending on your configuration, you may be able to refresh user and group mappings
using the following HDFS and YARN commands:

hdfs dfsadmin -refreshUserToGroupsMappings
yarn rmadmin -refreshUserToGroupsMappings

If a restart is required, you can use the applicable instructions on this page to re-start the
HDFS NameNode and the YARN ResourceManager.

3. Verify LDAP group mapping by running the hdfs groups command. This command
will fetch groups from LDAP for the current user. Note that with LDAP group mapping
configured, the HDFS permissions can leverage groups defined in LDAP for access
control.

3.1.2.1.3. Manually Create the Users and Groups in the Linux Environment

You can also manually create users and groups in your Linux environment.

3.1.2.2. Configuring MySQL for Ranger

Prerequisites

When using MySQL, the storage engine used for the Ranger admin policy store tables
MUST support transactions. InnoDB is an example of engine that supports transactions. A
storage engine that does not support transactions is not suitable as a policy store.

Steps

1. The MySQL database administrator should be used to create the Ranger databases.

The following series of commands could be used to create the rangerdba user with
password rangerdba.

a. Log in as the root user, then use the following commands to create the rangerdba
user and grant it adequate privileges.

CREATE USER 'rangerdba'@'localhost' IDENTIFIED BY 'rangerdba';

GRANT ALL PRIVILEGES ON *.* TO 'rangerdba'@'localhost';

CREATE USER 'rangerdba'@'%' IDENTIFIED BY 'rangerdba';

GRANT ALL PRIVILEGES ON *.* TO 'rangerdba'@'%';

GRANT ALL PRIVILEGES ON *.* TO 'rangerdba'@'localhost' WITH GRANT OPTION;

GRANT ALL PRIVILEGES ON *.* TO 'rangerdba'@'%' WITH GRANT OPTION;

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_reference/content/starting_hdp_services.html
https://www.linode.com/docs/tools-reference/linux-users-and-groups

hdp-security August 29, 2016

170

FLUSH PRIVILEGES;

b. Use the exit command to exit MySQL.

c. You should now be able to reconnect to the database as rangerdba using the
following command:

mysql -u rangerdba -prangerdba

After testing the rangerdba login, use the exit command to exit MySQL.

2. Use the following command to confirm that the mysql-connector-java.jar file
is in the Java share directory. This command must be run on the server where Ambari
server is installed.

ls /usr/share/java/mysql-connector-java.jar

If the file is not in the Java share directory, use the following command to install the
MySQL connector .jar file.

RHEL/CentOS/Oracle Linux

yum install mysql-connector-java*

SLES

zypper install mysql-connector-java*

3. Use the following command format to set the jdbc/driver/path based on the
location of the MySQL JDBC driver .jar file.This command must be run on the server
where Ambari server is installed.

ambari-server setup --jdbc-db={database-type} --jdbc-driver={/jdbc/driver/
path}

For example:

ambari-server setup --jdbc-db=mysql --jdbc-driver=/usr/share/java/mysql-
connector-java.jar

3.1.2.3. Configuring PostgreSQL for Ranger

1. On the PostgreSQL host, install the applicable PostgreSQL connector.

RHEL/CentOS/Oracle Linux

yum install postgresql-jdbc*

SLES

zypper install -y postgresql-jdbc

2. Confirm that the .jar file is in the Java share directory.

ls /usr/share/java/postgresql-jdbc.jar

3. Change the access mode of the .jar file to 644.

hdp-security August 29, 2016

171

chmod 644 /usr/share/java/postgresql-jdbc.jar

4. The PostgreSQL database administrator should be used to create the Ranger databases.

The following series of commands could be used to create the rangerdba user and
grant it adequate privileges.

echo "CREATE DATABASE $dbname;" | sudo -u $postgres psql -U postgres
echo "CREATE USER $rangerdba WITH PASSWORD '$passwd';" | sudo -u $postgres
 psql -U postgres
echo "GRANT ALL PRIVILEGES ON DATABASE $dbname TO $rangerdba;" | sudo -u
 $postgres psql -U postgres

Where:

• $postgres is the Postgres user.

• $dbname is the name of your PostgreSQL database

5. Use the following command format to set the jdbc/driver/path based on the
location of the PostgreSQL JDBC driver .jar file. This command must be run on the server
where Ambari server is installed.

ambari-server setup --jdbc-db={database-type} --jdbc-driver={/jdbc/driver/
path}

For example:

ambari-server setup --jdbc-db=postgres --jdbc-driver=/usr/share/java/
postgresql-jdbc.jar

6. Run the following command:

export HADOOP_CLASSPATH=${HADOOP_CLASSPATH}:${JAVA_JDBC_LIBS}:/connector jar
 path

7. Add Allow Access details for Ranger users:

• change listen_addresses='localhost' to listen_addresses='*' ('*'
= any) to listen from all IPs in postgresql.conf.

• Make the following changes to the Ranger db user and Ranger audit db user in the
pg_hba.conf file.

8. After editing the pg_hba.conf file, run the following command to refresh the
PostgreSQL database configuration:

hdp-security August 29, 2016

172

sudo -u postgres /usr/bin/pg_ctl -D $PGDATA reload

For example, if the pg_hba.conf file is located in the /var/lib/pgsql/data
directory, the value of $PGDATA is /var/lib/pgsql/data.

3.1.2.4. Configuring Oracle for Ranger

1. On the Oracle host, install the appropriate JDBC .jar file.

• Download the Oracle JDBC (OJDBC) driver from http://www.oracle.com/
technetwork/database/features/jdbc/index-091264.html.

• For Oracle Database 11g: select Oracle Database 11g Release 2 drivers > ojdbc6.jar.

• For Oracle Database 12c: select Oracle Database 12c Release 1 driver > ojdbc7.jar.

• Copy the .jar file to the Java share directory. For example:

cp ojdbc7.jar /usr/share/java

Note

Make sure the .jar file has the appropriate permissions. For example:

chmod 644 /usr/share/java/ojdbc7.jar

2. The Oracle database administrator should be used to create the Ranger databases.

The following series of commands could be used to create the RANGERDBA user and
grant it permissions using SQL*Plus, the Oracle database administration utility:

sqlplus sys/root as sysdba
CREATE USER $RANGERDBA IDENTIFIED BY $RANGERDBAPASSWORD;
GRANT SELECT_CATALOG_ROLE TO $RANGERDBA;
GRANT CONNECT, RESOURCE TO $RANGERDBA;
QUIT;

3. Use the following command format to set the jdbc/driver/path based on the
location of the Oracle JDBC driver .jar file. This command must be run on the server
where Ambari server is installed.

ambari-server setup --jdbc-db={database-type} --jdbc-driver={/jdbc/driver/
path}

For example:

ambari-server setup --jdbc-db=oracle --jdbc-driver=/usr/share/java/ojdbc6.
jar

3.1.3. Ranger Installation

To install Ranger using Ambari:

1. Start the Installation []

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

hdp-security August 29, 2016

173

2. Customize Services [177]

3. Complete the Ranger Installation [206]

Related Topics

• Setting up Database Users Without Sharing DBA Credentials [210]

• Updating Ranger Admin Passwords [211]

3.1.3.1. Start the Installation

1. Log into your Ambari cluster with your designated user credentials. The main Ambari
Dashboard page will be displayed.

Figure 3.1. Installing Ranger - Main Dashboard View

2. In the left navigation menu, click Actions, then select Add Service.

hdp-security August 29, 2016

174

Figure 3.2. Installing Ranger - Add Service

3. On the Choose Services page, select Ranger, then click Next.

hdp-security August 29, 2016

175

Figure 3.3. Installing Ranger - Choose Service

4. The Ranger Requirements page appears. Ensure that you have met all of the installation
requirements, then select the "I have met all the requirements above" check box and
click Proceed.

hdp-security August 29, 2016

176

Figure 3.4. Installing Ranger - Ranger Requirements

5. You are then prompted to select the host where Ranger Admin will be installed. This
host should have DB admin access to the Ranger DB host and User Sync. Notice in the
figure below that both the Ranger Admin and Ranger User Sync services will be installed
on the primary node in the cluster (c6401.ambari.apache.org in the example shown
below).

Make a note of the Ranger Admin host for use in subsequent installation steps. Click
Next when finished to continue with the installation.

Note

The Ranger Admin and Ranger User Sync services must be installed on the
same cluster node.

hdp-security August 29, 2016

177

Figure 3.5. Installing Ranger Assign Masters

6. The Customize Services page appears. These settings are described in the next section.

3.1.3.2. Customize Services

The next step in the installation process is to specify Ranger settings on the Customize
Services page.

• Ranger Admin Settings [177]

• Ranger Audit Settings [187]

• Configure Ranger User Sync [189]

• Configure Ranger Authentication [198]

3.1.3.2.1. Ranger Admin Settings

1. On the Customize Services page, select the Ranger Admin tab, then use the DB Flavor
drop-down to select the database type that you are using with Ranger.

hdp-security August 29, 2016

178

2. Enter the database server address in the Ranger DB Host box.

Table 3.1. Ranger DB Host

DB Flavor Host Example

MySQL <HOST[:PORT]> c6401.ambari.apache.org

or

c6401.ambari.apache.org:3306

<HOST:PORT:SID> c6401.ambari.apache.org:1521:ORCLOracle

<HOST:PORT/Service> c6401.ambari.apache.org:1521/XE

PostgreSQL <HOST[:PORT]> c6401.ambari.apache.org

or

c6401.ambari.apache.org:5432

MS SQL <HOST[:PORT]> c6401.ambari.apache.org

hdp-security August 29, 2016

179

DB Flavor Host Example

or

c6401.ambari.apache.org:1433

SQLA <HOST[:PORT]> c6401.ambari.apache.org

or

c6401.ambari.apache.org:2638

3. Ranger DB name -- The name of the Ranger Policy database, i.e. ranger_db. Please not
that if you are using Oracle, you must specify the Oracle tablespace name here.

4. Driver class name for a JDBC Ranger database -- the driver class name is automatically
generated based on the selected DB Flavor. The table below lists the default driver class
settings. Currently Ranger does not support any third party JDBC driver.

Table 3.2. Driver Class Name

DB Flavor Driver class name for a JDBC Ranger database

MySQL com.mysql.jdbc.Driver

Oracle oracle.jdbc.driver.OracleDriver

PostgreSQL org.postgresql.Driver

MS SQL com.microsoft.sqlserver.jdbc.SQLServerDriver

SQLA sap.jdbc4.sqlanywhere.IDriver

5. Ranger DB username and Ranger DB Password -- Enter the user name and passwords
for your Ranger database server. The following table describes these settings in more
detail. You can use the MySQL database that was installed with Ambari, or an external
MySQL, Oracle, PostgreSQL, MS SQL or SQL Anywhere database.

Table 3.3. Ranger DB Username Settings

Property Description Default Value Example Value Required?

Ranger DB username The username for the
Policy database.

rangeradmin rangeradmin Yes

Ranger DB password The password for
the Ranger Policy
database user.

 PassWORd Yes

6. JDBC connect string

Important

Currently the Ambari installer generates the JDBC connect string using the
jdbc:oracle:thin:@//host:port/db_name format. You must replace
the connection string as described in the following table:

Table 3.4. JDBC Connect String

DB Flavor Syntax Example Value

MySQL jdbc:mysql://DB_HOST:PORT/
db_name

jdbc:mysql://
c6401.ambari.apache.org:3306/
ranger_db

hdp-security August 29, 2016

180

DB Flavor Syntax Example Value

For Oracle SID:

jdbc:oracle:thin:@DB_HOST:PORT:SID

jdbc:oracle:thin:@c6401.ambari.apache.org:1521:ORCLOracle

For Oracle Service Name:

jdbc:oracle:thin:@//DB_HOST[:PORT]
[/ServiceName]

jdbc:oracle:thin:@//
c6401.ambari.apache.org:1521/XE

PostgreSQL jdbc:postgresql://DB_HOST/
db_name

jdbc:postgresql://
c6401.ambari.apache.org:5432/
ranger_db

MS SQL jdbc:sqlserver://
DB_HOST;databaseName=db_name

jdbc:sqlserver://
c6401.ambari.apache.org:1433;databaseName=ranger_db

SQLA jdbc:sqlanywhere:host=DB_HOST;database=db_namejdbc:sqlanywhere:host=c6401.ambari.apache.org:2638;database=ranger_db

7. Setup Database and Database User

• If set to Yes -- The Database Administrator (DBA) user name and password will need
to be provided as described in the next step.

Note

Ranger does not store the DBA user name and password after setup.
Therefore, you can clear these values in the Ambari UI after the Ranger
setup is complete.

• If set to No -- A No indicates that you do not wish to provide Database Administrator
(DBA) account details to the Ambari Ranger installer. Setting this to No continues the
Ranger installation process without providing DBA account details. In this case, you
must perform the system database user setup as described in Setting up Database
Users Without Sharing DBA Credentials, and then proceed with the installation.

Note

If No is selected and the UI still requires you to enter a user name and
password in order to proceed, you can enter any value -- the values do not
need to be the actual DBA user name and password.

8. Database Administrator (DBA) username and Database Administrator (DBA)
password -- The DBA username and password are set when the database server is
installed. If you do not have this information, contact the database administrator who
installed the database server.

Table 3.5. DBA Credential Settings

Property Description Default Value Example Value Required?

Database
Administrator (DBA)
username

The Ranger database
user that has
administrative
privileges to create
database schemas
and users.

root root Yes

Database
Administrator (DBA)
password

The root password
for the Ranger
database user.

 root Yes

hdp-security August 29, 2016

181

If the Oracle DB root user Role is SYSDBA, you must also specify that in the Database
Administrator (DBA) username parameter. For example, if the DBA user name is
orcl_root you must specify orcl_root AS SYSDBA.

Note

As mentioned in the note in the previous step, if Setup Database and
Database User is set to No, a placeholder DBA username and password may
still be required in order to continue with the Ranger installation.

The following images show examples of the DB settings for each Ranger database type.

Note

To test the DB settings, click Test Connection. If a Ranger database has not
been pre-installed, Test Connection will fail even for a valid configuration.

MySQL

hdp-security August 29, 2016

182

Oracle -- if the Oracle instance is running with a Service name.

hdp-security August 29, 2016

183

Oracle -- if the Oracle instance is running with a SID.

hdp-security August 29, 2016

184

PostgreSQL

hdp-security August 29, 2016

185

MS SQL

hdp-security August 29, 2016

186

SQL Anywhere

hdp-security August 29, 2016

187

3.1.3.2.2. Ranger Audit Settings

Important

As of HDP-2.5, Audit to DB is no longer supported. If you previously used Audit
to DB, you can migrate the logs to Solr using the instructions in Migrating Audit
Logs from DB to Solr in Ambari Clusters.

Apache Ranger uses Apache Solr to store audit logs and provides UI searching through the
audit logs. Solr must be installed and configured before installing Ranger Admin or any of
the Ranger component plugins. The default configuration for Ranger Audits to Solr uses

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/migrating_audit_logs_from_db_to_solr_in_ambari_clusters.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/migrating_audit_logs_from_db_to_solr_in_ambari_clusters.html

hdp-security August 29, 2016

188

the shared Solr instance provided under the Ambari Infra service. Solr is both memory and
CPU intensive. If your production system has high volume of access requests, make sure
that the Solr host has adequate memory, CPU, and disk space.

SolrCloud is the preferred setup for production usage of Ranger. SolrCloud, which is
deployed with the Ambari Infra service, is a scalable architecture that can run as a single
node or multi-node cluster. It has additional features such as replication and sharding,
which is useful for high availability (HA) and scalability. You should plan your deployment
based on your cluster size. Because audit records can grow dramatically, plan to have at
least 1 TB of free space in the volume on which Solr will store the index data. Solr works
well with a minimum of 32 GB of RAM. You should provide as much memory as possible
to the Solr process. It is highly recommended to use SolrCloud with at least two Solr nodes
running on different servers with replication enabled. SolrCloud also requires Apache
ZooKeeper.

1. On the Customize Services page, select the Ranger Audit tab.

It is recommended that you store audits in Solr and HDFS. Both of these options are set
to ON by default. Solr provides the capability to index and search on the most recent
logs while HDFS is used as the more permanent or longer term store. By default, Solr is
used to index the preceding 30 days of audit logs.

2. Under Audit to Solr, click OFF under SolrCloud to enable SolrCloud. The button label will
change to ON, and the SolrCloud configuration settings will be loaded automatically.

https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-user-guide/content/ch_ambari_infra.html
https://cwiki.apache.org/confluence/display/solr/SolrCloud
https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-user-guide/content/ch_ambari_infra.html
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=62687462

hdp-security August 29, 2016

189

3.1.3.2.3. Configure Ranger User Sync

This section describes how to configure Ranger User Sync for either UNIX or LDAP/AD.

• Test Run Ranger Usersync [189]

• Configuring Ranger User Sync for UNIX [190]

• Configuring Ranger User Sync for LDAP/AD [191]

3.1.3.2.3.1. Test Run Ranger Usersync

Steps

Before committing to usersync changes, it is recommended that you test-run that users and
groups are being retrieved as intended.

To test-run loading User and Group data into Ranger before committing to the changes:

1. Set ranger.usersync.policymanager.mockrun=true. This parameter can be
found in Ambari> Ranger> Configs> Advanced> Advanced ranger-ugsync-
site.

hdp-security August 29, 2016

190

2. View the Users and Groups that will be loaded into Ranger: tail -f /var/log/
ranger/usersync/usersync.log.

3. After confirming that the users and groups are retrieved as intended, set
ranger.usersync.policymanager.mockrun=false and restart Ranger Usersync.

This will sync the users shown in the usersync log to the Ranger database.

3.1.3.2.3.2. Configuring Ranger User Sync for UNIX

Before you begin

Before committing to usersync changes, it is recommended that you test-run that users and
groups are being retrieved as intended: Test Run Ranger Usersync [189].

Steps

Use the following steps to configure Ranger User Sync for UNIX.

1. On the Customize Services page, select the Ranger User Info tab.

2. Click Yes under Enable User Sync.

3. Use the Sync Source drop-down to select UNIX, then set the following properties.

Table 3.6. UNIX User Sync Properties

Property Description Default Value

Sync Source Only sync users above this user ID. 500

Password File The location of the password file on
the Linux server.

/etc/passwd

Group File The location of the groups file on the
Linux server.

/etc/group

hdp-security August 29, 2016

191

3.1.3.2.3.3. Configuring Ranger User Sync for LDAP/AD

Important

To ensure that LDAP/AD group level authorization is enforced in Hadoop, you
should set up Hadoop group mapping for LDAP/AD.

Note

You can use the LDAP Connection Check tool to determine User Sync settings
for LDAP/AD.

Before you begin

Before committing to usersync changes, it is recommended that you test-run that users and
groups are being retrieved as intended: Test Run Ranger Usersync [189].

Steps

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_command-line-installation/content/using_the_ldap_connection_check_tool.html

hdp-security August 29, 2016

192

Use the following steps to configure Ranger User Sync for LDAP/AD.

1. On the Customize Services page, select the Ranger User Info tab.

2. Click Yes under Enable User Sync.

3. Use the Sync Source drop-down to select LDAP/AD.

4. Set the following properties on the Common Configs tab.

Table 3.7. LDAP/AD Common Configs

Property Description Default Value Sample Values

LDAP/AD URL Add URL depending upon
LDAP/AD sync source

ldap://{host}:{port} ldap://
ldap.example.com:389
or ldaps://
ldap.example.com:636

Bind Anonymous If Yes is selected, the
Bind User and Bind User
Password are not required.

NO

Bind User The location of the groups
file on the Linux server.

The full distinguished name
(DN), including common
name (CN), of an LDAP/
AD user account that has
privileges to search for
users. The LDAP bind DN
is used to connect to LDAP
and query for users and
groups.

cn=admin,dc=example,dc=com
or admin@example.com

Bind User Password The password of the Bind
User.

hdp-security August 29, 2016

193

5. Set the following properties on the User Configs tab.

Table 3.8. LDAP/AD User Configs

Property Description Default Value Sample Values

Group User Map Sync Sync specific groups for
users.

Yes Yes

Username Attribute The LDAP user name
attribute.

 sAMAccountName for AD,
uid or cn for OpenLDAP

User Object Class Object class to identify user
entries.

person top, person,
organizationalPerson, user,
or posixAccount

User Search Base Search base for users.

Ranger can search multiple
OUs in AD. Ranger
UserSync module performs
a user search on each
configured OU and adds
all the users into single
list. Once all the OUs are

cn=users,dc=example,dc=com;ou=example1,ou=example2

hdp-security August 29, 2016

194

Property Description Default Value Sample Values

processed, a user’s group
membership is computed
based on the group search.

User Search Filter Optional additional filter
constraining the users
selected for syncing.

 Sample filter to retrieve all
the users: cn=*

Sample filter to retrieve all
the users who are members
of groupA or groupB: (|
(memberof=CN=GroupA,OU=groups,DC=example,DC=com)
(memberof=CN=GroupB,OU=groups,DC=example,DC=com))

User Search Scope This value is used to limit
user search to the depth
from search base.

sub base, one, or sub

User Group Name Attribute Attribute from user entry
whose values would be
treated as group values
to be pushed into the
Access Manager database.
You can provide multiple
attribute names separated
by commas.

memberof,ismemberof memberof, ismemberof, or
gidNumber

Enable User Search This option is available
only when the "Enable
Group Search First" option
is selected.

No Yes

hdp-security August 29, 2016

195

6. Set the following properties on the Group Configs tab.

Table 3.9. LDAP/AD Group Configs

Property Description Default Value Sample Values

Enable Group Sync If Enable Group Sync is set
to No, the group names the
users belong to are derived
from “User Group Name
Attribute”. In this case no
additional group filters are
applied.

No Yes

hdp-security August 29, 2016

196

Property Description Default Value Sample Values

If Enable Group Sync is set
to Yes, the groups the users
belong to are retrieved
from LDAP/AD using the
following group-related
attributes.

Group Member Attribute The LDAP group member
attribute name.

 member

Group Name Attribute The LDAP group name
attribute.

distinguishedName for AD,
cn for OpenLdap

Group Object Class LDAP Group object class. group, groupofnames, or
posixGroup

Group Search Base Search base for groups.

Ranger can search multiple
OUs in AD. Ranger
UserSync module performs
a user search on each
configured OU and adds
all the users into single
list. Once all the OUs are
processed, a user’s group
membership is computed
based on the group search
configuration. Each OU
segment needs to be
separated by a ; (semi-
colon).

 ou=groups,DC=example,DC=com;ou=group1;ou=group2

Group Search Filter Optional additional filter
constraining the groups
selected for syncing.

 Sample filter to retrieve all
groups: cn=*

Sample filter to retrieve
only the groups whose
cn is Engineering or
Sales: (|(cn=Engineering)
(cn=Sales))

Enable Group Search First When Enable Group
Search First is selected,
there are two possible ways
of retrieving users:

• If Enable User Search
is not selected: users
are retrieved from the
“member” attribute of
the group.

• If Enable User Search
is selected: user
membership is computed
by performing an LDAP
search based on the user
configuration.

No Yes

hdp-security August 29, 2016

197

3.1.3.2.4. Configure Ranger Tagsync

To configure Ranger Tagsync, select Ranger Tagsync on the Customize Services page, then
specify a Tagsync source. You can use Atlas, AtlasREST, or a file as the Tagsync source.

Table 3.10. Atlas Tag Source Properties

Property Description

Atlas Source: Kafka endpoint The Kafka endpoint: <kafka_server_url>:6667

Atlas Source: ZooKeeper endpoint The ZooKeeper endpoint:
<zookeeper_server_url>:2181

Atlas Source: Kafka consumer group The Ranger entities consumer.

hdp-security August 29, 2016

198

Table 3.11. AtlasREST Source Properties

Property Description

AtlasREST Source: Atlas endpoint The AtlasREST source endpoint.

AtlasREST Source: Atlas source download interval The AtlasREST source download interval (milliseconds).

Table 3.12. File Tag Source Properties

Property Description

File Source: File update polling interval The file update polling interval (milliseconds).

File Source: Filename The tag source file name.

3.1.3.2.5. Configure Ranger Authentication

This section describes how to configure Ranger authentication for UNIX, LDAP, and AD.

• Configuring Ranger UNIX Authentication [199]

• Configuring Ranger LDAP Authentication [200]

hdp-security August 29, 2016

199

• Configuring Ranger Active Directory Authentication [203]

3.1.3.2.5.1. Configuring Ranger UNIX Authentication

Use the following steps to configure Ranger authentication for UNIX.

1. Select the Advanced tab on the Customize Services page.

2. Under Ranger Settings, specify the Ranger Access Manager/Service Manager host
address in the External URL box in the format http://<your_ranger_host>:6080.

3. Under Ranger Settings, select UNIX.

HTTP is enabled by default -- if you disable HTTP, only HTTPS is allowed.

4. Under UNIX Authentication Settings, set the following properties.

Table 3.13. UNIX Authentication Settings

Property Description Default
Value

Example Value

Allow remote Login Flag to enable/
disable remote
login. Only
applies to UNIX
authentication.

true true

ranger.unixauth.service.hostname The address
of the host
where the UNIX
authentication
service is running.

{{ugsync_host}}{{ugsync_host}}

ranger.unixauth.service.port The port number
on which the UNIX
authentication
service is running.

5151 5151

Note

Properties with value {{xyz}} are macro variables that are derived from
other specified values in order to streamline the configuration process.
Macro variables can be edited if required -- if you need to restore the original
value, click the Set Recommended symbol at the right of the property box.

hdp-security August 29, 2016

200

3.1.3.2.5.2. Configuring Ranger LDAP Authentication

Note

You can use the LDAP Connection Check tool to determine authentication
settings for LDAP.

Use the following steps to configure Ranger authentication for LDAP.

1. Select the Advanced tab on the Customize Services page.

2. Under Ranger Settings, specify the Ranger Access Manager/Service Manager host
address in the External URL box in the format http://<your_ranger_host>:6080.

3. Under Ranger Settings, select LDAP.

4. Under LDAP Settings, set the following properties.

Table 3.14. LDAP Authentication Settings

Property Description Default Value Example Value

ranger.ldap.base.dn The
Distinguished
Name (DN) of
the starting
point for
directory
server
searches.

dc=example,dc=com dc=example,dc=com

Bind User The full
Distinguished
Name (DN),
including
Common
Name (CN) of
an LDAP user

{{ranger_ug_ldap_bind_dn}}{{ranger_ug_ldap_bind_dn}}

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_command-line-installation/content/using_the_ldap_connection_check_tool.html

hdp-security August 29, 2016

201

Property Description Default Value Example Value

account that
has privileges
to search for
users. This
is a macro
variable value
that is derived
from the Bind
User value
from Ranger
User Info
> Common
Configs.

Bind User Password Password
for the Bind
User. This is a
macro variable
value that is
derived from
the Bind User
Password
value from
Ranger
User Info
> Common
Configs.

ranger.ldap.group.
roleattribute

The LDAP
group role
attribute.

cn cn

ranger.ldap.referral See
description
below.

ignore follow | ignore | throw

LDAP URL The LDAP
server URL.
This is a macro
variable value
that is derived
from the
LDAP/AD
URL value
from Ranger
User Info
> Common
Configs.

{{ranger_ug_ldap_url}} {{ranger_ug_ldap_url}}

ranger.ldap.user.
dnpattern

The user DN
pattern is
expanded
when a user
is being
logged in.
For example,
if the user
"ldapadmin"
attempted
to log in,
the LDAP
Server would
attempt to
bind against
the DN
"uid=ldapadmin,ou=users,dc=example,dc=com"
using the
password

uid={0},ou=users,
dc=xasecure,dc=net

cn=ldapadmin,ou=Users,
dc=example,dc=com

hdp-security August 29, 2016

202

Property Description Default Value Example Value

the user
provided>

User Search Filter The search
filter used
for Bind
Authentication.
This is a macro
variable value
that is derived
from the User
Search Filter
value from
Ranger User
Info > User
Configs.

{{ranger_ug_ldap_user_searchfilter}}{{ranger_ug_ldap_user_searchfilter}}

Note

Properties with value {{xyz}} are macro variables that are derived from
other specified values in order to streamline the configuration process.
Macro variables can be edited if required -- if you need to restore the original
value, click the Set Recommended symbol at the right of the property box.

There are three possible values for ranger.ldap.referral: follow, throw, and
ignore. The recommended setting is follow.

When searching a directory, the server might return several search results, along with a
few continuation references that show where to obtain further results. These results and
references might be interleaved at the protocol level.

• When this property is set to follow, the LDAP service provider processes all of the
normal entries first, and then follows the continuation references.

• When this property is set to throw, all of the normal entries are returned in the
enumeration first, before the ReferralException is thrown. By contrast, a
"referral" error response is processed immediately when this property is set to follow
or throw.

• When this property is set to ignore, it indicates that the server should return referral
entries as ordinary entries (or plain text). This might return partial results for the
search.

hdp-security August 29, 2016

203

3.1.3.2.5.3. Configuring Ranger Active Directory Authentication

Note

You can use the LDAP Connection Check tool to determine authentication
settings for Active Directory.

Use the following steps to configure Ranger authentication for Active Directory.

1. Select the Advanced tab on the Customize Services page.

2. Under Ranger Settings, specify the Ranger Access Manager/Service Manager host
address in the External URL box in the format http://<your_ranger_host>:6080.

3. Under Ranger Settings, select ACTIVE_DIRECTORY.

4. Under AD Settings, set the following properties.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_command-line-installation/content/using_the_ldap_connection_check_tool.html

hdp-security August 29, 2016

204

Table 3.15. AD Settings

Property Description Default Value Example Value

ranger.ldap.ad.base.dn The Distinguished Name
(DN) of the starting
point for directory server
searches.

dc=example,dc=com dc=example,dc=com

ranger.ldap.ad.bind.dn The full Distinguished
Name (DN), including
Common Name (CN) of
an LDAP user account
that has privileges to
search for users. This is a
macro variable value that is
derived from the Bind User
value from Ranger User
Info > Common Configs.

{{ranger_ug_ldap_bind_dn}}{{ranger_ug_ldap_bind_dn}}

ranger.ldap.ad.bind.passwordPassword for the bind.dn.
This is a macro variable
value that is derived from
the Bind User Password
value from Ranger User
Info > Common Configs.

Domain Name (Only for
AD)

The domain name of the
AD Authentication service.

 dc=example,dc=com

ranger.ldap.ad.referral See description below. ignore follow | ignore | throw

ranger.ldap.ad.url The AD server URL. This is
a macro variable value that
is derived from the LDAP/
AD URL value from Ranger
User Info > Common
Configs.

{{ranger_ug_ldap_url}} {{ranger_ug_ldap_url}}

ranger.ldap.ad.user.searchfilterThe search filter used for
Bind Authentication. This is
a macro variable value that
is derived from the User
Search Filter value from
Ranger User Info > User
Configs.

{{ranger_ug_ldap_user_searchfilter}}{{ranger_ug_ldap_user_searchfilter}}

Note

Properties with value {{xyz}} are macro variables that are derived from
other specified values in order to streamline the configuration process.
Macro variables can be edited if required -- if you need to restore the original
value, click the Set Recommended symbol at the right of the property box.

There are three possible values for ranger.ldap.ad.referral: follow, throw,
and ignore. The recommended setting is follow.

When searching a directory, the server might return several search results, along with a
few continuation references that show where to obtain further results. These results and
references might be interleaved at the protocol level.

• When this property is set to follow, the AD service provider processes all of the
normal entries first, and then follows the continuation references.

hdp-security August 29, 2016

205

• When this property is set to throw, all of the normal entries are returned in the
enumeration first, before the ReferralException is thrown. By contrast, a
"referral" error response is processed immediately when this property is set to follow
or throw.

• When this property is set to ignore, it indicates that the server should return referral
entries as ordinary entries (or plain text). This might return partial results for the
search. In the case of AD, a PartialResultException is returned when referrals
are encountered while search results are processed.

When you have finished configuring all of the Customize Services Settings, click Next at
the bottom of the page to continue with the installation.

5. When you save the authentication method as Active Directory, a Dependent
Configurations pop-up may appear recommending that you set the authentication
method as LDAP. This recommended configuration should not be applied for AD, so you
should clear (un-check) the ranger.authentication.method check box, then click OK.

hdp-security August 29, 2016

206

3.1.3.3. Complete the Ranger Installation

1. On the Review page, carefully review all of your settings and configurations. If
everything looks good, click Deploy to install Ranger on the Ambari server.

2. When you click Deploy, Ranger is installed on the specified host on your Ambari server.
A progress bar displays the installation progress.

3. When the installation is complete, a Summary page displays the installation details. You
may need to restart services for cluster components after installing Ranger.

hdp-security August 29, 2016

207

Note

If the installation fails, you should complete the installation process, then
reconfigure and reinstall Ranger.

3.1.3.4. Advanced Usersync Settings

To access Usersync settings, select the Advanced tab on the Customize Service page.
Usersync pulls in users from UNIX, LDAP, or AD and populates Ranger's local user tables
with these users.

Important

To ensure that LDAP/AD group level authorization is enforced in Hadoop, you
must first set up Hadoop group mapping for LDAP.

Before committing to usersync changes, it is recommended that you test-run that users and
groups are being retrieved as intended: Test Run Ranger Usersync [189].

3.1.3.4.1. UNIX Usersync Settings

If you are using UNIX authentication, the default values for the Advanced ranger-ugsync-
site properties are the settings for UNIX authentication.

Before committing to usersync changes, it is recommended that you test-run that users and
groups are being retrieved as intended: Test Run Ranger Usersync [189].

hdp-security August 29, 2016

208

3.1.3.4.2. Required LDAP and AD Usersync Settings

If you are using LDAP authentication, you must update the following Advanced ranger-
ugsync-site properties.

Before committing to usersync changes, it is recommended that you test-run that users and
groups are being retrieved as intended: Test Run Ranger Usersync [189].

hdp-security August 29, 2016

209

Table 3.16. LDAP Advanced ranger-ugsync-site Settings

Property Name LDAP Value

ranger.usersync.ldap.bindkeystore Set this to the same value as the
ranger.usersync.credstore.filename property,
i.e, the default value is /usr/hdp/current/ranger-
usersync/conf/ugsync.jceks

ranger.usersync.ldap.bindalias ranger.usersync.ldap.bindalias

ranger.usersync.source.impl.class ldap

Table 3.17. AD Advanced ranger-ugsync-site Settings

Property Name LDAP Value

ranger.usersync.source.impl.class ldap

3.1.3.4.3. Additional LDAP and AD Usersync Settings

If you are using LDAP or Active Directory authentication, you may need to update the
following properties, depending upon your specific deployment characteristics.

Before committing to usersync changes, it is recommended that you test-run that users and
groups are being retrieved as intended: Test Run Ranger Usersync [189].

Table 3.18. Advanced ranger-ugsync-site Settings for LDAP and AD

Property Name LDAP ranger-ugsync-site
Value

AD ranger-ugsync-site
Value

ranger.usersync.ldap.url ldap://127.0.0.1:389 ldap://ad-conrowoller-
hostname:389

ranger.usersync.ldap.binddn cn=ldapadmin,ou=users,
dc=example,dc=com

cn=adadmin,cn=Users,
dc=example,dc=com

ranger.usersync.ldap.ldapbindpassword secret secret

ranger.usersync.ldap.searchBase dc=example,dc=com dc=example,dc=com

ranger.usersync.source.impl.class org.apache.ranger.
ladpusersync.
process.LdapUserGroupBuilder

ranger.usersync.ldap.user.searchbase ou=users, dc=example,
dc=com

dc=example,dc=com

ranger.usersync.ldap.user.searchscope sub sub

ranger.usersync.ldap.user.objectclass person person

ranger.usersync.ldap.user.searchfilter Set to single empty space
if no value. Do not leave
it as “empty”

(objectcategory=person)

ranger.usersync.ldap.user.nameattribute uid or cn sAMAccountName

ranger.usersync.ldap.user.groupnameattribute memberof,ismemberof memberof,ismemberof

ranger.usersync.ldap.username.caseconversion none none

ranger.usersync.ldap.groupname.caseconversion none none

hdp-security August 29, 2016

210

Property Name LDAP ranger-ugsync-site
Value

AD ranger-ugsync-site
Value

ranger.usersync.group.searchenabled * false false

ranger.usersync.group.usermapsyncenabled * false false

ranger.usersync.group.searchbase * ou=groups, dc=example,
dc=com

dc=example,dc=com

ranger.usersync.group.searchscope * sub sub

ranger.usersync.group.objectclass * groupofnames groupofnames

ranger.usersync.group.searchfilter * needed for AD
authentication

(member=CN={0},
OU=MyUsers, DC=AD-
HDP, DC=COM)

ranger.usersync.group.nameattribute * cn cn

ranger.usersync.group.memberattributename * member member

ranger.usersync.pagedresultsenabled * true true

ranger.usersync.pagedresultssize * 500 500

ranger.usersync.user.searchenabled * false false

ranger.usersync.group.search.first.enabled * false false

* Only applies when you want to filter out groups.

After you have finished specifying all of the settings on the Customize Services page, click
Next at the bottom of the page to continue with the installation.

3.1.3.5. Configuring Ranger for LDAP SSL

You can use the following steps to configure LDAP SSL using self-signed certs in the default
Ranger User Sync TrustStore.

1. The default location is /usr/hdp/current/ranger-usersync/conf/
mytruststore.jks for the ranger.usersync.truststore.file property.

2. Alternatively, copy and edit the self-signed ca certs.

3. Set the ranger.usersync.truststore.file property to that new cacert file.

cd /usr/hdp/<version>/ranger-usersync
service ranger-usersync stop
service ranger-usersync start

Where cert.pem has the LDAPS cert.

3.1.3.6. Setting up Database Users Without Sharing DBA Credentials

If do not wish to provide system Database Administrator (DBA) account details to the
Ambari Ranger installer, you can use the dba_script.py Python script to create Ranger
DB database users without exposing DBA account information to the Ambari Ranger

hdp-security August 29, 2016

211

installer. You can then run the normal Ambari Ranger installation without specify a DBA
user name and password.

To create Ranger DB users using the dba_script.py script:

1. Download the Ranger rpm using the yum install command.

yum install ranger-admin

2. You should see one file named dba_script.py in the /usr/hdp/current/
ranger-admin directory.

3. Get the script reviewed internally and verify that your DBA is authorized to run the
script.

4. Execute the script by running the following command:

python dba_script.py

5. Pass all values required in the argument. These should include db flavor, JDBC jar,
db host, db name, db user, and other parameters.

• If you would prefer not to pass runtime arguments via the command prompt, you can
update the /usr/hdp/current/ranger-admin/install.properties file and
then run:

• python dba_script.py -q

When you specify the -q option, the script will read all required information from the
install.properties file

• You can use the -d option to run the script in "dry" mode. Running the script in dry
mode causes the script to generate a database script.

python dba_script.py -d /tmp/generated-script.sql

Anyone can run the script, but it is recommended that the system DBA run the script
in dry mode. In either case, the system DBA should review the generated script, but
should only make minor adjustments to the script, for example, change the location
of a particular database file. No major changes should be made that substantially alter
the script -- otherwise the Ranger install may fail.

The system DBA must then run the generated script.

6. Run the Ranger Ambari install procedure, but set Setup Database and Database User to
No in the Ranger Admin section of the Customize Services page.

3.1.3.7. Updating Ranger Admin Passwords

For the following users, if you update the passwords on the Ranger Configs page, you
must also update the passwords on the Configs page of each Ambari component that
has the Ranger plugin enabled. Individual Ambari component configurations are not
automatically updated -- the service restart will fail if you do not update these passwords
on each component.

hdp-security August 29, 2016

212

• Ranger Admin user -- The credentials for this user are set in Configs > Advanced ranger-
env in the fields labeled admin_username (default value: admin) and admin_password
(default value: admin).

• Admin user used by Ambari to create repo/policies -- The user name for this user is set
in Configs > Admin Settings in the field labeled Ranger Admin username for Ambari
(default value: amb_ranger_admin). The password for this user is set in the field
labeled Ranger Admin user's password for Ambari. This password is specified during the
Ranger installation.

The following image shows the location of these settings on the Ranger Configs page:

3.1.4. Enabling Ranger Plugins

Ranger plugins can be enabled for several HDP services. This section describes how to
enable each of these plugins. For performance reasons, it is recommended that you store
audits in Solr and HDFS, and not in a database.

If you are using a Kerberos-enabled cluster, there are a number of additional steps you
must follow to ensure that you can use the Ranger plugins on a Kerberos cluster.

The following Ranger plugins are available:

• HDFS [213]

• Hive [217]

hdp-security August 29, 2016

213

• HBase [220]

• Kafka [224]

• Knox [227]

• YARN [230]

• Storm [234]

• Atlas [237]

3.1.4.1. HDFS

Use the following steps to enable the Ranger HDFS plugin.

1. On the Ranger Configs page, select the Ranger Plugin tab.

2. Under HDFS Ranger Plugin, select On, then click Save in the black menu bar.

hdp-security August 29, 2016

214

3. A Save Configuration pop-up appears. Type in a note describing the changes you just
made, then click Save.

4. A Dependent Configuration pop-up appears. Click OK to confirm the configuration
updates.

hdp-security August 29, 2016

215

5. Click OK on the Save Configuration Changes pop-up.

6. Select HDFS in the navigation menu, then select Restart > Restart All Affected to restart
the HDFS service and load the new configuration.

hdp-security August 29, 2016

216

7. Click Confirm Restart All on the confirmation pop-up to confirm the HDFS restart.

8. After HDFS restarts, the Ranger plugin for HDFS will be enabled. Other components may
also require a restart.

hdp-security August 29, 2016

217

3.1.4.2. Hive

Use the following steps to enable the Ranger Hive plugin.

1. On the Ranger Configs page, select the Ranger Plugin tab.

2. Under Hive Ranger Plugin, select On, then click Save in the black menu bar.

hdp-security August 29, 2016

218

3. A Save Configuration pop-up appears. Type in a note describing the changes you just
made, then click Save.

4. A Dependent Configuration pop-up appears. Click OK to confirm the configuration
updates.

hdp-security August 29, 2016

219

5. Click OK on the Save Configuration Changes pop-up.

6. Select Hive in the navigation menu, then select Restart > Restart All Affected to restart
the Hive service and load the new configuration.

hdp-security August 29, 2016

220

7. Click Confirm Restart All on the confirmation pop-up to confirm the Hive restart.

8. After Hive restarts, the Ranger plugin for Hive will be enabled.

3.1.4.3. HBase

Note

When HBase is configured with Ranger, and specifically XASecure Authorizer,
you may only grant and revoke privileges.

hdp-security August 29, 2016

221

Use the following steps to enable the Ranger HBase plugin.

1. On the Ranger Configs page, select the Ranger Plugin tab.

2. Under HBase Ranger Plugin, select On, then click Save in the black menu bar.

hdp-security August 29, 2016

222

3. A Save Configuration pop-up appears. Type in a note describing the changes you just
made, then click Save.

4. A Dependent Configuration pop-up appears. Click OK to confirm the configuration
updates.

5. Click OK on the Save Configuration Changes pop-up.

hdp-security August 29, 2016

223

6. Select HBase in the navigation menu, then select Restart > Restart All Affected to restart
the HBase service and load the new configuration.

7. Click Confirm Restart All on the confirmation pop-up to confirm the HBase restart.

hdp-security August 29, 2016

224

8. After HBase restarts, the Ranger plugin for HBase will be enabled.

3.1.4.4. Kafka

Use the following steps to enable the Ranger Kafka plugin.

1. On the Ranger Configs page, select the Ranger Plugin tab.

hdp-security August 29, 2016

225

2. Under Kafka Ranger Plugin, select On, then click Save in the black menu bar.

3. A Save Configuration pop-up appears. Type in a note describing the changes you just
made, then click Save.

4. A Dependent Configuration pop-up appears. Click OK to confirm the configuration
updates.

hdp-security August 29, 2016

226

5. Click OK on the Save Configuration Changes pop-up.

6. Select Kafka in the navigation menu, then select Restart > Restart All Affected to restart
the Kafka service and load the new configuration.

hdp-security August 29, 2016

227

7. Click Confirm Restart All on the confirmation pop-up to confirm the Kafka restart.

8. After Kafka restarts, the Ranger plugin for Kafka will be enabled.

3.1.4.5. Knox

Use the following steps to enable the Ranger Knox plugin.

1. On the Ranger Configs page, select the Ranger Plugin tab.

hdp-security August 29, 2016

228

2. Under Knox Ranger Plugin, select On, then click Save in the black menu bar.

3. A Save Configuration pop-up appears. Type in a note describing the changes you just
made, then click Save.

hdp-security August 29, 2016

229

4. A Dependent Configuration pop-up appears. Click OK to confirm the configuration
updates.

5. Click OK on the Save Configuration Changes pop-up.

hdp-security August 29, 2016

230

6. Select Knox in the navigation menu, then select Restart > Restart All Affected to restart
the Knox service and load the new configuration.

7. Click Confirm Restart All on the confirmation pop-up to confirm the Knox restart.

8. After Knox restarts, the Ranger plugin for Knox will be enabled.

3.1.4.6. YARN

Use the following steps to enable the Ranger YARN plugin.

1. On the Ranger Configs page, select the Ranger Plugin tab.

hdp-security August 29, 2016

231

2. Under YARN Ranger Plugin, select On, then click Save in the black menu bar.

3. A Save Configuration pop-up appears. Type in a note describing the changes you just
made, then click Save.

hdp-security August 29, 2016

232

4. A Dependent Configuration pop-up appears. Click OK to confirm the configuration
updates.

5. Click OK on the Save Configuration Changes pop-up.

hdp-security August 29, 2016

233

6. Select YARN in the navigation menu, then select Restart > Restart All Affected to restart
the YARN service and load the new configuration.

7. Click Confirm Restart All on the confirmation pop-up to confirm the YARN restart.

8. After YARN restarts, the Ranger plugin for YARN will be enabled. Other components
may also require a restart.

hdp-security August 29, 2016

234

3.1.4.7. Storm

Before you can use the Storm plugin, you must first enable Kerberos on your cluster. To
enable Kerberos on your cluster, see Enabling Kerberos Authentication Using Ambari.

Use the following steps to enable the Ranger Storm plugin.

1. On the Ranger Configs page, select the Ranger Plugin tab.

2. Under Storm Ranger Plugin, select On, then click Save in the black menu bar.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/configuring_amb_hdp_for_kerberos.html

hdp-security August 29, 2016

235

3. A Save Configuration pop-up appears. Type in a note describing the changes you just
made, then click Save.

4. A Dependent Configuration pop-up appears. Click OK to confirm the configuration
updates.

5. Click OK on the Save Configuration Changes pop-up.

hdp-security August 29, 2016

236

6. Select Storm in the navigation menu, then select Restart > Restart All Affected to restart
the Storm service and load the new configuration.

7. Click Confirm Restart All on the confirmation pop-up to confirm the Storm restart.

hdp-security August 29, 2016

237

8. After Storm restarts, the Ranger plugin for Storm will be enabled.

3.1.4.8. Atlas

Use the following steps to enable the Ranger Atlas plugin.

1. On the Ranger Configs page, select the Ranger Plugin tab.

hdp-security August 29, 2016

238

2. Under Atlas Ranger Plugin, select On, then click Save in the black menu bar.

3. A Save Configuration pop-up appears. Type in a note describing the changes you just
made, then click Save.

4. A Dependent Configurations pop-up appears. Click OK to confirm the configuration
updates.

hdp-security August 29, 2016

239

5. Click OK on the Save Configuration Changes pop-up.

6. Select Actions in the navigation menu, then select Restart All Required to restart all
services that require a restart.

hdp-security August 29, 2016

240

7. Click Confirm Restart All on the confirmation pop-up to confirm the Storm restart.

8. After the services restart, the Ranger plugin for Atlas will be enabled.

hdp-security August 29, 2016

241

3.1.5. Ranger Plugins - Kerberos Overview

If you are using a Kerberos-enabled cluster, there are a number of steps you need to follow
in order use the following Ranger plugins on a Kerberos cluster:

1. HDFS [241]

2. Hive [242]

3. HBase [243]

4. Knox [243]

Note

These procedures assume that you have already enabled Ranger plugins.

3.1.5.1. HDFS

To enable the Ranger HDFS plugin on a Kerberos-enabled cluster, perform the steps
described below.

1. Create the system (OS) user rangerhdfslookup. Make sure this user is synced to
Ranger Admin (under Settings>Users/Groups tab in the Ranger Admin User Interface).

2. Create a Kerberos principal for rangerhdfslookup by entering the following
command:

• kadmin.local -q 'addprinc -pw rangerhdfslookup
rangerhdfslookup@example.com

Note

A single user/principal (e.g., rangerrepouser) can also be created and used
across services.

3. Navigate to the HDFS service.

4. Click the Config tab.

5. Navigate to advanced ranger-hdfs-plugin-properties and update the properties listed in
the table shown below.

hdp-security August 29, 2016

242

Table 3.19. HDFS Plugin Properties

Configuration Property Name Value

Ranger repository config user rangerhdfslookup@example.com

Ranger repository config password rangerhdfslookup

common.name.for.certificate blank

6. After updating these properties, click Save and restart the HDFS service.

3.1.5.2. Hive

To enable the Ranger Hive plugin on a Kerberos-enabled cluster, perform the steps
described below.

1. Create the system (OS) user rangerhivelookup. Make sure this user is synced to
Ranger Admin (under Settings>Users/Groups tab in the Ranger Admin UI).

2. Create a Kerberos principal for rangerhivelookup by entering the following
command:

• kadmin.local -q 'addprinc -pw rangerhivelookup
rangerhivelookup@example.com

3. Navigate to the Hive service.

4. Click the Config tab and navigate to advanced ranger-hive-plugin-properties.

5. Update the following properties with the values listed in the table below.

Table 3.20. Hive Plugin Properties

Configuration Property Name Value

Ranger service config user rangerhivelookup@example.com

Ranger service config password rangerhivelookup

common.name.for.certificate blank

hdp-security August 29, 2016

243

6. After updating these properties, click Save and then restart the Hive service.

3.1.5.3. HBase

To enable the Ranger HBase plugin on a Kerberos-enabled cluster, perform the steps
described below.

1. Create the system (OS) user rangerhbaselookup. Make sure this user is synced to
Ranger Admin (under users/groups tab in the Ranger Admin UI).

2. Create a Kerberos principal for rangerhbaselookup by entering the following
command:

• kadmin.local -q 'addprinc -pw rangerhbaselookup
rangerhbaselookup@example.com

3. Navigate to the HBase service.

4. Click the Config tab and go to advanced ranger-hbase-plugin-properties.

5. Update the following properties with the values listed in the table below.

Table 3.21. HBase Plugin Properties

Configuration Property Name Value

Ranger service config user rangerhbaselookup@example.com

Ranger service config password rangerhbaselookup

common.name.for.certificate blank

6. After updating these properties, click Save and then restart the HBase service.

3.1.5.4. Knox

To enable the Ranger Knox plugin on a Kerberos-enabled cluster, perform the steps
described below.

1. Create the system (OS) user rangerknoxlookup. Make sure this user is synced to
Ranger Admin (under Settings>Users/Groups tab in the Ranger Admin UI).

2. Create a Kerberos principal for rangerknoxlookup by entering the following
command:

• kadmin.local -q 'addprinc -pw rangerknoxlookup
rangerknoxlookup@example.com

3. Navigate to the Knox service.

4. Click the Config tab and navigate to advanced ranger-knox-plugin-properties.

5. Update the following properties with the values listed in the table below.

Table 3.22. Knox Plugin Properties

Configuration Property Name Value

Ranger service config user rangerknoxlookup@example.com

hdp-security August 29, 2016

244

Configuration Property Name Value

Ranger service config password rangerknoxlookup

common.name.for.certificate blank

6. After updating these properties, click Save and then restart the Knox service.

7. Open the Ranger Admin UI by entering the following information:

• http://ranger-host>:6080

• username/password - admin/admin. or use username as shown in advanced ranger-
env under the Config tab of the Ranger service, and password as shown in Admin
Settings.

8. After you have successfully logged into the system, you will be redirected to the Access
Manager page.

Figure 3.6. Knox Service Manager

9. Click the repository (clusterName_hadoop) Edit option under the HDFS box.

Figure 3.7. Knox Service Edit

hdp-security August 29, 2016

245

10.Update the following properties listed in the table below under the Config Properties
section:

Table 3.23. Knox Configuration Properties

Configuration Property Name Value

fs.default.name hdfs

hadoop.rpc.protection blank

common.name.for.certificate blank

11.Click Named Test Connection. You should see a Connected Successfully dialog box
appears.

12.Click Save.

3.2. Using Ranger to Provide Authorization in
Hadoop

Once a user has been authenticated, their access rights must be determined. Authorization
defines user access rights to resources. For example, a user may be allowed to create a
policy and view reports, but not allowed to edit users and groups. You can use Ranger to
set up and manage access to Hadoop services.

Ranger enables you to create services for specific Hadoop resources (HDFS, HBase, Hive,
etc.) and add access policies to those services. You can also create tag-based services and
add access policies to those services. Using tag-based policies enables you to control access
to resources across multiple Hadoop components without creating separate services and
policies in each component. You can also use Ranger TagSync to synchronize the Ranger
tag store with an external metadata service such as Apache Atlas.

• Using the Ranger Console [250]

• Configuring Resource-Based Services [254]

• Resource-Based Policy Management [270]

• Users/Groups and Permissions Administration [311]

• Reports Administration [322]

For more information on Ranger authorization, see the Authorization overview.

3.2.1. About Ranger Policies

3.2.1.1. Ranger Resource-Based Policies

Ranger enables you to create services for specific Hadoop resources (HDFS, HBase, Hive,
etc.) and add access policies to those services.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/hdp_security_authorization_overview.html

hdp-security August 29, 2016

246

3.2.1.2. Ranger Tag-Based Policies

Ranger also enables you to create tag-based services and add access policies to those
services.

• An important feature of Ranger tag-based authorization is the separation of resource-
classification from access-authorization. For example, resources (HDFS file/directory, Hive
database/table/column etc.) containing sensitive data such as social security numbers,
credit card numbers, or sensitive health care data can be tagged with PII/PCI/PHI –
either as the resource enters the Hadoop ecosystem or at a later time. Once a resource is
tagged, the authorization for the tag would be automatically enforced, thus eliminating
the need to create or update policies for the resource.

• Using tag-based policies also enables you to control access to resources across multiple
Hadoop components without creating separate services and policies in each component.

• Tag details are stored in a tag store. Ranger TagSync can be used to synchronize the tag
store with an external metadata service such as Apache Atlas.

3.2.1.2.1. Tag Store

Details of tags associated with resources are stored in a tag store. Apache Ranger plugins
retrieve the tag details from the tag store for use during policy evaluation. To minimize the
performance impact during policy evaluation (in finding tags for resources), Apache Ranger
plugins cache the tags and periodically poll the tag store for any changes. When a change
is detected, the plugins update the cache. In addition, the plugins store the tag details in a
local cache file – just as the policies are stored in a local cache file. On component restart,
the plugins will use the tag data from the local cache file if the tag store is not reachable.

Apache Ranger plugins download the tag details from the store managed by Ranger
Admin. Ranger Admin persists the tag details in its policy store and provides a REST
interface for the plugins to download the tag details.

3.2.1.2.2. TagSync

Ranger TagSync is used to synchronize the tag store with an external metadata service such
as Apache Atlas. TagSync is a daemon process similar to the Ranger UserSync process.

Ranger TagSync receives tag details from Apache Atlas via change notifications. As tags are
added to, updated, or deleted from resources in Apache Atlas, Ranger TagSync receives
notifications and updates the tag store.

3.2.1.2.3. Tags

Ranger Tags can have attributes. Tag attribute values can be used in Ranger tag-based
policies to influence the authorization decision.

For example, to deny access to a resource after a specific date:

1. Add the EXPIRES_ON tag to the resource.

2. Add an exipry_date tag attribute and set its value to the expiry date.

3. Create a Ranger policy for the EXPIRES_ON tag.

hdp-security August 29, 2016

247

4. Add a condition in this policy to deny access when the date specified the in
expiry_date tag attribute is later than the current date.

Note that the EXPIRES_ON tag policy is created as the default policy in tag service
instances.

3.2.1.3. Tags and Policy Evaluation

When authorizing an access request, an Apache Ranger plugin evaluates applicable Ranger
policies for the resource being accessed. The following diagram shows the details of the
policy evaluation flow. More details on the steps in this workflow are provided in the
subsequent sections.

3.2.1.3.1. Finding Tags

Apache Ranger supports a service to register context enrichers, which are used to update
context data to the access request.

The Ranger Tag service, which is part of the tag-based policies feature, adds a context
enricher named RangerTagEnricher. This context enricher is responsible for finding tags
for the requested resource and adding the tag details to the request context. This context
enricher keeps a cache of the available tags; while processing an access request, it finds
the tags applicable for the requested resource and adds the tags to the request context.
The context enricher keeps the cache updated by periodically polling Ranger Admin for
changes.

3.2.1.3.2. Evaluating Tag-Based Policies

Once the list of tags for the requested resource is found, the Apache Ranger policy engine
evaluates the tag-based policies applicable to the tags. If a policy for one of these tag

https://cwiki.apache.org/confluence/display/RANGER/Dynamic+Policy+Hooks+in+Ranger+-+Configure+and+Use

hdp-security August 29, 2016

248

results in a deny, access will be denied. If none of the tags are denied, and if a policy allows
for one of the tags, access will be allowed. If there is no result for any tag, or if there are no
tags for the resource, the policy engine will evaluate the resource-based policies to make
the authorization decision.

3.2.1.3.3. Using Tags in Conditions

Apache Ranger allows the use of custom conditions while evaluating authorization policies.
The Apache Ranger policy engine makes various request details – such as user, groups,
resource, and context – available to the conditions. Tags in the request context, which are
added by the enricher, are available to the conditions and can be used to influence the
authorization decision.

The default policy in tag service instances, the EXPIRES_ON tag, uses such condition to
check to see if the request date is later than the value specified in tag attribute expiry_date.
This default policy does not work unless an EXPIRES_ON tag has been created in Atlas.

3.2.1.4. Apache Ranger Access Conditions

The Apache Ranger access policy model consists of two major components:

• Specification of the resources a policy is applied to, such as HDFS files and directories,
Hive databases. tables. and columns, HBase tables, column-families, and columns, and so
on.

• Specification of access conditions for specific users and groups.

3.2.1.4.1. Allow, Deny, and Exclude Conditions

Apache Ranger supports the following access conditions:

• Allow

• Exclude from Allow

• Deny

• Exclude from Deny

These access conditions enable you to set up fine-grained access control policies.

For example, you can allow access to a "finance" database to all users in the "finance"
group, but deny access to all users in the "interns" group. Let's say that one of the members
of the "interns" group, "scott", needs to work on an assignment that requires access to the
"finance" database. In that case, you can add an Exclude from Deny condition that will
allow user "scott" to access the "finance" database. The following image shows how this
policy would be set up in Apache Ranger:

hdp-security August 29, 2016

249

If Deny Conditions does not appear on your Policy Details page, you must first Enable
Deny Conditions for Policies.

3.2.1.4.1.1. Enable Deny Conditions for Policies

The deny condition in policies is optional by default and must be enabled for use. To enable
it, set enableDenyAndExceptionsInPolicies to true in the Service Definition for
each of the Ranger Repository via the REST API.

For example:

{
 "name": "hdfs",
 "description": "HDFS Repository",
 "options": {
 "enableDenyAndExceptionsInPolicies": "true"
 }
}

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=53741207

hdp-security August 29, 2016

250

3.2.1.4.2. Policy Evaluation of Access Conditions

Apache Ranger policies are evaluated in a specific order to ensure predictable results (if
there is no access policy that allows access, the authorization request will typically be
denied). The following diagram shows the policy evaluation work-flow:

3.2.2. Using the Ranger Console

3.2.2.1. Opening and Closing the Ranger Console

To open the Ranger Console, log in to the Ranger portal at http://
<your_ranger_server_address>:6080. To log in, enter your user name and
password, then click Sign In.

Ranger Console Home Page

hdp-security August 29, 2016

251

Ranger Login Console

After you log in, your user name is displayed at the top right of the Ranger Console.

To log out of the Ranger Console, click your user name, then select Log Out.

3.2.2.2. Ranger Console Navigation

• The Service Manager for Resource Based Policies page is displayed when you log in to the
Ranger Console. You can use this page to create services for Hadoop resources (HDFS,
HBase, Hive, etc.) and add access policies to those resources.

Clicking Access Manager in the top menu opens the Service Manager for Resource Based
Policies page, and also displays a submenu with links to Resource Based Policies, Tag
Based Policies, and Reports (this submenu is also displayed when you pass the mouse
over the Access Manager link).

hdp-security August 29, 2016

252

• Access Manager > Resource Based Policies -- Opens the Service Manager for Resource
Based Policies page. You can use this page to create services for resources (HDFS, HBase,
Hive, etc.) and add access policies to those services.

• Access Manager > Tag Based Policies -- Opens the Service Manager for Tag Based
Policies page. You can use this page to create tag-based services and add access policies
to those services. Using tag-based policies enables you to control access to resources
across multiple Hadoop components without creating separate services and policies in
each component.

• Access Manager > Reports -- Opens the Reports page. You can use this page to generate
user access reports for resource and tag-based policies based on policy name, resource,
group, and user name.

hdp-security August 29, 2016

253

• Audit -- You can use the Audit page to monitor user activity at the resource level, and
also to set up conditional auditing based on users, groups, or time. The Audit page
includes the Access, Admin, Login Sessions, and Plugins tabs.

• Settings -- Enables you to manage and assign policy permissions to users and groups.
Clicking or passing the mouse over Settings displays a submenu with links to the Users/
Groups and Permissions pages.

hdp-security August 29, 2016

254

3.2.3. Configuring Resource-Based Services

The Service Manager for Resource Based Policies page is displayed when you log in to the
Ranger Console. You can also access this page by selecting Access Manager > Resource
Based Policies. You can use this page to create services for Hadoop resources (HDFS,
HBase, Hive, etc.) and add access policies to those resources.

Note

The Ambari Ranger installation procedure automatically configures these
services, so there should be no need to a add a service manually.

• To add a new resource-based service, click the Add icon

()
in the applicable box on the Service Manager page. Enter the required configuration
settings, then click Add.

• To edit a resource-based service, click the Edit icon

()
at the right of the service. Edit the service settings, then click Save to save your changes.

• To delete a resource-based service, click the Delete icon

()
at the right of the service. Deleting a service also deletes all of the policies for that
service.

hdp-security August 29, 2016

255

This section describes how to configure resource-based services for the following Hadoop
components:

• Configure an HBase Service [255]

• Configure an HDFS Service [257]

• Configure a Hive Service [259]

• Configure a Kafka Service [261]

• Configure a Knox Service [262]

• Configure a Solr Service [264]

• Configure a Storm Service [265]

• Configure a YARN Service [267]

3.2.3.1. Configure an HBase Service

Use the following steps to add a service to HBase:

1. On the Service Manager page, click the Add icon

()
next to HBase.

The Create Service page appears.

hdp-security August 29, 2016

256

2. Enter the following information on the Create Service page:

Table 3.24. Service Details

Field name Description

Service Name The name of the service; required when configuring
agents.

Description A description of the service.

Active Status Enabled or Disabled.

Select Tag Service Select a tag-based service to apply the service and its tag-
based policies to HBase.

Table 3.25. Config Properties

Field name Description

Username The end system username that can be used for
connection.

Password The password for the username entered above.

hdp-security August 29, 2016

257

Field name Description

hadoop.security.authorization The complete connection URL, including port and
database name. (Default port: 10000.) For example, on
the sandbox, jdbc:hive2://sandbox:10000/.

hbase.master.kerberos.principal The Kerberos principal for the HBase Master. (Required
only if Kerberos authentication is enabled.)

hbase.security.authentication As noted in the hadoop configuration file hbase-site.xml.

hbase.zookeeper.property.clientPort As noted in the hadoop configuration file hbase-site.xml.

hbase.zookeeper.quorum As noted in the hadoop configuration file hbase-site.xml.

zookeeper.znode.parent As noted in the hadoop configuration file hbase-site.xml.

Common Name for Certificate The name of the certificate.

This field is interchangeably named Common Name For
Certificate and Ranger Plugin SSL CName in Create
Service pages.

Add New Configurations Add any other new configuration(s).

3. Click Test Connection.

4. Click Add.

3.2.3.2. Configure an HDFS Service

Use the following steps to add a service to HDFS:

1. On the Service Manager page, click the Add icon

()
next to HDFS.

The Create Service page appears.

hdp-security August 29, 2016

258

2. Enter the following information on the Create Service page:

Table 3.26. Service Details

Field name Description

Service Name The name of the service; required when configuring
agents.

Description A description of the service.

Active Status Enabled or Disabled.

Select Tag Service Select a tag-based service to apply the service and its tag-
based policies to HDFS.

Table 3.27. Config Properties

Field name Description

Username The end system username that can be used for
connection.

Password The password for the username entered above.

hdp-security August 29, 2016

259

Field name Description

NameNode URL hdfs://NAMENODE_FQDN:8020

The location of the Hadoop HDFS service, as noted in the
hadoop configuration file core-site.xml OR (if this is a HA
environment) the path for the primary NameNode.

This field was formerly named fs.defaultFS.

Authorization Enabled Authorization involves restricting access to resources. If
enabled, user need authorization credentials.

Authentication Type The type of authorization in use, as noted in the hadoop
configuration file core-site.xml; either simple or
Kerberos. (Required only if authorization is enabled).

This field was formerly named
hadoop.security.authorization.

hadoop.security.auth_to_local Maps the login credential to a username with Hadoop;
use the value noted in the hadoop configuration file,
core-site.xml.

dfs.datanode.kerberos.principal The principal associated with the datanode where the
service resides, as noted in the hadoop configuration file
hdfs-site.xml. (Required only if Kerberos authentication is
enabled).

dfs.namenode.kerberos.principal The principal associated with the NameNode where the
service resides, as noted in the hadoop configuration file
hdfs-site.xml. (Required only if Kerberos authentication is
enabled).

dfs.secondary.namenode.kerberos.principal The principal associated with the secondary NameNode
where the service resides, as noted in the hadoop
configuration file hdfs-site.xml. (Required only if
Kerberos authentication is enabled).

RPC Protection Type Only authorised user can view, use, and contribute to
a dataset. A list of protection values for secured SASL
connections. Values: Authentication, Integrity, Privacy

Common Name For Certificate The name of the certificate.

This field is interchangeably named Common Name For
Certificate and Ranger Plugin SSL CName in Create
Service pages.

Add New Configurations Add any other new configuration(s).

3. Click Test Connection.

4. Click Add.

3.2.3.3. Configure a Hive Service

Use the following steps to add a service to Hive:

1. On the Service Manager page, click the Add icon

()
next to Hive.

The Create Service page appears.

hdp-security August 29, 2016

260

2. Enter the following information on the Create Service page:

Table 3.28. Service Details

Field name Description

Service Name The name of the service; required when configuring
agents.

Description A description of the service.

Active Status Enabled or Disabled.

Select Tag Service Select a tag-based service to apply the service and its tag-
based policies to Hive.

Table 3.29. Config Properties

Field name Description

Username The end system username that can be used for
connection.

Password The password for the username entered above.

jdbc.driver ClassName The full classname of the driver used for Hive
connections. Default: org.apache.hive.jdbc.HiveDriver

jdbc.url The complete connection URL, including port and
database name. (Default port: 10000.) For example, on
the sandbox, jdbc:hive2://sandbox:10000/.

Common Name For Certificate The name of the certificate.

hdp-security August 29, 2016

261

Field name Description

This field is interchangeably named Common Name For
Certificate and Ranger Plugin SSL CName in Create
Service pages.

Add New Configurations Add any other new configuration(s).

3. Click Test Connection.

4. Click Add.

3.2.3.4. Configure a Kafka Service

Use the following steps to add a service to Kafka:

1. On the Service Manager page, click the Add icon

()
next to Kafka.

The Create Service page appears.

2. Enter the following information on the Create Service page:

Table 3.30. Service Details

Field name Description

Service Name The name of the service; required when configuring
agents.

hdp-security August 29, 2016

262

Field name Description

Description A description of the service.

Active Status Enabled or Disabled.

Select Tag Service Select a tag-based service to apply the service and its tag-
based policies to Kafka.

Table 3.31. Config Properties

Field name Description

Username The end system username that can be used for
connection.

Password The password for the username entered above.

ZooKeeper Connect String Defaults to localhost:2181 (Provide FQDN of zookeeper
host : 2181).

Ranger Plugin SSL CName Provide common.name.for.certificate which is registered
with Ranger (in Wire Encryption environment).

This field is interchangeably named Common Name For
Certificate and Ranger Plugin SSL CName in Create
Service pages.

Add New Configurations Add any other new configuration(s).

3. Click Test Connection.

4. Click Add.

3.2.3.5. Configure a Knox Service

Use the following steps to add a service to Knox:

1. On the Service Manager page, click the Add icon

()
next to Knox.

The Create Service page appears.

hdp-security August 29, 2016

263

2. Enter the following information on the Create Service page:

Table 3.32. Service Details

Field name Description

Service Name The name of the service; required when configuring
agents.

Description A description of the service.

Active Status Enabled or Disabled.

Select Tag Service Select a tag-based service to apply the service and its tag-
based policies to Knox.

Table 3.33. Config Properties

Field name Description

Username The end system username that can be used for
connection.

Password The password for the username entered above.

knox.url The Gateway URL for Knox.

Common Name For Certificate The name of the certificate.

hdp-security August 29, 2016

264

Field name Description

This field is interchangeably named Common Name For
Certificate and Ranger Plugin SSL CName in Create
Service pages.

Add New Configurations Add any other new configuration(s).

3. Click Test Connection.

4. Click Add.

3.2.3.6. Configure a Solr Service

Use the following steps to add a service to Solr:

1. On the Service Manager page, click the Add icon

()
next to Solr.

The Create Service page appears.

2. Enter the following information on the Create Service page:

Table 3.34. Service Details

Field name Description

Service Name The name of the service; required when configuring
agents.

hdp-security August 29, 2016

265

Field name Description

Description A description of the service.

Active Status Enabled or Disabled.

Select Tag Service Select a tag-based service to apply the service and its tag-
based policies to Solr.

Table 3.35. Config Properties

Field name Description

Username The end system username that can be used for
connection.

Password The password for the username entered above.

Solr URL For HDP Search's Solr Instance: http://Solr_host:8983

For Ambari Infra's Solr Instance:
http://Solr_host:8886

Ranger Plugin SSL CName Provide common.name.for.certificate which is registered
with Ranger (in Wire Encryption environment).

This field is interchangeably named Common Name For
Certificate and Ranger Plugin SSL CName in Create
Service pages.

Add New Configurations Add any other new configuration(s).

3. Click Test Connection.

4. Click Add.

3.2.3.7. Configure a Storm Service

Use the following steps to add a service to Storm:

1. On the Service Manager page, click the Add icon

()
next to Storm.

The Create Service page appears.

hdp-security August 29, 2016

266

2. Enter the following information on the Create Service page:

Table 3.36. Service Details

Field name Description

Service Name The name of the service; required when configuring
agents.

Description A description of the service.

Active Status Enabled or Disabled.

Select Tag Service Select a tag-based service to apply the service and its tag-
based policies to Storm.

Table 3.37. Config Properties

Field name Description

Username The end system username that can be used for
connection.

Password The password for the username entered above.

Nimbus URL Host name of nimbus format, in the form:
http://ipaddress:8080.

This field was formerly named nimbus.url.

Common Name For Certificate The name of the certificate.

This field is interchangeably named Common Name For
Certificate and Ranger Plugin SSL CName in Create
Service pages.

hdp-security August 29, 2016

267

Field name Description

Add New Configurations Add any other new configuration(s).

3. Click Test Connection.

4. Click Add.

3.2.3.8. Configure a YARN Service

Use the following steps to add a service to YARN:

1. On the Service Manager page, click the Add icon

()
next to YARN.

The Create Service page appears.

2. Enter the following information on the Create Service page:

Table 3.38. Service Details

Field name Description

Service Name The name of the service; required when configuring
agents.

Description A description of the service.

hdp-security August 29, 2016

268

Field name Description

Active Status Enabled or Disabled.

Select Tag Service Select a tag-based service to apply the service and its tag-
based policies to YARN.

Table 3.39. Config Properties

Field name Description

Username The end system username that can be used for
connection.

Password The password for the username entered above.

YARN REST URL Http or https://RESOURCEMANAGER_FQDN:8088.

Authentication Type The type of authorization in use, as noted in the hadoop
configuration file core-site.xml; either simple or
Kerberos. (Required only if authorization is enabled).

This field was formerly named
hadoop.security.authorization.

Common Name For Certificate The name of the certificate.

This field is interchangeably named Common Name For
Certificate and Ranger Plugin SSL CName in Create
Service pages.

Add New Configurations Add any other new configuration(s).

3. Click Test Connection.

4. Click Add.

3.2.3.9. Configure an Atlas Service

Use the following steps to add an Atlas service:

1. On the Service Manager page, click the Add icon

()
next to Storm.

The Create Service page appears.

hdp-security August 29, 2016

269

2. Enter the following information on the Create Service page:

Table 3.40. Service Details

Field name Description

Service Name The name of the service; required when configuring
agents.

Description A description of the service.

Active Status Enabled or Disabled.

Select Tag Service Select a tag-based service to apply the service and its tag-
based policies to Atlas.

Table 3.41. Config Properties

Field name Description

Username The end system username that can be used for
connection.

Password The password for the username entered above.

atlas.rest.address Atlas host and port: :
http://atlas_host_FQDN:21000.

Common Name For Certificate The name of the certificate.

This field is interchangeably named Common Name For
Certificate and Ranger Plugin SSL CName in Create
Service pages.

Add New Configurations Add any other new configuration(s).

3. Click Test Connection.

hdp-security August 29, 2016

270

4. Click Add.

3.2.4. Resource-Based Policy Management

To view the policies associated with a service, click the service name on the Resource Based
Policies Service Manager page. The policies for that service will be displayed in a list, along
with a search box.

• To add a new resource-based policy to the service, click Add New Policy.

• To edit a resource-based policy, click the Edit icon

()
at the right of the entry for that service. Edit the policy settings, then click Save to save
your changes.

• To delete a resource-based policy, click the Delete icon

()
at the right of the entry for that service.

This section describes how to configure resource-based policies for the following Hadoop
components:

• Create an HBase Policy [270]

• Create an HDFS Policy [273]

• Create a Hive Policy [275]

• Create a Kafka Policy [278]

• Create a Knox Policy [280]

• Create a Solr Policy [282]

• Create a Storm Policy [284]

• Create a YARN Policy [286]

3.2.4.1. Create an HBase Policy

To add a new policy to an existing HBase service:

1. On the Service Manager page, select an existing service under HBase.

hdp-security August 29, 2016

271

The List of Policies page appears.

2. Click Add New Policy.

The Create Policy page appears.

3. Complete the Create Policy page as follows:

Table 3.42. Policy Details

Label Description

Policy Name Enter an appropriate policy name. This name cannot be
duplicated across the system. This field is mandatory.

HBase Table Select the appropriate database. Multiple databases
can be selected for a particular policy. This field is
mandatory.

hdp-security August 29, 2016

272

Label Description

HBase Column-family For the selected table, specify the column families to
which the policy applies.

HBase Column For the selected table and column families, specify the
columns to which the policy applies.

Description (Optional) Describe the purpose of the policy.

Audit Logging Specify whether this policy is audited. (De-select to
disable auditing).

Table 3.43. Allow Conditions

Label Description

Select Group Specify the group to which this policy applies. To
designate the group as an Administrator for the chosen
resource, specify Admin permissions. (Administrators can
create child policies based on existing policies).

The public group contains all users, so granting access to
the public group grants access to all users.

Select User Specify a particular user to which this policy applies
(outside of an already-specified group) OR designate a
particular user as Admin for this policy. (Administrators
can create child policies based on existing policies).

Permissions Add or edit permissions: Read, Write, Create, Admin,
Select/Deselect All.

Delegate Admin When a policy is assigned to a user or a group of users
those users become the delegated admin. The delegated
admin can update, delete the policies. It can also create
child policies based on the original policy (base policy).

Wildcard characters can be included in the resource path, the database name, the table
name, or the column name:

• * indicates zero or more occurrences of characters

• ? indicates a single character

4. You can use the Plus (+) symbol to add additional conditions. Conditions are evaluated in
the order listed in the policy. The condition at the top of the list is applied first, then the
second, then the third, and so on.

5. Click Add.

3.2.4.2. Provide User Access to HBase Database Tables from the
Command Line

HBase provides the means to manage user access to HBase database tables directly from
the command line. The most commonly-used commands are:

• GRANT

Syntax:

grant '<user-or-group>','<permissions>','<table>

hdp-security August 29, 2016

273

For example, to create a policy that grants user1 read/write permission on the table
usertable, the command would be:

grant 'user1','RW','usertable'

The syntax is the same for granting CREATE and ADMIN rights.

• REVOKE

Syntax:

revoke '<user-or-group>','<usertable>'

For example, to revoke the read/write access of user1 to the table usertable, the
command would be:

revoke 'user1','usertable'

Note

Unlike Hive, HBase has no specific revoke commands for each user privilege.

3.2.4.3. Create an HDFS Policy

Through configuration, Apache Ranger enables both Ranger policies and HDFS permissions
to be checked for a user request. When the NameNode receives a user request, the Ranger
plugin checks for policies set through the Ranger Service Manager. If there are no policies,
the Ranger plugin checks for permissions set in HDFS.

We recommend that permissions be created at the Ranger Service Manager, and to have
restrictive permissions at the HDFS level.

To add a new policy to an existing HDFS service:

1. On the Service Manager page, select an existing service under HDFS.

The List of Policies page appears.

hdp-security August 29, 2016

274

2. Click Add New Policy.

The Create Policy page appears.

3. Complete the Create Policy page as follows:

Table 3.44. Policy Details

Field Description

Policy Name Enter a unique name for this policy. The name cannot be
duplicated anywhere in the system.

Resource Path Define the resource path for the policy folder/file. To
avoid the need to supply the full path OR to enable the
policy for all subfolders or files, you can either complete
this path using wildcards (for example, /home*) or
specify that the policy should be recursive. (See below.)

Description (Optional) Describe the purpose of the policy.

Audit Logging Specify whether this policy is audited. (De-select to
disable auditing).

Table 3.45. Allow Conditions

Label Description

Select Group Specify the group to which this policy applies. To
designate the group as an Administrator for the chosen
resource, specify Admin permissions. (Administrators can
create child policies based on existing policies).

hdp-security August 29, 2016

275

Label Description

The public group contains all users, so granting access to
the public group grants access to all users.

Select User Specify a particular user to which this policy applies
(outside of an already-specified group) OR designate a
particular user as Admin for this policy. (Administrators
can create child policies based on existing policies).

Permissions Add or edit permissions: Read, Write, Create, Admin,
Select/Deselect All.

Delegate Admin When a policy is assigned to a user or a group of users
those users become the delegated admin. The delegated
admin can update, delete the policies. It can also create
child policies based on the original policy (base policy).

Wildcard characters can be included in the resource path, the database name, the table
name, or the column name:

• * indicates zero or more occurrences of characters

• ? indicates a single character

4. You can use the Plus (+) symbol to add additional conditions. Conditions are evaluated in
the order listed in the policy. The condition at the top of the list is applied first, then the
second, then the third, and so on.

5. Click Add.

3.2.4.4. Create a Hive Policy

To add a new policy to an existing Hive service:

1. On the Service Manager page, select an existing service under Hive.

The List of Policies page appears.

2. Click Add New Policy.

The Create Policy page appears.

hdp-security August 29, 2016

276

3. Complete the Create Policy page as follows:

Table 3.46. Policy Details

Field Description

Policy Name Enter an appropriate policy name. This name cannot be
duplicated across the system. This field is mandatory. The
policy is enabled by default.

Table/UDF Drop-down To continue adding a table-based policy, keep Table
selected. To add a User Defined Function (UDF), select
UDF.

Type in the applicable table name. The autocomplete
feature displays available tables based on the entered
text.

Include is selected by default to allow access. Select
Exclude to deny access.

Hive Column Type in the applicable Hive column name. The
autocomplete feature displays available columns based
on the entered text.

Include is selected by default to allow access. Select
Exclude to deny access.

hdp-security August 29, 2016

277

Field Description

Hive Database Type in the applicable database name. The
autocomplete feature displays available databases based
on the entered text.

Include is selected by default to allow access. Select
Exclude to deny access..

Description (Optional) Describe the purpose of the policy.

Audit Logging Specify whether this policy is audited. (De-select to
disable auditing).

Table 3.47. Allow Conditions

Label Description

Select Group Specify a group to which this policy applies. To designate
the group as an Administrator for the chosen resource,
select the Delegate Admin check box. (Administrators
can create child policies based on existing policies).

The public group contains all users, so granting access to
the public group grants access to all users.

Select User Specify one or more users to which this policy applies.
To designate the group as an Administrator for the
chosen resource, select the Delegate Admin check
box. (Administrators can create child policies based on
existing policies).

Permissions Add or edit permissions: Select, Update, Create, Drop,
Alter, Index, Lock, All, Select/Deselect All.

Delegate Admin When Delegate Admin is selected, administrative
privileges are assigned to the applicable users and
groups. Delegated administrators can update and delete
policies, and can also create child policies based on the
original policy.

4. You can use the Plus (+) symbol to add additional conditions. Conditions are evaluated in
the order listed in the policy. The condition at the top of the list is applied first, then the
second, then the third, and so on.

5. Click Add.

Note

The Ranger Hive plugin only protects HiveServer2; Hive CLI is not supported by
Ranger.

3.2.4.5. Provide User Access to Hive Database Tables from the Command
Line

Hive provides the means to manage user access to Hive database tables directly from the
command line. The most commonly-used commands are:

• GRANT

Syntax:

grant <permissions> on table <table> to user <user or group>;

hdp-security August 29, 2016

278

For example, to create a policy that grants user1 SELECT permission on the table default-
hivesmoke22074, the command would be:

grant select on table default.hivesmoke22074 to user user1;

The syntax is the same for granting UPDATE, CREATE, DROP, ALTER, INDEX, LOCK, ALL,
and ADMIN rights.

• REVOKE

Syntax:

revoke <permissions> on table <table> from user <user or group>;

For example, to revoke the SELECT rights of user1 to the table default.hivesmoke22074,
the command would be:

revoke select on table default.hivesmoke22074 from user user1;

The syntax is the same for revoking UPDATE, CREATE, DROP, ALTER, INDEX, LOCK, ALL,
and ADMIN rights.

3.2.4.6. Create a Kafka Policy

To add a new policy to an existing Kafka service:

1. On the Service Manager page, select an existing service under Kafka.

The List of Policies page appears.

2. Click Add New Policy.

The Create Policy page appears.

hdp-security August 29, 2016

279

3. Complete the Create Policy page as follows:

Table 3.48. Policy Details

Field Description

Policy Name Enter an appropriate policy name. This name cannot be
duplicated across the system. This field is mandatory.

Topic A topic is a category or feed name to which messages
are published.

Description (Optional) Describe the purpose of the policy.

Audit Logging Specify whether this policy is audited. (De-select to
disable auditing).

Table 3.49. Allow Conditions

Label Description

Select Group Specify the group to which this policy applies. To
designate the group as an Administrator for the chosen
resource, specify Admin permissions. (Administrators can
create child policies based on existing policies).

The public group contains all users, so granting access to
the public group grants access to all users.

Select User Specify a particular user to which this policy applies
(outside of an already-specified group) OR designate a
particular user as Admin for this policy. (Administrators
can create child policies based on existing policies).

Policy Conditions Specify IP address range.

hdp-security August 29, 2016

280

Label Description

Permissions Add or edit permissions: Read, Write, Create, Admin,
Select/Deselect All.

Delegate Admin When a policy is assigned to a user or a group of users
those users become the delegated admin. The delegated
admin can update, delete the policies. It can also create
child policies based on the original policy (base policy).

Wildcard characters can be included in the resource path, the database name, the table
name, or the column name:

• * indicates zero or more occurrences of characters

• ? indicates a single character

4. You can use the Plus (+) symbol to add additional conditions. Conditions are evaluated in
the order listed in the policy. The condition at the top of the list is applied first, then the
second, then the third, and so on.

5. Click Add.

3.2.4.7. Create a Knox Policy

To add a new policy to an existing Knox service:

1. On the Service Manager page, select an existing service under Knox.

The List of Policies page appears.

2. Click Add New Policy.

The Create Policy page appears.

hdp-security August 29, 2016

281

3. Complete the Create Policy page as follows:

Table 3.50. Policy Details

Field Description

Policy Name Enter an appropriate policy name. This name cannot be
duplicated across the system. This field is mandatory.

Knox Topology Enter an appropriate Topology Name.

Knox Service Enter an appropriate Service Name.

Description (Optional) Describe the purpose of the policy.

Audit Logging Specify whether this policy is audited. (De-select to
disable auditing).

Table 3.51. Allow Conditions

Label Description

Select Group Specify the group to which this policy applies. To
designate the group as an Administrator for the chosen
resource, specify Admin permissions. (Administrators can
create child policies based on existing policies).

The public group contains all users, so granting access to
the public group grants access to all users.

Select User Specify a particular user to which this policy applies
(outside of an already-specified group) OR designate a
particular user as Admin for this policy. (Administrators
can create child policies based on existing policies).

hdp-security August 29, 2016

282

Label Description

Policy Conditions Specify IP address range,

Permissions Add or edit permissions: Read, Write, Create, Admin,
Select/Deselect All.

Delegate Admin When a policy is assigned to a user or a group of users
those users become the delegated admin. The delegated
admin can update, delete the policies. It can also create
child policies based on the original policy (base policy).

Since Knox does not provide a command line methodology for assigning privileges or
roles to users, the User and Group Permissions portion of the Knox Create Policy form is
especially important.

Wildcard characters can be included in the resource path, the database name, the table
name, or the column name:

• * indicates zero or more occurrences of characters

• ? indicates a single character

4. You can use the Plus (+) symbol to add additional conditions. Conditions are evaluated in
the order listed in the policy. The condition at the top of the list is applied first, then the
second, then the third, and so on.

5. Click Add.

3.2.4.8. Create a Solr Policy

To add a new policy to an existing Solr service:

1. On the Service Manager page, select an existing service under Solr.

The List of Policies page appears.

2. Click Add New Policy.

The Create Policy page appears.

hdp-security August 29, 2016

283

3. Complete the Create Policy page as follows:

Table 3.52. Policy Details

Field Description

Policy Name Enter an appropriate policy name. This name cannot be
duplicated across the system. This field is mandatory.

Solr Collection For HDP Search's Solr Instance: http:host_ip:8983/solr

For Ambari Infra's Solr Instance: http:host_ip:8886/
solr

Description (Optional) Describe the purpose of the policy.

Audit Logging Specify whether this policy is audited. (De-select to
disable auditing).

Table 3.53. Allow Conditions

Label Description

Select Group Specify the group to which this policy applies. To
designate the group as an Administrator for the chosen
resource, specify Admin permissions. (Administrators can
create child policies based on existing policies).

The public group contains all users, so granting access to
the public group grants access to all users.

Select User Specify a particular user to which this policy applies
(outside of an already-specified group) OR designate a
particular user as Admin for this policy. (Administrators
can create child policies based on existing policies).

Policy Conditions Specify IP address range,

hdp-security August 29, 2016

284

Label Description

Permissions Add or edit permissions: Read, Write, Create, Admin,
Select/Deselect All.

Delegate Admin When a policy is assigned to a user or a group of users
those users become the delegated admin. The delegated
admin can update, delete the policies. It can also create
child policies based on the original policy (base policy).

Wildcard characters can be included in the resource path, the database name, the table
name, or the column name:

• * indicates zero or more occurrences of characters

• ? indicates a single character

4. You can use the Plus (+) symbol to add additional conditions. Conditions are evaluated in
the order listed in the policy. The condition at the top of the list is applied first, then the
second, then the third, and so on.

5. Click Add.

3.2.4.9. Create a Storm Policy

To add a new policy to an existing Storm service:

1. On the Service Manager page, select an existing service under Storm.

The List of Policies page appears.

2. Click Add New Policy.

The Create Policy page appears.

hdp-security August 29, 2016

285

3. Complete the Create Policy page as follows:

Table 3.54. Policy Details

Label Description

Policy Name Enter an appropriate policy name. This name is cannot
be duplicated across the system. This field is mandatory.

Storm Topology Enter an appropriate Topology Name.

Description (Optional) Describe the purpose of the policy.

Audit Logging Specify whether this policy is audited. (De-select to
disable auditing).

Table 3.55. Allow Conditions

Label Description

Select Group Specify the group to which this policy applies. To
designate the group as an Administrator for the chosen
resource, specify Admin permissions. (Administrators can
create child policies based on existing policies).

The public group contains all users, so granting access to
the public group grants access to all users.

Select User Specify a particular user to which this policy applies
(outside of an already-specified group) OR designate a
particular user as Admin for this policy. (Administrators
can create child policies based on existing policies).

Permissions Add or edit permissions: Read, Write, Create, Admin,
Select/Deselect All.

Delegate Admin When a policy is assigned to a user or a group of users
those users become the delegated admin. The delegated

hdp-security August 29, 2016

286

Label Description

admin can update, delete the policies. It can also create
child policies based on the original policy (base policy).

Since Storm does not provide a command line methodology for assigning privileges or
roles to users, the User and Group Permissions portion of the Storm Create Policy form is
especially important.

Table 3.56. Storm User and Group Permissions

Actions Description

File upload Allows a user to upload files.

Get Nimbus Conf Allows a user to access Nimbus configurations.

Get Cluster Info Allows a user to get cluster information.

File Download Allows a user to download files.

Kill Topology Allows a user to kill the topology.

Rebalance Allows a user to rebalance topologies.

Activate Allows a user to activate a topology.

Deactivate Allows a user to deactivate a topology.

Get Topology Conf Allows a user to access a topology configuration.

Get Topology Allows a user to access a topology.

Get User Topology Allows a user to access a user topology.

Get Topology Info Allows a user to access topology information.

Upload New Credential Allows a user to upload a new credential.

Admin Provides a user with delegated admin access.

Wildcard characters can be included in the resource path, the database name, the table
name, or the column name:

• * indicates zero or more occurrences of characters

• ? indicates a single character

4. You can use the Plus (+) symbol to add additional conditions. Conditions are evaluated in
the order listed in the policy. The condition at the top of the list is applied first, then the
second, then the third, and so on.

5. Click Add.

3.2.4.10. Create a YARN Policy

To add a new policy to an existing YARN service:

1. On the Service Manager page, select an existing service under YARN.

hdp-security August 29, 2016

287

The List of Policies page appears.

2. Click Add New Policy.

The Create Policy page appears.

3. Complete the Create Policy page as follows:

Table 3.57. Policy Details

Field Description

Policy Name Enter an appropriate policy name. This name cannot be
duplicated across the system. This field is mandatory.

Queue The fundamental unit of scheduling in yarn.

Recursive You can indicate whether all files or folders within the
existing folder comes under the policy. Can be used
instead of wildcard characters.

Description (Optional) Describe the purpose of the policy.

hdp-security August 29, 2016

288

Field Description

Audit Logging Specify whether this policy is audited. (De-select to
disable auditing).

Table 3.58. Allow Conditions

Label Description

Select Group Specify the group to which this policy applies. To
designate the group as an Administrator for the chosen
resource, specify Admin permissions. (Administrators can
create child policies based on existing policies).

The public group contains all users, so granting access to
the public group grants access to all users.

Select User Specify a particular user to which this policy applies
(outside of an already-specified group) OR designate a
particular user as Admin for this policy. (Administrators
can create child policies based on existing policies).

Permissions Add or edit permissions: Read, Write, Create, Admin,
Select/Deselect All.

Delegate Admin When a policy is assigned to a user or a group of users
those users become the delegated admin. The delegated
admin can update, delete the policies. It can also create
child policies based on the original policy (base policy).

Wildcard characters can be included in the resource path, the database name, the table
name, or the column name:

• * indicates zero or more occurrences of characters

• ? indicates a single character

4. Click Add.

3.2.4.11. Create an Atlas Policy

To add a new policy to an existing Atlas service:

1. On the Service Manager page, select an existing service under Atlas.

The List of Policies page appears.

hdp-security August 29, 2016

289

2. Click Add New Policy.

The Create Policy page appears.

3. Complete the Create Policy page as follows:

Table 3.59. Policy Details

Field Description

Policy Name Enter an appropriate policy name. This name cannot be
duplicated across the system. This field is mandatory.

entity Select entity, type, operation, taxonomy, or term.

Description (Optional) Describe the purpose of the policy.

Audit Logging Specify whether this policy is audited. (De-select to
disable auditing).

hdp-security August 29, 2016

290

Table 3.60. Allow Conditions

Label Description

Select Group Specify the group to which this policy applies. To
designate the group as an Administrator for the chosen
resource, specify Admin permissions. (Administrators can
create child policies based on existing policies).

The public group contains all users, so granting access to
the public group grants access to all users.

Select User Specify a particular user to which this policy applies
(outside of an already-specified group) OR designate a
particular user as Admin for this policy. (Administrators
can create child policies based on existing policies).

Permissions Add or edit permissions: Read, Write, Create, Admin,
Select/Deselect All.

Delegate Admin When a policy is assigned to a user or a group of users
those users become the delegated admin. The delegated
admin can update, delete the policies. It can also create
child policies based on the original policy (base policy).

Wildcard characters can be included in the resource path, the database name, the table
name, or the column name:

• * indicates zero or more occurrences of characters

• ? indicates a single character

4. You can use the Plus (+) symbol to add additional conditions. Conditions are evaluated in
the order listed in the policy. The condition at the top of the list is applied first, then the
second, then the third, and so on.

5. Click Add.

3.2.5. Row-level Filtering and Column Masking in Hive

You can use Apache Ranger row-level filters to set access policies for rows in Hive tables.
You can also use Ranger column masking to set policies that mask data in Hive columns, for
example to show only the first or last four characters of column data.

In this section:

• Row-level Filtering in Hive with Ranger Policies [290]

• Dynamic Column Masking in Hive with Ranger Policies [294]

3.2.5.1. Row-level Filtering in Hive with Ranger Policies

Row-level filtering helps simplify Hive queries. By moving the access restriction logic down
into the Hive layer, Hive applies the access restrictions every time data access is attempted.
This helps simplify authoring of the Hive query, and provides seamless behind-the-scenes
enforcement of row-level segmentation without having to add this logic to the predicate of
the query.

hdp-security August 29, 2016

291

Row-level filtering also improves the reliability and robustness of Hadoop. By providing row-
level security to Hive tables and reducing the security surface area, Hive data access can be
restricted to specific rows based on user characteristics (such as group membership) and the
runtime context in which this request is issued.

Typical use cases where row-level filtering can be beneficial include:

• A hospital can create a security policy that allows doctors to view data rows only for their
own patients, and that allows insurance claims administrators to view only specific rows
for their specific site.

• A bank can create a policy to restrict access to rows of financial data based on the
employee's business division, locale, or based on the employee's role (for example: only
employees in the finance department are allowed to see customer invoices, payments,
and accrual data; only European HR employees can see European employee data).

• A multi-tenant application can create logical separation of each tenant's data so that
each tenant can see only their own data rows.

You can use Apache Ranger row-level filters to set access policies for rows in Hive tables.
Row-level filter policies are similar to other Ranger access policies. You can set filters for
specific users, groups, and conditions.

The following conditions apply when using row-level filters:

• The filter expression must be a valid WHERE clause for the table or view.

• Each table or view should have its own row-level filter policy.

• Wildcard matching is not supported on database or table names.

• Filters are evaluated in the order listed in the policy.

• An audit log entry is generated each time a row-level filter is applied to a table or view.

Use the following steps to create a row-level filtering policy:

1. On the Service Manager page, select an existing Hive Service.

hdp-security August 29, 2016

292

2. Select the Row Level Filter tab, then click Add New Policy.

3. On the Create Policy page, add the following information for the row-level filter:

Table 3.61. Policy Details

Field Description

Policy Name

(required)

Enter an appropriate policy name. This name cannot be
duplicated across the system. The policy is enabled by
default.

Hive Database

(required)

Type in the applicable database name. The auto-
complete feature displays available databases based on
the entered text.

Hive Table

(required)

Type in the applicable table name. The auto-complete
feature displays available tables based on the entered
text.

Audit Logging Audit Logging is set to Yes by default. Select No to turn
off audit logging.

Description Enter an optional description for the policy.

Table 3.62. Row Filter Conditions

Label Description

Select Group Specify the groups to which this policy applies.

The public group contains all users, so granting access to
the public group grants access to all users.

Select User Specify one or more users to which this policy applies.

Access Types Currently select is the only available access type. This will
be used in conjunction with the WHERE clause specified
in the Row Level Filter field.

Add Row Filter • To create a row filter for the specified users and
groups, Click Add Row Filter, then type a valid WHERE
clause in the Enter filter expression box.

• To allow Select access for the specified users and
groups without row-level restrictions, do not add a
row filter (leave the setting as "Add Row Filter").

hdp-security August 29, 2016

293

Label Description

• Filters are evaluated in the order listed in the policy.
The filter at the top of the Row Filter Conditions list is
applied first, then the second, then the third, and so
on.

4. To move a condition in the Row Filter Conditions list (and therefore change the order in
which it is evaluated), click the dotted rows icon at the left of the condition row, then
drag the condition to a new position in the list.

hdp-security August 29, 2016

294

5. Click Add to add the new row-level filter policy.

3.2.5.2. Dynamic Column Masking in Hive with Ranger Policies

You can use Apache Ranger dynamic column masking capabilities to protect sensitive
data in Hive in near real-time. You can set policies that mask or anonymize sensitive data
columns (such as PII, PCI, and PHI) dynamically from Hive query output. For example, you
can mask sensitive data within a column to show only the first or last four characters.

Dynamic column masking policies are similar to other Ranger access policies for Hive.
You can set filters for specific users, groups, and conditions. With dynamic column-level
masking, sensitive information never leaves Hive, and no changes are required at the
consuming application or the Hive layer. There is also no need to produce additional
protected duplicate versions of datasets.

The following conditions apply when using Ranger column masking policies to mask data
returned in Hive query results:

hdp-security August 29, 2016

295

• A variety of masking types are available, such as show last 4 characters, show first 4
characters, Hash, Nullify, and date masks (show only year).

• You can specify a masking type for specific users, groups, and conditions.

• Wildcard matching is not supported.

• Each column should have its own masking policy.

• Masks are evaluated in the order listed in the policy.

• An audit log entry is generated each time a masking policy is applied to a column .

Use the following steps to create a masking policy:

1. On the Service Manager page, select an existing Hive Service.

2. Select the Masking tab, then click Add New Policy.

hdp-security August 29, 2016

296

3. On the Create Policy page, add the following information for the column-masking filter:

Table 3.63. Policy Details

Field Description

Policy Name

(required)

Enter an appropriate policy name. This name cannot be
duplicated across the system. The policy is enabled by
default.

Hive Database

(required)

Type in the applicable database name. The auto-
complete feature displays available databases based on
the entered text.

Hive Table

(required)

Type in the applicable table name. The auto-complete
feature displays available tables based on the entered
text.

Hive Column

(required)

Type in the applicable column name. The auto-complete
feature displays available columns based on the entered
text.

Audit Logging Audit Logging is set to Yes by default. Select No to turn
off audit logging.

Description Enter an optional description for the policy.

Table 3.64. Mask Conditions

Label Description

Select Group Specify the groups to which this policy applies.

The public group contains all users, so granting access to
the public group grants access to all users.

Select User Specify one or more users to which this policy applies.

Access Types Currently select is the only available access type.

hdp-security August 29, 2016

297

Label Description

Select Masking Type To create a row filter for the specified users and groups,
click Select Masking Option, then select a masking type:

• Redact – mask all alphabetic characters with "x" and all
numeric characters with "n ".

• Partial mask: show last 4 – Show only the last four
characters.

• Partial mask: show first 4 – Show only the first four
characters.

• Hash – Replace all characters with a hash of entire cell
value.

• Nullify – Replace all characters with a NULL value.

• Unmasked (retain original value) – No masking is
applied.

• Date: show only year – Show only the year portion of
a date string and default the month and day to 01/01

• Custom – Specify a custom masked value or
expression. Custom masking can use any valid Hive
UDF (Hive that returns the same data type as the data
type in the column being masked).

Masking conditions are evaluated in the order listed
in the policy. The condition at the top of the Masking
Conditions list is applied first, then the second, then the
third, and so on.

hdp-security August 29, 2016

298

4. To move a condition in the Mask Conditions list (and therefore change the order in
which it is evaluated), click the dotted rows icon at the left of the condition row, then
drag the condition to a new position in the list.

hdp-security August 29, 2016

299

5. Click Add to add the new column masking filter policy.

3.2.6. Adding Tag-based Service

You can access the Service Manager for Tag-Based Policies page by selecting Access
Manager > Tag Based Policies. You can use this page to create tag-based services and
add tag-based access policies that can be applied to Hadoop resources. Using tag-based
policies enables you to control access to resources across multiple Hadoop components
without creating separate services and policies in each component. You can also use Ranger
TagSync to synchronize the Ranger tag store with an external metadata service such as
Apache Atlas.

hdp-security August 29, 2016

300

To add a new tag-based service:

1. Click the Add icon

()
in the TAG box on the Service Manager page.

2. On the Service Details page, type in a service name and an optional description. The
service is enabled by default, but you can disable it by selecting Disabled. To add the
service, click Add.

hdp-security August 29, 2016

301

3. The new tag service appears on the Service Manager page.

hdp-security August 29, 2016

302

3.2.7. Adding Tag-based Policies

Tag-based policies enable you to control access to resources across multiple Hadoop
components without creating separate services and policies in each component. You can
also use Ranger TagSync to synchronize the Ranger tag store with an external metadata
service such as Apache Atlas.

To add a new tag-based policy:

1. Select Access Manager > Tag Based Policies, then select a tag-based service.

2. On the List of Policies page, click Add New Policy.

hdp-security August 29, 2016

303

The Create Policy page appears:

hdp-security August 29, 2016

304

3. Enter information on the Create Policy page as follows:

Table 3.65. Policy Details

Field Description

Policy Type Set to Access by default.

Policy Name Enter an appropriate policy name. This name cannot be
duplicated across the system. This field is mandatory.

TAG Enter the applicable tag name.

Description (Optional) Describe the purpose of the policy.

hdp-security August 29, 2016

305

Field Description

Audit Logging Specify whether this policy is audited. (De-select to
disable auditing).

Table 3.66. Allow, Exclude from Allow, Deny, and Exclude from Deny
Conditions

Label Description

Select Group Specify the group to which this policy applies. To
designate the group as an Administrator for the chosen
resource, specify Admin permissions. (Administrators can
create child policies based on existing policies).

The public group contains all users, so setting a
condition for the public group applies to all users.

Select User Specify a particular user to which this policy applies
(outside of an already-specified group) OR designate a
particular user as Admin for this policy. (Administrators
can create child policies based on existing policies).

Policy Conditions Click Add Conditions to add or edit policy conditions.
Currently "Accessed after expiry_date? (yes/no)" is the
only available policy condition. To set this condition, type
yes in the text box, then select the green check mark
button to add the condition.

Component Permissions Click Add Permissions to add or edit component
conditions. To add component permissions, enter the
component name in the text box, then use the check
boxes to specify component permissions. Select the
green check mark button to add the chosen component
conditions to the policy.

If Deny Conditions does not appear on your Policy Details page, you must first Enable
Deny Conditions for Policies.

4. You can use the Plus (+) symbols to add additional conditions. Conditions are evaluated
in the order listed in the policy. The condition at the top of the list is applied first, then
the second, then the third, and so on.

5. Click Add to add the new policy.

3.2.7.1. Adding a Tag-based PII Policy

In this example we create a tag-based policy for objects tagged "PII" in Atlas. Access to
objects tagged "PII" is allowed for members of the "audit" group. All other users (the
"public" group) are denied access.

To add a PII tag-based policy:

1. Select Access Manager > Tag Based Policies, then select a tag-based service.

hdp-security August 29, 2016

306

2. On the List of Policies page, click Add New Policy.

The Create Policy page appears:

hdp-security August 29, 2016

307

3. Enter the following information on the Create Policy page:

Table 3.67. Policy Details

Field Description

Policy Type Set to Access by default.

Policy Name PII

TAG PII

Audit Logging YES

Description Restrict access to resources with the PII tag.

hdp-security August 29, 2016

308

Table 3.68. Allow Conditions

Label Description

Select Group audit

Select User <none>

Policy Conditions <none>

Component Permissions hive

(select all permissions)

Table 3.69. Deny Conditions

Label Description

Select Group public

Select User <none>

Policy Conditions <none>

Component Permissions hive

(select all permissions)

If Deny Conditions does not appear on your Policy Details page, you must first Enable
Deny Conditions for Policies.

Table 3.70. Exclude from Allow Conditions

Label Description

Select Group audit

Select User <none>

Policy Conditions <none>

Component Permissions hive

(select all permissions)

hdp-security August 29, 2016

309

In this example we used Allow Conditions to grant access to the "audit" group, and then
used Deny Conditions to deny access to the "public" group. Because the "public" group
includes all users, we then used Exclude from Deny Conditions to exclude the "audit"
group, in effect reinstating the "audit" group's original Allow access condition.

4. Click Add to add the new policy.

3.2.7.2. Default EXPIRES_ON Policy

An EXPIRES_ON tag-based policy is created automatically when a tag service instance
created. This default policy denies access to objects tagged with EXPIRES_ON after the
expiry date specified in the Atlas tag attribute. You can use the following steps to review
the default EXPIRES_ON policy.

1. Select Access Manager > Tag Based Policies, then select a tag-based service.

hdp-security August 29, 2016

310

2. On the List of Policies page, click the Edit icon for the default EXIRES_ON policy.

The Edit Policy page appears:

hdp-security August 29, 2016

311

3. We can see that the default EXPIRES_ON policy denies access to all users, and for all
components, after the expiry date specified in the Atlas tag attribute.

3.2.8. Users/Groups and Permissions Administration

To view the list of users and groups who can access the Ranger portal or its services, select
Settings > Users/Groups in the top menu.

The Users/Groups page lists:

• Internal users who can log in to the Ranger portal; created by the Ranger console Service
Manager.

• External users who can access services controlled by the Ranger portal; created at other
systems like Active Directory, LDAP or UNIX, and synched with those systems.

hdp-security August 29, 2016

312

• Admins who are the only users with permission to create users and create services, run
reports, and perform other administrative tasks. Admins can also create child policies
based on the original policy (base policy).

3.2.8.1. Add a User

To add a new user to the user list:

1. Select Settings > Users/Groups.

The Users/Groups page appears.

2. Click Add New User .

The User Detail page appears.

hdp-security August 29, 2016

313

3. Add the required user details, then click Save.

The user is immediately added to the list.

3.2.8.2. Edit a User

To edit a user:

1. Select Settings > Users/Groups.

The Users/Groups page opens to the Users tab.

hdp-security August 29, 2016

314

2. Select a user profile to edit.

• The User Detail page appears.

Note

You can only fully edit internal users. For external users, you can only edit
the user role.

hdp-security August 29, 2016

315

You can edit all properties except the User Name when editing an internal user.

You can only change the user role when editing an external user.

• To edit your own user profile, click Username>Profile.

hdp-security August 29, 2016

316

The User Profile page appears.

3. Edit the appropriate details, then click Save.

3.2.8.3. Delete a User

Only users with role "admin" may delete a user. To permanently delete a user:

1. Select Settings > Users/Groups.

The Users/Groups page appears.

2. Select the check box of the user you want to delete and click the Delete icon

()
at the right of the User List menu bar.

hdp-security August 29, 2016

317

3. You are prompted to confirm the user deletion; select OK.

You receive confirmation that the operation has succeeded.

3.2.8.4. Add a Group

To add a group:

1. Select Settings > Users/Groups.

The Users/Groups page opens to the Users tab.

2. Click the Groups tab.

The Groups page appears.

hdp-security August 29, 2016

318

3. Click Add New Group

The Group Create page appears.

4. Enter a unique name for the group, and an optional description, then click Save.

3.2.8.5. Edit a Group

To edit a group:

1. Select Settings > Users/Groups.

The Users/Groups page opens to the Users tab.

hdp-security August 29, 2016

319

2. Click the Groups tab.

The Groups page appears.

3. Select a group name to edit.

4. The Group Edit page appears.

hdp-security August 29, 2016

320

5. Edit the group details, then click Save.

3.2.8.6. Delete a Group

Only users with role "admin" may delete a group. To permanently delete a group:

1. Select Settings > Users/Groups.

The Users/Groups page appears.

2. Click the Groups tab.

The Groups page appears.

hdp-security August 29, 2016

321

3. Select the check box of the group you want to delete and click the Delete icon

()
at the right of the Group List menu bar.

4. You are prompted to confirm the group deletion; select OK.

You receive confirmation that the operation has succeeded.

Users in a deleted group will be reassigned to no group. You can edit the user to reassign it
to groups.

3.2.8.7. Add or Edit Permissions

To add or edit user or group:

1. Select Settings > Permissions.

The Users/Groups page opens to the Permissions page.

hdp-security August 29, 2016

322

2. Click the Edit icon

()
next to the permission you would like to edit.

The Edit Permission page appears.

3. Edit the permission settings, then click Save.

You can select multiple users and groups from the drop-down menus.

3.2.9. Reports Administration

You can use the Reports page to help manage policies more efficiently as the number of
policies increases. The page lists all HDFS, HBase, Hive, YARN, Knox, Storm, Solr, Kafka,
Atlas, and tag-based policies.

hdp-security August 29, 2016

323

3.2.9.1. View Reports

To view reports on one or more policies, select Access Manager > Reports.

hdp-security August 29, 2016

324

More policy information is available when you click

below Allow Conditions.

3.2.9.2. Search Reports

You can search based on:

• Policy Name – The policy name assigned to the policy.

• Policy Type – The policy type assigned to the policy (Access, Masking, or Row Level
Filter).

hdp-security August 29, 2016

325

• Component – The component assigned to the policy (HDFS, HBase, Hive, YARN, Knox,
Storm, Solr, Kafka, Atlas, and tag).

• Resource – The resource path used when creating the policy.

• Group, Username – The group and the users to which the policy is assigned.

3.2.9.3. Download Reports

You can download a list of reports in two file formats:

• CSV file

• Excel file

hdp-security August 29, 2016

326

The downloaded file contains the following columns:

• ID

• Name

• Resources

• Groups

• Users

• Accesses: e.g., read, create, update, delete, all, etc

• Service Type: Component

• Status: Enabled/Disabled

3.2.9.4. Edit Policies from the Reports Page

You can edit policies from the Reports page by selecting the Policy ID.

hdp-security August 29, 2016

327

3.2.10. Special Requirements for High Availability
Environments

In a High Availability (HA) environment, the primary and secondary NameNodes must be
configured as described in the HDP System Administration Guide.

To enable Ranger in the HDFS HA environment, the HDFS plugin must be set up in each
NameNode, and then pointed to the same HDFS service set up in the Security Manager.
Any policies created within that HDFS service are automatically synchronized to the primary
and secondary NameNodes through the installed Apache Ranger plugin. That way, if the
primary NameNode fails, the secondary NameNode takes over and the Ranger plugin at
that NameNode begins to enforce the same policies for access control.

When creating the service, you must include the fs.default.name property, and it
must be set to the full host name of the primary NameNode. If the primary NameNode
fails during policy creation, you can then temporarily use the fs.default.name of the
secondary NameNode in the service details to enable directory lookup for policy creation.

hdp-security August 29, 2016

328

If, while the primary NameNode is down, you wish to create new policies, there is a slight
difference in user experience when specifying the resource path. If everything is normal,
this is a drop-down menu with selectable paths; however, if your cluster is running from the
failover node, there will be no drop-down menu, and you will need to manually enter the
path.

Primary NameNode failure does not affect the actual policy enforcement. In this setup for
HA, access control is enforced during primary NameNode failure by the Ranger plugs at the
secondary NameNodes.

For Test Connection to be successful for HBase and HDFS in a Ranger HA environment,
complete the following: In /etc/ranger/admin, create a symbolic link between hbase-
site.xml and hdfs-site.xml:

cd /etc/ranger/admin
ln -s /etc/hadoop/conf/hdfs-site.xml hdfs-site.xml
ln -s /etc/hbase/conf/hbase-site.xml hbase-site.xml

3.2.11. Adding a New Component to Apache Ranger

This section describes how to add a new component to Apache Ranger.

Apache Ranger has three main components:

• Admin Tool -- Provides web interface & REST API for managing security policies.

• Custom Authorization Module for components -- Provides custom authorization within
the (Hadoop) component to enforce the policies defined in Admin Tool.

• UserGroup synchronizer -- Enables the user/group information in Apache Ranger
to synchronize with the Enterprise user/group information stored in LDAP or Active
Directory.

In order to support new component authorization using Apache Ranger, the component
details need to be added to Apache Ranger as follows:

• Add component details to the Admin Tool.

• Develop a custom authorization module for the new component.

Adding Component Details to the Admin Tool

The Apache Ranger Admin tool supports policy management via both a web interface (UI)
and support for a (public) REST API. In order to support a new component in both the UI
and the Server, the Admin Tool must be modified.

Required UI changes to support the new component:

1. Add a new component template to the Access Manager page (console home page):

Show new component on the Access Manager page i.e home page[#!/policymanager].
Apache Ranger needs to add table template to Service Manager page and make
changes in corresponding JS files. Ranger also needs to create a new service type enum
to distinguish the component for which the service/policy is created/updated.

hdp-security August 29, 2016

329

For example: Add a table template to PolicyManagerLayout_tmpl.html file to
view the new component on the Access Manager page and make changes in the
PolicyManagerLayout.js file related to the new component, such as passing knox service
collection data to the PolicyManagerLayout_tmpl template. Also create a new service
type enum (for example, ASSET_KNOX) in the XAEnums.js file.

2. Add new configuration information to the Service Form:

Add new configuration fields to Service Form [AssetForm.js] as per new component
configuration information. This will cause the display of new configuration fields in
the corresponding service Create/Update page. Please note that the AssetForm.js is a
common file for every component to create/update the service.

For example: Add new field(configuration) information to AssetForm.js and
AssetForm_tmpl.js.

3. Add a new Policy Listing page:

Add a new policy listing page for the new component in the View Policy list. For
example: Create a new KnoxTableLayout.js file and add JS-related changes as per the old
component[HiveTableLayout.js] to the View Policy listing. Also create a template page,
KnoxTableLayout_tmpl.html.

4. Add a new Policy Create/Update page:

Add a Policy Create/Update page for the new component. Also add a policy form JS file
and its template to handle all policy form-related actions for the new component. For
example: Create a new KnoxPolicyCreate.js file for Create/Update Knox Policy. Create a
KnoxPolicyForm.js file to add knox policy fields information. Also create a corresponding
KnoxPolicyForm_tmpl.html template.

5. Other file changes, as needed:

Make changes in existing common files as per our new component like Router.js,
Controller.js, XAUtils.js, FormInputList.js, UserPermissionList.js, XAEnums.js, etc.

Required server changes for the new component:

Let's assume that Apache Ranger has three components supported in their portal and we
want to introduce one new component, Knox:

1. Create New Service Type

If Apache Ranger is introducing new component i.e Knox, then they will add one new
service type for knox. i.e serviceType = “Knox”. On the basis of service type, while
creating/updating service/policy, Apache Ranger will distinguish for which component
this service/policy is created/updated.

2. Add new required parameters in existing objects and populate objects

For Policy Creation/Update of any component (i.e HDFS, Hive, Hbase), Apache Ranger
uses only one common object, `VXPolicy.` The same goes for the Service Creation/
Update of any component: Apache Ranger uses only one common object `VXService.`

hdp-security August 29, 2016

330

As Apache Ranger has three components, it will have all the required parameters of
all of those three components in `VXPolicy/VXService.` But for Knox, Apache Ranger
requires some different parameters which are not there in previous components. Thus, it
will add only required parameters into `VXPolicy/VXService` object. When a user sends
a request to the Knox create/update policy, they will only send the parameters that are
required for Knox to create/update the VXPolicy object.

After adding new parameters into VXPolixy/VXService, Apache Ranger populates the
newly-added parameters in corresponding services, so that it can map those objects with
Entity Object.

3. Add newly-added fields (into database table) related parameters into entity object and
populate them

As Apache Ranger is using JPA-EclipseLink for database mapping into java, it is necessary
to update the Entity object. For example, if for Knox policy Apache Ranger has added
two new fields (`topology` and `service`) into db table `x_resource`, it will also have to
update the entity object of table (i.e `XXResource`), since it is altering table structure.

After updating the entity object Apache Ranger will populate newly-added parameters
in corresponding services (i.e XResourceService), so that it can communicate with the
client using the updated entity object.

4. Change middleware code business logic

After adding and populating newly required parameters for new component, Apache
Ranger will have to write business logic into file `AssetMgr`, where it may also need
to do some minor changes. For example, if it wants to create a default policy while
creating the Service, then on the basis of serviceType, Apache Ranger will create one
default policy for the given service. Everything else will work fine, as it is common for all
components.

Required database changes for the new component:

For service and policy management, Apache Ranger includes the following tables:

• x_asset (for service)

• x_resource (for service)

As written above, if Apache Ranger is introducing new component then it is not required to
create individual table in database for each component. Apache Ranger has common tables
for all components.

If Apache Ranger has three components and wants to introduce a fourth one, then it
will add required fields into these two tables and will map accordingly with java object.
For example, for Knox, Apache Ranger will add two fields (`topology`, `service`) into
`x_resource`. After this, it will be able to perform CRUD operation of policy and service for
our new component, and also for previous components.

3.2.12. Developing a Custom Authorization Module
In the Hadoop ecosystem, each component (i.e., Hive, HBase) has its own authorization
implementation and ability to plug in a custom authorization module. To implement the

hdp-security August 29, 2016

331

centralized authorization and audit feature for a component, the component should
support a customizable (or pluggable) authorization module.

The custom component Authorization Plugin should do the following:

• Provide authorization based on Policies defined in Policy Admin Tool

• Provide audit information based on the authorization decisions

Implementing Custom Component Authorization

To implement the custom component authorization plugin, the Ranger common agent
framework provides the following functionalities:

• Ability to read all policies from Service Manager for a given service-id

• Ability to log audit information

When the custom authorization module is initialized, the module should do the following:

1. Initiate a REST API call to the “Policy Admin Tool” to retrieve all policies associated with
the specific component.

2. Once the policies are available, it should:

• be built into a custom data structure for enabling the authorization module.

• kick off the policy updater thread to refresh policies from “Policy Admin Tool” at a
regular interval.

When the custom authorization module is called to perform authorization of a component
action (such as READ action) on a specific component resource (such as /app folder), the
authorization module will:

• Identify authorization decision - For each policy:policyList:

• If (resource in policy <match> auth-requested-resource)

• If (action-in-policy <match>action-requested

• If (current-user or current-user-groups or public-group <allowed> for the policy), Return
access-allowed

• Identify auditing needs - For each policy:policyList

• If (resource in policy <match> auth-requested-resource), return policy.isAuditEnabled()

3.2.13. Apache Ranger Public REST API

• Service Definition APIs [332]

• Get Service Definition by ID [333]

• Get Service Definition by Name [336]

• Create Service Definition [339]

hdp-security August 29, 2016

332

• Update Service Definition by ID [342]

• Update Service Definition by Name [346]

• Delete Service Definition by ID [346]

• Delete Service Definition by Name [346]

• Search Service Definitions [346]

• Service APIs [347]

• Get Service by ID [348]

• Get Service by Name [348]

• Create Service [349]

• Update Service by ID [349]

• Update Service by Name [349]

• Delete Service by ID [350]

• Delete Service by Name [350]

• Search Services [350]

• Policy APIs [353]

• Get Policy by ID [353]

• Get Policy by Service Name and Policy Name [354]

• Create Policy [355]

• Update Policy by ID [357]

• Update Policy by Service Name and Policy Name [359]

• Delete Policy by ID [361]

• Delete Policy by Service Name and Policy Name [361]

• Search Policies in a Service [362]

3.2.13.1. Service Definition APIs

• Get Service Definition by ID [333]

• Get Service Definition by Name [336]

• Create Service Definition [339]

• Update Service Definition by ID [342]

hdp-security August 29, 2016

333

• Update Service Definition by Name [346]

• Delete Service Definition by ID [346]

• Delete Service Definition by Name [346]

• Search Service Definitions [346]

3.2.13.1.1. Get Service Definition by ID

API Name Get Service Definition

Request Type GET

Request URL service/public/v2/api/servicedef/{id}

Request Params

Response {
 "accessTypes": [
 {
 "impliedGrants": [],
 "itemId": 1,
 "label": "Read",
 "name": "read"
 },
 {
 "impliedGrants": [],
 "itemId": 2,
 "label": "Write",
 "name": "write"
 },
 {
 "impliedGrants": [],
 "itemId": 3,
 "label": "Execute",
 "name": "execute"
 }
],
 "configs": [
 {
 "itemId": 1,
 "label": "Username",
 "mandatory": true,
 "name": "username",
 "subType": "",
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "itemId": 2,
 "label": "Password",
 "mandatory": true,
 "name": "password",
 "subType": "",
 "type": "password",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "itemId": 3,
 "label": "Namenode URL",
 "mandatory": true,
 "name": "fs.default.name",
 "subType": "",
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "defaultValue": "false",
 "itemId": 4,
 "label": "Authorization Enabled",

hdp-security August 29, 2016

334

API Name Get Service Definition
 "mandatory": true,
 "name": "hadoop.security.
authorization",
 "subType": "YesTrue:NoFalse",
 "type": "bool",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "defaultValue": "simple",
 "itemId": 5,
 "label": "Authentication Type",
 "mandatory": true,
 "name": "hadoop.security.
authentication",
 "subType": "authnType",
 "type": "enum",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "itemId": 6,
 "mandatory": false,
 "name": "hadoop.security.
auth_to_local",
 "subType": "",
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "itemId": 7,
 "mandatory": false,
 "name": "dfs.datanode.kerberos.
principal",
 "subType": "",
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "itemId": 8,
 "mandatory": false,
 "name": "dfs.namenode.kerberos.
principal",
 "subType": "",
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "itemId": 9,
 "mandatory": false,
 "name": "dfs.secondary.namenode.
kerberos.principal",
 "subType": "",
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "defaultValue": "authentication",
 "itemId": 10,
 "label": "RPC Protection Type",
 "mandatory": false,
 "name": "hadoop.rpc.protection",
 "subType": "rpcProtection",
 "type": "enum",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""

hdp-security August 29, 2016

335

API Name Get Service Definition
 },
 {
 "itemId": 11,
 "label": "Common Name for
 Certificate",
 "mandatory": false,
 "name": "commonNameForCertificate",
 "subType": "",
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 }
],
 "contextEnrichers": [],
 "createTime": 1450756476000,
 "description": "HDFS Repository",
 "enums": [
 {
 "defaultIndex": 0,
 "elements": [
 {
 "itemId": 1,
 "label": "Simple",
 "name": "simple"
 },
 {
 "itemId": 2,
 "label": "Kerberos",
 "name": "kerberos"
 }
],
 "itemId": 1,
 "name": "authnType"
 },
 {
 "defaultIndex": 0,
 "elements": [
 {
 "itemId": 1,
 "label": "Authentication",
 "name": "authentication"
 },
 {
 "itemId": 2,
 "label": "Integrity",
 "name": "integrity"
 },
 {
 "itemId": 3,
 "label": "Privacy",
 "name": "privacy"
 }
],
 "itemId": 2,
 "name": "rpcProtection"
 }
],
 "guid": "0d047247-bafe-4cf8-8e9b-
d5d377284b2d",
 "id": 1,
 "implClass": "org.apache.ranger.services.hdfs.
RangerServiceHdfs",
 "isEnabled": true,
 "label": "HDFS Repository",
 "name": "hdfs",
 "options": {},
 "policyConditions": [],
 "resources": [
 {
 "description": "HDFS file or directory
 path",
 "excludesSupported": false,
 "itemId": 1,
 "label": "Resource Path",
 "level": 10,
 "lookupSupported": true,

hdp-security August 29, 2016

336

API Name Get Service Definition
 "mandatory": true,
 "matcher": "org.apache.ranger.plugin.
resourcematcher.RangerPathResourceMatcher",
 "matcherOptions": {
 "ignoreCase": "false",
 "wildCard": "true"
 },
 "name": "path",
 "recursiveSupported": true,
 "type": "path",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 }
],
 "updateTime": 1450756477000,
 "version": 1
}

3.2.13.1.2. Get Service Definition by Name

API Name Get Service Definition

Request Type GET

Request URL service/public/v2/api/servicedef/name/{name}

Request Params

Response {
 "accessTypes": [
 {
 "impliedGrants": [],
 "itemId": 1,
 "label": "select",
 "name": "select"
 },
 {
 "impliedGrants": [],
 "itemId": 2,
 "label": "update",
 "name": "update"
 },
 {
 "impliedGrants": [],
 "itemId": 3,
 "label": "Create",
 "name": "create"
 },
 {
 "impliedGrants": [],
 "itemId": 4,
 "label": "Drop",
 "name": "drop"
 },
 {
 "impliedGrants": [],
 "itemId": 5,
 "label": "Alter",
 "name": "alter"
 },
 {
 "impliedGrants": [],
 "itemId": 6,
 "label": "Index",
 "name": "index"
 },
 {
 "impliedGrants": [],
 "itemId": 7,
 "label": "Lock",
 "name": "lock"
 },
 {
 "impliedGrants": [
 "select",
 "update",

hdp-security August 29, 2016

337

API Name Get Service Definition
 "create",
 "drop",
 "alter",
 "index",
 "lock"
],
 "itemId": 8,
 "label": "All",
 "name": "all"
 }
],
 "configs": [
 {
 "itemId": 1,
 "label": "Username",
 "mandatory": true,
 "name": "username",
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "itemId": 2,
 "label": "Password",
 "mandatory": true,
 "name": "password",
 "type": "password",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "defaultValue": "org.apache.hive.jdbc.
HiveDriver",
 "itemId": 3,
 "mandatory": true,
 "name": "jdbc.driverClassName",
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "defaultValue": "",
 "itemId": 4,
 "mandatory": true,
 "name": "jdbc.url",
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "itemId": 5,
 "label": "Common Name for
 Certificate",
 "mandatory": false,
 "name": "commonNameForCertificate",
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 }
],
 "contextEnrichers": [],
 "createTime": 1450756479000,
 "description": "Hive Server2",
 "enums": [],
 "guid":
 "3e1afb5a-184a-4e82-9d9c-87a5cacc243c",
 "id": 3,
 "implClass": "org.apache.ranger.services.hive.
RangerServiceHive",
 "isEnabled": true,
 "label": "Hive Server2",
 "name": "hive",

hdp-security August 29, 2016

338

API Name Get Service Definition
 "options": {},
 "policyConditions": [
 {
 "description": "List of Hive
 resources",
 "evaluator": "org.apache.
ranger.plugin.conditionevaluator.
RangerHiveResourcesAccessedTogetherCondition",
 "evaluatorOptions": {},
 "itemId": 1,
 "label": "Hive Resources Accessed
 Together?",
 "name": "resources-accessed-together"
 }
],
 "resources": [
 {
 "description": "Hive Database",
 "excludesSupported": true,
 "itemId": 1,
 "label": "Hive Database",
 "level": 10,
 "lookupSupported": true,
 "mandatory": true,
 "matcher": "org.apache.ranger.plugin.
resourcematcher.RangerDefaultResourceMatcher",
 "matcherOptions": {
 "ignoreCase": "true",
 "wildCard": "true"
 },
 "name": "database",
 "recursiveSupported": false,
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "description": "Hive Table",
 "excludesSupported": true,
 "itemId": 2,
 "label": "Hive Table",
 "level": 20,
 "lookupSupported": true,
 "mandatory": true,
 "matcher": "org.apache.ranger.plugin.
resourcematcher.RangerDefaultResourceMatcher",
 "matcherOptions": {
 "ignoreCase": "true",
 "wildCard": "true"
 },
 "name": "table",
 "parent": "database",
 "recursiveSupported": false,
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "description": "Hive UDF",
 "excludesSupported": true,
 "itemId": 3,
 "label": "Hive UDF",
 "level": 20,
 "lookupSupported": true,
 "mandatory": true,
 "matcher": "org.apache.ranger.plugin.
resourcematcher.RangerDefaultResourceMatcher",
 "matcherOptions": {
 "ignoreCase": "true",
 "wildCard": "true"
 },
 "name": "udf",
 "parent": "database",
 "recursiveSupported": false,
 "type": "string",

hdp-security August 29, 2016

339

API Name Get Service Definition
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "description": "Hive Column",
 "excludesSupported": true,
 "itemId": 4,
 "label": "Hive Column",
 "level": 30,
 "lookupSupported": true,
 "mandatory": true,
 "matcher": "org.apache.ranger.plugin.
resourcematcher.RangerDefaultResourceMatcher",
 "matcherOptions": {
 "ignoreCase": "true",
 "wildCard": "true"
 },
 "name": "column",
 "parent": "table",
 "recursiveSupported": false,
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 }
],
 "updateTime": 1450756479000,
 "version": 1
}

3.2.13.1.3. Create Service Definition

API Name Create Service Definition

Request Type Post

Request URL service/public/v2/api/servicedef

Request Params {
 "accessTypes": [
 {
 "impliedGrants": [],
 "itemId": 1,
 "label": "select",
 "name": "select"
 },
 {
 "impliedGrants": [],
 "itemId": 2,
 "label": "update",
 "name": "update"
 },
 {
 "impliedGrants": [],
 "itemId": 3,
 "label": "Create",
 "name": "create"
 },
 {
 "impliedGrants": [],
 "itemId": 4,
 "label": "Drop",
 "name": "drop"
 },
 {
 "impliedGrants": [
 "select",
 "update",
 "create",
 "drop"
],
 "itemId": 5,
 "label": "All",
 "name": "all"
 }
],

hdp-security August 29, 2016

340

API Name Create Service Definition
 "configs": [
 {
 "itemId": 1,
 "label": "Username",
 "mandatory": true,
 "name": "username",
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "itemId": 2,
 "label": "Password",
 "mandatory": true,
 "name": "password",
 "type": "password",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 }
],
 "contextEnrichers": [],
 "description": "Test Component",
 "enums": [],
 "implClass": "org.apache.ranger.services.test.
RangerServiceTest",
 "isEnabled": true,
 "label": "Test Component",
 "name": "test",
 "options": {},
 "policyConditions": [],
 "resources": [
 {
 "description": "Root Of Resource
 Hierarchy for Test Component",
 "excludesSupported": true,
 "itemId": 1,
 "label": "Test Root Resource",
 "level": 10,
 "lookupSupported": true,
 "mandatory": true,
 "matcher": "org.apache.ranger.plugin.
resourcematcher.RangerDefaultResourceMatcher",
 "matcherOptions": {
 "ignoreCase": "true",
 "wildCard": "true"
 },
 "name": "root",
 "recursiveSupported": false,
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "description": "Sub Resource for Test
 Component",
 "excludesSupported": true,
 "itemId": 2,
 "label": "Test sub resource",
 "level": 20,
 "lookupSupported": true,
 "mandatory": true,
 "matcher": "org.apache.ranger.plugin.
resourcematcher.RangerDefaultResourceMatcher",
 "matcherOptions": {
 "ignoreCase": "true",
 "wildCard": "true"
 },
 "name": "sub",
 "parent": "root",
 "recursiveSupported": false,
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""

hdp-security August 29, 2016

341

API Name Create Service Definition
 }
],
 "version": 1
}

Response {
 "accessTypes": [
 {
 "impliedGrants": [],
 "itemId": 1,
 "label": "select",
 "name": "select"
 },
 {
 "impliedGrants": [],
 "itemId": 2,
 "label": "update",
 "name": "update"
 },
 {
 "impliedGrants": [],
 "itemId": 3,
 "label": "Create",
 "name": "create"
 },
 {
 "impliedGrants": [],
 "itemId": 4,
 "label": "Drop",
 "name": "drop"
 },
 {
 "impliedGrants": [
 "select",
 "update",
 "create",
 "drop"
],
 "itemId": 5,
 "label": "All",
 "name": "all"
 }
],
 "configs": [
 {
 "itemId": 1,
 "label": "Username",
 "mandatory": true,
 "name": "username",
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "itemId": 2,
 "label": "Password",
 "mandatory": true,
 "name": "password",
 "type": "password",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 }
],
 "contextEnrichers": [],
 "createTime": 1451347300617,
 "createdBy": "Admin",
 "description": "Test Component",
 "enums": [],
 "guid":
 "f889f2d3-920a-4504-9905-809bbc417902",
 "id": 101,
 "implClass": "org.apache.ranger.services.test.
RangerServiceTest",
 "isEnabled": true,
 "label": "Test Component",
 "name": "test",

hdp-security August 29, 2016

342

API Name Create Service Definition
 "options": {},
 "policyConditions": [],
 "resources": [
 {
 "description": "Root Of Resource
 Hierarchy for Test Component",
 "excludesSupported": true,
 "itemId": 1,
 "label": "Test Root Resource",
 "level": 10,
 "lookupSupported": true,
 "mandatory": true,
 "matcher": "org.apache.ranger.plugin.
resourcematcher.RangerDefaultResourceMatcher",
 "matcherOptions": {
 "ignoreCase": "true",
 "wildCard": "true"
 },
 "name": "root",
 "recursiveSupported": false,
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "description": "Sub Resource for Test
 Component",
 "excludesSupported": true,
 "itemId": 2,
 "label": "Test sub resource",
 "level": 20,
 "lookupSupported": true,
 "mandatory": true,
 "matcher": "org.apache.ranger.plugin.
resourcematcher.RangerDefaultResourceMatcher",
 "matcherOptions": {
 "ignoreCase": "true",
 "wildCard": "true"
 },
 "name": "sub",
 "parent": "root",
 "recursiveSupported": false,
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 }
],
 "updateTime": 1451347300618,
 "updatedBy": "Admin",
 "version": 1
}

3.2.13.1.4. Update Service Definition by ID

API Name Update Service Definition

Request Type PUT

Request URL service/public/v2/api/servicedef/{id}

Request Params {
 "accessTypes": [
 {
 "impliedGrants": [],
 "itemId": 1,
 "label": "select",
 "name": "select"
 },
 {
 "impliedGrants": [],
 "itemId": 2,
 "label": "update",
 "name": "update"
 },
 {

hdp-security August 29, 2016

343

API Name Update Service Definition
 "impliedGrants": [],
 "itemId": 3,
 "label": "Create",
 "name": "create"
 },
 {
 "impliedGrants": [],
 "itemId": 4,
 "label": "Drop",
 "name": "drop"
 },
 {
 "impliedGrants": [],
 "itemId": 5,
 "label": "Index",
 "name": "index"
 },
 {
 "impliedGrants": [
 "select",
 "update",
 "create",
 "drop",
 "index"
],
 "itemId": 6,
 "label": "All",
 "name": "all"
 }
],
 "configs": [
 {
 "itemId": 1,
 "label": "Username",
 "mandatory": true,
 "name": "username",
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "itemId": 2,
 "label": "Password",
 "mandatory": true,
 "name": "password",
 "type": "password",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 }
],
 "contextEnrichers": [],
 "description": "Test Component",
 "enums": [],
 "implClass": "org.apache.ranger.services.test.
RangerServiceTest",
 "isEnabled": true,
 "label": "Test Component",
 "name": "test",
 "options": {},
 "policyConditions": [],
 "resources": [
 {
 "description": "Root Of Resource
 Hierarchy for Test Component",
 "excludesSupported": true,
 "itemId": 1,
 "label": "Test Root Resource",
 "level": 10,
 "lookupSupported": true,
 "mandatory": true,
 "matcher": "org.apache.ranger.plugin.
resourcematcher.RangerDefaultResourceMatcher",
 "matcherOptions": {
 "ignoreCase": "true",
 "wildCard": "true"

hdp-security August 29, 2016

344

API Name Update Service Definition
 },
 "name": "root",
 "recursiveSupported": false,
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "description": "Sub Resource for Test
 Component",
 "excludesSupported": true,
 "itemId": 2,
 "label": "Test sub resource",
 "level": 20,
 "lookupSupported": true,
 "mandatory": true,
 "matcher": "org.apache.ranger.plugin.
resourcematcher.RangerDefaultResourceMatcher",
 "matcherOptions": {
 "ignoreCase": "true",
 "wildCard": "true"
 },
 "name": "sub",
 "parent": "root",
 "recursiveSupported": false,
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 }
]
}

Response {
 "accessTypes": [
 {
 "impliedGrants": [],
 "itemId": 1,
 "label": "select",
 "name": "select"
 },
 {
 "impliedGrants": [],
 "itemId": 2,
 "label": "update",
 "name": "update"
 },
 {
 "impliedGrants": [],
 "itemId": 3,
 "label": "Create",
 "name": "create"
 },
 {
 "impliedGrants": [],
 "itemId": 4,
 "label": "Drop",
 "name": "drop"
 },
 {
 "impliedGrants": [],
 "itemId": 5,
 "label": "Index",
 "name": "index"
 },
 {
 "impliedGrants": [
 "select",
 "update",
 "create",
 "drop",
 "index"
],
 "itemId": 6,
 "label": "All",
 "name": "all"
 }

hdp-security August 29, 2016

345

API Name Update Service Definition
],
 "configs": [
 {
 "itemId": 1,
 "label": "Username",
 "mandatory": true,
 "name": "username",
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "itemId": 2,
 "label": "Password",
 "mandatory": true,
 "name": "password",
 "type": "password",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 }
],
 "contextEnrichers": [],
 "createTime": 1451347301000,
 "createdBy": "Admin",
 "description": "Test Component",
 "enums": [],
 "guid":
 "f889f2d3-920a-4504-9905-809bbc417902",
 "id": 101,
 "implClass": "org.apache.ranger.services.test.
RangerServiceTest",
 "isEnabled": true,
 "label": "Test Component",
 "name": "test",
 "options": {},
 "policyConditions": [],
 "resources": [
 {
 "description": "Root Of Resource
 Hierarchy for Test Component",
 "excludesSupported": true,
 "itemId": 1,
 "label": "Test Root Resource",
 "level": 10,
 "lookupSupported": true,
 "mandatory": true,
 "matcher": "org.apache.ranger.plugin.
resourcematcher.RangerDefaultResourceMatcher",
 "matcherOptions": {
 "ignoreCase": "true",
 "wildCard": "true"
 },
 "name": "root",
 "recursiveSupported": false,
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 {
 "description": "Sub Resource for Test
 Component",
 "excludesSupported": true,
 "itemId": 2,
 "label": "Test sub resource",
 "level": 20,
 "lookupSupported": true,
 "mandatory": true,
 "matcher": "org.apache.ranger.plugin.
resourcematcher.RangerDefaultResourceMatcher",
 "matcherOptions": {
 "ignoreCase": "true",
 "wildCard": "true"
 },
 "name": "sub",

hdp-security August 29, 2016

346

API Name Update Service Definition
 "parent": "root",
 "recursiveSupported": false,
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 }
],
 "updateTime": 1451351474321,
 "updatedBy": "Admin",
 "version": 2
}

3.2.13.1.5. Update Service Definition by Name

API Name Update Service Definition

Request Type PUT

Request URL service/public/v2/api/servicedef/{name}

Request Params Application/json

• Example:

Response 200-Application/json

3.2.13.1.6. Delete Service Definition by ID

API Name Delete Service Definition

Request Type DELETE

Request URL service/public/v2/api/servicedef/{id}

Request Param

Response 204-No Content

3.2.13.1.7. Delete Service Definition by Name

API Name Delete Service Definition

Request Type DELETE

Request URL service/public/v2/api/servicedef/name/{name}

Request Param

Response 204-No Content

3.2.13.1.8. Search Service Definitions

API Name Search Service Definitions

Request Type GET

Request URL service/public/v2/api/servicedef

Request Params Query Params

pageSize int The page size required

startIndex int The startrecord index

serviceType string The service definition
names("hdfs","hive","hbase","knox","storm", "solr",
"kafka","yarn")

isEnabled boolean The enabled status : true if enabled;
false otherwise

hdp-security August 29, 2016

347

API Name Search Service Definitions

Example :

pageSize=25&startIndex=0

Response [
 {
 "accessTypes": [
 {
 "impliedGrants": [],
 "itemId": 1,
 "label": "Read",
 "name": "read"
 },
 {
 "impliedGrants": [],
 "itemId": 2,
 "label": "Write",
 "name": "write"
 },
 {
 "impliedGrants": [],
 "itemId": 3,
 "label": "Execute",
 "name": "execute"
 }
],
 "configs": [
 {
 "itemId": 1,
 "label": "Username",
 "mandatory": true,
 "name": "username",
 "subType": "",
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 },
 ...
 "description": "Sub Resource for
 Test Component",
 "excludesSupported": true,
 "itemId": 2,
 "label": "Test sub resource",
 "level": 20,
 "lookupSupported": true,
 "mandatory": true,
 "matcher": "org.
apache.ranger.plugin.resourcematcher.
RangerDefaultResourceMatcher",
 "matcherOptions": {
 "ignoreCase": "true",
 "wildCard": "true"
 },
 "name": "sub",
 "parent": "root",
 "recursiveSupported": false,
 "type": "string",
 "uiHint": "",
 "validationMessage": "",
 "validationRegEx": ""
 }
],
 "updateTime": 1451351474000,
 "updatedBy": "Admin",
 "version": 2
 }
]

3.2.13.2. Service APIs

• Get Service by ID [348]

• Get Service by Name [348]

hdp-security August 29, 2016

348

• Create Service [349]

• Update Service by ID [349]

• Update Service by Name [349]

• Delete Service by ID [350]

• Delete Service by Name [350]

• Search Services [350]

3.2.13.2.1. Get Service by ID

API Name Get Service

Request Type GET

Request URL service/public/v2/api/service/{id}

Request Params

Response {
 "configs": {
 "fs.default.name": "hdfs://akulkarni-etp-
real-final-1.novalocal:8020",
 "hadoop.security.auth_to_local":
 "DEFAULT",
 "hadoop.security.authentication":
 "simple",
 "hadoop.security.authorization": "false",
 "password": "*****",
 "username": "hadoop"
 },
 "createTime": 1450757397000,
 "createdBy": "amb_ranger_admin",
 "description": "hdfs repo",
 "guid":
 "ec082eea-0c22-43b8-84e0-129422f689b9",
 "id": 1,
 "isEnabled": true,
 "name": "cl1_hadoop",
 "policyUpdateTime": 1450757398000,
 "policyVersion": 2,
 "tagVersion": 1,
 "type": "hdfs",
 "updateTime": 1450757398000,
 "updatedBy": "amb_ranger_admin",
 "version": 3
}

3.2.13.2.2. Get Service by Name

API Name Get Service

Request Type GET

Request URL service/public/v2/api/service/name/{name}

Request Params

Response {
 "configs": {
 "jdbc.driverClassName": "org.apache.hive.
jdbc.HiveDriver",
 "jdbc.url": "jdbc:hive2://akulkarni-etp-
real-final-1.novalocal:10000",
 "password": "*****",
 "username": "hive"
 },
 "createTime": 1450757992000,
 "createdBy": "amb_ranger_admin",
 "description": "hive repo",
 "guid": "2bca8f98-4859-43c3-a8f4-
d31a15f28793",

hdp-security August 29, 2016

349

API Name Get Service
 "id": 3,
 "isEnabled": true,
 "name": "cl1_hive",
 "policyUpdateTime": 1450757995000,
 "policyVersion": 4,
 "tagUpdateTime": 1450916660000,
 "tagVersion": 74,
 "type": "hive",
 "updateTime": 1450757995000,
 "updatedBy": "amb_ranger_admin",
 "version": 78
}

3.2.13.2.3. Create Service

API Name Create Service

Request Type Post

Request URL service/public/v2/api/service

Request Params {
 "configs": {
 "password": "*****",
 "username": "hadoop"
 },
 "description": "test service",
 "isEnabled": true,
 "name": "cl1_test",
 "type": "test",
 "version": 1
}

Response {
 "configs": {
 "password": "*****",
 "username": "hadoop"
 },
 "createTime": 1451348710255,
 "createdBy": "Admin",
 "description": "test service",
 "guid": "e72cb64d-66d7-4632-b5ae-
c6966cb52105",
 "id": 6,
 "isEnabled": true,
 "name": "cl1_test",
 "tagVersion": 1,
 "type": "test",
 "updateTime": 1451348710256,
 "updatedBy": "Admin",
 "version": 1
}

3.2.13.2.4. Update Service by ID

API Name Update Service

Request Type PUT

Request URL service/public/v2/api/service/{id}

Request Params Application/json

• Example:

Response 200-Application/json

3.2.13.2.5. Update Service by Name

API Name Update Service

Request Type PUT

Request URL service/public/v2/api/service/name/{name}

hdp-security August 29, 2016

350

API Name Update Service

Request Params {
 "configs": {
 "password": "*****",
 "username": "admin"
 },
 "description": "test service",
 "isEnabled": true,
 "name": "cl1_test",
 "type": "test"
}

Response {
 "configs": {
 "password": "*****",
 "username": "admin"
 },
 "createTime": 1451348710000,
 "createdBy": "Admin",
 "description": "test service",
 "guid": "e72cb64d-66d7-4632-b5ae-
c6966cb52105",
 "id": 6,
 "isEnabled": true,
 "name": "cl1_test",
 "policyUpdateTime": 1451351474000,
 "policyVersion": 3,
 "tagVersion": 1,
 "type": "test",
 "updateTime": 1451352016713,
 "updatedBy": "Admin",
 "version": 5
}

3.2.13.2.6. Delete Service by ID

API Name Delete Service

Request Type DELETE

Request URL service/public/v2/api/service/{id}

Request Param

Response 204-No Content

3.2.13.2.7. Delete Service by Name

API Name Delete Service

Request Type DELETE

Request URL service/public/v2/api/service/name/{name}

Request Param

Response 204-No Content

3.2.13.2.8. Search Services

API Name Search Services

Request Type GET

Request URL service/public/v2/api/service

Request Params Query Parameters:

pageSize int The page size required

startIndex int The startrecord index

serviceName stringThe service name

serviceNamePartial string Partial service name

hdp-security August 29, 2016

351

API Name Search Services

serviceType string The service types(such as
"hdfs","hive","hbase","knox","storm")

isEnabled boolean The enabled status (true/false): true is
enabled, false otherwise

Example :

pageSize=25&startIndex=0

Response [
 {
 "configs": {
 "fs.default.name": "hdfs://akulkarni-
etp-real-final-1.novalocal:8020",
 "hadoop.security.auth_to_local":
 "DEFAULT",
 "hadoop.security.authentication":
 "simple",
 "hadoop.security.authorization":
 "false",
 "password": "*****",
 "username": "hadoop"
 },
 "createTime": 1450757397000,
 "createdBy": "amb_ranger_admin",
 "description": "hdfs repo",
 "guid":
 "ec082eea-0c22-43b8-84e0-129422f689b9",
 "id": 1,
 "isEnabled": true,
 "name": "cl1_hadoop",
 "policyUpdateTime": 1450757398000,
 "policyVersion": 2,
 "tagVersion": 1,
 "type": "hdfs",
 "updateTime": 1450757398000,
 "updatedBy": "amb_ranger_admin",
 "version": 3
 },
 {
 "configs": {
 "password": "*****",
 "username": "yarn",
 "yarn.url": "http://akulkarni-etp-
real-final-1.novalocal:8088"
 },
 "createTime": 1450757747000,
 "createdBy": "amb_ranger_admin",
 "description": "yarn repo",
 "guid":
 "080970a9-2216-4660-962e-2b48046bf87e",
 "id": 2,
 "isEnabled": true,
 "name": "cl1_yarn",
 "policyUpdateTime": 1450757747000,
 "policyVersion": 1,
 "tagVersion": 1,
 "type": "yarn",
 "updateTime": 1450757747000,
 "updatedBy": "amb_ranger_admin",
 "version": 2
 },
 {
 "configs": {
 "jdbc.driverClassName": "org.apache.
hive.jdbc.HiveDriver",
 "jdbc.url": "jdbc:hive2://akulkarni-
etp-real-final-1.novalocal:10000",
 "password": "*****",
 "username": "hive"
 },
 "createTime": 1450757992000,
 "createdBy": "amb_ranger_admin",
 "description": "hive repo",
 "guid": "2bca8f98-4859-43c3-a8f4-
d31a15f28793",

hdp-security August 29, 2016

352

API Name Search Services
 "id": 3,
 "isEnabled": true,
 "name": "cl1_hive",
 "policyUpdateTime": 1450757995000,
 "policyVersion": 4,
 "tagUpdateTime": 1450916660000,
 "tagVersion": 74,
 "type": "hive",
 "updateTime": 1450757995000,
 "updatedBy": "amb_ranger_admin",
 "version": 78
 },
 {
 "configs": {
 "hadoop.security.authentication":
 "simple",
 "hbase.security.authentication":
 "simple",
 "hbase.zookeeper.property.clientPort":
 "2181",
 "hbase.zookeeper.quorum": "akulkarni-
etp-real-final-1.novalocal",
 "password": "*****",
 "username": "hbase",
 "zookeeper.znode.parent": "/hbase-
unsecure"
 },
 "createTime": 1450758200000,
 "createdBy": "amb_ranger_admin",
 "description": "hbase repo",
 "guid": "6495d4c9-cd1b-4bdf-a023-
bdc82806186f",
 "id": 4,
 "isEnabled": true,
 "name": "cl1_hbase",
 "policyUpdateTime": 1450758202000,
 "policyVersion": 2,
 "tagVersion": 1,
 "type": "hbase",
 "updateTime": 1450758202000,
 "updatedBy": "amb_ranger_admin",
 "version": 3
 },
 {
 "configs": {
 "password": "*****",
 "username": "kafka",
 "zookeeper.connect": "akulkarni-etp-
real-final-1.novalocal:2181"
 },
 "createTime": 1450758481000,
 "createdBy": "amb_ranger_admin",
 "description": "kafka repo",
 "guid": "bd25a697-7c45-4c75-b23d-
bb02071c98c2",
 "id": 5,
 "isEnabled": true,
 "name": "cl1_kafka",
 "policyUpdateTime": 1450805416000,
 "policyVersion": 2,
 "tagVersion": 1,
 "type": "kafka",
 "updateTime": 1450805416000,
 "updatedBy": "amb_ranger_admin",
 "version": 3
 },
 {
 "configs": {
 "password": "*****",
 "username": "admin"
 },
 "createTime": 1451348710000,
 "createdBy": "Admin",
 "description": "test service",
 "guid": "e72cb64d-66d7-4632-b5ae-
c6966cb52105",
 "id": 6,

hdp-security August 29, 2016

353

API Name Search Services
 "isEnabled": true,
 "name": "cl1_test",
 "policyUpdateTime": 1451352708000,
 "policyVersion": 4,
 "tagVersion": 1,
 "type": "test",
 "updateTime": 1451352708000,
 "updatedBy": "Admin",
 "version": 6
 }
]

3.2.13.3. Policy APIs

• Get Policy by ID [353]

• Get Policy by Service Name and Policy Name [354]

• Create Policy [355]

• Update Policy by ID [357]

• Update Policy by Service Name and Policy Name [359]

• Delete Policy by ID [361]

• Delete Policy by Service Name and Policy Name [361]

• Search Policies in a Service [362]

3.2.13.3.1. Get Policy by ID

API Name Get Policy

Request Type Get

Request URL service/public/v2/api/policy/{id}

Request Params

Response {
 "allowExceptions": [],
 "createTime": 1450757397000,
 "createdBy": "amb_ranger_admin",
 "denyExceptions": [],
 "denyPolicyItems": [],
 "description": "Default Policy for Service:
 cl1_hadoop",
 "guid":
 "4c2f7afb-23fa-45e9-9b41-29bdc7423b65",
 "id": 1,
 "isAuditEnabled": true,
 "isEnabled": true,
 "name": "cl1_hadoop-1-20151222040957",
 "policyItems": [
 {
 "accesses": [
 {
 "isAllowed": true,
 "type": "read"
 },
 {
 "isAllowed": true,
 "type": "write"
 },
 {
 "isAllowed": true,
 "type": "execute"
 }
],
 "conditions": [],
 "delegateAdmin": true,

hdp-security August 29, 2016

354

API Name Get Policy
 "groups": [],
 "users": [
 "ambari-qa"
]
 }
],
 "resourceSignature":
 "6f956063401eda656f1eae8870c1afac",
 "resources": {
 "path": {
 "isExcludes": false,
 "isRecursive": true,
 "values": [
 "/*"
]
 }
 },
 "service": "cl1_hadoop",
 "updateTime": 1450757398000,
 "updatedBy": "amb_ranger_admin",
 "version": 2
}

3.2.13.3.2. Get Policy by Service Name and Policy Name

API Name Get Policy

Request Type Get

Request URL service/public/v2/api/service/{service-name}/policy/
{policy-name}

Request Params

Response {
 "allowExceptions": [],
 "createTime": 1450757992000,
 "createdBy": "amb_ranger_admin",
 "denyExceptions": [],
 "denyPolicyItems": [],
 "description": "Default Policy for Service:
 cl1_hive",
 "guid":
 "d6218120-1b66-43e6-9fef-9c917a8e9e25",
 "id": 4,
 "isAuditEnabled": true,
 "isEnabled": true,
 "name": "cl1_hive-2-20151222041952",
 "policyItems": [
 {
 "accesses": [
 {
 "isAllowed": true,
 "type": "select"
 },
 {
 "isAllowed": true,
 "type": "update"
 },
 {
 "isAllowed": true,
 "type": "create"
 },
 {
 "isAllowed": true,
 "type": "drop"
 },
 {
 "isAllowed": true,
 "type": "alter"
 },
 {
 "isAllowed": true,
 "type": "index"
 },
 {

hdp-security August 29, 2016

355

API Name Get Policy
 "isAllowed": true,
 "type": "lock"
 },
 {
 "isAllowed": true,
 "type": "all"
 }
],
 "conditions": [],
 "delegateAdmin": true,
 "groups": [],
 "users": [
 "ambari-qa"
]
 }
],
 "resourceSignature":
 "c834ed2b8c7462d2aa8bbffdb05226c8",
 "resources": {
 "database": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "*"
]
 },
 "udf": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "*"
]
 }
 },
 "service": "cl1_hive",
 "updateTime": 1450757995000,
 "updatedBy": "amb_ranger_admin",
 "version": 2
}

3.2.13.3.3. Create Policy

API name Create Policy

Request Type POST

Request URL service/public/v2/api/policy

Request Params {
 "allowExceptions": [],
 "denyExceptions": [],
 "denyPolicyItems": [
 {
 "accesses": [
 {
 "isAllowed": true,
 "type": "drop"
 }
],
 "conditions": [],
 "delegateAdmin": true,
 "groups": [],
 "users": [
 "hadoop"
]
 }
],
 "description": "Policy for Service: cl1_test",
 "isAuditEnabled": true,
 "isEnabled": true,
 "name": "cl1_test-1",
 "policyItems": [
 {
 "accesses": [
 {
 "isAllowed": true,

hdp-security August 29, 2016

356

API name Create Policy
 "type": "select"
 },
 {
 "isAllowed": true,
 "type": "update"
 },
 {
 "isAllowed": true,
 "type": "create"
 },
 {
 "isAllowed": true,
 "type": "drop"
 }
],
 "conditions": [],
 "delegateAdmin": true,
 "groups": ["public"],
 "users": [
]
 }
],
 "resources": {
 "root": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "abc"
]
 },
 "sub": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "*"
]
 }
 },
 "service": "cl1_test",
 "version": 1
}

Response {
 "allowExceptions": [],
 "createTime": 1451350456093,
 "createdBy": "Admin",
 "denyExceptions": [],
 "denyPolicyItems": [
 {
 "accesses": [
 {
 "isAllowed": true,
 "type": "drop"
 }
],
 "conditions": [],
 "delegateAdmin": true,
 "groups": [],
 "users": [
 "hadoop"
]
 }
],
 "description": "Policy for Service: cl1_test",
 "guid":
 "ff0b3c4a-6aa0-4803-9314-17f3b8950482",
 "id": 8,
 "isAuditEnabled": true,
 "isEnabled": true,
 "name": "cl1_test-1",
 "policyItems": [
 {
 "accesses": [
 {
 "isAllowed": true,
 "type": "select"
 },
 {

hdp-security August 29, 2016

357

API name Create Policy
 "isAllowed": true,
 "type": "update"
 },
 {
 "isAllowed": true,
 "type": "create"
 },
 {
 "isAllowed": true,
 "type": "drop"
 }
],
 "conditions": [],
 "delegateAdmin": true,
 "groups": [
 "public"
],
 "users": []
 }
],
 "resourceSignature":
 "8a2fac99ba72c687defacff39d6354fb",
 "resources": {
 "root": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "abc"
]
 },
 "sub": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "*"
]
 }
 },
 "service": "cl1_test",
 "updateTime": 1451350456094,
 "updatedBy": "Admin",
 "version": 1
}

3.2.13.3.4. Update Policy by ID

API Name update policy

Request Type PUT

Request URL service/public/v2/api/policy/{id}

Request Params {
 "id": 8,
 "allowExceptions": [],
 "denyExceptions": [],
 "denyPolicyItems": [
 {
 "accesses": [
 {
 "isAllowed": true,
 "type": "drop"
 }
],
 "conditions": [],
 "delegateAdmin": true,
 "groups": [],
 "users": [
 "admin"
]
 }
],
 "description": "Policy for Service: cl1_test",
 "isAuditEnabled": true,
 "isEnabled": true,
 "name": "cl1_test-1",

hdp-security August 29, 2016

358

API Name update policy
 "policyItems": [
 {
 "accesses": [
 {
 "isAllowed": true,
 "type": "select"
 },
 {
 "isAllowed": true,
 "type": "update"
 },
 {
 "isAllowed": true,
 "type": "create"
 },
 {
 "isAllowed": true,
 "type": "drop"
 }
],
 "conditions": [],
 "delegateAdmin": true,
 "groups": ["public"],
 "users": [
]
 }
],
 "resources": {
 "root": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "abc"
]
 },
 "sub": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "*"
]
 }
 },
 "service": "cl1_test",
 "version": 1
}

Response {
 "allowExceptions": [],
 "createTime": 1451350456000,
 "createdBy": "Admin",
 "denyExceptions": [],
 "denyPolicyItems": [
 {
 "accesses": [
 {
 "isAllowed": true,
 "type": "drop"
 }
],
 "conditions": [],
 "delegateAdmin": true,
 "groups": [],
 "users": [
 "admin"
]
 }
],
 "description": "Policy for Service: cl1_test",
 "guid":
 "ff0b3c4a-6aa0-4803-9314-17f3b8950482",
 "id": 8,
 "isAuditEnabled": true,
 "isEnabled": true,
 "name": "cl1_test-1",
 "policyItems": [
 {
 "accesses": [

hdp-security August 29, 2016

359

API Name update policy
 {
 "isAllowed": true,
 "type": "select"
 },
 {
 "isAllowed": true,
 "type": "update"
 },
 {
 "isAllowed": true,
 "type": "create"
 },
 {
 "isAllowed": true,
 "type": "drop"
 }
],
 "conditions": [],
 "delegateAdmin": true,
 "groups": [
 "public"
],
 "users": []
 }
],
 "resourceSignature":
 "8a2fac99ba72c687defacff39d6354fb",
 "resources": {
 "root": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "abc"
]
 },
 "sub": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "*"
]
 }
 },
 "service": "cl1_test",
 "updateTime": 1451955041580,
 "updatedBy": "Admin",
 "version": 3
}

3.2.13.3.5. Update Policy by Service Name and Policy Name

API Name update policy

Request Type PUT

Request URL service/public/v2/api/service/{service-name}/policy/
{policy-name}

Request Params {
 "allowExceptions": [],
 "denyExceptions": [],
 "denyPolicyItems": [
 {
 "accesses": [
 {
 "isAllowed": true,
 "type": "drop"
 }
],
 "conditions": [],
 "delegateAdmin": true,
 "groups": [],
 "users": [
 "hadoop",
 "admin"
]

hdp-security August 29, 2016

360

API Name update policy
 }
],
 "description": "Policy for Service: cl1_test",
 "isAuditEnabled": true,
 "isEnabled": true,
 "name": "cl1_test-1",
 "policyItems": [
 {
 "accesses": [
 {
 "isAllowed": true,
 "type": "select"
 },
 {
 "isAllowed": true,
 "type": "update"
 },
 {
 "isAllowed": true,
 "type": "create"
 },
 {
 "isAllowed": true,
 "type": "drop"
 }
],
 "conditions": [],
 "delegateAdmin": true,
 "groups": ["public"],
 "users": [
]
 }
],
 "resources": {
 "root": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "abc"
]
 },
 "sub": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "*"
]
 }
 },
 "service": "cl1_test",
 "version": 1
}

 200 - Application/json

Response {
 "allowExceptions": [],
 "createTime": 1451350456000,
 "createdBy": "Admin",
 "denyExceptions": [],
 "denyPolicyItems": [
 {
 "accesses": [
 {
 "isAllowed": true,
 "type": "drop"
 }
],
 "conditions": [],
 "delegateAdmin": true,
 "groups": [],
 "users": [
 "hadoop",
 "admin"
]
 }
],
 "description": "Policy for Service: cl1_test",

hdp-security August 29, 2016

361

API Name update policy
 "guid":
 "ff0b3c4a-6aa0-4803-9314-17f3b8950482",
 "id": 8,
 "isAuditEnabled": true,
 "isEnabled": true,
 "name": "cl1_test-1",
 "policyItems": [
 {
 "accesses": [
 {
 "isAllowed": true,
 "type": "select"
 },
 {
 "isAllowed": true,
 "type": "update"
 },
 {
 "isAllowed": true,
 "type": "create"
 },
 {
 "isAllowed": true,
 "type": "drop"
 }
],
 "conditions": [],
 "delegateAdmin": true,
 "groups": [
 "public"
],
 "users": []
 }
],
 "resourceSignature":
 "8a2fac99ba72c687defacff39d6354fb",
 "resources": {
 "root": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "abc"
]
 },
 "sub": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "*"
]
 }
 },
 "service": "cl1_test",
 "updateTime": 1451352707567,
 "updatedBy": "Admin",
 "version": 2
}

3.2.13.3.6. Delete Policy by ID

API Name Delete Policy

Request Type DELETE

Request URL service/public/v2/api/policy/{id}

Request Params

Response 204 - No Content

3.2.13.3.7. Delete Policy by Service Name and Policy Name

API Name Delete Policy

Request Type DELETE

hdp-security August 29, 2016

362

API Name Delete Policy

Request URL service/public/v2/api/policy

Request Params Query Parameters:

servicename string The name of service

policyname string The name of policy

Example:

servicename=service-name&policyname=policy-name

Response 204 - No Content

3.2.13.3.8. Search Policies in a Service

API Name Search Policies in a Service

API Name Search Policies in a Service

Request Type GET

Request URL service/public/v2/api/service/{service-name}/policy

Request Params Query Parameters:

pageSize int The page size required

startIndex int The start record index

policyName string The Exact Name of the policy

policyNamePartial string The Partial Name of the policy

policyId string The policy ID

polResource string The policy resource value

resource:resource-type string The policy resource value for
given resource-type

user stringThe user name

group string The group name

isRecursive boolean The isRecursive property ("true" or
"false")

isEnabled boolean The enable/disabled property ("true" or
"false")

Example =

pageSize=25&startIndex=0&resource:database=finance

Response [
 {
 "allowExceptions": [],
 "createTime": 1450757992000,
 "createdBy": "amb_ranger_admin",
 "denyExceptions": [],
 "denyPolicyItems": [],
 "description": "Default Policy for
 Service: cl1_hive",
 "guid": "4a322a05-c17f-4d6c-
b291-94cae3e6c353",
 "id": 3,
 "isAuditEnabled": true,
 "isEnabled": true,
 "name": "cl1_hive-1-20151222041951",
 "policyItems": [
 {

hdp-security August 29, 2016

363

API Name Search Policies in a Service

API Name Search Policies in a Service
 "accesses": [
 {
 "isAllowed": true,
 "type": "select"
 },
 {
 "isAllowed": true,
 "type": "update"
 },
 {
 "isAllowed": true,
 "type": "create"
 },
 {
 "isAllowed": true,
 "type": "drop"
 },
 {
 "isAllowed": true,
 "type": "alter"
 },
 {
 "isAllowed": true,
 "type": "index"
 },
 {
 "isAllowed": true,
 "type": "lock"
 },
 {
 "isAllowed": true,
 "type": "all"
 }
],
 "conditions": [],
 "delegateAdmin": true,
 "groups": [],
 "users": [
 "ambari-qa"
]
 }
],
 "resourceSignature":
 "6e79c1c989c79b7e53af663d3bdc2de6",
 "resources": {
 "column": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "*"
]
 },
 "database": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "*"
]
 },
 "table": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "*"
]
 }
 },
 "service": "cl1_hive",
 "updateTime": 1450757994000,
 "updatedBy": "amb_ranger_admin",
 "version": 2
 },
 {
 "allowExceptions": [],
 "createTime": 1450757992000,

hdp-security August 29, 2016

364

API Name Search Policies in a Service

API Name Search Policies in a Service
 "createdBy": "amb_ranger_admin",
 "denyExceptions": [],
 "denyPolicyItems": [],
 "description": "Default Policy for
 Service: cl1_hive",
 "guid":
 "d6218120-1b66-43e6-9fef-9c917a8e9e25",
 "id": 4,
 "isAuditEnabled": true,
 "isEnabled": true,
 "name": "cl1_hive-2-20151222041952",
 "policyItems": [
 {
 "accesses": [
 {
 "isAllowed": true,
 "type": "select"
 },
 {
 "isAllowed": true,
 "type": "update"
 },
 {
 "isAllowed": true,
 "type": "create"
 },
 {
 "isAllowed": true,
 "type": "drop"
 },
 {
 "isAllowed": true,
 "type": "alter"
 },
 {
 "isAllowed": true,
 "type": "index"
 },
 {
 "isAllowed": true,
 "type": "lock"
 },
 {
 "isAllowed": true,
 "type": "all"
 }
],
 "conditions": [],
 "delegateAdmin": true,
 "groups": [],
 "users": [
 "ambari-qa"
]
 }
],
 "resourceSignature":
 "c834ed2b8c7462d2aa8bbffdb05226c8",
 "resources": {
 "database": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "*"
]
 },
 "udf": {
 "isExcludes": false,
 "isRecursive": false,
 "values": [
 "*"
]
 }
 },
 "service": "cl1_hive",
 "updateTime": 1450757995000,

hdp-security August 29, 2016

365

API Name Search Policies in a Service

API Name Search Policies in a Service
 "updatedBy": "amb_ranger_admin",
 "version": 2
 }
]

hdp-security August 29, 2016

366

4. Data Protection: Wire Encryption
Encryption is applied to electronic information to ensure its privacy and confidentiality.
Wire encryption protects data as it moves into, through, and out of an Hadoop cluster over
RPC, HTTP, Data Transfer Protocol (DTP), and JDBC:

• Clients typically communicate directly with the Hadoop cluster. Data can be protected
using RPC encryption or Data Transfer Protocol:

• RPC encryption: Clients interacting directly with the Hadoop cluster through RPC.
A client uses RPC to connect to the NameNode (NN) to initiate file read and write
operations. RPC connections in Hadoop use Java’s Simple Authentication & Security
Layer (SASL), which supports encryption.

• Data Transfer Protocol: The NN gives the client the address of the first DataNode (DN)
to read or write the block. The actual data transfer between the client and a DN uses
Data Transfer Protocol.

• Users typically communicate with the Hadoop cluster using a Browser or a command line
tools, data can be protected as follows:

• HTTPS encryption: Users typically interact with Hadoop using a browser or component
CLI, while applications use REST APIs or Thrift. Encryption over the HTTP protocol is
implemented with the support for SSL across a Hadoop cluster and for the individual
components such as Ambari.

• JDBC: HiveServer2 implements encryption with Java SASL protocol’s quality of
protection (QOP) setting. With this the data moving between a HiveServer2 over JDBC
and a JDBC client can be encrypted.

• Additionally, within-cluster communication between processes can be protected using
HTTPS encryption during MapReduce shuffle:

• HTTPS encryption during shuffle: When data moves between the Mappers and the
Reducers over the HTTP protocol, this step is called shuffle. Reducer initiates the
connection to the Mapper to ask for data; it acts as an SSL client.

This chapter provides information about configuring and connecting to wire-encrypted
components.

For information about configuring HDFS data-at-rest encryption, see HDFS "Data at Rest"
Encryption.

4.1. Enabling RPC Encryption
The most common way for a client to interact with a Hadoop cluster is through RPC. A
client connects to a NameNode over RPC protocol to read or write a file. RPC connections
in Hadoop use the Java Simple Authentication and Security Layer (SASL) which supports
encryption. When the hadoop.rpc.protection property is set to privacy, the data over
RPC is encrypted with symmetric keys.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/configuring_hdfs_encryption.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/configuring_hdfs_encryption.html

hdp-security August 29, 2016

367

Note

RPC encryption covers not only the channel between a client and a Hadoop
cluster but also the inter-cluster communication among Hadoop services.

Enable Encrypted RPC by setting the following properties in core-site.xml.

hadoop.rpc.protection=privacy

(Also supported are the ‘authentication’ and ‘integrity’ settings.)

4.2. Enabling Data Transfer Protocol
The NameNode gives the client the address of the first DataNode to read
or write the block. The actual data transfer between the client and the
DataNode is over Hadoop's Data Transfer Protocol. To encrypt this protocol
you must set dfs.encryt.data.transfer=true on the NameNode and all
DataNodes. The actual algorithm used for encryption can be customized with
dfs.encrypt.data.transfer.algorithm set to either "3des" or "rc4". If nothing
is set, then the default on the system is used (usually 3DES.) While 3DES is more
cryptographically secure, RC4 is substantially faster.

Enable Encrypted DTP by setting the following properties in hdfs-site.xml:

dfs.encrypt.data.transfer=true
dfs.encrypt.data.transfer.algorithm=3des

rc4 is also supported.

Note

Secondary NameNode is not supported with the HTTPS port. It can only be
accessed via http://<SNN>:50090.

4.3. Enabling SSL: Understanding the Hadoop SSL
Keystore Factory

The Hadoop SSL Keystore Factory manages SSL for core services that communicate with
other cluster services over HTTP, such as MapReduce, YARN, and HDFS. Other components
that have services that are typically not distributed, or only receive HTTP connections
directly from clients, use built-in Java JDK SSL tools. Examples include HBase and Oozie.

The following table shows HDP cluster services that use HTTP and support SSL for wire
encryption.

Table 4.1. Components that Support SSL

Component Service SSL Management

HDFS WebHDFS Hadoop SSL Keystore Factory

Shuffle Hadoop SSL Keystore FactoryMapReduce

TaskTracker Hadoop SSL Keystore Factory

Yarn Resource Manager Hadoop SSL Keystore Factory

hdp-security August 29, 2016

368

Component Service SSL Management

JobHistory Hadoop SSL Keystore Factory

Oozie Configured in oozie-site.xml

HBase REST API Configured in hbase-site.xml

Hive HiveServer2 Configured in hive-site.xml

Kafka JDK: User and default

Solr JDK: User and default

Accumulo JDK: User and default

Falcon REST API JDK: User and default

Hadoop cluster (REST client) JDK: default onlyKnox

Knox Gateway server JDK: User and default

HDP Security Administration Server/Agent JDK: User and default

When enabling support for SSL, it is important to know which SSL Management method
is being used by the Hadoop service. Services that are co-located on a host must configure
the server certificate and keys, and in some cases the client truststore, in the Hadoop SSL
Keystore Factory and JDK locations. When using CA signed certificates, configure the
Hadoop SSL Keystore Factory to use the Java keystore and truststore locations.

The following list describes major differences between certificates managed by the Hadoop
SSL Keystore Management Factory and certificates managed by JDK:

• Hadoop SSL Keystore Management Factory:

• Supports only JKS formatted keys.

• Supports toggling the shuffle between HTTP and HTTPS.

• Supports two way certificate and name validation.

• Uses a common location for both the keystore and truststore that is available to other
Hadoop core services.

• Allows you to manage SSL in a central location and propagate changes to all cluster
nodes.

• Automatically reloads the keystore and truststore without restarting services.

• SSL Management with JDK:

• Allows either HTTP or HTTPS.

• Uses hard-coded locations for truststores and keystores that may vary between hosts.
Typically, this requires you to generate key pairs and import certificates on each host.

• Requires the service to be restarted to reload the keystores and truststores.

• Requires certificates to be installed in the client CA truststore.

Note

For more information on JDK SSL Management, see "Using SSL" in Monitoring
and Managing Using JMX Technology.

http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html

hdp-security August 29, 2016

369

4.4. Creating and Managing SSL Certificates
This section contains the following topics:

• Obtaining a certificate from a third-party Certificate Authority (CA)

• Creating an internal CA (OpenSSL)

• Installing Certificates in the Hadoop SSL Keystore Factory (HDFS, MapReduce, and YARN)

• Using an internal CA (OpenSSL)

Note

For more information about the keytool utility, see the Oracle keytool
reference: keytool - Key and Certificate Management Tool.

For more information about OpenSSL, see OpenSSL Documentation.

Note

Java-based Hadoop components such as HDFS, MapReduce, and YARN support
JKS format, while Python based services such as Hue use PEM format.

4.4.1. Obtain a Certificate from a Trusted Third-Party
Certification Authority (CA)

A third-party Certification Authority (CA) accepts certificate requests from entities,
authenticates applications, issues certificates, and maintains status information about
certificates. Associated cryptography guarantees that a signed certificate is computationally
difficult to forge. Thus, as long as the CA is a genuine and trusted authority, clients have
high assurance that they are connecting to the machines that they are attempting to
connect with.

To obtain a certificate signed by a third-party CA, generate and submit a Certificate Signing
Request (CSR) for each cluster node:

1. From the service user account associated with the component (such as hive, hbase,
oozie, or hdfs, shown below as <service_user>), generate the host key:

su -l <service_user> -C "keytool -keystore <client-keystore> -genkey -alias
 <host>"

2. At the prompts, enter the information required by the CSR.

Note

Request generation information and requirements vary depending on the
certificate authority. Check with your CA for details.

Example using default keystore keystore.jks:

su -l hdfs -c "keytool -keystore keystore.jks -genkey -alias n3"

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html
https://www.openssl.org/docs/

hdp-security August 29, 2016

370

Enter keystore password: ********
What is your first and last name?
[Unknown]: hortonworks.com
What is the name of your organizational unit?
[Unknown]: Development
What is the name of your organization?
[Unknown]: Hortonworks
What is the name of your City or Locality?
[Unknown]: SantaClara
What is the name of your State or Province?
[Unknown]: CA
What is the two-letter country code for this unit?
[Unknown]: US
Is <CN=hortonworks.com, OU=Development, O=Hortonworks, L=SantaClara, ST=CA,
C=US correct?
[no]: yes

Enter key password for <host>
(RETURN if same as keystore password):

By default, keystore uses JKS format for the keystore and truststore. The keystore file
is created in the user's home directory. Access to the keystore requires the password and
alias.

3. Verify that the key was generated; for example:

su -l hdfs -c "keytool -list -v -keystore keystore.jks"

4. Create the CSR file:

su -l hdfs -c "keytool -keystore <keystorename> -certreq -alias <host> -
keyalg rsa -file <host>.csr"

This command generates a certificate signing request that can be sent to a CA. The file
<host>.csr contains the CSR.

The CSR is created in the user's home directory.

5. Confirm that the keystore.jks and <host>.csr files exist by running the following
command and making sure that the files are listed in the output:

su -l hdfs -c "ls ~/"

6. Submit the CSR to your Certificate Authority.

7. To import and install keys and certificates, follow the instructions sent to you by the CA.

4.4.2. Create and Set Up an Internal CA (OpenSSL)

OpenSSL provides tools to allow you to create your own private certificate authority.

Considerations:

• The encryption algorithms may be less secure than a well-known, trusted third-party.

• Unknown CAs require that the certificate be installed in corresponding client truststores.

hdp-security August 29, 2016

371

Note

When accessing the service from a client application such as HiveCLI or
cURL, the CA must resolve on the client side or the connection attempt may
fail. Users accessing the service through a browser will be able to add an
exception if the certificate cannot be verified in their local truststore.

Prerequisite: Install openssl. For example, on CentOS run yum install openssl.

To create and set up a CA:

1. Generate the key and certificate for a component process.

The first step in deploying HTTPS for a component process (for example, Kafka broker)
is to generate the key and certificate for each node in the cluster. You can use the Java
keytool utility to accomplish this task. Start with a temporary keystore, so that you can
export and sign it later with the CA.

Use the following keytool command to create the key and certificate:

$ keytool -keystore <keystore-file> -alias localhost -validity <validity> -
genkey

where:

<keystore-file> is the keystore file that stores the certificate. The keystore file
contains the private key of the certificate; therefore, it needs to be kept safely.

<validity> is the length of time (in days) that the certificate will be valid.

Make sure that the common name (CN) matches the fully qualified domain name
(FQDN) of the server. The client compares the CN with the DNS domain name to ensure
that it is indeed connecting to the desired server, not a malicious server.

2. Create the Certificate Authority (CA)

After step 1, each machine in the cluster has a public-private key pair and a certificate
that identifies the machine. The certificate is unsigned, however, which means that an
attacker can create such a certificate to pretend to be any machine.

To prevent forged certificates, it is very important to sign the certificates for each
machine in the cluster.

A CA is responsible for signing certificates, and associated cryptography guarantees
that a signed certificate is computationally difficult to forge. Thus, as long as the CA is a
genuine and trusted authority, the clients have high assurance that they are connecting
to the machines that they are attempting to connect with.

Here is a sample openssl command to generate a CA:

openssl req -new -x509 -keyout ca-key -out ca-cert -days 365

The generated CA is simply a public-private key pair and certificate, intended to sign
other certificates.

hdp-security August 29, 2016

372

3. Add the generated CA to the server's truststore:

keytool -keystore server.truststore.jks -alias CARoot -import -file ca-cert

4. Add the generated CA to the client's truststore, so that clients know that they can trust
this CA:

keytool -keystore client.truststore.jks -alias CARoot -import -file ca-cert

In contrast to the keystore in step 1 that stores each machine’s own identity, the
truststore of a client stores all of the certificates that the client should trust. Importing a
certificate into one’s truststore also means trusting all certificates that are signed by that
certificate.

Trusting the CA means trusting all certificates that it has issued. This attribute is called a
"chain of trust," and is particularly useful when deploying SSL on a large cluster. You can
sign all certificates in the cluster with a single CA, and have all machines share the same
truststore that trusts the CA. That way all machines can authenticate all other machines.

5. Sign all certificates generated in Step 1 with the CA generated in Step 2:

a. Export the certificate from the keystore:

keytool -keystore server.keystore.jks -alias localhost -certreq -file
 cert-file

b. Sign the certificate with the CA:

openssl x509 -req -CA ca-cert -CAkey ca-key -in cert-file -out cert-
signed -days <validity> -CAcreateserial -passin pass:<ca-password>

6. Import the CA certificate and the signed certificate into the keystore. For example:

$ keytool -keystore server.keystore.jks -alias CARoot -import -file ca-cert
$ keytool -keystore server.keystore.jks -alias localhost -import -file cert-
signed

The parameters are defined as follows:

Parameter Description

keystore The location of the keystore

ca-cert The certificate of the CA

ca-key The private key of the CA

ca-password The passphrase of the CA

cert-file The exported, unsigned certificate of the server

cert-signed The signed certificate of the server

All of the preceding steps can be placed into a bash script.

In the following example, note that one of the commands assumes a password of
test1234. Specify your own password before running the script.

#!/bin/bash

#Step 1
keytool -keystore server.keystore.jks -alias localhost -validity 365 -genkey

hdp-security August 29, 2016

373

#Step 2
openssl req -new -x509 -keyout ca-key -out ca-cert -days 365
keytool -keystore server.truststore.jks -alias CARoot -import -file ca-cert
keytool -keystore client.truststore.jks -alias CARoot -import -file ca-cert

#Step 3
keytool -keystore server.keystore.jks -alias localhost -certreq -file cert-
file
openssl x509 -req -CA ca-cert -CAkey ca-key -in cert-file -out cert-signed -
days 365 -CAcreateserial -passin pass:test1234
keytool -keystore server.keystore.jks -alias CARoot -import -file ca-cert
keytool -keystore server.keystore.jks -alias localhost -import -file cert-
signed

To finish the setup process:

1. Set up the CA directory structure:

 mkdir -m 0700 /root/CA /root/CA/certs /root/CA/crl /root/CA/newcerts /root/
CA/private

2. Move the CA key to /root/CA/private and the CA certificate to /root/CA/
certs.

mv ca.key /root/CA/private;mv ca.crt /root/CA/certs

3. Add required files:

touch /root/CA/index.txt; echo 1000 >> /root/CA/serial

4. Set permissions on the ca.key:

chmod 0400 /root/ca/private/ca.key

5. Open the OpenSSL configuration file:

vi /etc/pki/tls/openssl.cnf

6. Change the directory paths to match your environment:

[CA_default]

dir = /root/CA # Where everything is kept
certs = /root/CA/certs # Where the issued certs are
 kept
crl_dir = /root/CA/crl # Where the issued crl are kept
database = /root/CA/index.txt # database index file.
#unique_subject = no # Set to 'no' to allow creation
 of
 # several certificates with same
 subject.
new_certs_dir = /root/CA/newcerts # default place for new certs.

certificate = /root/CA/cacert.pem # The CA certificate
serial = /root/CA/serial # The current serial number
crlnumber = /root/CA/crlnumber # the current crl number
 # must be commented out to leave
 a V1 CRL
crl = $dir/crl.pem # The current CRL
private_key = /root/CA/private/cakey.pem # The private key

hdp-security August 29, 2016

374

RANDFILE = /root/CA/private/.rand # private random number file

x509_extensions = usr_cert # The extensions to add to the cert

7. Save the changes and restart OpenSSL.

Example of setting up an OpenSSL internal CA:

openssl genrsa -out ca.key 8192; openssl req -new -x509 -extensions v3_ca -key
 ca.key -out ca.crt -days 365

Generating RSA private key, 8192 bit long modulus
..
.........++
......................++
e is 65537 (0x10001)
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]:US
State or Province Name (full name) []:California
Locality Name (eg, city) [Default City]:SantaClara
Organization Name (eg, company) [Default Company Ltd]:Hortonworks
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []:nn
Email Address []:it@hortonworks.com

mkdir -m 0700 /root/CA /root/CA/certs /root/CA/crl /root/CA/newcerts /root/CA/
private
ls /root/CA
certs crl newcerts private

4.4.3. Installing Certificates in the Hadoop SSL Keystore
Factory (HDFS, MapReduce, and YARN)

HDFS, MapReduce, and YARN use the Hadoop SSL Keystore Factory to manage SSL
Certificates. This factory uses a common directory for server keystore and client truststore.
The Hadoop SSL Keystore Factory allows you to use CA certificates managed in their own
stores.

1. Create a directory for the server and client stores.

mkdir -p <SERVER_KEY_LOCATION> ; mkdir -p <CLIENT_KEY_LOCATION>

2. Import the server certificate from each node into the HTTP Factory truststore.

cd <SERVER_KEY_LOCATION> ; keytool -import -noprompt -alias <remote-
hostname> -file <remote-hostname>.jks -keystore <TRUSTSTORE_FILE> -storepass
 <SERVER_TRUSTSTORE_PASSWORD>

3. Create a single truststore file containing the public key from all certificates, by importing
the public key for each CA or from each self-signed certificate pair:

keytool -import -noprompt -alias <host> -file $CERTIFICATE_NAME -keystore
 <ALL_JKS> -storepass <CLIENT_TRUSTSTORE_PASSWORD>

hdp-security August 29, 2016

375

4. Copy the keystore and truststores to every node in the cluster.

5. Validate the common truststore file on all hosts.

keytool -list -v -keystore <ALL_JKS> -storepass <CLIENT_TRUSTSTORE_PASSWORD>

6. Set permissions and ownership on the keys:

chgrp -R <YARN_USER>:hadoop <SERVER_KEY_LOCATION>
chgrp -R <YARN_USER>:hadoop <CLIENT_KEY_LOCATION>
chmod 755 <SERVER_KEY_LOCATION>
chmod 755 <CLIENT_KEY_LOCATION>
chmod 440 <KEYSTORE_FILE>
chmod 440 <TRUSTSTORE_FILE>
chmod 440 <CERTIFICATE_NAME>
chmod 444 <ALL_JKS>

Note

The complete path of the <SERVER_KEY_LOCATION> and the
<CLIENT_KEY_LOCATION> from the root directory /etc must be owned
by the yarn user and the hadoop group.

4.4.4. Using a CA-Signed Certificate
To use a CA-signed certificate:

1. Run the following command to create a self-signing rootCA and import the rootCA
into the client truststore. This is a private key; it should be kept private. The following
command creates a 2048-bit key:

openssl genrsa -out <clusterCA>.key 2048

2. Self-sign the rootCA. The following command signs for 300 days. It will start an
interactive script that requests name and location information.

openssl req -x509 -new -key <clusterCA>.key -days 300 -out <clusterCA>

3. Import the rootCA into the client truststore:

keytool -importcert -alias <clusterCA> -file $clusterCA -keystore
 <clustertruststore> -storepass <clustertruststorekey>

Note

Make sure that the ssl-client.xml file on every host is configured to use
this $clustertrust store.

When configuring with Hive point to this file; when configuring other
services install the certificate in the Java truststore.

4. For each host, sign the certreq file with the rootCA:

openssl x509 -req -CA $clusterCA.pem -CAkey <clusterCA>.key -in <host>.cert
 -out $host.signed -days 300 -CAcreateserial

5. On each host, import the rootCA and the signed cert back in:

hdp-security August 29, 2016

376

keytool -keystore <hostkeystore> -storepass <hoststorekey> -alias
 <clusterCA> -import -file cluster1CA.pem
keytool -keystore <hostkeystore> -storepass <hoststorekey> -alias `hostname
 -s` -import -file <host>.signed -keypass <hostkey>

4.5. Enabling SSL for HDP Components
The following table contains links to instructions for enabling SSL on specific HDP
components.

Note

These instructions assume that you have already created keys and signed
certificates for each component of interest, across your cluster. (See Section 4.3,
“Enabling SSL: Understanding the Hadoop SSL Keystore Factory” [367] for
more information.)

Table 4.2. Configure SSL Data Protection for HDP Components

HDP Component Notes/Link

Hadoop, MapReduce, YARN Section 4.1, “Enabling RPC Encryption” [366];
Section 4.6, “Enable SSL for WebHDFS, MapReduce
Shuffle, Tez, and YARN” [376]

Oozie Section 4.8, “Enable SSL on Oozie” [380]

HBase Section 4.9, “Enable SSL on the HBase REST
Server” [382]

Hive (HiveServer2) Section 4.11, “Enable SSL on HiveServer2” [385]

Kafka Section 4.12, “Enable SSL for Kafka Clients” [387]

Ambari Server Set Up SSL for Ambari

Falcon Enabled by default (see Installing the Falcon Package)

Sqoop Clients of Hive and HBase, see Hortonworks Data Platform
Data Movement and Integration, Apache Sqoop

Knox Gateway Configure SSL for Knox

Flume Apache Flume Component Guide

Accumulo Apache Foundation Blog, Apache Accumulo: Generating
Keystores for configuring Accumulo with SSL

Phoenix Command Line Installation, Installing Apache Phoenix:
Configuring Phoenix for Security and Apache Phoenix,
Flume Plug-in

HUE Command Line Installation, Installing Hue, Configure Hue

4.6. Enable SSL for WebHDFS, MapReduce Shuffle,
Tez, and YARN

This section explains how to set up SSL for WebHDFS, YARN and MapReduce. Before you
begin, make sure that the SSL certificate is properly configured, including the keystore and
truststore that will be used by WebHDFS, MapReduce, and YARN.

HDP supports the following SSL modes:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/set_up_ssl_for_ambari.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_command-line-installation/content/install_falcon_rpm.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_data-movement-and-integration/content/apache_sqoop_connectors.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_data-movement-and-integration/content/apache_sqoop_connectors.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_flume-component-guide/content/ch_introduction.html
https://blogs.apache.org/accumulo/entry/generating_keystores_for_configuring_accumulo
https://blogs.apache.org/accumulo/entry/generating_keystores_for_configuring_accumulo
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_command-line-installation/content/configuring-phoenix-to-run-in-a-secure-cluster.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_command-line-installation/content/configuring-phoenix-to-run-in-a-secure-cluster.html
http://phoenix.apache.org/flume.html
http://phoenix.apache.org/flume.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_command-line-installation/content/configure_hue_hadoop_components.html

hdp-security August 29, 2016

377

• One-way SSL: SSL client validates the server identity only.

• Mutual authentication (2WAY SSL): The server and clients validate each others' identities.
2WAY SSL can cause performance delays and is difficult to set up and maintain.

Note

In order to access SSL enabled HDP Services through the Knox Gateway,
additional configuration on the Knox Gateway is required, see Configure SSL
for Knox.

To enable one-way SSL set the following properties and restart all services:

1. Set the following property values (or add the properties if required) in core-
site.xml:

hadoop.ssl.require.client.cert=false

hadoop.ssl.hostname.verifier=DEFAULT

hadoop.ssl.keystores.factory.class=org.apache.hadoop.security.ssl.FileBasedKeyStoresFactory

hadoop.ssl.server.conf=ssl-server.xml

hadoop.ssl.client.conf=ssl-client.xml

Note

Specify the hadoop.ssl.server.conf and hadoop.ssl.client.conf values as the
relative or absolute path to Hadoop SSL Keystore Factory configuration files.
If you specify only the file name, put the files in the same directory as the
core-site.xml.

2. Set the following properties (or add the properties if required) in hdfs-site.xml:

• dfs.http.policy=<Policy>

• dfs.client.https.need-auth=true (optional for mutual client/server
certificate validation)

• dfs.datanode.https.address=<hostname>:50475

• dfs.namenode.https-address=<hostname>:50470

where <Policy> is either:

• HTTP_ONLY: service is provided only on HTTP

• HTTPS_ONLY: service is provided only on HTTPS

• HTTP_AND_HTTPS: service is provided both on HTTP and HTTPS

3. Set the following properties in mapred-site.xml:

mapreduce.jobhistory.http.policy=HTTPS_ONLY

hdp-security August 29, 2016

378

mapreduce.jobhistory.webapp.https.address=<JHS>:<JHS_HTTPS_PORT>

4. Set the following properties in yarn-site.xml:

yarn.http.policy=HTTPS_ONLY
yarn.log.server.url=https://<JHS>:<JHS_HTTPS_PORT>/jobhistory/logs
yarn.resourcemanager.webapp.https.address=<RM>:<RM_HTTPS_PORT>
yarn.nodemanager.webapp.https.address=0.0.0.0:<NM_HTTPS_PORT>

5. Create an ssl-server.xml file for the Hadoop SSL Keystore Factory:

a. Copy the example SSL Server configuration file and modify the settings for your
environment:

cp /etc/hadoop/conf/ssl-server.xml.example /etc/hadoop/conf/ssl-server.
xml

b. Configure the server SSL properties:

Table 4.3. Configuration Properties in ssl-server.xml

Property Default Value Description

ssl.server.keystore.type JKS The type of the keystore, JKS = Java
Keystore, the de-facto standard in
Java

ssl.server.keystore.locationNone The location of the keystore file

ssl.server.keystore.passwordNone The password to open the keystore
file

ssl.server.truststore.type JKS The type of the trust store

ssl.server.truststore.locationNone The location of the truststore file

ssl
server.truststore.password

None The password to open the
truststore

For example:

<property>
 <name>ssl.server.truststore.location</name>
 <value>/etc/security/serverKeys/truststore.jks</value>
 <description>Truststore to be used by NN and DN. Must be specified.</
description>
</property>

<property>
 <name>ssl.server.truststore.password</name>
 <value>changeit</value>
 <description>Optional. Default value is "".
 </description>
</property>

<property>
 <name>ssl.server.truststore.type</name>
 <value>jks</value>
 <description>Optional. The keystore file format, default value is
 "jks".</description>
</property>

<property>
 <name>ssl.server.truststore.reload.interval</name>

hdp-security August 29, 2016

379

 <value>10000</value>
 <description>Truststore reload check interval, in milliseconds.
 Default value is 10000 (10 seconds).</description>
</property>

<property>
 <name>ssl.server.keystore.location</name>
 <value>/etc/security/serverKeys/keystore.jks</value>
 <description>Keystore to be used by NN and DN. Must be specified.</
description>
</property>

<property>
 <name>ssl.server.keystore.password</name>
 <value>changeit</value>
 <description>Must be specified.</description>
</property>

<property>
 <name>ssl.server.keystore.keypassword</name>
 <value>changeit</value>
 <description>Must be specified.</description>
</property>

<property>
 <name>ssl.server.keystore.type</name>
 <value>jks</value>
 <description>Optional. The keystore file format, default value is
 "jks".</description>
</property>

6. Create an ssl-client.xml file for the Hadoop SSL Keystore Factory:

a. Copy the client truststore example file:

cp /etc/hadoop/conf/ssl-server.xml.example /etc/hadoop/conf/ssl-server.
xml

b. Configure the client trust store values:

ssl.client.truststore.location=/etc/security/clientKeys/all.jks
ssl.client.truststore.password=clientTrustStorePassword
ssl.client.truststore.type=jks

7. Set the following properties in the tez-site.xml file:

tez.runtime.shuffle.ssl.enable=true
tez.runtime.shuffle.keep-alive.enabled=true

8. Copy the configuration files (core-site.xml, hdfs-site.xml, mapred-site.xml,
yarn-site.xml, ssl-server.xml, tez-site.xml and ssl-client.xml),
including the ssl-server and ssl-client store files if the Hadoop SSL Keystore Factory uses
it's own keystore and truststore files, to all nodes in the cluster.

9. Restart services on all nodes in the cluster.

4.7. Enable SSL for HttpFS
Use the following steps to configure HttpFS to work over SSL.

https://hadoop.apache.org/docs/r2.7.1/hadoop-hdfs-httpfs/

hdp-security August 29, 2016

380

1. Edit the httpfs-env.sh script in the configuration directory and set
HTTPFS_SSL_ENABLED to true.

In addition, the following 2 properties can be defined (shown here with default values):

• HTTPFS_SSL_KEYSTORE_FILE=$HOME/.keystore

• HTTPFS_SSL_KEYSTORE_PASS=password

2. In the HttpFS tomcat/conf directory, replace the server.xml file with the ssl-
server.xml file.

3. Create an SSL certificate for the HttpFS server. As the httpfs Unix user, use the Java
keytool command to create the SSL certificate:

$ keytool -genkey -alias tomcat -keyalg RSA

You will be asked a series of questions in an interactive prompt. It will create the
keystore file, which will be named .keystore and located in the httpfs user home
directory.

The password you enter for “keystore password” must match the value of the
HTTPFS_SSL_KEYSTORE_PASS environment variable set in the httpfs-env.sh script in
the configuration directory.

The answer to “What is your first and last name?” (i.e. “CN”) must be the host name of
the machine where the HttpFS Server will be running.

4. Start HttpFS. It should work over HTTPS.

5. Utilizing the Hadoop FileSystem API or the Hadoop FS shell, use the swebhdfs:// scheme.
Make sure the JVM is picking up the truststore containing the public key of the SSL
certificate if you are using a self-signed certificate.

4.8. Enable SSL on Oozie
The default SSL configuration makes all Oozie URLs use HTTPS except for the JobTracker
callback URLs. This simplifies the configuration because no changes are required outside of
Oozie. Oozie inherently does not trust the callbacks, they are used as hints.

Note

Before you begin ensure that the SSL certificate has been generated and
properly configured. By default Oozie uses the user default keystore. In order
to access SSL enabled HDP Services through the Knox Gateway, additional
configuration on the Knox Gateway is required, see Configure SSL for Knox.

1. If Oozie server is running, stop Oozie.

2. Change the Oozie environment variables for HTTPS if required:

• OOZIE_HTTPS_PORT set to Oozie HTTPS port. The default value is 11443.

hdp-security August 29, 2016

381

• OOZIE_HTTPS_KEYSTORE_FILE set to the keystore file that contains the certificate
information. Default value $<HOME>/.keystore, that is the home directory of the
Oozie user.

• OOZIE_HTTPS_KEYSTORE_PASS set to the password of the keystore file. Default
value password.

Note

See Oozie Environment Setup for more details.

3. Run the following command to enable SSL on Oozie:

su -l oozie -c "/usr/hdp/current/oozie-server/bin/oozie-setup.sh prepare-war
 -secure"

4. Start the Oozie server.

Note

To revert back to unsecured HTTP, run the following command:

su -l oozie -c "/usr/hdp/current/oozie-server/bin/oozie-setup.sh
 prepare-war"

4.8.1. Configure the Oozie Client to Connect Using SSL

Use the following procedure to configure the Oozie client to connect using SSL. The first
two steps are only necessary if you are using a self-signed Certificate. Also, these steps must
be performed on every machine on which you intend to use the Oozie Client.

1. Copy or download the .cert file onto the client machine.

2. Run the following command (as root) to import the certificate into the JRE keystore. This
will allow any Java program, including the Oozie client, to connect to the Oozie Server
using the self-signed certificate.

sudo keytool -import -alias tomcat -file path/to/certificate.cert -keystore
 ${JRE_cacerts}

Where ${JRE_cacerts} is the path to the JRE .certs file. Its location may differ
depending on the operating system, but its typically named cacerts and is located
at ${JAVA_HOME}/lib/security/cacerts, but it may be in a different directory
under ${JAVA_HOME} (you may want to create a backup copy of this file first). The
default password is changeit.

3. When using the Oozie Client, you must use https://
oozie.server.hostname:11443/oozie rather than http://
oozie.server.hostname:11000/oozie -- Java will not automatically redirect from
the HTTP address to the HTTPS address.

https://oozie.apache.org/docs/4.0.1/AG_Install.html#Environment_Setup

hdp-security August 29, 2016

382

4.8.2. Connect to the Oozie Web UI Using SSL

Use https://oozie.server.hostname:11443/oozie to connect to the
Oozie web UI using SSL, but most browsers should redirect if you use http://
oozie.server.hostname:11000/oozie.

Important

If you are using a self-signed certificate, the browser will warn you that it
cannot verify the certificate. You will probably need to add the certificate as an
exception.

4.8.3. Configure Oozie HCatalogJob Properties

Integrate Oozie HCatalog by adding following property to oozie-hcatalog
job.properties. For example if you are using Ambari, set the properties as:

hadoop.rpc.protection=privacy

Note

This property is in addition to any properties you must set for secure clusters.

4.9. Enable SSL on the HBase REST Server
Perform the following task to enable SSL on an HBase REST API.

Note

In order to access SSL-enabled HDP Services through the Knox Gateway,
additional configuration on the Knox Gateway is required, see Configure SSL
for Knox.

1. Create and install an SSL certificate for HBase, for example to use a self-signed
certificate:

a. Create an HBase keystore:

su -l hbase -c "keytool -genkey -alias hbase -keyalg RSA -keysize 1024 -
keystore hbase.jks"

At the keytool command prompt:

• Enter the key password

• Enter the keystore password

Note

Add these two specified values to the corresponding properties in
hbase-site.xml in step 2.

hdp-security August 29, 2016

383

b. Export the certificate:

su -l hbase -c "keytool -exportcert -alias hbase -file certificate.cert -
keystore hbase.jks"

c. (Optional) Add certificate to the Java keystore:

• If you are not root run:

sudo keytool -import -alias hbase -file certificate.cert -keystore /
usr/jdk64/jdk1.7.0_45/jre/lib/security/cacerts

• If you are root:

keytool -import -alias hbase -file certificate.cert -keystore /usr/
jdk64/jdk1.7.0_45/jre/lib/security/cacerts

2. Add the following properties to the hbase-site.xml configuration file on each node
in your HBase cluster:

<property>
<name>hbase.rest.ssl.enabled</name>
<value>true</value>
</property>

<property>
<name>hbase.rest.ssl.keystore.store</name>
<value>/path/to/keystore</value>
</property>

<property>
<name>hbase.rest.ssl.keystore.password</name>
<value>keystore-password</value>
</property>

<property>
<name>hbase.rest.ssl.keystore.keypassword</name>
<value>key-password</value>
</property>

3. Restart all HBase nodes in the cluster.

Note

For clusters using self-signed certificates: Define the truststore as a custom
property on the JVM. If the self-signed certificate is not added to the system
truststore (cacerts), specify the Java KeyStore (.jks) file containing the certificate
in applications by invoking the javax.net.ssl.trustStore system property. Run the
following command argument in the application client container to use a self-
signed certificate in a .jks file:

-Djavax.net.ssl.trustStore=/path/to/keystore

4.10. Enable SSL on the HBase Web UI
Perform the following task to enable SSL and TLS on an HBase Web UI.

hdp-security August 29, 2016

384

Note

In order to access SSL-enabled HDP Services through the Knox Gateway,
additional configuration on the Knox Gateway is required, see Configure SSL
for Knox.

1. Create and install an SSL certificate for HBase, for example to use a self-signed
certificate:

a. Create an HBase keystore:

su -l hbase -c "keytool -genkey -alias hbase -keyalg RSA -keysize 1024 -
keystore hbase.jks"

At the keytool command prompt:

• Enter the key password

• Enter the keystore password

Note

Add these two specified values to the corresponding properties in
hbase-site.xml in step 2.

b. Export the certificate:

su -l hbase -c "keytool -exportcert -alias hbase -file certificate.cert -
keystore hbase.jks"

c. (Optional) Add certificate to the Java keystore:

• If you are not root run:

sudo keytool -import -alias hbase -file certificate.cert -keystore /
usr/jdk64/jdk1.7.0_45/jre/lib/security/cacerts

• If you are root:

keytool -import -alias hbase -file certificate.cert -keystore /usr/
jdk64/jdk1.7.0_45/jre/lib/security/cacerts

2. Add the following properties to the hbase-site.xml configuration file on each node
in your HBase cluster:

<property>
<name>hbase.ssl.enabled</name>
<value>true</value>
</property>

<property>
<name>hadoop.ssl.enabled</name>
<value>true</value>
</property>

<property>

hdp-security August 29, 2016

385

<name>ssl.server.keystore.keypassword</name>
<value>key-password</value>
</property>

<property>
<name><ssl.server.keystore.password</name>
<value>keystore-password</value>
</property>

<property>
<name>ssl.server.keystore.location</name>
<value>/tmp/server-keystore.jks</value>
</property>

3. Restart all HBase nodes in the cluster.

Note

For clusters using self-signed certificates: Define the truststore as a custom
property on the JVM. If the self-signed certificate is not added to the system
truststore (cacerts), specify the Java KeyStore (.jks) file containing the certificate
in applications by invoking the javax.net.ssl.trustStore system property. Run the
following command argument in the application client container to use a self-
signed certificate in a .jks file:

-Djavax.net.ssl.trustStore=/path/to/keystore

4.11. Enable SSL on HiveServer2
When using HiveServer2 without Kerberos authentication, you can enable SSL.

Note

In order to access SSL enabled HDP Services through the Knox Gateway,
additional configuration on the Knox Gateway is required, see Apache Knox
Gateway Administrator Guide, Gateway Security, Configure Wire Encryption.

Perform the following steps on the HiveServer2:

1. Log into the cluster as the hive user. Having hive user permissions when creating the Java
keystore file sets up the proper user::group ownership, which allows HiveServer to access
the file and prevents HiveServer startup failure.

2. Run the following command to create a keystore for hiveserver2:

keytool -genkey -alias hbase -keyalg RSA -keysize 1024 -keystore hive.jks

3. Edit the hive-site.xml, set the following properties to enable SSL:

<property>
 <name>hive.server2.use.SSL</name>
 <value>true</value>
 <description></description>
</property>

<property>

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/configure_ssl_for_knox.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/configure_ssl_for_knox.html

hdp-security August 29, 2016

386

 <name>hive.server2.keystore.path</name>
 <value>keystore-file-path</value>
 <description></description>
</property>

<property>
 <name>hive.server2.keystore.password</name>
 <value>keystore-file-password</value>
 <description></description>
</property>

4. Note

When hive.server2.transport.mode is binary and hive.server2.authentication
is KERBEROS, SSL encryption does not currently work. Set
hive.server2.thrift.sasl.qop to auth-conf to enable encryption

On the client-side, specify SSL settings for Beeline or JDBC client as follows:

jdbc:hive2://<host>:<port>/<database>;ssl=true;sslTrustStore=<path-to-
truststore>;trustStorePassword=<password>

4.11.1. Setting up SSL with self-signed certificates

Note

In product systems, use a CA-signed SSL certificated rather than a self-signed
certificated. A self-signed certificated is a good way to test before deploying in
production.

Use the following steps to create and verify self-signed SSL certificates for use with
HiveServer2:

1. List the keystore entries to verify that the certificate was added. Note that a keystore
can contain multiple such certificates: keytool -list -keystore keystore.jks

2. Export this certificate from keystore.jks to a certificate file: keytool -export -alias
example.com -file example.com.crt -keystore keystore.jks

3. Add this certificate to the client's truststore to establish trust: keytool -import -
trustcacerts -alias example.com -file example.com.crt -keystore truststore.jks

4. Verify that the certificate exists in truststore.jks: keytool -list -keystore truststore.jks

5. Then start HiveServer2, and try to connect with beeline using:
jdbc:hive2://<host>:<port>/<database>;ssl=true;sslTrustStore=<path-to-
truststore>;trustStorePassword=<truststore-password>

4.11.2. Selectively disabling SSL protocol versions

To disable specific SSL protocol versions, use the following steps:

1. Run openssl ciphers -v (or the corresponding command if not using openssl) to view all
protocol versions.

hdp-security August 29, 2016

387

2. In addition to 1, an additional step of going over the HiveServer2 logs may be required
to see all the protocols that the node running HiveServer2 is supporting. For that, search
for "SSL Server Socket Enabled Protocols:" in the HiveServer2 log file.

3. Add all the SSL protocols that need to be disabled to hive.ssl.protocol.blacklist. Ensure
that the property in hiveserver2-site.xml does not override that in hive-site.xml.

4.12. Enable SSL for Kafka Clients
Kafka allows clients to connect over SSL. By default SSL is disabled, but it can be enabled as
needed.

Before you begin, be sure to generate the key, SSL certificate, keystore, and truststore that
will be used by Kafka.

4.12.1. Configuring the Kafka Broker

The Kafka Broker supports listening on multiple ports and IP addresses. To enable this
feature, specify one or more comma-separated values in the listeners property in
server.properties.

Both PLAINTEXT and SSL ports are required if SSL is not enabled for inter-broker
communication (see the following subsection for information about enabling inter-broker
communication):

listeners=PLAINTEXT://host.name:port,SSL://host.name:port

The following SSL configuration settings are needed on the broker side:

ssl.keystore.location = /var/private/ssl/kafka.server.keystore.jks
ssl.keystore.password = test1234
ssl.key.password = test1234
ssl.truststore.location = /var/private/ssl/kafka.server.truststore.jks
ssl.truststore.password = test1234

The following optional settings are available:

Property Description Value(s)

ssl.client.auth Specify whether client authentication
is required, requested, or not
required.

none: no client authentication.

required: client authentication is
required.

requested: client authentication is
requested, but a client without certs
can still connect.

Note: If you set ssl.client.auth
to requested or required, then
you must provide a truststore for the
Kafka broker. The truststore should
contain all CA certificates that are
used to sign clients' keys.

none

hdp-security August 29, 2016

388

Property Description Value(s)

ssl.cipher.suites Specify one or more cipher
suites: named combinations of
authentication, encryption, MAC and
key exchange algorithms used to
negotiate the security settings for a
network connection using the TLS or
SSL network protocol.

ssl.enabled.protocols Specify the SSL protocols that you
will accept from clients. Note: SSL is
deprecated; its use in production is
not recommended.

TLSv1.2,TLSv1.1,TLSv1

ssl.keystore.type Specify the SSL keystore type. JKS

ssl.truststore.type Specify the SSL truststore type. JKS

Enabling SSL for Inter-Broker Communication

To enable SSL for inter-broker communication, add the following setting to the broker
properties file (default is PLAINTEXT):

security.inter.broker.protocol = SSL

Enabling Additional Cipher Suites

To enable any cipher suites other than the defaults that come with JVM (see Java
Cryptography documentation), you will need to install JCE Unlimited Strength Policy files
(download link).

Validating the Configuration

After you start the broker, you should see the following information in the server.log
file:

with addresses: PLAINTEXT -> EndPoint(192.168.64.1,9092,PLAINTEXT),SSL ->
 EndPoint(192.168.64.1,9093,SSL)

To make sure that the server keystore and truststore are set up properly, run the following
command:

openssl s_client -debug -connect localhost:9093 -tls1

(Note: TLSv1 should be listed under ssl.enabled.protocols)

In the openssl output you should see the server certificate; for example:

Server certificate
-----BEGIN CERTIFICATE-----
MIID+DCCAuACCQCx2Rz1tXx3NTANBgkqhkiG9w0BAQsFADB6MQswCQYDVQQGEwJV
UzELMAkGA1UECAwCQ0ExFDASBgNVBAcMC1NhbnRhIENsYXJhMQwwCgYDVQQKDANv
cmcxDDAKBgNVBAsMA29yZzEOMAwGA1UEAwwFa2FmYWsxHDAaBgkqhkiG9w0BCQEW
DXRlc3RAdGVzdC5jb20wHhcNMTUwNzMwMDQyOTMwWhcNMTYwNzI5MDQyOTMwWjBt
MQswCQYDVQQGEwJVUzELMAkGA1UECBMCQ0ExFDASBgNVBAcTC1NhbnRhIENsYXJh
MQwwCgYDVQQKEwNvcmcxDDAKBgNVBAsTA29yZzEfMB0GA1UEAxMWU3JpaGFyc2hh
IENoaW50YWxhcGFuaTCCAbcwggEsBgcqhkjOOAQBMIIBHwKBgQD9f1OBHXUSKVLf
Spwu7OTn9hG3UjzvRADDHj+AtlEmaUVdQCJR+1k9jVj6v8X1ujD2y5tVbNeBO4Ad
NG/yZmC3a5lQpaSfn+gEexAiwk+7qdf+t8Yb+DtX58aophUPBPuD9tPFHsMCNVQT
WhaRMvZ1864rYdcq7/IiAxmd0UgBxwIVAJdgUI8VIwvMspK5gqLrhAvwWBz1AoGB
APfhoIXWmz3ey7yrXDa4V7l5lK+7+jrqgvlXTAs9B4JnUVlXjrrUWU/mcQcQgYC0

https://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html
https://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html

hdp-security August 29, 2016

389

SRZxI+hMKBYTt88JMozIpuE8FnqLVHyNKOCjrh4rs6Z1kW6jfwv6ITVi8ftiegEk
O8yk8b6oUZCJqIPf4VrlnwaSi2ZegHtVJWQBTDv+z0kqA4GEAAKBgB+Pdz0306bq
TpUAdb2FERMPLFsx06H0x+TULivcp7HbS5yrkV9bXZmv/FD98x76QxXrOq1WpQhY
YDeGDjH+XQkJ6ZxBVBZNJDIpCnfQpfzXAvryQ+cm8oXUsKidtHf4pLMYViXX6BWX
Oc2hX4rG+lC8/NXW+1zVvCr9To9fngzjMA0GCSqGSIb3DQEBCwUAA4IBAQBfyVse
RJ+ugiNlWg5trZscqH0tlocbnek4UuV/xis2eAu9l4EFOM5kRt5GmkGZRcM/zHF8
BRJwXbf0fytMQKSPFk8R4/NGDOlzoK+F7uXeJ0S2u/T29xk0u2i4tjvleq6OCphE
i9vdjM0E0Whf9SHRhOXirOYFX3cL775XwKdzKKRkk+AszFR+mRu90rdoaepQtgGh
9Kfwr4+6AU/dPtdGuomtBQqMxCzlrLd8EYhVVQ97wHIZ3sPvlM5PIhOJ/YHSBJIC
75eo/4acDxZ+j3sR5kcFulzYwFLgDYBaKH/w3mYCgTALeB1zUkX53NVizIvhUd69
XJO4lDSDtGOlfort
-----END CERTIFICATE-----
subject=/C=US/ST=CA/L=Santa Clara/O=org/OU=org/CN=JBrown
issuer=/C=US/ST=CA/L=Santa Clara/O=org/OU=org/CN=kafak/emailAddress=test@test.
com

If the certificate does not display, or if there are any other error messages, then your
keystore is not set up properly.

4.12.2. Configuring Kafka Producer and Kafka Consumer

SSL is supported for new Kafka Producers and Consumer processes; the older API is not
supported. Configuration settings for SSL are the same for producers and consumers.

If client authentication is not needed in the broker, then the following is a minimal
configuration example:

security.protocol = SSL
ssl.truststore.location = /var/private/ssl/kafka.client.truststore.jks
ssl.truststore.password = test1234

If client authentication is required, first create a keystore (described earlier in this chapter).
Next, specify the following settings:

ssl.keystore.location = /var/private/ssl/kafka.client.keystore.jks
ssl.keystore.password = test1234
ssl.key.password = test1234

One or more of the following optional settings might also be needed, depending on your
requirements and the broker configuration:

Property Description Value(s)

ssl.provider The name of the security provider
used for SSL connections. Default
value is the default security provider
of the JVM.

ssl.cipher.suites Specify one or more cipher
suites: named combinations of
authentication, encryption, MAC and
key exchange algorithms used to
negotiate the security settings for a
network connection using the TLS or
SSL network protocol.

ssl.enabled.protocols List at least one of the protocols
configured on the broker side.

TLSv1.2,TLSv1.1,TLSv1

ssl.keystore.type Specify the SSL keystore type. JKS

ssl.truststore.type Specify the SSL truststore type. JKS

hdp-security August 29, 2016

390

The following two examples launch console-producer and console-consumer processes:

kafka-console-producer.sh --broker-list localhost:9093 --topic test --
producer.config client-ssl.properties

kafka-console-consumer.sh --bootstrap-server localhost:9093 --topic test --
new-consumer --consumer.config client-ssl.properties

4.13. Enable SSL for Accumulo
One of the major features added in Accumulo 1.6.0 was the ability to configure Accumulo
so that the Thrift communications will run over SSL. Apache Thrift is the remote procedure
call library that is leveraged for both intra-server and client communication with Accumulo.
Issuing these calls over a secure socket ensures that unwanted actors cannot inspect
the traffic sent across the wire. Given the sometimes sensitive nature of data stored in
Accumulo and the authentication details for users, secure communications are critical.

Due to the complex and deployment-specific nature of the security model for some
systems, Accumulo expects users to provide their own certificates, guaranteeing that they
are, in fact, secure. However, for those who require security but do not already operate
within the confines of an established security infrastructure, OpenSSL and the Java keytool
command can be used to generate the necessary components to enable wire encryption.

To enable SSL with Accumulo, it is necessary to generate a certificate authority and
certificates that are signed by that authority. Typically, each client and server has its
own certificate, which provides the finest level of control over a secure cluster when the
certificates are properly secured.

4.13.1. Generate a Certificate Authority
The certificate authority (CA) controls what certificates can be used to authenticate with
each other. To create a secure connection with two certificates, each certificate must be
signed by a certificate authority in the "truststore" (A Java KeyStore which contains at least
one Certificate Authority's public key). When creating your own certificate authority, a
single CA is typically sufficient (and would result in a single public key in the truststore).
Alternatively, a third party can also act as a certificate authority (to add an additional layer
of security); however, these are typically not a free service.

The following is an example of creating a certificate authority and adding its public key to a
Java KeyStore to provide to Accumulo.

Create a private key
openssl genrsa -des3 -out root.key 4096

Create a certificate request using the private key
openssl req -x509 -new -key root.key -days 365 -out root.pem

Generate a Base64-encoded version of the PEM just created
openssl x509 -outform der -in root.pem -out root.der

Import the key into a Java KeyStore
keytool -import -alias root-key -keystore truststore.jks -file root.der

Remove the DER formatted key file (as we don't need it anymore)
rm root.der

http://thrift.apache.org/

hdp-security August 29, 2016

391

Remember to protect root.key and never distribute it, as the private key is the basis
for your circle of trust. The keytool command will prompt you about whether or not the
certificate should be trusted: enter "yes". The truststore.jks file, a "truststore", is meant to
be shared with all parties communicating with one another. The password provided to the
truststore verifies that the contents of the truststore have not been tampered with.

4.13.2. Generate a Certificate/Keystore Per Host

It is desirable to generate a certificate for each host in the system. Additionally, each client
connecting to the Accumulo instance running with SSL should be issued its own certificate.
Issuing individual certificates to each entity provides proper control to revoke/reissue
certificates to clients as necessary, without widespread interruption.

The following commands create a private key for the server, generate a certificate signing
request created from that private key, use the certificate authority to generate the
certificate using the signing request. and then create a Java KeyStore with the certificate
and the private key for our server.

Create the private key for our server
openssl genrsa -out server.key 4096

Generate a certificate signing request (CSR) with our private key
openssl req -new -key server.key -out server.csr

Use the CSR and the CA to create a certificate for the server (a reply to
 the CSR)
openssl x509 -req -in server.csr -CA root.pem -CAkey root.key -CAcreateserial
 -out server.crt -days 365

Use the certificate and the private key for our server to create PKCS12
 file
openssl pkcs12 -export -in server.crt -inkey server.key -certfile server.crt -
name 'server-key' -out server.p12

Create a Java KeyStore for the server using the PKCS12 file (private key)
keytool -importkeystore -srckeystore server.p12 -srcstoretype pkcs12 -
destkeystore server.jks -deststoretype JKS

Remove the PKCS12 file as we don't need it
rm server.p12

Import the CA-signed certificate to the keystore
keytool -import -trustcacerts -alias server-crt -file server.crt -keystore
 server.jks

This, combined with the truststore, provides what is needed to configure Accumulo
servers to run over SSL. The private key (server.key), the certificate signed by the CA
(server.pem), and the keystore (server.jks) should be restricted to only be accessed
by the user running Accumulo on the host it was generated for. Use chown and chmod to
protect the files, and do not distribute them over non-secure networks.

4.13.3. Configure Accumulo Servers

Now that the Java KeyStores have been created with the necessary information, the
Accumulo configuration must be updated so that Accumulo creates the Thrift server

hdp-security August 29, 2016

392

over SSL instead of a normal socket. Configure the following properties in accumulo-
site.xml:

<property>
 <name>rpc.javax.net.ssl.keyStore</name>
 <value>/path/to/server.jks</value>
</property>
<property>
 <name>rpc.javax.net.ssl.keyStorePassword</name>
 <value>server_password</value>
</property>
<property>
 <name>rpc.javax.net.ssl.trustStore</name>
 <value>/path/to/truststore.jks</value>
</property>
<property>
 <name>rpc.javax.net.ssl.trustStorePassword</name>
 <value>truststore_password</value>
</property>
<property>
 <name>instance.rpc.ssl.enabled</name>
 <value>true</value>
</property>

The keystore and truststore paths are both absolute paths on the local file system (not
HDFS). Remember that the server keystore should only be readable by the user running
Accumulo and, if you place plain-text passwords in accumulo-site.xml, make sure
that accumulo-site.xml is also not globally readable. To keep these passwords out
of accumulo-site.xml, consider configuring your system with the new Hadoop
CredentialProvider class. See ACCUMULO-2464 for more information on what will be
available in Accumulo-1.6.1.

Also, be aware that if unique passwords are used for each server when generating the
certificate, this will result in different accumulo-site.xml files for each host. Unique
configuration files for each host will add complexity to the configuration management
of your instance. The use of a CredentialProvider (a feature from Hadoop which allows
for acquisitions of passwords from alternate systems) can help alleviate the issues with
unique accumulo-site.xml files on each host. A Java KeyStore can be created using
the CredentialProvider tools, which eliminates the need for passwords to be stored in
accumulo-site.xml, and can instead point to the CredentialProvider URI which is
consistent across hosts.

4.13.4. Configure Accumulo Clients

To configure Accumulo clients, use $HOME/.accumulo/config. This is a simple Java
properties file: each line is a configuration, key, and value separated by a space, and lines
beginning with a # symbol are ignored. For example, if we generated a certificate and
placed it in a keystore (as described above), we would generate the following file for the
Accumulo client.

instance.rpc.ssl.enabled true
rpc.javax.net.ssl.keyStore /path/to/client-keystore.jks
rpc.javax.net.ssl.keyStorePassword client-password
rpc.javax.net.ssl.trustStore /path/to/truststore.jks
rpc.javax.net.ssl.trustStorePassword truststore-password

https://issues.apache.org/jira/browse/ACCUMULO-2464
http://en.wikipedia.org/wiki/.properties
http://en.wikipedia.org/wiki/.properties

hdp-security August 29, 2016

393

When creating a ZooKeeperInstance, the implementation will automatically look for
this configuration file and set up a connection with the methods defined in this file. The
ClientConfiguration class also contains methods that can be used instead of a configuration
file on the file system. Again, the paths to the keystore and truststore are on the local file
system, not HDFS.

4.14. Enable SSL for Apache Atlas
This section describes how to enable SSL for Apache Atlas on an Ambari cluster.

4.14.1. Configuring Apache Atlas SSL
Both one-way (server authentication) and two-way (server and client authentication) SSL
are supported. To enable Apache Atlas SSL, select Atlas > Configs > Advanced, then select
Advanced application-properties and set the following properties:

Table 4.4. Atlas Advanced application-properties

Property Value Description

atlas.enableTLS true Enable or disable the SSL listener.
Set this value to true to enable SSL
(default value is false).

You can also set the following properties by selecting Custom application-properties > Add
Property.

Table 4.5. Atlas Advanced application-properties

Property Value Description

keystore.file <path_to_keystore_file> The path to the keystore file leveraged
by the server. This file contains the
server certificate.

truststore.file <path_to_trustore_file> The path to the truststore file. This
file contains the certificates of other
trusted entities (e.g. the certificates
for client processes if two-way SSL
is enabled). In most instances this
can be set to the same value as the
keystore.file property (especially if one-
way SSL is enabled).

client.auth.enabled true|false Enable/disable client authentication
(disabled by default). If enabled,
the client must authenticate to the
server during the transport session key
creation process (i.e. two-way SSL is in
effect).

cert.stores.credential.provider.path <path_to_credential_provider_store_file>The path to the Credential Provider
store file. The passwords for the
keystore, truststore, and server
certificate are maintained in this secure
file. Utilize the cputil script in the 'bin'
directory (see below) to populate this
file with the passwords required.

atlas.ssl.exclude.cipher.suites Example value:

NULL., .*RC4.*, .*MD5.*, .*DES.*, .*DSS.*

The excluded Cipher Suites list -
NULL.,.*RC4.*,.*MD5.*,.*DES.*,.*DSS.*
are weak and unsafe Cipher Suites
that are excluded by default. If

hdp-security August 29, 2016

394

Property Value Description

additional Ciphers need to be
excluded, set this property with
the default Cipher Suites such as
NULL., .*RC4.*, .*MD5.*, .*DES.*, .*DSS.*,
and add the additional Cipher Suites
to the list with a comma separator.
They can be added with their full
name or a regular expression.
The Cipher Suites listed in the
atlas.ssl.exclude.cipher.suites
property take precedence over the
default Cipher Suites. You should
retain the default Cipher Suites,
and add additional ones to increase
security.

Important

Enabling or disabling HTTPS will not automatically reconfigure the
atlas.rest.address property. To update this property, select Atlas >
Configs > Advanced, then select Advanced application-properties. Change
the URL strings in the atlas.rest.address property to "https" if SSL is
enabled (if the atlas.enableTLS property is set to true) "https". If SSL is
not enabled, use "http". For example:

• http:<server_one>:21000,http:<server_two>:21000,http:<server_three>:21000

• https:<server_one>:21443,https:<server_two>:21443,https:<server_three>:21443

The default HTTP port is 21000 and the default HTTPS port is 21443. These
values can be overridden using the atlas.server.http.port and
atlas.server.https.port properties, respectively.

After manually editing these settings, select Actions > Stop All on the Ambari
dashboard to stop all services, then select Actions > Start All to restart all
services.

4.14.2. Credential Provider Utility Script
In order to prevent the use of clear-text passwords, the Atlas platform uses the Credential
Provider facility for secure password storage (see the Hadoop Credential Command
Reference for more information about this facility). The cputil script can be used to
create the required password store.

To create the credential provider for Atlas:

1. Use the following command to switch to the Atlas bin directory:

cd /usr/hdp/current/atlas-server/bin

2. Run the following command:

./cputil.py

3. When prompted, enter the path for the generated credential provider. The format for
the path is:

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#credential
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#credential

hdp-security August 29, 2016

395

/local/file/path/file.jceks

Only one absolute path is allowed. The credential provider files generally use the
.jceks extension.

4. When prompted, enter the passwords for the keystore, truststore, and server key
(these passwords must match the passwords used when actually creating the associated
certificate store files).

5. The credential provider is generated and saved to the specified path.

4.15. SPNEGO setup for WebHCat
To set up secure WebHCat, set the following properties in the /etc/hcatalog/conf/
webhcat-site.xml file:

</property>
 <name>templeton.kerberos.principal</name>
 <value>HTTP/host1234.example.com@EXAMPLE.COM</value>
 <description/>
<property>

The templeton.kerberos.principal property must use the host name of the
WebHCat Server.

<property>
 <name>templeton.kerberos.keytab</name>
 <value>/etc/security/keytabs/spnego.service.keytab</value>
 <description/>
</property>

<property>
 <name>templeton.kerberos.secret</name>
 <value>secret</value>
 <description/>
</property>

<property>
 <name>templeton.hive.properties</name>
 <value>hive.metastore.local=false,hive.metastore.uris=thrift://host1234.
example.com:9083,
 hive.metastore.sasl.enabled=true,hive.metastore.execute.
setugi=true,
 hive.exec.mode.local.auto=false,
 hive.metastore.kerberos.principal=hive/_HOST@EXAMPLE.COM</
value>
 <description>Properties to set when running hive.</description>
</property>

Be sure to set the templeton.hive.properties property with the host name for your
Thrift server.

4.16. Configure SSL for Hue
HTTPS is a simple HTTP in conjunction with SSL (Secure Sockets Layer) and used for
establishing an encrypted link between the web browser and the web server. Using HTTPS

hdp-security August 29, 2016

396

enables you to prevent collection of sensitive information between your web browser and
a web server.

4.16.1. Enabling SSL on Hue by Using a Private Key

If you have a private key, follow these steps to enable SSL on Hue:

1. Configure Hue to use your private key by adding the following syntax to the /etc/
hue/conf/hue.ini file:

ssl_certificate=$PATH_TO_CERTIFICATE
ssl_private_key=$PATH_TO_KEY
ssl_cipher_list="DEFAULT:!aNULL:!eNULL:!LOW:!EXPORT:!SSLv2" (default)

2. Restart Hue:

/etc/init.d/hue restart

4.16.2. Enabling SSL on Hue Without Using a Private Key

If you do not have a private key and want to run tests, you can enable SSL on Hue by
creating a self-signed certificate:

1. Create a key:

openssl genrsa 1024 > host.key

2. Create a self-signed certificate:

openssl req -new -x509 -nodes -sha1 -key host.key > host.cert

3. Move the host.key and host.cerf files to the ssl directory:

mv host.key /etc/ssl
mv host.cert /etc/ssl

4. Configure Hue to use your private key by adding the following syntax to the /etc/
hue/conf/hue.ini file:

ssl_certificate=$PATH_TO_CERTIFICATE
ssl_private_key=$PATH_TO_KEY
ssl_cipher_list="DEFAULT:!aNULL:!eNULL:!LOW:!EXPORT:!SSLv2" (default)

5. Restart Hue:

/etc/init.d/hue restart

4.17. Configure SSL for Knox
For the simplest of evaluation deployments, the initial startup of the Knox Gateway will
generate a self-signed cert for use on the same machine as the gateway instance. These
certificates are issued for "localhost" and will require specifically disabling hostname
verification on client machines other than where the gateway is running.

hdp-security August 29, 2016

397

4.17.1. Self-Signed Certificate with Specific Hostname for
Evaluations

In order to continue to use self-signed certificates for larger evaluation deployments, a
certificate can be generated for a specific hostname. This will allow clients to properly verify
the hostname presented in the certificate as the host that they requested in the request
URL.

To create a self-signed certificate:

1. Create a certificate: where $gateway-hostname is the FQDN of the Knox Gateway.

cd $gateway bin/knoxcli.cmd create-cert --hostname $gateway-hostname

2. Export the certificate in PEM format:

keytool -export -alias gateway-identity -rfc -file $certificate_path -
keystore $gateway /data/security/keystores/gateway.jks

Note

cURL option accepts certificates in PEM format only.

3. Restart the gateway:

cd $gateway bin/gateway.sh stop bin/gateway.sh start

4. After copying the certificate to a client, use the following command to verify:

curl --cacert $certificate_path -u $username : $password https://
 $gateway-hostname : $gateway_port /gateway/ $cluster_name /webhdfs/v1?op=
GETHOMEDIRECTORY

4.17.2. CA-Signed Certificates for Production
For production deployments or any deployment in which a certificate authority issued
certificate is needed, the following steps are required.

1. Import the desired certificate/key pair into a java keystore using keytool and ensure the
following:

• The certificate alias is gateway-identity.

• The store password matches the master secret created earlier.

• Note the key password used - as we need to create an alias for this password.

2. Add a password alias for the key password:

cd $gateway bin/knoxcli.cmd create-cert create-alias gateway-identity-
passphrase --value $actualpassphrase

Note

The password alias must be gateway-identity-passphrase.

hdp-security August 29, 2016

398

4.17.3. Setting Up Trust for the Knox Gateway Clients

In order for clients to trust the certificates presented to them by the gateway, they will
need to be present in the client's truststore as follows:

1. Export the gateway-identity cert from the $gateway /data/security/keystores/
gateway.jks using java keytool or another key management tool.

2. Add the exported certificate to the cacerts or other client specific truststore or the
gateway.jks file can be copied to the clients to be used as the truststore.

Note

If taking this approach be sure to change the password of the copy so that it
no longer matches the master secret used to protect server side artifacts.

4.18. Securing Phoenix
To configure Phoenix to run in a secure Hadoop cluster, use the instructions on this page.

4.19. Set Up SSL for Ambari
If you want to limit access to the Ambari Server to HTTPS connections, you need to provide
a certificate. While it is possible to use a self-signed certificate for initial trials, they are not
suitable for production environments. After your certificate is in place, you must run a
special setup command.

Ambari Server should not be running when you do this. Either make these changes
before you start Ambari the first time, or bring the server down before running the setup
command.

1. Log into the Ambari Server host.

2. Locate your certificate. If you want to create a temporary self-signed certificate, use this
as an example:

openssl genrsa -out $wserver.key 2048

openssl req -new -key $wserver.key -out $wserver.csr

openssl x509 -req -days 365 -in $wserver.csr -signkey
$wserver.key -out $wserver.crt

Where $wserver is the Ambari Server host name.

The certificate you use must be PEM-encoded, not DER-encoded. If you attempt to use a
DER-encoded certificate, you see the following error:

unable to load certificate 140109766494024:error:0906D06C:PEM
routines:PEM_read_bio:no start line:pem_lib.c :698:Expecting:
TRUSTED CERTIFICATE

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_command-line-installation/content/configuring-phoenix-to-run-in-a-secure-cluster.html

hdp-security August 29, 2016

399

You can convert a DER-encoded certificate to a PEM-encoded certificate using the
following command:

openssl x509 -in cert.crt -inform der -outform pem -out cert.pem

where cert.crt is the DER-encoded certificate and cert.pem is the resulting PEM-
encoded certificate.

3. Run the special setup command and answer the prompts.

ambari-server setup-security

• Select 1 for Enable HTTPS for Ambari server.

• Respond y to Do you want to configure HTTPS ?

• Select the port you want to use for SSL. The default port number is 8443.

• Provide the complete path to your certificate file ($wserver.crt from above) and
private key file ($wserver.key from above).

• Provide the password for the private key.

• Start or restart the Server

ambari-server restart

4. Trust Store Setup - If you plan to use Ambari Views with your Ambari Server, after
enabling SSL for Ambari using the instructions below, you must also set up a truststore
for the Ambari server.

4.19.1. Set Up Truststore for Ambari Server

If you plan to set up SSL for Ambari or to enable wire encryption for HDP, you must
configure the Truststore for Ambari and add certificates.

Ambari Server should not be running when you do this. Either make these changes
before you start Ambari the first time, or bring the server down before running the setup
command .

1. On the Ambari Server, create a new keystore that will contain the Ambari Server's HTTPS
certificate.

keytool -import -file <path_to_the_Ambari_Server's_SSL_Certificate> -alias
 ambari-server -keystore ambari-server-truststore

When prompted to 'Trust this certificate?' type "yes".

2. Configure the ambari-server to use this new trust store:

ambari-server setup-security
Using python /usr/bin/python2.6
Security setup options...
===

hdp-security August 29, 2016

400

Choose one of the following options:
 [1] Enable HTTPS for Ambari server.
 [2] Encrypt passwords stored in ambari.properties file.
 [3] Setup Ambari kerberos JAAS configuration.
 [4] Setup truststore.
 [5] Import certificate to truststore.
===
Enter choice, (1-5): *4*
Do you want to configure a truststore [y/n] (y)? *y*
TrustStore type [jks/jceks/pkcs12] (jks): *jks*
Path to TrustStore file : *<path to the ambari-server-truststore keystore>*
Password for TrustStore:
Re-enter password:
Ambari Server 'setup-security' completed successfully.

3. Once configured, the Ambari Server must be restarted for the change to take effect.

ambari-server restart

4.20. Configure Ambari Ranger SSL

4.20.1. Configuring Ambari Ranger SSL Using Public CA
Certificates

If you have access to Public CA issued certificates, use the following steps to configure
Ambari Ranger SSL.

4.20.1.1. Prerequisites

• Copy the keystore/truststore files into a different location (e.g. /etc/security/
serverKeys) than the /etc/<component>/conf folder.

• Make sure that the JKS file names are unique.

• Make sure that the correct permissions are applied.

• Make sure that passwords are secured.

4.20.1.2. Configuring Ranger Admin

1. Stop Ranger by selecting Service Actions > Stop.

hdp-security August 29, 2016

401

2. Use the following steps to disable the HTTP port and enable the HTTPS port with the
required keystore information.

a. Select Configs > Advanced. Under Ranger Settings, clear the HTTP enabled check box
(this blocks all agent calls to the HTTP port even if the port is up and working).

hdp-security August 29, 2016

402

b. Under Ranger Settings, provide the value in the External URL box in the format
https://<hostname of policy manager>:<https port>.

c. Under Advanced ranger-admin-site, set the following properties:

hdp-security August 29, 2016

403

• ranger.https.attrib.keystore.file -- Provide the location of the Public
CA issued keystore file.

• ranger.service.https.attrib.keystore.pass -- Enter the password for
the keystore.

• ranger.service.https.attrib.keystore.keyalias -- Enter the alias
name for the keystore private key.

• ranger.service.https.attrib.clientAuth -- Enter want as the value. This
validates the client cert from all agents, but not the requests from web applications.
Setting this value to want requires the client to have a certificate to use to sign
traffic. If you do not want to put certificates on the client machines to do two-way
SSL, this parameter can be set to false to enable one-way SSL.

• ranger.service.https.attrib.ssl.enabled -- set this property to true.

• ranger.service.https.port -- Make sure that this port is available, or change
the value to an available port number.

hdp-security August 29, 2016

404

3. Under Custom ranger-admin-site, add the following properties:

• ranger.service.https.attrib.keystore.file -- Specify the same value
provided for the ranger.https.attrib.keystore.file property.

hdp-security August 29, 2016

405

• ranger.service.https.attrib.client.auth -- Specify the same value
provided for the ranger.service.https.attrib.clientAuth property.

To add a Custom ranger-admin-site property:

a. Select Custom ranger-admin-site, then click Add Property.

b. On the Add Property pop-up, type the property name in the Key box, type the
property value in the Value box, then click Add.

hdp-security August 29, 2016

406

4. Save your changes and start Ranger Admin.

When you attempt to access the Ranger Admin UI with the HTTPS protocol on the port
specified by the ranger.service.https.port property, the browser should report
that it does not trust the site. Click Proceed anyway and you should be able to access the
Ranger Admin UI over HTTPS.

4.20.1.3. Configuring Ranger Usersync

1. Stop Ranger Usersync by selecting the Ranger Usersync link, then select Started > Stop
next to Ranger Usersync.

hdp-security August 29, 2016

407

hdp-security August 29, 2016

408

2. Navigate back to Ranger and select Configs > Advanced, then click Advanced ranger-
ugsync-site. Set the following properties:

• ranger.usersync.truststore.file -- Enter the path to the truststore file.

• ranger.usersync.truststore.password -- Enter the truststore password.

3. Start Ranger Usersync by selecting the Ranger Usersync link on the Summary tab, then
select Stopped > Start next to Ranger Usersync.

4.20.1.4. Configuring Ranger Plugins for SSL

The following section shows how to configure the Ranger HDFS plugin for SSL. You can use
the same procedure for other Ranger components. Additional steps required to configure
the Ranger KMS plugin and server are provided in subsequent sections.

4.20.1.4.1. Configuring the Ranger HDFS Plugin for SSL

The following steps show how to configure the Ranger HDFS plugin for SSL. You can use
the same procedure for other Ranger components.

1. Stop HDFS by selecting Service Actions > Stop.

hdp-security August 29, 2016

409

2. Under Ranger Settings, provide the value in the External URL box in the format
https://<hostname of policy manager>:<https port>.

3. Select Advanced ranger-hdfs-policymgr-ssl and set the following properties:

• xasecure.policymgr.clientssl.keystore -- Enter the public CA signed
keystore for the machine that is running the HDFS agent.

• xasecure.policymgr.clientssl.keystore.password -- Enter the keystore
password.

hdp-security August 29, 2016

410

4. Select Advanced ranger-hdfs-plugin-properties, then select the Enable Ranger for HDFS
check box.

hdp-security August 29, 2016

411

5. Click Save to save your changes.

6. Start HDFS by selecting Service Actions > Start.

7. Restart Ranger Admin.

8. Log into the Ranger Policy Manager UI as the admin user. Click the Edit button of the
HDFS repository and provide the CN name of the keystore as the value for Common
Name For Certificate, then save your changes.

9. Start the HDFS service.

10.Select Audit > Agents. You should see an entry for your repo name with HTTP Response
Code 200.

Note

This procedure assumes that the keystores provided for the Admin and agent
are signed by a public CA.

Provide an identifiable string as the value for Common Name when generating
certificates. Important note: In the case where multiple servers talking to ranger
admin for downloading policies for the same service/repository (e.g. HBase
Master and Region servers, multiple NameNodes or Hive servers in an HA
environment, be sure to use the repo name or a common string across all of
the nodes (such as HbasePlugin, HdfsPlugin etc). (Note this and enter the same
value in Common Name For Certificate field in the edit repository page in the
Policy Manager UI).

Note

Ranger Admin will use the JAVA truststore, so you need to add your plugin
certificate inside the Java truststore. Alternatively, you can specify a custom
truststore by editing /usr/hdp/2.3.2.0-2950/ranger-admin/ews/
ranger-admin-services.sh. You will need to add the following after the
JAVA_OPTS line:

-Djavax.net.ssl.trustStore=/etc/security/ssl/truststore.jks
-Djavax.net.ssl.trustStorePassword=hadoop

For example:

JAVA_OPTS=" ${JAVA_OPTS} -XX:MaxPermSize=256m -Xmx1024m -Xms1024m
-Djavax.net.ssl.trustStore=/etc/security/ssl/truststore.jks
-Djavax.net.ssl.trustStorePassword=hadoop"

4.20.1.4.2. Configuring the Ranger KMS Plugin for SSL

To configure the Ranger KMS (Key Management Service) plugin for SSL, use the procedure
described in the previous section for HDFS, then perform the following additional step.

Log into the Policy Manager UI (as the keyadmin user) and click the Edit button of your
KMS repository. Provide the CN name of the keystore as the value for Common Name For
Certificate and save your changes. This property is not provided by default, so it must be
added.

hdp-security August 29, 2016

412

4.20.1.4.3. Configuring the Ranger KMS Server for SSL

Use the following steps to configure Ranger KMS (Key Management Service) Server for SSL.

1. Stop Ranger KMS by selecting Service Actions > Stop.

2. Select Custom ranger-kms-site, then add the following properties as shown below:

ranger.https.attrib.keystore.file

ranger.service.https.attrib.keystore.file (duplicate of above – workaround for now)

ranger.service.https.attrib.clientAuth

ranger.service.https.attrib.client.auth (duplicate of above – workaround for now)

ranger.service.https.attrib.keystore.keyalias

ranger.service.https.attrib.keystore.pass

hdp-security August 29, 2016

413

ranger.service.https.attrib.ssl.enabled

ranger.service.https.port

3. Under Advanced kms_env, update the value of kms_port to match the value of
ranger.service.https.port.

4. Save your changes and restart Ranger KMS.

When you attempt to access the Ranger KMS UI with the HTTPS protocol on the port
specified by the ranger.service.https.port property, the browser should report that
it does not trust the site. Click Proceed anyway and you should be able to access the
Ranger Admin UI over HTTPS.

4.20.2. Configuring Ambari Ranger SSL Using a Self-Signed
Certificate

If you do not have access to Public CA issued certificates, use the following steps to create a
self-signed certificate and configure Ambari Ranger SSL.

4.20.2.1. Prerequisites

• Copy the keystore/truststore files into a different location (e.g. /etc/security/
serverKeys) than the /etc/<component>/conf folder.

• Make sure that the JKS file names are unique.

hdp-security August 29, 2016

414

• Make sure that the correct permissions are applied.

• Make sure that passwords are secured.

4.20.2.2. Configuring Ranger Admin

1. Stop Ranger by selecting Service Actions > Stop.

2. Use the following CLI commands to change to the Ranger Admin directory and create a
self-signed certificate.

cd /etc/ranger/admin/conf
keytool -genkey -keyalg RSA -alias rangeradmin -keystore ranger-admin-
keystore.jks -storepass xasecure -validity 360 -keysize 2048
chown ranger:ranger ranger-admin-keystore.jks
chmod 400 ranger-admin-keystore.jks

When prompted, provide the host name as the value for the "What is your first and
last name?" question. then provide answers to the subsequent questions to create the
keystore.

Note

When prompted for your password, press the Enter key. This will not work
for Java keytool version 1.5.

hdp-security August 29, 2016

415

3. Use the following steps to disable the HTTP port and enable the HTTPS port with the
required keystore information.

a. Select Configs > Advanced. Under Ranger Settings, clear the HTTP enabled check box
(this blocks all agent calls to the HTTP port even if the port is up and working).

b. Under Ranger Settings, provide the value in the External URL box in the format
https://<hostname of policy manager>:<https port>.

hdp-security August 29, 2016

416

c. Under Advanced ranger-admin-site, set the following properties:

• ranger.https.attrib.keystore.file -- Provide the location of the
keystore file created previously: /etc/ranger/admin/conf/ranger-admin-
keystore.jks.

• ranger.service.https.attrib.keystore.pass -- Enter the password for
the keystore (in this case, xasecure).

• ranger.service.https.attrib.keystore.keyalias -- Enter the alias
name for the keystore private key (in this case, rangeradmin).

• ranger.service.https.attrib.clientAuth -- Enter want as the value. This
validates the client cert from all agents, but not the requests from web applications.
Setting this value to want requires the client to have a certificate to use to sign
traffic. If you do not want to put certificates on the client machines to do two-way
SSL, this parameter can be set to false to enable one-way SSL.

• ranger.service.https.attrib.ssl.enabled -- set this property to true.

• ranger.service.https.port -- Make sure that this port is available, or change
the value to an available port number.

hdp-security August 29, 2016

417

4. Under Custom ranger-admin-site, add the following properties:

• ranger.service.https.attrib.keystore.file -- Specify the same value
provided for the ranger.https.attrib.keystore.file property.

hdp-security August 29, 2016

418

• ranger.service.https.attrib.client.auth -- Specify the same value
provided for the ranger.service.https.attrib.clientAuth property.

To add a Custom ranger-admin-site property:

a. Select Custom ranger-admin-site, then click Add Property.

b. On the Add Property pop-up, type the property name in the Key box, type the
property value in the Value box, then click Add.

hdp-security August 29, 2016

419

5. Save your changes and start Ranger Admin.

When you attempt to access the Ranger Admin UI with the HTTPS protocol on the port
specified by the ranger.service.https.port property, the browser should report that
it does not trust the site. Click Proceed anyway and you should be able to access the
Ranger Admin UI over HTTPS.

4.20.2.3. Configuring Ranger Usersync

1. Stop Ranger Usersync by selecting the Ranger Usersync link, then select Started > Stop
next to Ranger Usersync.

hdp-security August 29, 2016

420

hdp-security August 29, 2016

421

2. Check to see if unixauthservice.jks is in the /etc/ranger/usersync/conf/
directory. If not, run the following commands in the CLI:

cd /etc/ranger/usersync/conf/
mkdir cert
keytool -genkeypair -keyalg RSA -alias selfsigned -keystore /etc/ranger/
usersync/conf/cert/unixauthservice.jks -keypass UnIx529p -storepass UnIx529p
 -validity 3600 -keysize 2048 -dname 'cn=unixauthservice,ou=authenticator,o=
mycompany,c=US'
chown -R ranger:ranger /etc/ranger/usersync/conf/cert
chmod -R 400 /etc/ranger/usersync/conf/cert

3. Use the following CLI commands to create a truststore for the Ranger Admin's self-
signed keystore. When prompted for a password, press the Enter key.

cd /etc/ranger/usersync/conf/
keytool -export -keystore /etc/ranger/admin/conf/ranger-admin-keystore.jks -
alias rangeradmin -file ranger-admin-trust.cerchown -R ranger:ranger /etc/
ranger/usersync/conf/cert
keytool -import -file ranger-admin-trust.cer -alias rangeradmintrust -
keystore mytruststore.jks -storepass changeit
chown ranger:ranger mytruststore.jks

4. Navigate back to Ranger and select Configs > Advanced, then click Advanced ranger-
ugsync-site. Set the following properties:

• ranger.usersync.truststore.file -- Enter the path to the truststore file.

• ranger.usersync.truststore.password -- Enter the truststore password.

5. Start Ranger Usersync by selecting the Ranger Usersync link on the Summary tab, then
select Stopped > Start next to Ranger Usersync.

4.20.2.4. Configuring Ranger Plugins

The following section shows how to configure the Ranger HDFS plugin for SSL with a
self-signed certificate. You can use the same procedure for other Ranger components.
Additional steps required to configure the Ranger KMS plugin and server are provided in
subsequent sections.

Note

• To ensure a successful connection after SSL is enabled, self-signed certificates
should be imported to the Ranger Admin's trust store (typically JDK cacerts).

• The ranger.plugin.<service>.policy.rest.ssl.config.file
property should be verified, for example:

hdp-security August 29, 2016

422

ranger.plugin.hive.policy.rest.ssl.config.file ==> /etc/
hive/conf/conf.server/ranger-policymgr-ssl.xml

4.20.2.4.1. Configuring the Ranger HDFS Plugin for SSL

The following steps show how to configure the Ranger HDFS plugin for SSL. You can use
the same procedure for other Ranger components.

1. Stop HDFS by selecting Service Actions > Stop.

2. Use the following CLI commands to change to the Ranger HDFS plugin directory and
create a self-signed certificate.

hdp-security August 29, 2016

423

cd /etc/hadoop/conf
keytool -genkey -keyalg RSA -alias rangerHdfsAgent -keystore ranger-plugin-
keystore.jks -storepass myKeyFilePassword -validity 360 -keysize 2048
chown hdfs:hdfs ranger-plugin-keystore.jks
chmod 400 ranger-plugin-keystore.jks

When prompted, provide an identifiable string as the value for the "What is your first
and last name?" question. then provide answers to the subsequent questions to create
the keystore. When prompted for a password, press the Enter key.

Note

Important note: In the case where multiple servers talking to ranger admin
for downloading policies for the same service/repository (e.g. HBase
Master and Region servers, multiple NameNodes or Hive servers in an HA
environment, be sure to use the repo name or a common string across all of
the nodes (such as HbasePlugin, HdfsPlugin etc). (Note this and enter the
same value in Common Name For Certificate field in the edit repository page
in the Policy Manager UI).

3. Use the following CLI commands to create a truststore for the agent and add the Admin
public key as a trusted entry. When prompted for a password, press the Enter key.

cd /etc/hadoop/conf
keytool -export -keystore /etc/ranger/admin/conf/ranger-admin-keystore.jks -
alias rangeradmin -file ranger-admin-trust.cer
keytool -import -file ranger-admin-trust.cer -alias rangeradmintrust -
keystore ranger-plugin-truststore.jks -storepass changeit
chown hdfs:hdfs ranger-plugin-truststore.jks
chmod 400 ranger-plugin-truststore.jks

4. Under Ranger Settings, provide the value in the External URL box in the format
https://<hostname of policy manager>:<https port>.

5. Select Advanced ranger-hdfs-policymgr-ssl and set the following properties:

• xasecure.policymgr.clientssl.keystore -- Enter the location of the
keystore created in the previous step.

• xasecure.policymgr.clientssl.keystore.password -- Enter the keystore
password.

• xasecure.policymgr.clientssl.truststore -- Enter the location of the
truststore created in the previous step.

• xasecure.policymgr.clientssl.truststore.password -- Enter the
truststore password.

hdp-security August 29, 2016

424

6. Select Advanced ranger-hdfs-plugin-properties, then select the Enable Ranger for HDFS
check box.

hdp-security August 29, 2016

425

7. Click Save to save your changes.

8. Start HDFS by selecting Service Actions > Start.

9. Stop Ranger Admin by selecting Service Actions > Stop.

10.Use the following CLI commands to add the agent's self-signed cert to the Admin's
trustedCACerts.

cd /etc/ranger/admin/conf
keytool -export -keystore /etc/hadoop/conf/ranger-plugin-keystore.jks
 -alias rangerHdfsAgent -file ranger-hdfsAgent-trust.cer -storepass
 myKeyFilePassword
keytool -import -file ranger-hdfsAgent-trust.cer -alias rangerHdfsAgentTrust
 -keystore <Truststore file used by Ranger Admin - can be the JDK cacerts> -
storepass changeit

11.Restart Ranger Admin.

12.Log into the Ranger Policy Manager UI as the admin user. Click the Edit button of your
repository (in this case, hadoopdev) and provide the CN name of the keystore as the
value for Common Name For Certificate, then save your changes.

13.Start the HDFS service.

14.In the Policy Manager UI, select Audit > Plugins. You should see an entry for your repo
name with HTTP Response Code 200.

4.20.2.4.2. Configuring the Ranger KMS Plugin for SSL

To configure the Ranger KMS (Key Management Service) plugin for SSL, use the procedure
described in the previous section for HDFS, then perform the following additional step.

Log into the Policy Manager UI (as the keyadmin user) and click the Edit button of your
KMS repository. Provide the CN name of the keystore as the value for Common Name For
Certificate and save your changes. This property is not provided by default, so it must be
added.

hdp-security August 29, 2016

426

4.20.2.4.3. Configuring the Ranger KMS Server for SSL

Use the following steps to configure Ranger KMS (Key Management Service) Server for SSL.

1. Stop Ranger KMS by selecting Service Actions > Stop.

2. Use the following CLI commands to change to the Ranger KMS configuration directory
and create a self-signed certificate.

cd /etc/ranger/kms/conf
keytool -genkey -keyalg RSA -alias rangerkms -keystore ranger-kms-keystore.
jks -storepass rangerkms -validity 360 -keysize 2048
chown kms:kms ranger-kms-keystore.jks
chmod 400 ranger-kms-keystore.jks

When prompted, provide an identifiable string as the value for the "What is your first
and last name?" question. then provide answers to the subsequent questions to create
the keystore. When prompted for a password, press the Enter key.

hdp-security August 29, 2016

427

3. Select Custom ranger-kms-site, then add the following properties as shown below:

ranger.https.attrib.keystore.file

ranger.service.https.attrib.keystore.file (duplicate of above – workaround for now)

ranger.service.https.attrib.clientAuth

ranger.service.https.attrib.client.auth (duplicate of above – workaround for now)

ranger.service.https.attrib.keystore.keyalias

ranger.service.https.attrib.keystore.pass

ranger.service.https.attrib.ssl.enabled

ranger.service.https.port

4. Under Advanced kms_env, update the value of kms_port to match the value of
ranger.service.https.port.

5. Save your changes and restart Ranger KMS.

When you attempt to access the Ranger KMS UI with the HTTPS protocol on the port
specified by the ranger.service.https.port property, the browser should report that
it does not trust the site. Click Proceed anyway and you should be able to access the
Ranger Admin UI over HTTPS.

hdp-security August 29, 2016

428

6. Use the following CLI commands to export the Ranger KMS certificate.

cd /usr/hdp/<version>/ranger-kms/conf
keytool -export -keystore ranger-kms-keystore.jks -alias rangerkms -file
 ranger-kms-trust.cer

7. Use the following CLI command to import the Ranger KMS certificate into the Ranger
Admin truststore.

keytool -import -file ranger-kms-trust.cer -alias rangerkms -keystore
 <Truststore file used by Ranger Admin - can be the JDK cacerts> -storepass
 changeit

8. Use the following CLI command to import the Ranger KMS certificate into the Hadoop
client truststore.

keytool -import -file ranger-kms-trust.cer -alias rangerkms -keystore /etc/
security/clientKeys/all.jks -storepass bigdata

9. Restart Ranger Admin and HDFS.

4.21. Configure Non-Ambari Ranger SSL

4.21.1. Configuring Non-Ambari Ranger SSL Using Public CA
Certificates

If you have access to Public CA issued certificates, use the following steps to configure non-
Ambari Ranger SSL.

4.21.1.1. Configuring Ranger Admin

1. Use the following CLI command to stop Ranger Admin.

ranger-admin stop

2. Open the ranger-admin-site.xml file in a text editor.

vi /usr/hdp/current/ranger-admin/ews/webapp/WEB-INF/classes/conf/ranger-
admin-site.xml

3. Update ranger-admin-site.xml as follows:

• ranger.service.http.port -- Comment out the value for this property.

• ranger.service.http.enabled -- Set the value of this property to false.

• ranger.service.https.atrrib.ssl.enabled -- Set the value of this property
to true.

• ranger.service.https.port -- Make sure that this port is available, or change
the value to an available port number.

• ranger.https.attrib.keystore.file -- Provide the location of the Public CA
issued keystore file.

hdp-security August 29, 2016

429

• ranger.service.https.attrib.keystore.pass -- Enter the password for the
keystore.

• ranger.service.https.attrib.keystore.keyalias -- Enter the alias name
for the keystore private key.

• ranger.externalurl -- Set the value of this property in the format: https://
<hostname of policy manager>:<https port>.

• Add or update the following properties with the values shown below:

<property>
 <name>ranger.service.https.attrib.clientAuth</name>
 <value>want</value>
</property>

<property>
 <name>ranger.service.https.attrib.client.auth</name>
 <value>want</value>
</property>

<property>
 <name>ranger.https.attrib.keystore.file</name>
 <value>/etc/ranger/admin/conf/ranger-admin-keystore.jks</value>
 </property>

<property>
 <name>ranger.service.https.attrib.keystore.file</name>
 <value>/etc/ranger/admin/conf/ranger-admin-keystore.jks</value>
 </property>

4. Save the changes to ranger-admin-site.xml, then use the following command to
start Ranger Admin.

ranger-admin start

When you attempt to access the Ranger Admin UI with the HTTPS protocol on the port
specified by the ranger.service.https.port property, the browser should report
that it does not trust the site. Click Proceed anyway and you should be able to access the
Ranger Admin UI over HTTPS.

4.21.1.2. Configuring Ranger Usersync

1. Use the following CLI command to stop the Ranger Usersync service.

ranger-usersync stop

2. Use the following commands to change to the Usersync install directory and open the
install.properties file in a text editor.

cd /usr/hdp/current/ranger-usersync/
vi install.properties

3. Set the value of POLICY_MGR_URL in the format: https://<hostname of policy
manager>:<https port> and save your changes.

4. Run the following commands to install the new settings.

hdp-security August 29, 2016

430

cd /usr/hdp/current/ranger-usersync/
./setup.sh

5. Use the following command to start the Ranger Usersync service.

ranger-usersync start

4.21.1.3. Configuring Ranger Plugins

This section shows how to configure the Ranger HDFS plugin for SSL. You can use the same
procedure for other Ranger components.

1. Use the following CLI command to stop the NameNode.

su -l hdfs -c "/usr/hdp/current/hadoop-client/sbin/hadoop-daemon.sh stop
 namenode"

2. Open the HDFS install.properties file in a text editor.

vi /usr/hdp/<version>/ranger-hdfs-plugin/install.properties

3. Update install.properties as follows:

• POLICY_MGR_URL -- Set this value in the format: https://<hostname of
policy manager>:<https port>

• SSL_KEYSTORE_FILE_PATH -- The path to the location of the Public CA issued
keystore file.

• SSL_KEYSTORE_PASSWORD -- The keystore password.

• SSL_TRUSTSTORE_FILE_PATH -- The truststore file path.

• SSL_TRUSTSTORE_PASSWORD -- The truststore password.
Save the changes to the install.properties file.

4. Use the following command to see if JAVA_HOME is available.

echo $JAVA_HOME

5. If JAVA_HOME is not available , use the following command to set JAVA_HOME (Note
that Ranger requires Java 1.7).

export JAVA_HOME=<path for java 1.7>

6. Run the following commands to switch to the HDFS plugin install directory and run the
install agent to update the plugin with the new configuration settings.

cd /usr/hdp/<version>/ranger-hdfs-plugin/
./enable-hdfs-plugin.sh

7. Log into the Ranger Policy Manager UI as the admin user. Click the Edit button of your
repository (in this case, hadoopdev) and provide the CN name of the keystore as the
value for Common Name For Certificate, then save your changes.

8. Use the following command to start the NameNode.

hdp-security August 29, 2016

431

su -l hdfs -c "/usr/hdp/current/hadoop-client/sbin/hadoop-daemon.sh start
 namenode"

9. In the Policy Manager UI, select Audit > Plugins. You should see an entry for your repo
name with HTTP Response Code 200.

4.21.2. Configuring Non-Ambari Ranger SSL Using a Self
Signed Certificate

If you do not have access to Public CA issued certificates, use the following steps to create a
self-signed certificate and configure Non-Ambari Ranger SSL.

4.21.2.1. Configuring Ranger Admin

1. Use the following CLI command to stop Ranger Admin.

ranger-admin stop

2. Use the following commands to change to the Ranger Admin directory and create a self-
signed certificate.

cd /etc/ranger/admin/conf
keytool -genkey -keyalg RSA -alias rangeradmin -keystore ranger-admin-
keystore.jks -storepass xasecure -validity 360 -keysize 2048
chown ranger:ranger ranger-admin-keystore.jks
chmod 400 ranger-admin-keystore.jks

When prompted, provide the host name as the value for the "What is your first and
last name?" question. then provide answers to the subsequent questions to create the
keystore.

Note

When prompted for your password, press the Enter key. This will not work
for Java keytool version 1.5.

3. Open the ranger-admin-site.xml file in a text editor.

vi /usr/hdp/current/ranger-admin/ews/webapp/WEB-INF/classes/conf/ranger-
admin-site.xml

4. Update ranger-admin-site.xml as follows:

• ranger.service.http.port -- Comment out the value for this property.

• ranger.service.http.enabled -- Set the value of this property to false.

• ranger.service.https.atrrib.ssl.enabled -- Set the value of this property
to true.

• ranger.service.https.port -- Make sure that this port is available, or change
the value to an available port number.

hdp-security August 29, 2016

432

• ranger.https.attrib.keystore.file -- Provide the location of the
keystore file created previously: /etc/ranger/admin/conf/ranger-admin-
keystore.jks.

• ranger.service.https.attrib.keystore.pass -- Enter the password for the
keystore (in this case, xasecure).

• ranger.service.https.attrib.keystore.keyalias -- Enter the alias name
for the keystore private key (in this case, rangeradmin).

• ranger.externalurl -- Set the value of this property in the format: https://
<hostname of policy manager>:<https port>.

• Add or update the following properties with the values shown below:

<property>
 <name>ranger.service.https.attrib.clientAuth</name>
 <value>want</value>
</property>

<property>
 <name>ranger.service.https.attrib.client.auth</name>
 <value>want</value>
</property>

<property>
 <name>ranger.https.attrib.keystore.file</name>
 <value>/etc/ranger/admin/conf/ranger-admin-keystore.jks</value>
</property>

<property>
 <name>ranger.service.https.attrib.keystore.file</name>
 <value>/etc/ranger/admin/conf/ranger-admin-keystore.jks</value>
 </property>

5. Save the changes to ranger-admin-site.xml, then use the following command to
start Ranger Admin.

ranger-admin start

When you attempt to access the Ranger Admin UI with the HTTPS protocol on the port
specified by the ranger.service.https.port property, the browser should report
that it does not trust the site. Click Proceed anyway and you should be able to access the
Ranger Admin UI over HTTPS with the self-signed cert you just created.

4.21.2.2. Configuring Ranger Usersync

1. Use the following CLI command to stop the Ranger Usersync service.

ranger-usersync stop

2. Check to see if unixauthservice.jks is in the /etc/ranger/usersync/conf/
directory. If not, run the following commands in the CLI:

hdp-security August 29, 2016

433

cd /etc/ranger/usersync/conf/
mkdir cert
keytool -genkeypair -keyalg RSA -alias selfsigned -keystore /etc/ranger/
usersync/conf/cert/unixauthservice.jks -keypass UnIx529p -storepass UnIx529p
 -validity 3600 -keysize 2048 -dname 'cn=unixauthservice,ou=authenticator,o=
mycompany,c=US'
chown -R ranger:ranger /etc/ranger/usersync/conf/cert
chmod -R 400 /etc/ranger/usersync/conf/cert

3. Use the following commands to change to the Usersync install directory and open the
install.properties file in a text editor.

cd /usr/hdp/current/ranger-usersync/
vi install.properties

4. Set the value of POLICY_MGR_URL in the format: https://<hostname of policy
manager>:<https port> and save your changes.

5. Use the following commands to create a truststore for the Ranger Admin's self-signed
keystore. When prompted for a password, press the Enter key.

cd /etc/ranger/usersync/conf/
keytool -export -keystore /etc/ranger/admin/conf/ranger-admin-keystore.jks -
alias rangeradmin -file ranger-admin-trust.cerchown -R ranger:ranger /etc/
ranger/usersync/conf/cert
keytool -import -file ranger-admin-trust.cer -alias rangeradmintrust -
keystore mytruststore.jks -storepass changeit
chown ranger:ranger mytruststore.jks

6. Use the following commands to change to the Usersync conf directory and open the
ranger-ugsync-site.xml file in a text editor.

cd /usr/hdp/current/ranger-usersync/conf/
vi ranger-ugsync-site.xml

Edit the following properties, then save your changes:

• ranger.usersync.truststore.file -- Enter the path to the truststore file.

• ranger.usersync.truststore.password -- Enter the truststore password.

7. Run the following commands to install the new settings.

cd /usr/hdp/current/ranger-usersync/
./setup.sh

8. Use the following command to start the Ranger Usersync service.

ranger-usersync start

4.21.2.3. Configuring Ranger Plugins

The following steps describe how to configure the Ranger HDFS plugin for SSL with a
self-signed certificate in a non-Ambari cluster. You can use the same procedure for other
Ranger components.

1. Use the following CLI command to stop the NameNode.

hdp-security August 29, 2016

434

su -l hdfs -c "/usr/hdp/current/hadoop-client/sbin/hadoop-daemon.sh stop
 namenode"

2. Use the following commands to change to the Ranger HDFS plugin directory and create
a self-signed certificate.

3. cd /etc/hadoop/conf
keytool -genkey -keyalg RSA -alias rangerHdfsAgent -keystore ranger-plugin-
keystore.jks -storepass myKeyFilePassword -validity 360 -keysize 2048
chown hdfs:hdfs ranger-plugin-keystore.jks
chmod 400 ranger-plugin-keystore.jks

When prompted, provide an identifiable string as the value for the "What is your first
and last name?" question. then provide answers to the subsequent questions to create
the keystore. When prompted for a password, press the Enter key.

Note

Important note: In the case where multiple servers talking to ranger admin
for downloading policies for the same service/repository (e.g. HBase
Master and Region servers, multiple NameNodes or Hive servers in an HA
environment, be sure to use the repo name or a common string across all of
the nodes (such as HbasePlugin, HdfsPlugin etc). (Note this and enter the
same value in Common Name For Certificate field in the edit repository page
in the Policy Manager UI).

4. Use the following CLI commands to create a truststore for the agent and add the Admin
public key as a trusted entry. When prompted for a password, press the Enter key.

cd /etc/hadoop/conf
keytool -export -keystore /etc/ranger/admin/conf/ranger-admin-keystore.jks -
alias rangeradmin -file ranger-admin-trust.cer
keytool -import -file ranger-admin-trust.cer -alias rangeradmintrust -
keystore ranger-plugin-truststore.jks -storepass changeit
chown hdfs:hdfs ranger-plugin-truststore.jks
chmod 400 ranger-plugin-truststore.jks

5. Open the HDFS install.properties file in a text editor.

vi /usr/hdp/<version>/ranger-hdfs-plugin/install.properties

6. Update install.properties as follows:

• POLICY_MGR_URL -- Set this value in the format: https://<hostname of
policy manager>:<https port>

• SSL_KEYSTORE_FILE_PATH -- The path to the location of the keystore file.

• SSL_KEYSTORE_PASSWORD -- The keystore password.

• SSL_TRUSTSTORE_FILE_PATH -- The truststore file path.

• SSL_TRUSTSTORE_PASSWORD -- The truststore password.
Save the changes to the install.properties file.

7. Use the following command to see if JAVA_HOME is available.

hdp-security August 29, 2016

435

echo $JAVA_HOME

8. If JAVA_HOME is not available , use the following command to set JAVA_HOME (Note
that Ranger requires Java 1.7).

export JAVA_HOME=<path for java 1.7>

9. Run the following commands to switch to the HDFS plugin install directory and run the
install agent to update the plugin with the new configuration settings.

cd /usr/hdp/<version>/ranger-hdfs-plugin/
./enable-hdfs-plugin.sh

10.Use the following command to stop Ranger Admin.

ranger-admin stop

11.Use the following commands to add the agent's self-signed cert to the Admin's
trustedCACerts.

cd /etc/ranger/admin/conf
keytool -export -keystore /etc/hadoop/conf/ranger-plugin-keystore.jks
 -alias rangerHdfsAgent -file ranger-hdfsAgent-trust.cer -storepass
 myKeyFilePassword
keytool -import -file ranger-hdfsAgent-trust.cer -alias rangerHdfsAgentTrust
 -keystore <Truststore file used by Ranger Admin - can be the JDK cacerts> -
storepass changeit

12.Use the following command to start Ranger Admin.

ranger-admin start

13.Log into the Ranger Policy Manager UI as the admin user. Click the Edit button of your
repository (in this case, hadoopdev) and provide the CN name of the keystore as the
value for Common Name For Certificate, then save your changes.

14.Use the following command to start the NameNode.

su -l hdfs -c "/usr/hdp/current/hadoop-client/sbin/hadoop-daemon.sh start
 namenode"

15.In the Policy Manager UI, select Audit > Plugins. You should see an entry for your repo
name with HTTP Response Code 200.

4.22. Connecting to SSL-Enabled Components
This section explains how to connect to SSL enabled HDP Components.

Note

In order to access SSL enabled HDP Services through the Knox Gateway,
additional configuration on the Knox Gateway is required, see Configure SSL
for Knox.

hdp-security August 29, 2016

436

4.22.1. Connect to SSL Enabled HiveServer2 using JDBC
HiveServer2 implemented encryption with the Java SASL protocol's quality of protection
(QOP) setting that allows data moving between a HiveServer2 over JDBC and a JDBC client
to be encrypted.

From the JDBC client specify sasl.sop as part of the JDBC-Hive connection string,
for example jdbc:hive://hostname/dbname;sasl.qop=auth-int. For more
information on connecting to Hive, see Data Integration Services with HDP, Moving Data
into Hive: Hive ODBC and JDBC Drivers.

Tip

See HIVE-4911 for more details on this enhancement.

4.22.2. Connect to SSL Enabled Oozie Server
On every Oozie client system, follow the instructions for the type of certificate used in your
environment.

4.22.2.1. Use a Self-signed Certificate from Oozie Java Clients

When using a self-signed certificate, you must first install the certificate before the Oozie
client can connect to the server.

1. Install the certificate in the keychain:

a. Copy or download the .cert file onto the client machine.

b. Run the following command (as root) to import the certificate into the JRE's keystore:

sudo keytool -import -alias tomcat -file path/to/certificate.cert -
keystore <JRE_cacerts>

Where $JRE_cacerts is the path to the JRE's certs file. It's location may differ
depending on the Operating System, but its typically called cacerts and located
at $JAVA_HOME/lib/security/cacerts. It can be under a different directory in
$JAVA_HOME. The default password is changeit.

Java programs, including the Oozie client, can now connect to the Oozie Server using
the self-signed certificate.

2. In the connection strings change HTTP to HTTPS, for example, replace
http://oozie.server.hostname:11000/oozie with https://
oozie.server.hostname:11443/oozie.

Java does not automatically redirect HTTP addresses to HTTPS.

4.22.2.2. Connect to Oozie from Java Clients

In the connection strings change HTTP to HTTPS and adjust the port, for example,
replace http://oozie.server.hostname:11000/oozie with https://
oozie.server.hostname:11443/oozie.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_data-access/content/hive-jdbc-odbc-drivers.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_data-access/content/hive-jdbc-odbc-drivers.html
https://issues.apache.org/jira/browse/HIVE-4911

hdp-security August 29, 2016

437

Java does not automatically redirect HTTP addresses to HTTPS.

4.22.2.3. Connect to Oozie from a Web Browser

Use https://oozie.server.hostname:11443/oozie though most browsers should
automatically redirect you if you use http://oozie.server.hostname:11000/
oozie.

When using a Self-Signed Certificate, your browser warns you that it can't verify the
certificate. Add the certificate as an exception.

hdp-security August 29, 2016

438

5. Auditing in Hadoop

5.1. Using Apache Solr for Ranger Audits
Apache Solr is an open-source enterprise search platform. Apache Ranger can use Apache
Solr to store audit logs, and Solr can also to provide a search capability of the audit logs
through the Ranger Admin UI.

It is recommended that Ranger audits be written to both Solr and HDFS. Audits to Solr are
primarily used to enable search queries from the Ranger Admin UI. HDFS is a long-term
destination for audits -- audits stored in HDFS can be exported to any SIEM system, or to
another audit store.

Apache Ranger uses Apache Solr to store audit logs and provides UI searching through the
audit logs. Solr must be installed and configured before installing Ranger Admin or any of
the Ranger component plugins. The default configuration for Ranger Audits to Solr uses
the shared Solr instance provided under the Ambari Infra service. Solr is both memory and
CPU intensive. If your production system has high volume of access requests, make sure
that the Solr host has adequate memory, CPU, and disk space.

SolrCloud is the preferred setup for production usage of Ranger. SolrCloud, which is
deployed with the Ambari Infra service, is a scalable architecture that can run as a single
node or multi-node cluster. It has additional features such as replication and sharding,
which is useful for high availability (HA) and scalability. You should plan your deployment
based on your cluster size. Because audit records can grow dramatically, plan to have at
least 1 TB of free space in the volume on which Solr will store the index data. Solr works
well with a minimum of 32 GB of RAM. You should provide as much memory as possible to
the Solr process.

It is highly recommended to use SolrCloud with at least two Solr nodes running on different
servers with replication enabled. You can use the information in this section to configure
additional SolrCloud instances.

Configuration Options

• Ambari Infra Managed Solr (default) -- Audits to Solr defaults to use the shared Solr
instance provided under the Ambari Infra service. There are no additional configuration
steps required for this option. SolrCloud, which is deployed with the Ambari Infra service,
is a scalable architecture which can run as a single node or multi-node cluster. This is the
recommended configuration for Ranger. By default, a single-node SolrCloud installation
is deployed when the Ambari Infra Service is chosen for installation. Hortonworks
recommends that you install multiple Ambari Infra Solr Instances in order to provide
distributed indexing and search for Atlas, Ranger, and LogSearch (Technical Preview).
This can be accomplished by simply adding additional Ambari Infra Solr Instances to
existing cluster hosts by selecting Actions > Add Service on the Ambari dashboard.

• Externally Managed SolrCloud -- You can also install and manage an external SolrCloud
that can run as single or multi-node cluster. It includes features such as replication and
sharding, which are useful for high availability (HA) and scalability. With SolrCloud,
customers need to plan the deployment based on the cluster size.

https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-user-guide/content/ch_ambari_infra.html
https://cwiki.apache.org/confluence/display/solr/SolrCloud
https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-user-guide/content/ch_ambari_infra.html
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=62687462
https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-user-guide/content/ch_ambari_infra.html
https://cwiki.apache.org/confluence/display/solr/SolrCloud
https://cwiki.apache.org/confluence/display/solr/SolrCloud

hdp-security August 29, 2016

439

• Externally Managed Solr Standalone -- Solr Standalone is NOT recommended for
production use, and should be only used for testing and evaluation. Solr Standalone is a
single instance of Solr that does not require ZooKeeper.

Warning

Solr Standalone is NOT recommended and support for this configuration will
be deprecated in a future release.

• SolrCloud for Kerberos -- This is the recommended configuration for SolrCloud in
Kerberos environments.

The following sections describe how to install and configure Apache Solr for Ranger Audits:

• Prerequisites [439]

• Installing Externally Managed SolrCloud [439]

• Configuring Externally Managed SolrCloud [440]

• Configuring Externally Managed Solr Standalone [443]

• Configuring SolrCloud for Kerberos [444]

5.1.1. Prerequisites
Solr Prerequisites

• Ranger supports Apache Solr 5.2 or higher.

• Apache Solr requires the Java Runtime Environment (JRE) version 1.7 or higher.

• 1 TB free space in the volume where Solr will store the index data.

• 32 GB RAM.

SolrCloud Prerequisites

• SolrCloud supports replication and sharding. It is highly recommended that you use
SolrCloud with at least two Solr nodes running on different servers with replication
enabled.

• SolrCloud requires Apache ZooKeeper.

• SolrCloud with Kerberos requires Apache ZooKeeper and MIT Kerberos.

5.1.2. Installing Externally Managed SolrCloud

5.1.2.1. Installation and Configuration Steps

1. Run the following commands:

cd $HOME
git clone https://github.com/apache/incubator-ranger.git
cd incubator-ranger/security-admin/contrib/solr_for_audit_setup

hdp-security August 29, 2016

440

2. Edit the install.properties file (see the instructions in the following sections).

3. Run the ./setup.sh script.

4. Refer to $SOLR_RANGER_HOME/install_notes.txt for additional instructions.

5.1.2.2. Solr Installation

You can download the Solr package from Apache Solr Downloads. Make sure that the
Solr version is 5.2 or above. You can also use the Ranger setup.sh script to automatically
download, install, and configure Solr. If you would like to use the setup.sh script to install
Solr, set the following properties in the install.properties files, along with the settings from
the one of the configuration options in the following sections.

Table 5.1. Solr install.properties Values for setup.sh script

Property Name Value Description

SOLR_INSTALL true When set to true, he setup.sh
script will download the Solr package
and install it.

SOLR_DOWNLOAD_URL http://archive.apache.org/dist/
lucene/solr/5.2.1/solr-5.2.1.tgz

It is recommended that you use one for
Apache mirror sitess to download the
Solr package. You can choose a mirror
site at http://lucene.apache.org/solr/
mirrors-solr-latest-redir.html

SOLR_INSTALL_FOLDER /opt/solr The Solr install folder.

5.1.3. Configuring Externally Managed SolrCloud

Note

Beginning with Ambari-2.4.0.0 and HDP-2.5.0, Ranger uses the Ambari Infra
SolrCloud instance by default. Therefore, this procedure is only necessary for
earlier versions, or if you are setting up additional external SolrCloud instances.

Use the following procedure to configure SolrCloud.

1. Use the following command to open the install.properties file in the vi text
editor.

vi install.properties

Set the following property values, then save the changes to the install.properties
file.

Table 5.2. Solr install.properties Values

Property Name Value Description

JAVA_HOME <path_to_jdk>, for example: /usr/
jdk64/jdk1.8.0_40

Provide the path to the JDK install
folder. For Hadoop, you can
check /etc/hadoop/conf/
hadoop-env.sh for the value of
JAVA_HOME. As noted previously,
Solr only supports JDK 1.7 and higher.

SOLR_USER solr The Linux user used to run Solr.

http://lucene.apache.org/solr/downloads.html
http://archive.apache.org/dist/lucene/solr/5.2.1/solr-5.2.1.tgz
http://archive.apache.org/dist/lucene/solr/5.2.1/solr-5.2.1.tgz
http://lucene.apache.org/solr/mirrors-solr-latest-redir.html
http://lucene.apache.org/solr/mirrors-solr-latest-redir.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-user-guide/content/ch_ambari_infra.html

hdp-security August 29, 2016

441

Property Name Value Description

SOLR_INSTALL_FOLDER /opt/lucidworks-hdpsearch/solr The Solr installation directory.

SOLR_RANGER_HOME /opt/solr/ranger_audit_server The location where the Ranger-
related configuration and schema files
will be copied.

SOLR_RANGER_PORT For HDP Search's Solr Instance: 8983

For Ambari Infra's Solr Instance:
8886

The Solr port for Ranger.

SOLR_DEPLOYMENT solrcloud The deployment type.

SOLR_ZK <ZooKeeper_host>:2181/
ranger_audits

The Solr ZooKeeper host and port.
It is recommended to provide a sub-
folder to create the Ranger Audit
related configurations so you can
also use ZooKeeper for other Solr
instances. Due to a Solr bug, if you are
using a path (sub-folder), you can only
specify one ZooKeeper host.

SOLR_SHARDS 1 If you want to distribute your audit
logs, you can use multiple shards.
Make sure the number of shards is
equal or less than the number of Solr
nodes you will be running.

SOLR_REPLICATION 1 It is highly recommend that you set
up at least two nodes and replicate
the indexes. This gives redundancy
to index data, and also provides load
balancing of Solr queries.

SOLR_LOG_FOLDER /var/log/solr/ranger_audits The folder for the Solr log files.

SOLR_MAX_MEM 2g The memory allocation for Solr.

2. Use the following command to run the set up script.

./setup.sh

3. Run the following command only once from any node. This command adds the Ranger
Audit configuration (including schema.xml) to ZooKeeper.

/opt/solr/ranger_audit_server/scripts/add_ranger_audits_conf_to_zk.sh

4. Log in as the solr or root user and run the following command to start Solr on each
node.

/opt/solr/ranger_audit_server/scripts/start_solr.sh

When Solr starts, a confirmation message appears.

Started Solr server on port 8983/8886 (pid=). Happy searching!

5. Run the following command only once from any node. This command creates the
Ranger Audit collection.

/opt/solr/ranger_audit_server/scripts/create_ranger_audits_collection.sh

6. You can use a web browser to open the Solr Admin Console at the following address:

For HDP Search's Solr Instance:

http:<solr_host>:8983/solr

hdp-security August 29, 2016

442

For Ambari Infra's Solr Instance:

http:<solr_host>:8886/solr

Note

You can use the following command to stop Solr:

/opt/solr/ranger_audit_server/scripts/stop_solr.sh

7. On the Ambari dashboard, select Ranger > Configs > Ranger Audit, then enable
SolrCloud and External SolrCloud by clicking the OFF buttons. The button labels change
to ON when SolrCloud and External SolrCloud are enabled.

8. Set the value of the ranger.audit.solr.zookeepers property to
<host_name>:2181/ranger_audits.

9. Select Ranger > Configs > Advanced, then select select Advanced ranger-env and set the
following properties:

hdp-security August 29, 2016

443

• ranger_solr_replication_factor – set this to the same value used in the
install.properties file.

• ranger_solr_shards – set this to the same value used in the install.properties file.

10.Click Save, then restart Ranger and all required services.

5.1.4. Configuring Externally Managed Solr Standalone

Warning

This configuration is NOT recommended for new installs of HDP-2.5 and
is intended for non-production use. Support for this configuration will be
deprecated in a future release.

Use the following procedure to configure Solr Standalone.

1. Use the following command to open the install.properties file in the vi text
editor.

vi install.properties

Set the following property values, then save the changes to the install.properties
file.

Table 5.3. Solr install.properties Values

Property Name Value Description

JAVA_HOME <path_to_jdk>, for example: /usr/
jdk64/jdk1.8.0_60

Provide the path to the JDK install
folder. For Hadoop, you can
check /etc/hadoop/conf/
hadoop-env.sh for the value of
JAVA_HOME. As noted previously,
Solr only supports JDK 1.7 and higher.

SOLR_USER solr The Linux user used to run Solr.

SOLR_INSTALL_FOLDER /opt/solr The Solr installation directory.

SOLR_RANGER_HOME /opt/solr/ranger_audit_server The location where the Ranger-
related configuration and schema files
will be copied.

SOLR_RANGER_PORT For HDP Search's Solr Instance: 8983 The Solr port for Ranger.

SOLR_DEPLOYMENT standalone The deployment type.

SOLR_RANGER_DATA_FOLDER /opt/solr/ranger_audit_server/data The folder where the index data will
be stored. The volume for this folder
should have at least 1 TB free space
for the index data, and should be
backed up regularly.

SOLR_LOG_FOLDER /var/log/solr/ranger_audits The folder for the Solr log files.

SOLR_MAX_MEM 2g The memory allocation for Solr.

2. Use the following command to run the Solr for Ranger setup script.

./setup.sh

3. To start Solr, log in as the solr or root user and run the following command.

hdp-security August 29, 2016

444

/opt/solr/ranger_audit_server/scripts/start_solr.sh

When Solr starts, a confirmation message appears.

Started Solr server on port 8983/8886 (pid=). Happy searching!

4. You can use a web browser to open the Solr Admin Console at the following address:

For HDP Search's Solr Instance:

http:<solr_host>:8983/solr

Note

You can use the following command to stop Solr:

/opt/solr/ranger_audit_server/scripts/stop_solr.sh

5.1.5. Configuring SolrCloud for Kerberos

Note

Beginning with Ambari-2.4.0.0 and HDP-2.5.0, Ranger uses the Ambari Infra
SolrCloud instance by default. Therefore, this procedure is only necessary for
earlier versions, or if you are setting up additional SolrCloud instances.

Note

SolrCloud with Kerberos requires Apache ZooKeeper and MIT Kerberos. You
should also review the other SolrCloud Prerequisites.

Use the following steps to configure SolrCloud for Kerberos.

1. Configure SolrCloud.

2. Configure Kerberos for SolrCloud [444]

3. Configure SolrCloud for Kerberos [445]

5.1.5.1. Configure Kerberos for SolrCloud

Use the following procedure to configure Kerberos for SolrCloud.

1. Create a principal "solr" in your KDC. You can make it host-specific or headless.

2. Log in as the root user to the KDC server and create the keytabs for users "solr" and
HTTP.

https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-user-guide/content/ch_ambari_infra.html

hdp-security August 29, 2016

445

kadmin.local
Authenticating as principal root/admin@EXAMPLE.COM with password.
kadmin.local: addprinc -randkey solr@EXAMPLE.COM
WARNING: no policy specified for solr@EXAMPLE.COM; defaulting to no policy
Principal "solr@EXAMPLE.COM" created.
kadmin.local: xst -k solr.service.keytab solr@EXAMPLE.COM
Entry for principal solr@EXAMPLE.COM with kvno 2, encryption type aes256-
cts-hmac-sha1-96 added to keytab WRFILE:solr.service.keytab.
Entry for principal solr@EXAMPLE.COM with kvno 2, encryption type aes128-
cts-hmac-sha1-96 added to keytab WRFILE:solr.service.keytab.
Entry for principal solr@EXAMPLE.COM with kvno 2, encryption type des3-cbc-
sha1 added to keytab WRFILE:solr.service.keytab.
Entry for principal solr@EXAMPLE.COM with kvno 2, encryption type arcfour-
hmac added to keytab WRFILE:solr.service.keytab.
Entry for principal solr@EXAMPLE.COM with kvno 2, encryption type des-hmac-
sha1 added to keytab WRFILE:solr.service.keytab.
Entry for principal solr@EXAMPLE.COM with kvno 2, encryption type des-cbc-
md5 added to keytab WRFILE:solr.service.keytab.
kadmin.local: quit

The example above creates a headless keytab for the "solr" service user. You should
create one keytab per host. You should also create a principal for each host on which
Solr is running. Use the procedure shown above, but use the principal name with the
host. For example:

kadmin.local: addprinc -randkey solr/<SOLR_HOST_NAME>@EXAMPLE.COM

You will also need another keytab for Spnego. This is used by Solr to authenticate HTTP
requests. Follow the process shown above, but replace "solr" with "HTTP". For example:

kadmin.local
kadmin.local: addprinc -randkey HTTP@EXAMPLE.COM
kadmin.local: xst -k HTTP.keytab HTTP@EXAMPLE.COM
kadmin.local: quit

3. After the keytabs are created, run the following commands to copy them to all of the
hosts running Solr, chown to "solr", and chmod to 400.

mkdir -p /opt/solr/conf
#scp both the keytab files to the above folder
chown solr:solr /opt/solr/conf/solr.service.keytab
usermod -a -G hadoop solr
chmod 400 /opt/solr/conf/solr.service.keytab
chown solr:solr /opt/solr/conf/HTTP.keytab
chmod 400 /opt/solr/conf/HTTP.keytab

Note

The usermod -a -G hadoop solr command is required if you are using the
HTTP (Spnego) keytab that is generated by Ambari.

5.1.5.2. Configure SolrCloud for Kerberos

Use the following procedure to configure SolrCloud for Kerberos.

1. Run the following commands:

hdp-security August 29, 2016

446

cd /opt/solr
mkdir /opt/solr/conf

2. Create a new JAAS file in the /opt/solr/conf directory:

vi /opt/solr/conf/solr_jaas.conf

Add the following lines to the solr_jaas.conf file, but replace the REALM name
@EXAMPLE.COM with your REALM.

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/opt/solr/conf/solr.service.keytab"
 storeKey=true
 useTicketCache=true
 debug=true
 principal="solr@EXAMPLE.COM";
};

3. Copy the solr_jaas.conf file to all of the hosts on which Solr is running.

4. Edit the solr.in.sh file in the <SOLR_INSTALL_HOME>/bin/ directory:

vi $SOLR_INSTALL_HOME/ranger_audit_server/scripts/solr.in.sh

Add the following lines at the end of the solr.in.sh file:

SOLR_JAAS_FILE=/opt/solr/conf/solr_jaas.conf
SOLR_HOST=`hostname -f`
ZK_HOST="$ZK_HOST1:2181,$ZK_HOST2:2181,$ZK_HOST3:2181/ranger_audits"
KERBEROS_REALM="EXAMPLE.COM"
SOLR_KEYTAB=/opt/solr/conf/solr.service.keytab
SOLR_KERB_PRINCIPAL=HTTP@${KERBEROS_REALM}
SOLR_KERB_KEYTAB=/opt/solr/conf/HTTP.keytab
SOLR_AUTHENTICATION_CLIENT_CONFIGURER="org.apache.solr.client.solrj.impl.
Krb5HttpClientConfigurer"
SOLR_AUTHENTICATION_OPTS=" -DauthenticationPlugin=org.apache.solr.security.
KerberosPlugin
 -Djava.security.auth.login.config=$SOLR_JAAS_FILE -Dsolr.kerberos.
principal=${SOLR_KERB_PRINCIPAL}
 -Dsolr.kerberos.keytab=${SOLR_KERB_KEYTAB} -Dsolr.kerberos.cookie.domain=
${SOLR_HOST} -Dhost=${SOLR_HOST}
 -Dsolr.kerberos.name.rules=DEFAULT"

5. Copy the solr.in.sh file to all of the hosts on which Solr is running.

6. Run the following command to enable Kerberos as the authentication scheme by
updating the security.json file in ZooKeeper.

$SOLR_INSTALL_HOME/server/scripts/cloud-scripts/zkcli.sh -zkhost
 $ZK_HOST:2181 -cmd put /ranger_audits/security.json '{"authentication":
{"class": "org.apache.solr.security.KerberosPlugin"}}'

7. Run the following commands to restart Solr on all hosts.

/opt/solr/ranger_audit_server/scripts/stop_solr.sh
/opt/solr/ranger_audit_server/scripts/start_solr.sh

hdp-security August 29, 2016

447

8. On the Ambari dashboard, select Ranger > Configs > Ranger Audit, then enable External
SolrCloud Kerberos by clicking the OFF button. The button label changes to ON when
External SolrCloud Kerberos is enabled.

9. Click Save, then restart Ranger and all required services.

5.1.5.3. Connecting to Kerberos-enabled SolrCloud

To connect to Kerberos-enabled Solr from your local machine:

1. On both Linux and Mac, copy the /etc/krb5.conf file from the Solr host to your local
/etc/krb5.conf. If you already have a local /etc/krb5.conf file, merge the two
files.

2. Log in to the KDC host as root and run the following commands to create a KDC user:

kadmin.local
kadmin.local: addprinc $USERNAME@EXAMPLE.COM
kadmin.local: quit

3. Run the following command on your local machine.

hdp-security August 29, 2016

448

kinit $USERNAME@EXAMPLE.COM

4. You can now use a browser to connect to the Solr URL.

5.2. Migrating Audit Logs from DB to Solr in
Ambari Clusters

It is recommended that you store audits in both HDFS and Solr. Audit to DB is no longer
recommended and the option is disabled in the Ambari UI. If your logs were previously
stored on DB, you can migrate the logs to Solr.

Note

By default, Solr only indexes the last 30 days' logs.

Before you migrate your audit logs from DB to Solr, make sure your cluster meets the
following requirements:

• Solr must be installed and running (see Using Apache Solr for Ranger Audits).

• All plug-ins must be upgraded and writing audit logs to Solr (i.e., plugins must not be
writing audit logs to DB.)

• The DB server must be running, and the credentials used to connect Audit to DB must be
available.

• Ranger must be running with the audit source as Solr, and the Solr URL must be
configured.

To migrate your audit logs from DB to Solr, complete the following instructions:

1. Configure the properties ranger.audit.source.type and
ranger.audit.solr.urls:

Property Name Sample Value Location

ranger.audit.source.type solr Ranger>Configs>Advanced>Advanced
ranger-admin-site

ranger.audit.solr.urls Syntax:
http://<solr_host>:<port>/
solr/ranger_audits Example:
http://192.168.0.2:8983/
solr/ranger_auditsExample:
http://192.168.0.2:8886/
solr/ranger_audits

Ranger>Configs>Ranger Audit

2. Verify or enter the ranger.jpa.audit.jdbc.url value.

After upgrading Ranger and changing the audit log destination from DB to Solr, Ambari
may not automatically populate the required property values. If necessary, you can add
these as custom properties from Ambari.

a. Select Ranger>Configs>Advanced>Custom ranger-admin-site, then click Add
Property....

hdp-security August 29, 2016

449

b. Enter the following information on the Add Property pop-up:

• Type: preloaded with the value ranger-admin-site.xml

• Key: enter ranger.jpa.audit.jdbc.url

• Value: enter the JDBC audit string for your DB platform:

Table 5.4. JDBC Audit String

DB Platform Syntax Example Value

MySQL jdbc:mysql://DB_HOST:PORT/audit_namejdbc:mysql://
c6401.ambari.apache.org:3306/
ranger_audit

For Oracle SID:

jdbc:oracle:thin:@AUDIT_HOST:PORT:SID

jdbc:oracle:thin:@c6401.ambari.apache.org:1521:ORCLOracle

For Oracle Service Name:

jdbc:oracle:thin:@//AUDIT_HOST[:PORT]
[/ServiceName]

jdbc:oracle:thin:@//
c6401.ambari.apache.org:1521/XE

PostgreSQL jdbc:postgresql://AUDIT_HOST/audit_namejdbc:postgresql://
c6401.ambari.apache.org:5432/
ranger_audit

MS SQL jdbc:sqlserver://AUDIT_HOST;databaseName=audit_namejdbc:sqlserver://
c6401.ambari.apache.org:1433;databaseName=ranger_audit

SQLA jdbc:sqlanywhere:host=AUDIT_HOST;database=audit_namejdbc:sqlanywhere:host=c6401.ambari.apache.org:2638;database=ranger_audit

3. Restart Ranger Admin.

4. Navigate to the Ranger admin directory and run the following command:

$/path/to/java -Dlogdir=ews/logs -Dlog4j.configuration=db_patch.log4j.xml
 -cp ews/webapp/WEB-INF/classes/conf:ews/webapp/WEB-INF/classes/lib/*:ews/
webapp/WEB-INF/:ews/webapp/META-INF/:ews/webapp/WEB-INF/lib/*:ews/webapp/
WEB-INF/classes/:ews/webapp/WEB-INF/classes/META-INF:/usr/share/java/mysql-
connector-java.jar org.apache.ranger.patch.cliutil.DbToSolrMigrationUtil

If the script succeeds, it prints the following details on the screen:

• Processing batch 'n' of total 'noOfBatches' (Where each batch contains 10000 rows.)

• Total number of migrated audit logs.

If the script fails to migrate data, it returns the error: Migration process failed, Please
refer ranger_db_patch.log file.

5.3. Manually Enabling Audit Settings in Ambari
Clusters

It is recommended that Ranger audits be written to both Solr and HDFS. Audits to Solr are
primarily used to enable queries from the Ranger Admin UI. HDFS is a long-term destination
for audits; audits stored in HDFS can be exported to any SIEM system, or to another audit
store.

hdp-security August 29, 2016

450

Solr and HDFS audits are generally enabled as part of the standard Ambari installation
procedure. This section describes how to manually update Ambari audit settings for Solr
and HDFS.

5.3.1. Manually Updating Ambari Solr Audit Settings

You can save and store Ranger audits to Solr if you have installed and configured the Solr
service in your cluster.

Note

If you enabled Solr Audits as part of the standard Ambari installation
procedure, audits to Solr are activated automatically when Ranger is enabled
for a plugin.

To save Ranger audits to Solr:

1. From the Ambari dashboard, select the Ranger service. Select Configs > Advanced, then
scroll down and select Advanced ranger-admin-site. Set the following property value:

• ranger.audit.source.type = solr

2. On the Ranger Configs tab, select Ranger Audit. The SolrCloud button should be set to
ON. The SolrCloud configuration settings are loaded automatically when the SolrCloud
button is set from OFF to ON, but you can also manually update the settings.

Note

Audits to Solr requires that you have already configured SolrCloud.

3. Restart the Ranger service.

4. After the Ranger service has been restarted, you will then need to make specific
configuration changes for each plugin to ensure that the plugin's data is captured in Solr.

5. For example, if you would like to configure HBase for audits to Solr, perform the
following steps:

• Select the Audit to Solr checkbox in Advanced ranger-hbase-audit.

• Enable the Ranger plugin for HBase.

• Restart the HBase component.

6. Verify that the Ranger audit logs are being passed to Solr by opening one of the
following URLs in a web browser:

http://{RANGER_HOST_NAME}:6080/index.html#!/reports/audit/bigData

For HDP Search's Solr Instance:

http:{SOLR_HOST}:8983/solr/ranger_audits

For Ambari Infra's Solr Instance:

hdp-security August 29, 2016

451

http:{SOLR_HOST}:8886/solr/ranger_audits

5.3.2. Manually Updating HDFS Audit Settings (for Ambari
installs)

Note

HDFS audits are enabled by default in the standard Ranger Ambari installation
procedure, and are activated automatically when Ranger is enabled for a
plugin.

The following steps show how to save Ranger audits to HDFS for HBase. You can use the
same procedure for other components.

1. From the Ambari dashboard, select the HBase service. On the Configs tab, scroll down
and select Advanced ranger-hbase-audit. Select the Audit to HDFS check box.

2. Set the HDFS path where you want to store audits in HDFS:

xasecure.audit.destination.hdfs.dir = hdfs://
$NAMENODE_FQDN:8020/ranger/audit

Refer to the fs.defaultFS property in the Advanced core-site settings.

Note

For NameNode HA, NAMENODE_FQDN is the cluster name. In order for this to
work, /etc/hadoop/conf/hdfs-site.xml needs to be linked under /
etc/<component_name>/conf.

3. Enable the Ranger plugin for HBase.

4. Make sure that the plugin sudo user has permission on the HDFS Path:

hdfs://NAMENODE_FQDN:8020/ranger/audit

For example, we need to create a Policy for Resource : /ranger/audit, all permissions
to user hbase.

5. Save the configuration updates and restart HBase.

6. Generate some audit logs for the HBase component.

7. Check the HFDS component logs on the NameNode:

hdfs://NAMENODE_FQDN:8020/ranger/audit

Note

For a secure cluster, use the following steps to enable audit to HDFS for Storm,
Kafka, and Knox:

hdp-security August 29, 2016

452

• In core-site.xml set the hadoop.proxyuser.<component>.groups
property with value “ * ” or service user.

• For the Knox plugin there is one additional property to add to core-site.xml.
Add hadoop.proxyuser.<component>.users property with value “ * ” or
service user (i.e knox).

• For Kafka and Knox, link to /etc/hadoop/conf/core-site.xml under
/etc/<component_name>/conf. For Storm, link to /etc/hadoop/
conf/core-site.xml under /usr/hdp/<version>/storm/extlib-
daemon/ranger-storm-plugin-impl/conf.

• Verify the service user principal.

• Make sure that the component user has permissions on HDFS.

5.4. Enabling Audit Logging in Non-Ambari
Clusters

It is recommended that Ranger audits be written to both Solr and HDFS. Audits to Solr are
primarily used to enable queries from the Ranger Admin UI. HDFS is a long-term destination
for audits; audits stored in HDFS can be exported to any SIEM system, or to another audit
store.

To enable auditing for HDFS, perform the steps listed below.

1. Set the XAAUDIT.HDFS.ENABLE value to "true" for the component plug-in in the
install.properties file, which can be found here:

/usr/hdp/<version>/ranger-<component>=plugin

2. Configure the NameNode host in the XAAUDIT.HDFS.HDFS_DIR field.

3. Create a policy in the HDFS service from the Ranger Admin for individual component
users (hive/hbase/knox/storm/yarn/kafka/kms) to provide READ and WRITE
permissions for the audit folder (i.e., for enabling Hive component to log Audits to HDFS,
you need to create a policy for the hive user with Read and WRITE permissions for the
audit directory).

4. Set the Audit to HDFS caches logs in the local directory, which can be specified
in XAAUDIT.HDFS.LOCAL_BUFFER_DIRECTORY (this can be like /var/log/
<component>/**), which is the path where the audit is stored for a short time. This is
similar for archive logs that need to be updated.

To enable auditing reporting from the Solr database, perform the steps listed below.

1. Modify the following properties in the Ranger service install.properties to enable
auditing to the Solr database in Ranger:

• audit_store=solr

• For HDP Search's Solr Instance: http:<solr_host>:8983/solr/ranger_audits

hdp-security August 29, 2016

453

For Ambari Infra's Solr Instance: http:<solr_host>:8886/solr/
ranger_audits

• audit_solr_user=ranger_solr

• audit_solr_password-NONE

2. Restart Ranger.

To enable auditing to the Solr database for a plug-in (e.g., HBase), perform the steps listed
below.

1. Set the following properties in install.properties of the plug-in to begin audit
logging to the Solr database:

• XAAUDIT.SOLR.IS.ENABLED=true

• XAAUDIT.SOLR.ENABLE=true

• For HDP Search's Solr Instance: XAAUDIT.SOLR.URL= http://solr_host:8983/
solr/ranger_audits

For Ambari Infra's Solr Instance: XAAUDIT.SOLR.URL= http://
solr_host:8886/solr/ranger_audits

• XAAUDIT.SOLR.USER-ranger_solr

• XAAUDIT.SOLR.PASSWORD=NONE

• XAAUDIT.SOLR.FILE_SPOOL_DIR=/var/log/hadoop/hdfs/audit/solr/spool

2. Enable the Ranger HBase plug-in.

3. Restart the HBase component.

5.5. Managing Auditing in Ranger
To explore options for auditing policies in Ranger, access the Ranger console, then click
Audit in the top menu.

There are four tabs on the Audit page:

• Access [455]

• Admin [456]

• Login Sessions [457]

• Plugins [458]

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/opening_and_closing_the_console.html

hdp-security August 29, 2016

454

5.5.1. View Operation Details

To view details on a particular operation, click the Policy ID, Operation name, or Session ID.

hdp-security August 29, 2016

455

5.5.2. Access

Provides Service activity data for all Policies that have Audit set to On. The default service
Policy is configured to log all user activity within the Service. This default policy does not
contain user and group access rules.

You can filter the data based on the following criteria:

Table 5.5. Search Criteria

Search Criteria Description

Access Enforcer Ranger (ranger-acl) or Hadoop (hadoop-acl)

Access Type Type of access user attempted (E.G., REVOKE, GRANT,
OPEN, USE).

Client IP IP address of the user system that tried to access the
resource.

Result Shows whether the operation was successful or not.

Service Name The name of the service that the user tried to access.

Service Type The type of the service that the user tried to access.

Start Date, End Date Filters results for a particular date range.

User Name of the user which tried to access the resource.

hdp-security August 29, 2016

456

5.5.3. Admin

The Admin tab contains all events for the auditing HDP Security Administration Web
UI, including Service, Service Manager, Log in, etc. (actions like create, update, delete,
password change).

You can filter the data based on the following criteria:

Table 5.6. Search Criteria

Search Criteria Description

Action These are operations performed on resources (actions like
create, update, delete, password change).

Audit Type There are three values Resource,asset and xa user
according to operations performed on Service,policy and
users.

End Date Login time and date is stored for each session. A date
range is used to filter the results for that particular date
range.

Session ID The session count increments each time you try to login to
the system

hdp-security August 29, 2016

457

Search Criteria Description

Start Date Login time and date is stored for each session. A date
range is used to filter the results for that particular date
range.

User Username who has performed create,update,delete
operation.

5.5.4. Login Sessions

The Login Sessions tab logs the information related to the sessions for each login.

You can filter the data based on the following criteria:

Table 5.7. Search Criteria

Search Criteria Description

Login ID The username through which someone logs in to the
system.

Session-id The session count increments each time the user tries to
log into the system.

Start Date, End Date Specifies that results should be filtered based on a
particular start date and end date.

Login Type The mode through which the user tries to login (by
entering username and password).

IP The IP address of the system through which the user
logged in.

User Agent The browser or library version used to login for the specific
event (e.g. Mozilla, Java, Python)

Result Logs whether or not the login was successful. Possible
results can be Success, Wrong Password, Account Disabled,
Locked, Password Expired or User Not Found.

hdp-security August 29, 2016

458

5.5.5. Plugins

This tab shows the upload history of the Security Agents.This module displays all of the
services exported from the system.You can filter the data based on the following criteria:

Table 5.8. Agents Search Criteria

Search Criteria Description

Plugin IP IP Address of the agent that tried to export the service.

Plugin ID Name of the agent that tried to export the service.

HTTP Response Code The HTTP code returned when trying to export the service.

Start Date, End Date Export time and date is stored for each agent. A date
range is used to filter the results for that particular date
range.

Service Name The service name we are trying to export.

hdp-security August 29, 2016

459

6. Data Protection: HDFS Encryption

6.1. Ranger KMS Administration
The Ranger Key Management Service (Ranger KMS) is a open source, scalable
cryptographic key management service supporting HDFS "data at rest" encryption.

Ranger KMS is based on the Hadoop KMS originally developed by the Apache community.
The Hadoop KMS stores keys in a file-based Java keystore by default. Ranger extends the
native Hadoop KMS functionality by allowing you to store keys in a secure database.

Ranger provides centralized administration of the key management server through the
Ranger admin portal.

There are three main functions within the Ranger KMS:

1. Key management. Ranger admin provides the ability to create, update or delete keys
using the Web UI or REST APIs. All Hadoop KMS APIs work with Ranger KMS using the
keyadmin username and password.

2. Access control policies. Ranger admin also provides the ability to manage access control
policies within Ranger KMS. The access policies control permissions to generate or
manage keys, adding another layer of security for data encrypted in Hadoop.

3. Audit. Ranger provides full audit trace of all actions performed by Ranger KMS.

Ranger KMS along with HDFS encryption are recommended for use in all environments. In
addition to secure key storage using a database, Ranger KMS is also scalable, and multiple
versions of Ranger KMS can be run behind a load balancer.

For more information about HDFS encryption, see HDFS "Data at Rest" Encryption.

6.1.1. Installing the Ranger Key Management Service
This section describes how to install the Ranger Key Management Service (KMS) using
Ambari on a Kerberized cluster.

Prerequisites

Ranger KMS requires HDFS and Ranger to be installed and running on the cluster.

To install Ranger using Ambari, refer to the Ranger Installation Guide. (For more
information about the Ambari Add Service Wizard, see Adding a Service in the Ambari
User's Guide.)

To use 256-bit keys, install the Java Cryptography Extension (JCE) Unlimited Strength
Jurisdiction Policy File on all hosts in the cluster. For installation information, see Install the
JCE. Make sure that the Java location is specified in the $PATH environment variable.

Note

If you use the OpenJDK package, the JCE file is already built into the package.

https://hadoop.apache.org/docs/current/hadoop-kms/index.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/installing_ranger_using_ambari.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-user-guide/content/adding_a_service.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/_distribute_and_install_the_jce.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/_distribute_and_install_the_jce.html

hdp-security August 29, 2016

460

6.1.1.1. Install Ranger KMS using Ambari (Kerberized Cluster)

To install Ranger KMS on a Kerberized cluster, complete the following steps.

1. Go to the Ambari Web UI, http://<gateway-URL>:8080.

2. From the Ambari dashboard, go to the Actions menu. Choose Add Service.

3. On the next screen, check the box next to Ranger KMS:

4. Then, choose Next.

5. (Optional) In Assign Masters, if you wish to override the default host setting, specify the
Ranger KMS host address. For example:

hdp-security August 29, 2016

461

6. In Customize Services, set required values (marked in red). Review other configuration
settings, and determine whether you'd like to change any of the default values. (For
more information about these properties, see Ranger KMS Properties.

a. Set the following required settings, marked in red in the "Advanced kms-properties"
section:

• KMS_MASTER_KEY_PASSWD

• db_password

• db_root_password

Note

If do not wish to provide system Database Administrator (DBA) account
details to the Ambari Ranger installer, you can use the dba_script.py
Python script to create Ranger DB database users without exposing
DBA account information to the Ambari Ranger installer. For more
information, see Setting up Database Users Without Sharing DBA
Credentials.

hdp-security August 29, 2016

462

Also specify the username for REPOSITORY_CONFIG_USERNAME, so that Ranger will
be able to connect to the Ranger KMS Server and look up keys for creating access
policies. This user will need to be set to proxy into Ranger KMS in a Kerberos mode
(steps included below).

b. Add values for the following properties in the "Custom kms-site" section. These
properties allow the specified system users (hive, oozie, and others) to proxy on
behalf of other users when communicating with Ranger KMS. This helps individual
services (such as Hive) use their own keytabs, but retain the ability to access Ranger
KMS as the end user (use access policies associated with the end user).

• hadoop.kms.proxyuser.hive.users

• hadoop.kms.proxyuser.oozie.users

• hadoop.kms.proxyuser.HTTP.users

• hadoop.kms.proxyuser.ambari.users

• hadoop.kms.proxyuser.yarn.users

• hadoop.kms.proxyuser.hive.hosts

hdp-security August 29, 2016

463

• hadoop.kms.proxyuser.oozie.hosts

• hadoop.kms.proxyuser.HTTP.hosts

• hadoop.kms.proxyuser.ambari.hosts

• hadoop.kms.proxyuser.yarn.hosts

c. Add the following properties to the Custom KMS-site section of the configuration.
These properties use the REPOSITORY_CONFIG_USERNAME specified in the first step
in this section.

If you are using an account other than keyadmin to access Ranger KMS, replace
“keyadmin” with the configured user for the Ranger KMS repository in Ranger admin:

• hadoop.kms.proxyuser.keyadmin.groups=*

• hadoop.kms.proxyuser.keyadmin.hosts=*

• hadoop.kms.proxyuser.keyadmin.users=*

d. Confirm settings of the following values in the "advanced kms-site" group:

• hadoop.kms.authentication.type=kerberos

• hadoop.kms.authentication.kerberos.keytab=/etc/security/
keytabs/spnego.service.keytab

• hadoop.kms.authentication.kerberos.principal=*

7. Then, choose Next.

8. Review the default values on the Configure Identities screen. Determine whether you'd
like to change any of the default values. Then, choose Next.

9. In Review, make sure the configuration values are correct. Ranger KMS will be listed
under Services.

10.Then, choose Deploy.

hdp-security August 29, 2016

464

11.Monitor the progress of installing, starting, and testing the service. When the service
installs and starts successfully, choose Next.

12.The Summary screen displays the results. Choose Complete.

13.Restart the Ranger and Ranger KMS services.

6.1.1.1.1. Setting up Database Users Without Sharing DBA Credentials

If do not wish to provide system Database Administrator (DBA) account details to the
Ambari Ranger installer, you can use the dba_script.py Python script to create Ranger
DB database users without exposing DBA account information to the Ambari Ranger
installer. You can then run the normal Ambari Ranger installation without specify a DBA
user name and password.

To create Ranger DB users using the dba_script.py script:

1. Download the Ranger rpm using the yum install command.

yum install ranger-kms

2. You should see one file named dba_script.py in the /usr/hdp/current/
ranger-admin directory.

3. Get the script reviewed internally and verify that your DBA is authorized to run the
script.

4. Execute the script by running the following command:

python dba_script.py

5. Pass all values required in the argument. These should include db flavor, JDBC jar,
db host, db name, db user, and other parameters.

• If you would prefer not to pass runtime arguments via the command prompt, you can
update the /usr/hdp/current/ranger-admin/install.properties file and
then run:

• python dba_script.py -q

When you specify the -q option, the script will read all required information from the
install.properties file

• You can use the -d option to run the script in "dry" mode. Running the script in dry
mode causes the script to generate a database script.

python dba_script.py -d /tmp/generated-script.sql

Anyone can run the script, but it is recommended that the system DBA run the script
in dry mode. In either case, the system DBA should review the generated script, but
should only make minor adjustments to the script, for example, change the location
of a particular database file. No major changes should be made that substantially alter
the script -- otherwise the Ranger install may fail.

The system DBA must then run the generated script.

hdp-security August 29, 2016

465

6. Log in to the host where KMS is to be installed. Run the following commands to back up
files:

cp /var/lib/ambari-agent/cache/common-services/RANGER_KMS/0.5.0.2.3/package/
scripts/kms.py /var/lib/ambari-agent/cache/common-services/RANGER_KMS/0.5.0.
2.3/package/scripts/kms.py.bak
cp /var/lib/ambari-server/resources/common-services/RANGER_KMS/0.5.0.2.3/
package/scripts/kms.py /var/lib/ambari-server/resources/common-services/
RANGER_KMS/0.5.0.2.3/package/scripts/kms.py.bak

7. In both of the kms.py files copied in the previous step, find and comment out the
following line (shown here commented out).

#Execute(dba_setup, environment=env_dict, logoutput=True, user=params.
kms_user)

8. Run the Ranger Ambari install procedure, but set Setup Database and Database User to
No in the Ranger Admin section of the Customize Services screen.

6.1.1.1.2. Configure HDFS Encryption to use Ranger KMS Access

At this point, Ranger KMS should be installed and running. If you plan to use Ranger KMS
for HDFS data at rest encryption, complete the following steps:

1. Create a link to /etc/hadoop/conf/core-site.xml under /etc/ranger/kms/
conf:

sudo ln -s /etc/hadoop/conf/core-site.xml /etc/ranger/kms/conf/
core-site.xml

2. Configure HDFS to access Ranger KMS.

a. In the left panel of the Ambari main menu, choose HDFS.

b. Choose the Configs tab at the top of the page, and then choose the Advanced tab
partway down the page.

c. Specify the provider path (the URL where the Ranger KMS server is running) in the
following two properties, if the path is not already specified:

• In "Advanced core-site", specify hadoop.security.key.provider.path

• In "Advanced hdfs-site", specify dfs.encryption.key.provider.uri

hdp-security August 29, 2016

466

The Ranger KMS host is where Ranger KMS is installed. The Ranger KMS host name
should have the following format:

kms://http@<kmshost>:9292/kms

3. Under Custom core-site.xml, set the value of the hadoop.proxyuser.kms.groups
property to * or service user.

4. Restart the Ranger KMS service and the HDFS service.

6.1.1.1.3. Use a Kerberos Principal for the Ranger KMS Repository

In Ranger, all access policies are configured within a repository for each service. For more
information, refer to the Ranger User Guide.

To manage access policies for Ranger KMS, a repository is needed with Ranger for the
Ranger KMS service. Ambari creates the repository automatically using the repository
config user and password provided.

The repository config user also needs to be created as a principal in Kerberos with
a password. Use the following steps to use a Kerberos principal for the Ranger KMS
repository.

1. Create system user keyadmin which should be sync in User Tabs in Ranger Admin.

2. Create principal keyadmin@EXAMPLE.COM with password keyadmin:

kadmin.local -q 'addprinc -pw keyadmin keyadmin'

3. On the Add Service wizard Customize Services page, set the required values (marked in
red).

4. Under ranger-kms-properties, set the principal and password in the
REPOSITORY_CONFIG_USERNAME and REPOSITORY_CONFIG_PASSWORD fields.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/using_ranger_to_provide_authorization_in_hadoop.html

hdp-security August 29, 2016

467

5. To check logs, select Audit to DB under Advanced ranger-kms-audit.

6. Click Next to continue with the Ranger KMS Add Service wizard.

6.1.2. Store Master Key in a Hardware Security Module
(HSM)

PCI compliance requires that keys are stored in Hardware Security Modules (HSMs) rather
than a software KMS. For example, this is required for financial institutions working with
customer credit/debit card terminals.

Note

You must have a separate partition for each KMS cluster.

To store keys in an HSM:

1. Install the SafeNet Luna SA Client Software

2. Install Ranger KMS HSM:

• Manually (using the instructions on the Apache Wiki>Installing Ranger KMS HSM
(Manually))

• Install Ranger KMS HSM via Ambari with plain text password [468]

• Install Ranger KMS HSM via Ambari with JCEKS [469]

3. Configure HSM High Availability (HA) [470]

https://www.pcisecuritystandards.org/
http://cloudhsm-safenet-docs.s3.amazonaws.com/007-011136-002_lunasa_5-1_webhelp_rev-a/Content/configuration/configuration_setup_luna_sa_after_installation.htm
https://cwiki.apache.org/confluence/display/RANGER/Ranger+KMS+Luna+HSM+Support#RangerKMSLunaHSMSupport-InstallingRangerKMSHSM(Manually)
https://cwiki.apache.org/confluence/display/RANGER/Ranger+KMS+Luna+HSM+Support#RangerKMSLunaHSMSupport-InstallingRangerKMSHSM(Manually)
https://cwiki.apache.org/confluence/display/RANGER/Ranger+KMS+Luna+HSM+Support#RangerKMSLunaHSMSupport-InstallingRangerKMSHSM(Manually)
https://cwiki.apache.org/confluence/display/RANGER/Ranger+KMS+Luna+HSM+Support#RangerKMSLunaHSMSupport-InstallingRangerKMSHSM(Manually)

hdp-security August 29, 2016

468

4. HSM Migration [473]

• Migrate HSM to Ranger DB [473]

• Migrate Ranger DB to HSM [474]

5. Optional: Clear Objects from the HSM Partition [474]

6.1.2.1. Install Ranger KMS Hardware Security Module (HSM)

Prerequirements

Install the SafeNet Luna SA Client Software

Note

You must have a separate partition for each KMS cluster.

About this Task

You can install Ranger KMS Hardware Security Module (HSM) in three ways:

• Manually (using the instructions on the Apache Wiki>Installing Ranger KMS HSM
(Manually))

• Install Ranger KMS HSM via Ambari with plain text password [468]

• Install Ranger KMS HSM via Ambari with JCEKS [469]

6.1.2.1.1. Install Ranger KMS HSM Manually

Prerequirements

Install the SafeNet Luna SA Client Software

Note

You must have a separate partition for each KMS cluster.

Steps

Refer to the instructions on the Apache Wiki>Installing Ranger KMS HSM (Manually).

6.1.2.1.2. Install Ranger KMS HSM via Ambari with plain text password

Prerequirements

Install the SafeNet Luna SA Client Software

Note

You must have a separate partition for each KMS cluster.

Steps

1. Installing the Ranger Key Management Service [459]

http://cloudhsm-safenet-docs.s3.amazonaws.com/007-011136-002_lunasa_5-1_webhelp_rev-a/Content/configuration/configuration_setup_luna_sa_after_installation.htm
https://cwiki.apache.org/confluence/display/RANGER/Ranger+KMS+Luna+HSM+Support#RangerKMSLunaHSMSupport-InstallingRangerKMSHSM(Manually)
https://cwiki.apache.org/confluence/display/RANGER/Ranger+KMS+Luna+HSM+Support#RangerKMSLunaHSMSupport-InstallingRangerKMSHSM(Manually)
https://cwiki.apache.org/confluence/display/RANGER/Ranger+KMS+Luna+HSM+Support#RangerKMSLunaHSMSupport-InstallingRangerKMSHSM(Manually)
https://cwiki.apache.org/confluence/display/RANGER/Ranger+KMS+Luna+HSM+Support#RangerKMSLunaHSMSupport-InstallingRangerKMSHSM(Manually)
http://cloudhsm-safenet-docs.s3.amazonaws.com/007-011136-002_lunasa_5-1_webhelp_rev-a/Content/configuration/configuration_setup_luna_sa_after_installation.htm
https://cwiki.apache.org/confluence/display/RANGER/Ranger+KMS+Luna+HSM+Support#RangerKMSLunaHSMSupport-InstallingRangerKMSHSM(Manually)
http://cloudhsm-safenet-docs.s3.amazonaws.com/007-011136-002_lunasa_5-1_webhelp_rev-a/Content/configuration/configuration_setup_luna_sa_after_installation.htm

hdp-security August 29, 2016

469

2. While configuring add the HSM related properties in Advanced dbks-site Menu (dbks-
site.xml):

• ranger.ks.hsm.enabled=true

• ranger.ks.hsm.partition.name=Partition Name

• ranger.ks.hsm.partition.password=Partition Password

• ranger.ks.hsm.type=LunaProvider

3. Click on Next and follow the instructions to install Ranger KMS.

6.1.2.1.3. Install Ranger KMS HSM via Ambari with JCEKS

Prerequirements

Install the SafeNet Luna SA Client Software

Note

You must have a separate partition for each KMS cluster.

Steps

1. Installing the Ranger Key Management Service [459]

http://cloudhsm-safenet-docs.s3.amazonaws.com/007-011136-002_lunasa_5-1_webhelp_rev-a/Content/configuration/configuration_setup_luna_sa_after_installation.htm

hdp-security August 29, 2016

470

2. While configuring add the HSM related properties in Advanced dbks-site Menu (dbks-
site.xml):

• ranger.ks.hsm.enabled=true

• ranger.ks.hsm.partition.name=Partition Name

• ranger.ks.hsm.partition.password=_

• ranger.ks.hsm.partition.password.alias=ranger.kms.hsm.partition.password

• ranger.ks.hsm.type=LunaProvider

3. Click on Next and follow the instructions to install Ranger KMS.

Ranger KMS will fail to start (expected behavior).

4. Execute this command on the cluster where Ranger KMS is installed:

python /usr/hdp/current/ranger-kms/ranger_credential_helper.py -l "/usr/hdp/
current/ranger-kms/cred/lib/*" -f /etc/ranger/kms/rangerkms.jceks -k ranger.
kms.hsm.partition.password -v <Partition_Password> -c 1

5. Restart the KMS from Ambari.

6.1.2.2. Configure HSM High Availability (HA)

Prerequisites

You must have at least two Luna SA appliances with PED Authentication, or two with
Password Authentication.

Steps

1. Set up appliances for HA:

hdp-security August 29, 2016

471

a. Perform the network setup on both HA units: Install the SafeNet Luna SA Client
Software.

b. In hsm showPolicies, ensure that Allow Cloning=on and Allow Network
Replication=on.

c. Initialize the HSMs on your Luna SA appliances. They must have the same cloning
domain (i.e., must share the same red, domain PED Key if they are PED-authenticated)
or they must share the same domain string if they are password-authenticated.

d. Create a partition on each Luna SA. They do not need to have the same labels, but
must have the same password.

e. Record the serial number of each partition created on each Luna SA (use partition
show).

2. Register clients with Luna SA HA:

a. Proceed with normal client setup, Prepare the Client for Network Trust Link.

b. Register your client computer with both Luna SAs.

c. Verify using ./vtl verify command. It should show the numbers of partitions
registered with client.

3. Create the HA GroupNote for your client version:

• Version 5

a. After creating partitions on (at least) two Luna appliances, and setting up Network
Trust Links between those partitions and your client, use LunaCM to configure HA
on your client:

i. Go to the directory: /usr/safenet/lunaclient/bin/

b. To add members in haadmin, create a new group on the client: ./vtl haAdmin
newGroup -serialNum HA Group Number -label Groupname -
password password.

For example:

./vtl haAdmin newGroup -serialNum 156453092 -label myHAgroup
-password S@fenet123

c. Add members into your haadmin: ./vtl haAdmin addMember -group HA
Group Number -serialNum serial_number -password password.

For example:

./vtl haAdmin addMember -group 1156453092 -serialNum
156451030 -password S@fenet123

d. Enable synchronization of HAadmin Members: ./vtl haAdmin synchronize
-group HA Group Number -password password.

http://cloudhsm-safenet-docs.s3.amazonaws.com/007-011136-002_lunasa_5-1_webhelp_rev-a/Content/configuration/configuration_setup_luna_sa_after_installation.htm
http://cloudhsm-safenet-docs.s3.amazonaws.com/007-011136-002_lunasa_5-1_webhelp_rev-a/Content/configuration/configuration_setup_luna_sa_after_installation.htm
http://cloudhsm-safenet-docs-5.3.s3-website-us-east-1.amazonaws.com/007-011136-006_lunasa_5-3_webhelp_rev-c/Content/configuration/prepare_the_client_for_network_trust_link.htm

hdp-security August 29, 2016

472

For example:

./vtl haAdmin synchronize -enable -group 1156453092 -password
S@fenet123

e. To Enable HAOnly: ./vtl haAdmin HAOnly -enable.

f. Check haadmin status after synchronization: ./vtl haAdmin show.

Note: After synchronization please verify kms master key copied to both partitions
registered in hsm ha group. It takes time to copy master key to another partition.

• Version 6

a. After creating partitions on (at least) two Luna appliances, and setting up Network
Trust Links between those partitions and your client, use LunaCM to configure HA
on your client:

i. Go to directory: /usr/safenet/lunaclient/bin/.

ii. Select Lunacm: ./lunacm.

b. To add members in hagroup, create a new group on the client: haGroup
creategroup -serialNumber serial number -l label -p password.

For example:

lunacm:>haGroup creategroup -serialNumber 1047740028310 -l
HAHSM3 -p S@fenet123

c. Use the hagroup addmember command to add new member into hagroup client:
hagroup addMember -group groupname -serialNumber serial
number -password password

Field descriptions:

• Label for the group (do NOT call the group just "HA"): groupname

• The serial number of the first partition OR the slot number of the first partition:
serial number

• The password for the partition: password

• Lunacm also generates and assigns a Serial Number to the group itself.

For example:

lunacm:>hagroup addMember -group rkmsgroup -serialNumber
1047749341551 -password S@fenet123

d. Use the hagroup addmember command to add another member to the HA group:
hagroup addMember -group groupname -serialNumber serial
number -password password.

hdp-security August 29, 2016

473

For example:

lunacm:>hagroup addMember -serialNumber 1047740028310 -g
rkmslgroup -password S@fenet123

e. Check group member in group using "hagroup listGroups" command: hagroup
listGroups.

f. Enable HAOnly: hagroup HAOnly -enable.

g. Enable synchronization of HAgroup Members: hagroup synchronize -group
groupname -password password -enable.

For example:

lunacm:>hagroup synchronize -group rkmslgroup -password
S@fenet123 -enable

4. After configuring HSM HA, to run Ranger KMS in HSM HA mode you must specify
the virtual group name created above in HSM_PARTITION_NAME property of
install.properties and setup and start Ranger KMS. Note: All other configuration
for HSM in install.properties of Ranger KMS as mentioned in “Installing Ranger
KMS HSM” will remain the same.

6.1.2.3. HSM Migration

If required, you can migrate from HSM to Ranger DB or Ranger DB to HSM.

6.1.2.3.1. Migrate HSM to Ranger DB

Steps

1. If running, stop the Ranger KMS server.

2. Go to the Ranger KMS directory: /usr/hdp/version/ranger-kms.

Note

DB details must be correctly configured to which KMS needs migration to
(located in the xml config file of Ranger KMS).

3. Run ./HSMMK2DB.sh provider HSM_PARTITION_NAME

For example:

./HSMMK2DB.sh LunaProvider par19

4. Enter the partition password.

5. After the migration is completed: if you want to run Ranger KMS according to the new
configuration (either with HSM enabled or disabled,) update the Ranger KMS properties
if required.

6. Start Ranger KMS.

hdp-security August 29, 2016

474

Note : After migration, when Ranger KMS is running with HSM disabled: from HSM,
clear the Master Key object from the partition if it is not required as Master Key already
being migrated to DB.

Deleting the master key is a destructive operation. If the master key is lost, there is
potential data loss - data under encryption zones cannot be recovered. Therefore, it is a
best practice to keep backups of the master key in DB as well as HSM.

6.1.2.3.2. Migrate Ranger DB to HSM

Steps

1. If running, stop the Ranger KMS server.

2. Go to the Ranger KMS directory: /usr/hdp/version/ranger-kms.

Note

DB details from which Ranger KMS needs migration must be correctly
configured (located in the xml config file of Ranger KMS).

HSM details must be the KMS HSM to which we are migrating.

3. Run: ./DBMK2HSM.sh provider HSM_PARTITION_NAME.

For example:

./DBMK2HSM.sh LunaProvider par19

4. Enter the partition password.

5. After the migration is completed: if you want to run Ranger KMS according to the new
configuration (either with HSM enabled or disabled,) update the Ranger KMS properties
if required.

6. Start Ranger KMS

Note: After migration, when Ranger KMS is running with HSM enabled: from DB table
“ranger_masterkey”, delete the Master Key row if it is not required as Master Key
already being migrated to HSM.

6.1.2.4. Optional: Clear Objects from the HSM Partition

Steps

1. SSH to the HSM Appliance Server.

For example:

ssh admin@elab6.safenet-inc.com

2. Enter Password for the HSM Appliance Server when prompted.

3. Check the Partition Objects that you want to clear and enter the password for the
partition when prompted:

hdp-security August 29, 2016

475

Partition showContents -par partition_name

For example:

partition showContents -par par14

Note

All objects listed will be destroyed during step 3.

4. Clear the objects from HMS partition: Partition clear -par partition_name

5. Enter Password for Partition when prompted.

For example:

partition clear -par par14

6.1.3. Enable Ranger KMS Audit
Ranger KMS supports audit to DB, HDFS, and Solr. Solr is well-suited for short-term auditing
and UI access (for example, one month of data accessible via quick queries in the Web UI).
HDFS is typically used for archival auditing. They are not mutually exclusive; we recommend
configuring audit to both Solr and HDFS.

First, make sure Ranger KMS logs are enabled:

1. Go to the Ambari UI: http://<gateway>:8080

2. Select ranger-kms from the service.

3. Click the Configs tab, and go to the accordion menu.

4. In the Advanced ranger-kms-audit list, set xasecure.audit.is.enabled to true.

5. Select "Audit to Solr" and/or "Audit to HDFS", depending on which database(s) you plan
to use:

6. Save the configuration and restart the Ranger KMS service.

hdp-security August 29, 2016

476

Next, check to see if the Ranger KMS Plugin is enabled:

1. Go to the Ranger UI: http://<gateway>:6080

2. Login with your keyadmin user ID and password (the defaults are keyadmin,
keyadmin). The default repository will be added under KMS service.

3. Run a test connection for the service. You should see a ‘connected successfully’ pop-up
message. If the connection is not successful, make sure that the configured user exists (in
KDC for a secure cluster).

4. Choose the Audit > Plugin tab.

5. Check whether plugins are communicating. The UI should display Http Response
code 200 for the respective plugin.

The next two subsections describe how to save audit to Solr and HDFS.

6.1.3.1. Save Audits to Solr

Note

Saving audits to Solr requires that you have already installed Solr and
configured SolrCloud.

To save audits to Solr:

1. From the Ambari dashboard, select the Ranger service. Select Configs > Advanced, then
scroll down and select Advanced ranger-admin-site. Set the following property value:

• ranger.audit.source.type = solr

2. On the Ranger Configs tab, select Ranger Audit. The SolrCloud button should be set to
ON. The SolrCloud configuration settings are loaded automatically when the SolrCloud
button is set from OFF to ON, but you can also manually update the settings.

3. Restart the Ranger service.

4. Next, to enable Ranger KMS auditing to Solr, set the following properties in the
Advanced ranger-kms-audit list:

a. Check the box next to Enable audit to solr in the Ranger KMS component.

b. Check the Audit provider summary enabled box, and make sure that
xasecure.audit.is.enabled is set to true.

c. Restart Ranger KMS.

Note

Check audit logs on Ranger UI, to make sure that they are getting through Solr:
http://RANGER_HOST_NAME:6080/index.html#!/reports/audit/
bigData or:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/using_apache_solr_for_ranger_audits.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/solr_ranger_configure_solrcloud.html

hdp-security August 29, 2016

477

For HDP Search's Solr Instance: http:<solr_host>:8983/solr/
ranger_audits

For Ambari Infra's Solr Instance: http:<solr_host>:8886/solr/
ranger_audits

6.1.3.2. Save Audits to HDFS

There are no configuration changes needed for Ranger properties.

To save Ranger KMS audits to HDFS, set the following properties in the Advanced ranger-
kms-audit list.

Note: the following configuration settings must be changed in each Plugin.

1. Check the box next to Enable Audit to HDFS in the Ranger KMS component.

2. Set the HDFS path to the path of the location in HDFS where you want to store audits:

xasecure.audit.destination.hdfs.dir = hdfs://NAMENODE_FQDN:8020/
ranger/audit

3. Check the Audit provider summary enabled box, and make sure that
xasecure.audit.is.enabled is set to true.

4. Make sure that the plugin's root user (kms) has permission to access HDFS Path
hdfs://NAMENODE_FQDN:8020/ranger/audit

5. Restart Ranger KMS.

6. Generate audit logs for the Ranger KMS.

7. (Optional) To verify audit to HDFS without waiting for the default sync delay
(approximately 24 hours), restart Ranger KMS. Ranger KMS will start writing to HDFS
after the changes are saved post-restart.

To check for audit data:

hdfs dfs -ls /ranger/audit/

To test Ranger KMS audit to HDFS, complete the following steps:

1. Under custom core-site.xml, set hadoop.proxyuser.kms.groups to “*” or to the
service user.

2. In the custom kms-site file, add hadoop.kms.proxyuser.keyadmin.users and
set its value to "*". (If you are not using keyadmin to access Ranger KMS Admin, replace
“keyadmin” with the user account used for authentication.)

3. In the custom kms-site file, add hadoop.kms.proxyuser.keyadmin.hosts and
set its value to "*". (If you are not using keyadmin to access Ranger KMS Admin, replace
“keyadmin” with the user account used for authentication.)

4. Copy the core-site.xml to the component’s class path (/etc/ranger/kms/conf)

hdp-security August 29, 2016

478

OR

link to /etc/hadoop/conf/core-site.xml under /etc/ranger/kms/conf
(ln -s /etc/hadoop/conf/core-site.xml /etc/ranger/kms/conf/core-
site.xml)

5. Verify the service user principal. (For Ranger KMS it will be the http user.)

6. Make sure that the component user has permission to access HDFS. (For Ranger KMS the
http user should also have permission.)

6.1.4. Enabling SSL for Ranger KMS
If you do not have access to Public CA-issued certificates, complete the following steps to
create and configure self-signed certificates.

Note

The following examples contain sample values (folder locations, passwords, and
filenames). Change these values according to your environment.

Considerations:

• Copy keystore/truststore files into a different location (e.g. /etc/security/
serverKeys) than the /etc/<component>/conf folders.

• Make sure JKS file names are different from each other.

• Make sure correct permissions are applied.

• Make sure all passwords are secured.

• For the test connection to be successful after enabling SSL, self-signed certificates should
be imported to the Ranger admin’s trust store (typically JDK cacerts).

• Property ranger.plugin.service.policy.rest.ssl.config.file should be
verified; for example:

ranger.plugin.kms.policy.rest.ssl.config.file ==> /etc/ranger/kms/
conf/ranger-policymgr-ssl.xml

To enable SSL:

1. Stop the Ranger KMS service:

2. Go to the Ranger KMS (and plugin) installation location, and create a self-signed
certificate:

cd /etc/ranger/kms/conf/

hdp-security August 29, 2016

479

keytool -genkey -keyalg RSA -alias rangerKMSAgent -keystore
<ranger-kms-ks> -storepass myKeyFilePassword -validity 360 -
keysize 2048

chown kms:kms <ranger-kms-ks>

chmod 400 <ranger-kms-ks>

where

<ranger-kms-ks> is the name of the Ranger KMS keystore (for example, ranger-
plugin-keystore.jks)

3. Provide an identifiable string in response to the question "What is your first and last
name?"

Important: In case multiple servers need to communicate with Ranger admin for
downloading policies for the same service/repository, make sure to use the repo name
or a common string across all nodes. Remember exactly what you entered, because this
value will be required for the Common Name for Certificate field on the edit repository
page in the policy manager UI.

To create the keystore, provide answers to the subsequent questions. Note: Press enter
when prompted for a password.

4. Create a truststore for the Ranger KMS plugin, and add the public key of admin as a
trusted entry into the truststore:

cd /etc/ranger/kms/conf/

keytool -export -keystore <ranger-admin-ks> -alias rangeradmin -
file <cert-filename>

keytool -import -file <cert-filename> -alias rangeradmintrust -
keystore <ranger-kms-ts> -storepass changeit

chown kms:kms <ranger-kms-ts>

chmod 400 <ranger-kms-ts>

where

<ranger-admin-ks> is the location of the Ranger Admin keystore (for example, /
etc/ranger/admin/conf/ranger-admin-keystore.jks)

<ranger-kms-ts> is the name of the Ranger KMS plugin trustore (for example,
ranger-plugin-truststore.jks)

<cert-filename> is the name of the Ranger Admin certificate file (for example,
ranger-admin-trust.cer)

Note: Press enter when prompted for a password.

hdp-security August 29, 2016

480

5. Change the policy manager URL to point to HTTPS, and specify the keystore & truststore
in ews/webapp/WEB-INF/classes/conf/ranger-policymgr-ssl.xml.

a. In xasecure.policymgr.clientssl.keystore, provide the location for the
keystore that you created in the previous step.

b. In xasecure.policymgr.clientssl.keystore.password, provide the
password for the keystore (myKeyFilePassword).

c. In xasecure.policymgr.clientssl.truststore, provide the location for the
truststore that you created in the previous step.

d. In xasecure.policymgr.clientssl.truststore.password, provide the
password for the truststore (changeit).

6. Add the plugin's self-signed cert into Admin's trustedCACerts:

cd /etc/ranger/admin/conf

keytool -export -keystore <ranger-kms-ks> -alias rangerKMSAgent
-file <cert-filename> -storepass myKeyFilePassword

keytool -import -file <cert-filename> -alias rangerkmsAgentTrust
-keystore <ranger-admin-ts> -storepass changeit

where

<ranger-kms-ks> is the path to the Ranger KMS keystore (for example, /etc/
ranger/kms/conf/ranger-plugin-keystore.jks)

<cert-filename> is the name of the certificate file (for example, ranger-
kmsAgent-trust.cer)

<ranger-admin-ts> is the name of the Ranger Admin truststore file (for example,
the JDK cacerts file)

7. Log into the Policy Manager UI (as keyadmin user) and click on the Edit button of your
KMS repository. Provide the CN name of the keystore for Common Name For Certificate
(commonNameForCertificate), and save it. This property is not added by default.

hdp-security August 29, 2016

481

Configuring the Ranger KMS Server

1. Go to the Ranger KMS config location and create a self-signed certificate:

cd /etc/ranger/kms/conf

keytool -genkey -keyalg RSA -alias rangerkms -keystore <ranger-
kms-ks> -storepass rangerkms -validity 360 -keysize 2048

chown kms:kms ranger-kms-keystore.jks

chmod 400 ranger-kms-keystore.jks

where

<ranger-kms-ks> is the name of the Ranger KMS keystore (for example, ranger-
plugin-keystore.jks)

Provide an identifiable string in response to the question "What is your first and last
name?" To create the keystore, provide answers to all subsequent questions to create
the keystore Note: Press enter when prompted for a password.

2. Add the following properties and values to the Custom ranger-kms-site list:

hdp-security August 29, 2016

482

3. Update the value of kms_port (in Advanced kms_env) to the
ranger.service.https.port value.

4. Save your changes and start Ranger KMS.

5. In your browser (or from Curl) when you access the Ranger KMS UI using the HTTPS
protocol on the ranger.service.https.port listed in Ambari, the browser should
respond that it does not trust the site. Proceed, and you should be able to access Ranger
KMS on HTTPS with the self-signed cert that you just created.

6. Export the Ranger KMS certificate:

cd /usr/hdp/<version>/ranger-kms/conf

keytool -export -keystore <ranger-kms-ks> -alias rangerkms -file
<cert-filename>

where

<ranger-kms-ks> is the name of the Ranger KMS keystore (for example, ranger-
kms-keystore.jks)

<cert-filename> is the name of the certificate file (for example, ranger-kms-
trust.cer)

7. Import the Ranger KMS certificate into the Ranger admin truststore:

keytool -import -file <cert-filename> -alias rangerkms -keystore
<ranger-admin-ts> -storepass changeit

where

hdp-security August 29, 2016

483

<cert-filename> is the name of the certificate file (for example, ranger-kms-
trust.cer)

<ranger-admin-ts> is the name of the Ranger Admin truststore file (for example,
JDK cacerts)

8. Import the Ranger KMS certificate into the Hadoop client truststore:

keytool -import -file <cert-filename> -alias rangerkms -keystore
<ts-filename> -storepass bigdata

where

<cert-filename> is the name of the certificate file (for example, ranger-kms-
trust.cer)

<ts-filename> is the name of Hadoop client truststore file (for example, /etc/
security/clientKeys/all.jks)

9. Restart Ranger Admin and Ranger KMS.

10.Now in the Policy Manager UI, Audit --> Plugin tab, you should see an entry for your
service name with HTTP Response Code = 200.

6.1.5. Install Multiple Ranger KMS
Multiple services can be set up for high availability of Ranger KMS. HDFS interacts with the
active process.

Prerequisite: an instance with more than one node.

To install Ranger KMS on multiple nodes:

1. First install Ranger KMS on a single node (see Installing the Ranger Key Management
Service).

2. Next, add the Ranger KMS service to another node.

In the Ambari Web UI for the additional node, go to Ranger KMS service # Summary #
Service Actions # Add Ranger KMS server.

3. After adding Ranger KMS server, Ambari will show a pop-up message.

4. Press OK. Ambari will modify two HDFS properties,
hadoop.security.key.provider.path and
dfs.encryption.key.provider.uri.

hdp-security August 29, 2016

484

5. Restart the HDFS service:

6. For the Ranger KMS service, go to the Advanced kms-site list and change the following
property values:

hadoop.kms.cache.enable=false

hadoop.kms.cache.timeout.ms=0

hadoop.kms.current.key.cache.timeout.ms=0

hadoop.kms.authentication.signer.secret.provider=zookeeper

hadoop.kms.authentication.signer.secret.provider.zookeeper.connection.string={internal
ip of first node}:2181,{internal ip of second node}:2181, ...

hadoop.kms.authentication.signer.secret.provider.zookeeper.auth.type=none

7. Save your configuration changes and restart the Ranger KMS service.

Next, check connectivity from Ranger admin for the newly-added Ranger KMS server:

1. Go to the Ranger UI: http://<gateway>:6080

2. Login with your keyadmin user ID and password (the defaults are keyadmin,
keyadmin; these should be changed as soon as possible after installation). The default
repository will be added under Ranger KMS service.

3. Under Config properties of the Ranger KMS URL, add the newly added Ranger KMS
server FQDN. For example:

Previous Ranger KMS URL = kms://http@<internal host name>:9292/kms

New Ranger KMS URL = kms://http@<internal host name1>;<internal
host name2>;...:9292/kms

4. Run a test connection for the service. You should see a ‘connected successfully’ message.

5. Choose the Audit > Plugin tab.

6. Check whether plugins are communicating. The UI should display HTTP Response Code =
200 for the respective plugin.

6.1.6. Using the Ranger Key Management Service
Ranger KMS can be accessed at the Ranger admin URL, http://<hostname>:6080.
Note, however, that the login user for Ranger KMS is different than that for Ranger.
Logging on as the Ranger KMS admin user leads to a different set of screens.

hdp-security August 29, 2016

485

Role Separation

By default, Ranger admin uses a different admin user (keyadmin) to manage access
policies and keys for Ranger KMS.

The person accessing Ranger KMS via the keyadmin user should be a different person than
the administrator who works with regular Ranger access policies. This approach separates
encryption work (encryption keys and policies) from Hadoop cluster management and
access policy management.

6.1.6.1. Accessing the Ranger KMS Web UI

To access Ranger KMS, log in as user keyadmin, password keyadmin.

Important

Change the password after you log in.

After logging in, you will see the Service Manager screen. To view or edit Ranger KMS
repository properties, click on the edit button next to the repository name:

You will see a list of service details and config properties for the repository:

hdp-security August 29, 2016

486

6.1.6.2. Listing and Creating Keys

To list existing keys:

1. Choose the Encryption tab at the top of the Ranger Web UI screen.

2. Select the Ranger KMS service from the drop-down list.

hdp-security August 29, 2016

487

To create a new key:

1. Click on "Add New Key".

2. Add a valid key name.

3. Select the cipher name. Ranger supports AES/CTR/NoPadding as the cipher suite.

4. Specify the key length, 128 or 256 bits.

5. Add other attributes as needed, and then save the key.

hdp-security August 29, 2016

488

6.1.6.3. Rolling Over an Existing Key

Rolling over (or "rotating") a key retains the same key name, but the key will have a
different version. This operation re-encrypts existing file keys, but does not re-encrypt the
actual file. Keys can be rolled over at any time.

After a key is rotated in Ranger KMS, new files will have the file key encrypted by the new
master key for the encryption zone.

To rotate a key, click the edit button next to the key name in the list of keys, as shown in
the following screen shot:

Edit the key information, and then press Save.

When asked to confirm the rollover, click "OK":

6.1.6.4. Deleting a Key

Warning

Deleting a key associated with an existing encryption zone will result in data
loss.

To delete an existing key:

1. Choose the Encryption tab at the top of the Ranger Web UI screen.

2. Select Ranger KMS service from the drop-down list.

3. Click on the delete symbol next to the key.

4. You will see a confirmation pop-up window; confirm or cancel.

hdp-security August 29, 2016

489

6.1.7. Ranger KMS Properties

This chapter describes configuration properties for the Ranger Key Management Service
(KMS).

Table 6.1. Properties in Advanced dbks-site Menu (dbks-site.xml)

Property Name Default Value Description

ranger.ks.masterkey.credential.alias ranger.ks.masterkey.password Credential alias used for masterkey.

ranger.ks.jpa.jdbc.user rangerkms Database username used for
operation.

ranger.ks.jpa.jdbc.url jdbc:log4jdbc:mysql://localhost:3306/
rangerkms

JDBC connection URL for database.

ranger.ks.jpa.jdbc.password _ (default it’s encrypted) Database user's password.

ranger.ks.jpa.jdbc.driver net.sf.log4jdbc.DriverSpy Driver used for database.

ranger.ks.jpa.jdbc.dialect org.eclipse.persistence.platform.
database.MySQLPlatform

Dialect used for database.

ranger.ks.jpa.jdbc.credential.
provider.path

/etc/ranger/kms/rangerkms.jceks Credential provider path.

ranger.ks.jpa.jdbc.credential.alias ranger.ks.jdbc.password Credential alias used for password.

ranger.ks.jdbc.sqlconnectorjar /usr/share/java/mysql-connector-
java.jar

Driver jar used for database.

ranger.db.encrypt.key.password _ (Default; it’s encrypted) Password used for encrypting the
Master Key.

hadoop.kms.blacklist.DECRYPT_EEK hdfs Blacklist for decrypt EncryptedKey
CryptoExtension operations.
This can have multiple user IDs
in a comma separated list. e.g.
stormuser,yarn,hdfs.

Table 6.2. Properties in Advanced kms-env

Property Name Default Value Description

Kms User kms Ranger KMS process will be started
using this user.

Kms Group kms Ranger KMS process will be started
using this group.

LD library path LD library path (basically used when
the db flavor is SQLA). Example: /opt/
sqlanywhere17/lib64

kms_port 9292 Port used by Ranger KMS.

kms_log_dir /var/log/ranger/kms Directory where the Ranger KMS log
will be generated.

Table 6.3. Properties in Advanced kms-properties (install.properties)

Property Name Default Value Description

db_user rangerkms Database username used for the
operation.

db_root_user Database root username. Default is
blank. Specify the root user.

db_root_password Database root user’s password.
Default is blank. Specify the root user
password.

hdp-security August 29, 2016

490

Property Name Default Value Description

db_password Database user’s password for the
operation. Default is blank. Specify the
Ranger KMS database password.

db_name rangerkms Database name for Ranger KMS.

db_host <FQDN of instance where the Ranger
KMS is installed>

Hostname where the database is
installed. Note: Check the hostname
for DB and change it accordingly.

SQL_CONNECTOR_JAR /usr/share/java/mysql-connector.jar Location of DB client library.

REPOSITORY_CONFIG_USERNAME keyadmin User used in default repo for Ranger
KMS.

REPOSITORY_CONFIG_PASSWORD keyadmin Password for user used in default repo
for Ranger KMS.

KMS_MASTER_KEY_PASSWD Password used for encrypting the
Master Key. Default value is blank. Set
the master key to any string.

DB_FLAVOR MYSQL Database flavor used for Ranger KMS.
Supported values: MYSQL, SQLA,
ORACLE, POSTGRES, MSSQL

Table 6.4. Properties in Advanced kms-site (kms-site.xml)

Property Name Default Value Description

hadoop.security.keystore.
JavaKeyStoreProvider.password

none If using the JavaKeyStoreProvide, the
password for the keystore file.

hadoop.kms.security.
authorization.manager

org.apache.ranger.
authorization.kms.
authorizer.RangerKmsAuthorizer

Ranger KMS security authorizer.

hadoop.kms.key.provider.uri dbks://http@localhost:9292/kms URI of the backing KeyProvider for the
KMS.

hadoop.kms.current.key.
cache.timeout.ms

30000 Expiry time for the KMS current key
cache, in milliseconds. This affects
getCurrentKey operations.

hadoop.kms.cache.timeout.ms 600000 Expiry time for the KMS key
version and key metadata cache, in
milliseconds. This affects getKeyVersion
and getMetadata.

hadoop.kms.cache.enable true Whether the KMS will act as a cache
for the backing KeyProvider. When
the cache is enabled, operations like
getKeyVersion, getMetadata, and
getCurrentKey will sometimes return
cached data without consulting the
backing KeyProvider. Cached values
are flushed when keys are deleted or
modified.

Note: This setting is beneficial if Single
KMS and single mode are used. If this
is set to true when multiple KMSs are
used, or when the key operations
are from different modes (Ranger UI,
CURL, or hadoop command), it might
cause inconsistency.

hadoop.kms.authentication.type simple Authentication type for the Ranger
KMS. Can be either “simple” or
“kerberos”.

hdp-security August 29, 2016

491

Property Name Default Value Description

hadoop.kms.authentication.signer.
secret.provider.zookeeper.path

/hadoop-kms/hadoop-auth-signature-
secret

The ZooKeeper ZNode path where the
Ranger KMS instances will store and
retrieve the secret from.

hadoop.kms.authentication.
signer.secret.provider.
zookeeper.kerberos.principal

kms/#HOSTNAME# The Kerberos service principal used to
connect to ZooKeeper

hadoop.kms.authentication.
signer.secret.provider.
zookeeper.kerberos.keytab

/etc/hadoop/conf/kms.keytab The absolute path for the Kerberos
keytab with the credentials to connect
to ZooKeeper.

hadoop.kms.authentication.
signer.secret.provider.
zookeeper.connection.string

#HOSTNAME#:#PORT#,... The ZooKeeper connection string, a
list of hostnames and port comma
separated. For example:

<FQDN for first
instance>:2181,<FQDN for
second instance>:2181

hadoop.kms.authentication.
signer.secret.provider.
zookeeper.auth.type

kerberos ZooKeeper authentication type: 'none'
or 'sasl' (Kerberos)

hadoop.kms.authentication. signer.
secret.provider

random Indicates how the secret to sign
authentication cookies will be stored.
Options are 'random' (default),
'string', and zookeeper'. If you have
multiple Ranger KMS instances, specify
'zookeeper'.

hadoop.kms.authentication.
kerberos.principal

HTTP/localhost The Kerberos principal to use for the
HTTP endpoint. The principal must
start with 'HTTP/' as per the Kerberos
HTTP SPNEGO specification.

hadoop.kms.authentication.
kerberos.name.rules

DEFAULT Rules used to resolve Kerberos principal
names.

hadoop.kms.authentication.
kerberos.keytab

${user.home}/kms.keytab Path to the keytab with credentials for
the configured Kerberos principal.

hadoop.kms.audit.
aggregation.window.ms

10000 Specified in ms. Duplicate audit log
events within this aggregation window
are quashed to reduce log traffic. A
single message for aggregated events
is printed at the end of the window,
along with a count of the number of
aggregated events.

Table 6.5. Properties in Advanced ranger-kms-audit (ranger-kms-audit.xml)

Property Name Default Value Description

Audit provider summary enabled Enable audit provider summary.

xasecure.audit.is.enabled true Enable audit.

xasecure.audit.destination.
solr.zookeepers

none Specify solr zookeeper string.

xasecure.audit.destination.solr.urls {{ranger_audit_solr_urls}} Specify solr URL.

Note: In Ambari this value is populated
from the Ranger Admin by default.

xasecure.audit.destination.
solr.batch.filespool.dir

/var/log/ranger/kms/audit/solr/spool Directory for solr audit spool.

Audit to SOLR Enable audit to solr.

xasecure.audit.destination.hdfs.dir hdfs://NAMENODE_HOST:8020/
ranger/audit

HDFS directory to write audit.

hdp-security August 29, 2016

492

Property Name Default Value Description

Note: Make sure the service user has
required permissions.

xasecure.audit.destination.
hdfs.batch.filespool.dir

/var/log/ranger/kms/audit/hdfs/
spool

Directory for HDFS audit spool.

Audit to HDFS Enable hdfs audit.

xasecure.audit.destination.db.user {{xa_audit_db_user}} xa audit db user

Note: In Ambari this value is populated
from the Ranger Admin by default.

xasecure.audit.destination.
db.password

encrypted (it’s in encrypted format) xa audit db user password

Note: In Ambari this value is populated
from the Ranger Admin by default.

xasecure.audit.destination.db.jdbc.url {{audit_jdbc_url}} Database JDBC URL for xa audit.

Note: In Ambari the value for this is
populated from the Ranger Admin by
default.

xasecure.audit.destination.
db.jdbc.driver

{{jdbc_driver}} Database JDBC driver.

Note: In Ambari this value is populated
from the Ranger Admin by default.

xasecure.audit.destination.
db.batch.filespool.dir

/var/log/ranger/kms/audit/db/spool Directory for database audit spool.

Audit to DB Enable audit to database.

xasecure.audit.credential.provider.file jceks://file{{credential_file}} Credential provider file.

Table 6.6. Properties in Advanced ranger-kms-policymgr-ssl

Property Name Default Value Description

xasecure.policymgr.clientssl.
truststore.password

changeit Password for the truststore.

xasecure.policymgr.clientssl. truststore /usr/hdp/current/ranger-kms/conf/
ranger-plugin-truststore.jks

jks file for truststore

xasecure.policymgr.clientssl.
keystore.password

myKeyFilePassword Password for keystore.

xasecure.policymgr.clientssl.
keystore.credential.file

jceks://file{{credential_file}} Java keystore credential file.

xasecure.policymgr.clientssl. keystore /usr/hdp/current/ranger-kms/conf/
ranger-plugin-keystore.jks

Java keystore file.

xasecure.policymgr.clientssl.
truststore.credential.file

jceks://file{{credential_file}} Java truststore file.

Table 6.7. Properties in Advanced ranger-kms-security

Property Name Default Value Description

ranger.plugin.kms.service.name <default name for Ranger KMS Repo> Name of the Ranger service containing
policies for the KMS instance. Note:
In Ambari the default value is
<clusterName>_kms.

ranger.plugin.kms.policy.source.impl org.apache.ranger.admin.client.
RangerAdminRESTClient

Class to reterive policies from the
source.

ranger.plugin.kms.policy.rest.url {{policymgr_mgr_url}} URL for Ranger Admin.

hdp-security August 29, 2016

493

Property Name Default Value Description

ranger.plugin.kms.policy.rest.
ssl.config.file

/etc/ranger/kms/conf/ranger-
policymgr-ssl.xml

Path to the file containing SSL details
for contacting the Ranger Admin.

ranger.plugin.kms.policy.
pollIntervalMs

30000 Time interval to poll for changes in
policies.

ranger.plugin.kms.policy.cache.dir /etc/ranger/{{repo_name}}/
policycache

Directory where Ranger policies are
cached after successful retrieval from
the source.

6.1.8. Troubleshooting Ranger KMS

Table 6.8. Troubleshooting Suggestions

Issue Action

Not able to install Ranger KMS Check to see if ranger admin is running, verify DB.

Not able to start Ranger KMS Check the Ranger KMS log. If there is a message about
illegal key size, make sure unlimited strength JCE is
available.

Hadoop key commands fail Make sure Ranger KMS client properties are updated in
hdfs config.

Not able to create keys from Ranger UI Make sure that the keyadmin user (or any custom user)
configured in the KMS repository is added to proxy
properties in the custom kms-site.xml file.

6.2. HDFS "Data at Rest" Encryption
Encryption is a form of data security that is required in industries such as healthcare and the
payment card industry. Hadoop provides several ways to encrypt stored data.

• The lowest level of encryption is volume encryption, which protects data after physical
theft or accidental loss of a disk volume. The entire volume is encrypted; this approach
does not support finer-grained encryption of specific files or directories. In addition,
volume encryption does not protect against viruses or other attacks that occur while a
system is running.

• Application level encryption (encryption within an application running on top of
Hadoop) supports a higher level of granularity and prevents "rogue admin" access, but
adds a layer of complexity to the application architecture.

• A third approach, HDFS data at rest encryption, encrypts selected files and directories
stored ("at rest") in HDFS. This approach uses specially designated HDFS directories
known as "encryption zones."

This chapter focuses on the third approach, HDFS data at rest encryption. The chapter is
intended as an introductory quick start to HDFS data at rest encryption. Content will be
updated regularly.

6.2.1. HDFS Encryption Overview

HDFS data at rest encryption implements end-to-end encryption of data read from and
written to HDFS. End-to-end encryption means that data is encrypted and decrypted only
by the client. HDFS does not have access to unencrypted data or keys.

hdp-security August 29, 2016

494

HDFS encryption involves several elements:

• Encryption key: A new level of permission-based access protection, in addition to
standard HDFS permissions.

• HDFS encryption zone: A special HDFS directory within which all data is encrypted upon
write, and decrypted upon read.

• Each encryption zone is associated with an encryption key that is specified when the
zone is created.

• Each file within an encryption zone has a unique encryption key, called the "data
encryption key" (DEK).

• HDFS does not have access to DEKs. HDFS DataNodes only see a stream of encrypted
bytes. HDFS stores "encrypted data encryption keys" (EDEKs) as part of the file's
metadata on the NameNode.

• Clients decrypt an EDEK and use the associated DEK to encrypt and decrypt data
during write and read operations.

• Ranger Key Management Service (Ranger KMS): An open source key management
service based on Hadoop’s KeyProvider API.

For HDFS encryption, the Ranger KMS has three basic responsibilities:

• Provide access to stored encryption zone keys.

• Generate and manage encryption zone keys, and create encrypted data keys to be
stored in Hadoop.

• Audit all access events in Ranger KMS.

Note: This chapter is intended for security administrators who are interested in
configuring and using HDFS encryption. For more information about Ranger KMS, see
the Ranger KMS Administration Guide.

hdp-security August 29, 2016

495

Figure 6.1. HDFS Encryption Components

Role Separation

Access to the key encryption/decryption process is typically restricted to end users. This
means that encrypted keys can be safely stored and handled by HDFS, because the HDFS
admin user does not have access to them.

This role separation requires two types of HDFS administrator accounts:

• HDFS service user: the system-level account associated with HDFS (hdfs by default).

• HDFS admin user: an account in the hdfs supergroup, which is used by HDFS
administrators to configure and manage HDFS.

Important

For clear segregation of duties, we recommend that you restrict use of the
hdfs account to system/interprocess use. Do not provide its password to
physical users. A (human) user who administers HDFS should only access HDFS

hdp-security August 29, 2016

496

through an admin user account created specifically for that purpose. For more
information about creating an HDFS admin user, see Creating an HDFS Admin
User.

Other services may require a separate admin account for clusters with HDFS encryption
zones. For service-specific information, see Configuring HDP Services for HDFS Encryption.

6.2.2. Configuring and Starting the Ranger Key
Management Service (Ranger KMS)

In a typical environment, a security administrator will set up the Ranger Key Management
Service. For information about installing and configuring the Ranger KMS, see the Ranger
KMS Administration Guide.

6.2.3. Configuring and Using HDFS Data at Rest Encryption
After the Ranger KMS has been set up and the NameNode and HDFS clients have
been configured, an HDFS administrator can use the hadoop key and hdfs crypto
command-line tools to create encryption keys and set up new encryption zones.

The overall workflow is as follows:

1. Create an HDFS encryption zone key that will be used to encrypt the file-level data
encryption key for every file in the encryption zone. This key is stored and managed by
Ranger KMS.

2. Create a new HDFS folder. Specify required permissions, owner, and group for the
folder.

3. Using the new encryption zone key, designate the folder as an encryption zone.

4. Configure client access. The user associated with the client application needs sufficient
permission to access encrypted data. In an encryption zone, the user needs file/directory
access (through Posix permissions or Ranger access control), as well as access for
certain key operations. To set up ACLs for key-related operations, see the Ranger KMS
Administration Guide.

After permissions are set, Java API clients and HDFS applications with sufficient HDFS and
Ranger KMS access privileges can write and read to/from files in the encryption zone.

Important

You should create a separate HDFS Admin user account for HDFS Data at Rest
Encryption.

6.2.3.1. Prepare the Environment

HDP supports hardware acceleration with Advanced Encryption Standard New Instructions
(AES-NI). Compared with the software implementation of AES, hardware acceleration
offers an order of magnitude faster encryption/decryption.

To use AES-NI optimization you need CPU and library support, described in the following
subsections.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/configuring-encryption-for-hdp-services.html

hdp-security August 29, 2016

497

6.2.3.1.1. CPU Support for AES-NI optimization

AES-NI optimization requires an extended CPU instruction set for AES hardware
acceleration.

There are several ways to check for this; for example:

$ cat /proc/cpuinfo | grep aes

Look for output with flags and 'aes'.

6.2.3.1.2. Library Support for AES-NI optimization

You will need a version of the libcrypto.so library that supports hardware acceleration,
such as OpenSSL 1.0.1e. (Many OS versions have an older version of the library that does
not support AES-NI.)

A version of the libcrypto.so library with AES-NI support must be installed on HDFS
cluster nodes and MapReduce client hosts -- that is, any host from which you issue HDFS or
MapReduce requests. The following instructions describe how to install and configure the
libcrypto.so library.

RHEL/CentOS 6.5 or later

On HDP cluster nodes, the installed version of libcrypto.so supports AES-NI, but you
will need to make sure that the symbolic link exists:

$ sudo ln -s /usr/lib64/libcrypto.so.1.0.1e /usr/lib64/
libcrypto.so

On MapReduce client hosts, install the openssl-devel package:

$ sudo yum install openssl-devel

6.2.3.1.3. Verifying AES-NI Support

To verify that a client host is ready to use the AES-NI instruction set optimization for HDFS
encryption, use the following command:

hadoop checknative

You should see a response similar to the following:

15/08/12 13:48:39 INFO bzip2.Bzip2Factory: Successfully loaded & initialized
 native-bzip2 library system-native
14/12/12 13:48:39 INFO zlib.ZlibFactory: Successfully loaded & initialized
 native-zlib library
Native library checking:
hadoop: true /usr/lib/hadoop/lib/native/libhadoop.so.1.0.0
zlib: true /lib64/libz.so.1
snappy: true /usr/lib64/libsnappy.so.1
lz4: true revision:99
bzip2: true /lib64/libbz2.so.1
openssl: true /usr/lib64/libcrypto.so

hdp-security August 29, 2016

498

If you see true in the openssl row, Hadoop has detected the right version of
libcrypto.so and optimization will work.

If you see false in this row, you do not have the correct version.

6.2.3.2. Create an Encryption Key

Create a "master" encryption key for the new encryption zone. Each key will be specific to
an encryption zone.

Ranger supports AES/CTR/NoPadding as the cipher suite. (The associated property is listed
under HDFS -> Configs in the Advanced hdfs-site list.)

Key size can be 128 or 256 bits.

Recommendation: create a new superuser for key management. In the following examples,
superuser encr creates the key. This separates the data access role from the encryption
role, strengthening security.

Create an Encryption Key using Ranger KMS (Recommended)

In the Ranger Web UI screen:

1. Choose the Encryption tab at the top of the screen.

2. Select the KMS service from the drop-down list.

To create a new key:

1. Click on "Add New Key":

2. Add a valid key name.

hdp-security August 29, 2016

499

3. Select the cipher name. Ranger supports AES/CTR/NoPadding as the cipher suite.

4. Specify the key length, 128 or 256 bits.

5. Add other attributes as needed, and then save the key.

For information about rolling over and deleting keys, see Using the Ranger Key
Management Service.

Warning

Do not delete an encryption key while it is in use for an encryption zone. This
will result in loss of access to data in that zone.

Create an Encryption Key using the CLI

The full syntax of the hadoop key create command is as follows:

[create <keyname> [-cipher <cipher>]
[-size <size>]
[-description <description>]
[-attr <attribute=value>]
[-provider <provider>]
[-help]]

Example:

su - encr

hadoop key create <key_name> [-size <number-of-bits>]

The default key size is 128 bits. The optional -size parameter supports 256-bit keys, and
requires the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy File
on all hosts in the cluster. For installation information, see Installing the JCE.

Example:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/_installing_the_jce.html

hdp-security August 29, 2016

500

su - encr

hadoop key create key1

To verify creation of the key, list the metadata associated with the current user:

hadoop key list -metadata

For information about rolling over and deleting keys, see Using the Ranger Key
Management Service.

Warning

Do not delete an encryption key while it is in use for an encryption zone. This
will result in loss of access to data in that zone.

6.2.3.3. Create an Encryption Zone

Each encryption zone must be defined using an empty directory and an existing encryption
key. An encryption zone cannot be created on top of a directory that already contains
data.

Recommendation: use one unique key for each encryption zone.

Use the crypto createZone command to create a new encryption zone. The syntax is:

-createZone -keyName <keyName> -path <path>

where:

• -keyName: specifies the name of the key to use for the encryption zone.

• -path specifies the path of the encryption zone to be created. It must be an empty
directory.

Note

The hdfs service account can create zones, but cannot write data unless the
account has sufficient permission.

Recommendation: Define a separate user account for the HDFS administrator,
and do not provide access to keys for this user in Ranger KMS.

Steps:

1. As HDFS administrator, create a new empty directory. For example:

hdfs dfs -mkdir /zone_encr

2. Using the encryption key, make the directory an encryption zone. For example:

hdfs crypto -createZone -keyName key1 -path /zone_encr

When finished, the NameNode will recognize the folder as an HDFS encryption zone.

hdp-security August 29, 2016

501

3. To verify creation of the new encryption zone, run the crypto -listZones command
as an HDFS administrator:

-listZones

You should see the encryption zone and its key. For example:

$ hdfs crypto -listZones
/zone-encr key1

Note

The following property (in the hdfs-default.xml file) causes listZone
requests to be batched. This improves NameNode performance. The
property specifies the maximum number of zones that will be returned in a
batch.

dfs.namenode.list.encryption.zones.num.responses

The default is 100.

To remove an encryption zone, delete the root directory of the zone. For example:

hdfs dfs -rm -R /zone_encr

6.2.3.4. Copy Files from/to an Encryption Zone

To copy existing files into an encryption zone, use a tool like distcp.

Note: for separation of administrative roles, do not use the hdfs user to create encryption
zones. Instead, designate another administrative account for creating encryption keys and
zones. See Creating an HDFS Admin User for more information.

The files will be encrypted using a file-level key generated by the Ranger Key Management
Service.

DistCp Considerations

DistCp is commonly used to replicate data between clusters for backup and disaster
recovery purposes. This operation is typically performed by the cluster administrator, via an
HDFS superuser account.

To retain this workflow when using HDFS encryption, a new virtual path prefix has been
introduced, /.reserved/raw/. This virtual path gives super users direct access to the
underlying encrypted block data in the file system, allowing super users to distcp data
without requiring access to encryption keys. This also avoids the overhead of decrypting
and re-encrypting data. The source and destination data will be byte-for-byte identical,
which would not be true if the data were re-encrypted with a new EDEK.

Warning

When using /.reserved/raw/ to distcp encrypted data, make sure you
preserve extended attributes with the -px flag. This is necessary because

hdp-security August 29, 2016

502

encrypted attributes such as the EDEK are exposed through extended
attributes; they must be preserved to be able to decrypt the file. For example:

sudo -u encr hadoop distcp -px hdfs:/cluster1-
namenode:50070/.reserved/raw/apps/enczone hdfs:/cluster2-
namenode:50070/.reserved/raw/apps/enczone

This means that if the distcp operation is initiated at or above the encryption
zone root, it will automatically create a new encryption zone at the destination
(if one does not already exist).

Recommendation: To avoid potential mishaps, first create identical encryption
zones on the destination cluster.

Copying between encrypted and unencrypted locations

By default, distcp compares file system checksums to verify that data was successfully
copied to the destination.

When copying between an unencrypted and encrypted location, file system checksums
will not match because the underlying block data is different. In this case, specify the -
skipcrccheck and -update flags to avoid verifying checksums.

6.2.3.5. Read and Write Files from/to an Encryption Zone

Clients and HDFS applications with sufficient HDFS and Ranger KMS permissions can read
and write files from/to an encryption zone.

Overview of the client write process:

1. The client writes to the encryption zone.

2. The NameNode checks to make sure that the client has sufficient write access
permissions. If so, the NameNode asks Ranger KMS to create a file-level key, encrypted
with the encryption zone master key.

3. The Namenode stores the file-level encrypted data encryption key (EDEK) generated by
Ranger KMS as part of the file's metadata, and returns the EDEK to the client.

4. The client asks Ranger KMS to decode the EDEK (to DEK), and uses the DEK to write
encrypted data. Ranger KMS checks for permissions for the user before decrypting EDEK
and producing the DEK for the client.

Overview of the client read process:

1. The client issues a read request for a file in an encryption zone.

2. The NameNode checks to make sure that the client has sufficient read access
permissions. If so, the NameNode returns the file's EDEK and the encryption zone key
version that was used to encrypt the EDEK.

3. The client asks Ranger KMS to decrypt the EDEK. Ranger KMS checks for permissions to
decrypt EDEK for the end user.

4. Ranger KMS decrypts and returns the (unencrypted) data encryption key (DEK).

hdp-security August 29, 2016

503

5. The client uses the DEK to decrypt and read the file.

The preceding steps take place through internal interactions between the DFSClient, the
NameNode, and Ranger KMS.

In the following example, the /zone_encr directory is an encrypted zone in HDFS.

To verify this, use the crypto -listZones command (as an HDFS administrator). This
command lists the root path and the zone key for the encryption zone. For example:

hdfs crypto -listZones
/zone_encr key1

Additionally, the /zone_encr directory has been set up for read/write access by the hive
user:

hdfs dfs -ls /
 …
drwxr-x--- - hive hive 0 2015-01-11 23:12 /zone_encr

The hive user can, therefore, write data to the directory.

The following examples use the copyFromLocal command to move a local file into HDFS.

[hive@blue ~]# hdfs dfs -copyFromLocal web.log /zone_encr
[hive@blue ~]# hdfs dfs -ls /zone_encr
Found 1 items
-rw-r--r-- 1 hive hive 1310 2015-01-11 23:28 /zone_encr/web.log

The hive user can read data from the directory, and can verify that the file loaded into
HDFS is readable in its unencrypted form.

[hive@blue ~]# hdfs dfs -copyToLocal /zone_encr/web.log read.log
[hive@blue ~]# diff web.log read.log

Note

For more information about accessing encrypted files from Hive and other
components, see Configuring HDP Services for HDFS Encryption.

Users without access to KMS keys will be able to see file names (via the -ls command), but
they will not be able to write data or read from the encrypted zone. For example, the hdfs
user lacks sufficient permissions, and cannot access the data in /zone_encr:

[hdfs@blue ~]# hdfs dfs -copyFromLocal install.log /zone_encr
copyFromLocal: Permission denied: user=hdfs, access=EXECUTE, inode="/
zone_encr":hive:hive:drwxr-x---

[hdfs@blue ~]# hdfs dfs -copyToLocal /zone_encr/web.log read.log
copyToLocal: Permission denied: user=hdfs, access=EXECUTE, inode="/
zone_encr":hive:hive:drwxr-x---

6.2.3.6. Delete Files from an Encryption Zone with Trash Enabled

The trash location for encrypted HDFS files is different than the default trash location for
unencrypted files (/user/$USER/.Trash/Current/OriginalPathToDeletedFile).

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/configuring-encryption-for-hdp-services.html

hdp-security August 29, 2016

504

When trash is enabled and an encrypted file is deleted, the file is moved to the .Trash
subdirectory under the root of the encryption zone as /EncryptionZoneRoot/.Trash/
$USER/Current/OriginalPathToDeletedFile. The file remains encrypted without
additional decryption/re-encryption overhead during the move to trash. The move
operation preserves the name of the user who executes the deletion, and the full path of
the deleted file.

For example, if user hdp-admin deletes file /zone_name/file1 using the following
command:

 hdfs dfs -rm /zone_name/file1

file1 will remain encrypted, and it will be moved to the following location within the
encryption zone:

 /zone_name/.Trash/hdp-admin/Current/zone_name/file1

A trash checkpoint will be created for the .Trash subdirectory in each
encryption zone. Checkpoints will be deleted/created according to the value of
fs.trash.checkpoint.interval (number of minutes between trash checkpoints). A
checkpoint for this example would be:

 /zone_name/.Trash/hdp-admin/<CheckPointTimeStamp>/zone_name/
file1

For additional information, see Apache HDFS-8831.

6.2.4. Configuring HDP Services for HDFS Encryption
HDFS data at rest encryption is supported on the following HDP components:

Important

You should create a separate Admin user account for HDFS Data at Rest
Encryption for each of the following supported components.

• HBase

• Hive

• Hive on Tez

• MapReduce

• Oozie

• Spark

• Sqoop

• Storm

• WebHDFS

• YARN

https://issues.apache.org/jira/browse/HDFS-8831

hdp-security August 29, 2016

505

HDFS data at rest encryption is not supported on the following components:

• Accumulo

• Falcon

• HDP Search

The remainder of this section describes scenarios and access considerations for accessing
HDFS-encrypted files from supporting HDP components.

6.2.4.1. HBase

HBase stores all of its data under its root directory in HDFS, configured with
hbase.rootdir. The only other directory that the HBase service will read or write is
hbase.bulkload.staging.dir.

On HDP clusters, hbase.rootdir is typically configured as /apps/hbase/data, and
hbase.bulkload.staging.dir is configured as /apps/hbase/staging. HBase data,
including the root directory and staging directory, can reside in an encryption zone on
HDFS.

The HBase service user needs to be granted access to the encryption key in the Ranger
KMS, because it performs tasks that require access to HBase data (unlike Hive or HDFS).

By design, HDFS-encrypted files cannot be bulk-loaded from one encryption zone into
another encryption zone, or from an encryption zone into an unencrypted directory.
Encrypted files can only be copied. An attempt to load data from one encryption zone
into another will result in a copy operation. Within an encryption zone, files can be copied,
moved, bulk-loaded, and renamed.

6.2.4.1.1. Recommendations

• Make the parent directory for the HBase root directory and bulk load staging directory
an encryption zone, instead of just the HBase root directory. This is because HBase bulk
load operations need to move files from the staging directory into the root directory.

• In typical deployments, /apps/hbase can be made an encryption zone.

• Do not create encryption zones as subdirectories under /apps/hbase, because HBase
may need to rename files across those subdirectories.

• The landing zone for unencrypted data should always be within the destination
encryption zone.

6.2.4.1.2. Steps

On a cluster without HBase currently installed:

1. Create the /apps/hbase directory, and make it an encryption zone.

2. Configure hbase.rootdir=/apps/hbase/data.

3. Configure hbase.bulkload.staging.dir=/apps/hbase/staging.

hdp-security August 29, 2016

506

On a cluster with HBase already installed, perform the following steps:

1. Stop the HBase service.

2. Rename the /apps/hbase directory to /apps/hbase-tmp.

3. Create an empty /apps/hbase directory, and make it an encryption zone.

4. DistCp -skipcrccheck -update all data from /apps/hbase-tmp to /apps/
hbase, preserving user-group permissions and extended attributes.

5. Start the HBase service and verify that it is working as expected.

6. Remove the /apps/hbase-tmp directory.

6.2.4.1.3. Changes in Behavior after HDFS Encryption is Enabled

The HBase bulk load process is a MapReduce job that typically runs under the user who
owns the source data. HBase data files created as a result of the job are then bulk loaded
in to HBase RegionServers. During this process, HBase RegionServers move the bulk-loaded
files from the user's directory and move (rename) the files into the HBase root directory
(/apps/hbase/data). When data at rest encryption is used, HDFS cannot do a rename
across encryption zones with different keys.

Workaround: run the MapReduce job as the hbase user, and specify an output directory
that resides in the same encryption zone as the HBase root directory.

6.2.4.2. Hive

Recommendation: Store Hive data in an HDFS path called /apps/hive.

6.2.4.2.1. Configuring Hive Tables for HDFS Encryption

Before enabling encryption zones, decide whether to store your Hive tables across one
zone or multiple encryption zones.

Single Encryption Zone

To configure a single encryption zone for your entire Hive warehouse:

1. Rename /apps/hive to /apps/hive-old

2. Create an encryption zone at /apps/hive

3. distcp all of the data from /apps/hive-old to /apps/hive.

To configure the Hive scratch directory (hive.exec.scratchdir) so that it resides inside
the encryption zone:

1. Set the directory to /apps/hive/tmp.

2. Make sure that the permissions for /apps/hive/tmp are set to 1777.

Multiple Encryption Zones

hdp-security August 29, 2016

507

To access encrypted databases and tables with different encryption keys, configure multiple
encryption zones.

For example, to configure two encrypted tables, ez1.db and ez2.db, in two different
encryption zones:

1. Create two new encryption zones, /apps/hive/warehouse/ez1.db and /apps/
hive/warehouse/ez2.db.

2. Load data into Hive tables ez1.db and ez2.db as usual, using LOAD statements. (For
additional considerations, see "Loading Data into an Encrypted Table.")

6.2.4.2.2. Loading Data into an Encrypted Table

By design, HDFS-encrypted files cannot be moved or loaded from one encryption zone
into another encryption zone, or from an encryption zone into an unencrypted directory.
Encrypted files can only be copied.

Within an encryption zone, files can be copied, moved, loaded, and renamed.

Recommendations:

• When loading unencrypted data into encrypted tables (e.g., LOAD DATA INPATH), we
recommend placing the source data (to be encrypted) into a landing zone within the
destination encryption zone.

• An attempt to load data from one encryption zone into another will result in a copy
operation. Distcp will be used to speed up the process if the size of the files being
copied is higher than the value specified by the hive.exec.copyfile.maxsize
property. The default limit is 32 MB.

Here are two approaches for loading unencrypted data into an encrypted table:

• To load unencrypted data into an encrypted table, use the LOAD DATA ... statement.

If the source data does not reside inside the encryption zone, the LOAD statement will
result in a copy. If your data is already inside HDFS, though, you can use distcp to
speed up the copying process.

• If the data is already inside a Hive table, create a new table with a LOCATION inside an
encryption zone, as follows:

CREATE TABLE encrypted_table [STORED AS] LOCATION ... AS SELECT *
FROM <unencrypted_table>

Note

The location specified in the CREATE TABLE statement must be within
an encryption zone. If you create a table that points LOCATION to an
unencrypted directory, your data will not be encrypted. You must copy your
data to an encryption zone, and then point LOCATION to that encryption
zone.

If your source data is already encrypted, use the CREATE TABLE statement. Point
LOCATION to the encrypted source directory where your data resides:

hdp-security August 29, 2016

508

CREATE TABLE encrypted_table [STORED AS] LOCATION ... AS SELECT *
FROM <encrypted_source_directory>

This is the fastest way to create encrypted tables.

6.2.4.2.3. Encrypting Other Hive Directories

• LOCALSCRATCHDIR : The MapJoin optimization in Hive writes HDFS tables to a local
directory and then uploads them to distributed cache. To enable encryption, either
disable MapJoin (set hive.auto.convert.join to false) or encrypt the local
Hive Scratch directory (hive.exec.local.scratchdir). Performance note: disabling
MapJoin will result in slower join performance.

• DOWNLOADED_RESOURCES_DIR: Jars that are added to a user session and stored in
HDFS are downloaded to hive.downloaded.resources.dir. If you want these Jar
files to be encrypted, configure hive.downloaded.resources.dir to be part of an
encryption zone. This directory needs to be accessible to the HiveServer2.

• NodeManager Local Directory List: Hive stores Jars and MapJoin files in the
distributed cache, so if you'd like to use MapJoin or encrypt Jars and other
resource files, the YARN configuration property NodeManager Local Directory List
(yarn.nodemanager.local-dirs) must be configured to a set of encrypted local
directories on all nodes.

Alternatively, to disable MapJoin, set hive.auto.convert.join to false.

6.2.4.2.4. Additional Changes in Behavior with HDFS-Encrypted Tables

• Users reading data from read-only encrypted tables must have access to a temp directory
that is encrypted with at least as strong encryption as the table.

• By default, temp data related to HDFS encryption is written to a staging directory
identified by the hive-exec.stagingdir property created in the hive-site.xml
file? associated with the table folder.

• Previously, an INSERT OVERWRITE on a partitioned table inherited permissions for
new data from the existing partition directory. With encryption enabled, permissions are
inherited from the table.

• When using encryption with Trash enabled, table deletion operates differently than the
default trash mechanism. For more information see Delete Files from an Encryption Zone.

6.2.4.3. MapReduce on YARN

Recommendation: Make /apps/history a single encryption zone. History files are
moved between the intermediate and done directories, and HDFS encryption will not
allow you to move encrypted files across encryption zones.

6.2.4.3.1. Steps

On a cluster with MapReduce over YARN installed, create the /apps/history directory
and make it an encryption zone.

hdp-security August 29, 2016

509

If /apps/history already exists and is not empty:

1. Create an empty /apps/history-tmp directory

2. Make /apps/history-tmp an encryption zone

3. Copy (distcp) all data from /apps/history into /apps/history-tmp

4. Remove /apps/history

5. Rename /apps/history-tmp to /apps/history

6.2.4.4. Oozie

6.2.4.4.1. Recommendations

A new Oozie administrator role (oozie-admin) has been created in HDP 2.3.

This role enables role separation between the Oozie daemon and administrative tasks. Both
the oozie-admin role and the oozie role must be specified in the adminusers.txt
file. This file is installed in HDP 2.3 with both roles specified. Both are also defined in Ambari
2.1 as well. Modification is only required if administrators choose to change the default
administrative roles for Oozie.

If oozie-admin is used as the Oozie administrator user in your cluster, then the role is
automatically managed by ambari.

If you plan to create an Oozie admin user other than oozie-admin, add the chosen
username to adminusers.txt under the $OOZIE_HOME/conf directory.

Here is a sample adminusers.txt file:

#
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
Users should be set using following rules:
#
One user name per line
Empty lines and lines starting with '#' are ignored

oozie
oozie-admin

hdp-security August 29, 2016

510

6.2.4.5. Sqoop

Following are considerations for using Sqoop to import or export HDFS-encrypted data.

6.2.4.5.1. Recommendations

• For Hive:

Make sure that you are using Sqoop with the --target-dir parameter set to a
directory that is inside the Hive encryption zone. Specify the -D option after sqoop
import.

For example:

sqoop import \

-D sqoop.test.import.rootDir=<root-directory> \

--target-dir <directory-inside-encryption-zone> \

<additional-arguments>

• For append or incremental import:

Make sure that the sqoop.test.import.rootDir property points to the encryption
zone specified in the --target-dir argument.

• For HCatalog:

No special configuration is required.

6.2.4.6. WebHDFS

6.2.4.6.1. Recommendations

WebHDFS is supported for writing and reading files to and from encryption zones.

6.2.4.6.1.1. Steps

To access encrypted files via WebHDFS, complete the following steps:

1. To enable WebHDFS in hdfs-site.xml, set the dfs.webhdfs.enabled property to
true:

<property>
 <name>dfs.webhdfs.enabled</name>
 <value>true</value>
</property>

2. Make sure that you have separate HDFS administrative and service users, as described in
Creating an HDFS Admin User.

3. KMS supports a blacklist and a whitelist for key access (through kms-acls.xml).

By default the hdfs service user is included in the blacklist for decrypt_eek operations.
To support WebHDFS, the HDFS service user must not be on the key access blacklist.
Remove the HDFS service user from the blacklist:

hdp-security August 29, 2016

511

a. To edit the blacklist using Ambari, go to Ranger KMS -> Configs, and search for
"blacklist" or open the Advanced dbks-site list.

b. Remove hdfs from the hadoop.kms.blacklist.DECRYPT_EEK property:

c. Restart Ranger KMS.

4. The HDFS service user must have GENERATE_EEK and DECRYPT_EEK permissions. To
add the permissions using the Ranger Web UI, select the Access Manager tab-> Resource
Based Policies (the default Access Manager view). Select the key store, select the policy,
and click the edit icon. In the Permissions column click the edit icon and check the boxes
for GenerateEEK and DecryptEEK. Then click Save.

hdp-security August 29, 2016

512

5. Because the HDFS service user will have access to all keys, the HDFS service user should
not be the administrative user. Specify a different administrative user in hdfs-
site.xml for the administrative user.

For more information about operational tasks using Ranger KMS, see the Ranger KMS
Administration Guide.

6.2.5. Appendix: Creating an HDFS Admin User
To capitalize on the capabilities of HDFS data at rest encryption, you will need two separate
types of HDFS administrative accounts:

• HDFS administrative user: an account in the hdfs supergroup that is used to manage
encryption keys and encryption zones. Examples in this chapter use an administrative
user account named encr.

• HDFS service user: the system-level account traditionally associated with HDFS. By
default this is user hdfs in HDP. This account owns the HDFS DataNode and NameNode
processes.

Important

This is a system-only account. Physical users should not be given access to this
account.

Complete the following steps to create a new HDFS administrative user.

Note: These steps use sample values for group (operator) and user account (opt1).

1. Create a new group called operator.

2. Add a new user (for example, opt1) to the group.

3. Add principal opt1@EXAMPLE.COM and create a keytab.

4. Login as opt1, and do a kinit operation.

5. In Ambari, replace the current value of dfs.permissions.superusergroup with
the group name “operator”.

Note

You can assign only one administrator group for the
dfs.permissions.superusergroup parameter.

6. In Ambari, add hdfs,operator to dfs.cluster.administrators:

7. Add opt1 to the KMS blacklist. Set the corresponding property in Ambari:

hdp-security August 29, 2016

513

hadoop.kms.blacklist.DECRYPT_EEK=opt1

8. Restart HDFS.

Validation

Make sure the opt1 account has HDFS administrative access:

hdfs dfsadmin -report

Make sure the opt1 account cannot access encrypted files. For example, if /data/test/
file.txt is in an encryption zone, the following command should return an error:

hdfs dfs -cat /data/test/file.txt

Additional Administrative User Accounts

If you plan to use HDFS data at rest encryption with YARN, we recommend that you create
a separate administrative user account for YARN administration.

If you plan to use HDFS data at rest encryption with Oozie, refer to the Oozie section of this
chapter.

hdp-security August 29, 2016

514

7. Addendum
This chapter collects supplemental documentation.

7.1. ZooKeeper ACLs Best Practices
Permissions for Secure Clusters

Introduction

As more and more components begin to rely on ZooKeeper within a Hadoop cluster, there
are various permissions that need to be maintained to ensure the integrity and security of
the znodes. These permissions are different from component to component.

Some components only use ZooKeeper when they are running in their component specific
HA mode. Others have separate secure and unsecure ACLs defined and switch between
which to enforce based on the component knowledge of whether the cluster is secured or
not.

In general, it seems that the ACLs are pretty open and assume an unsecure cluster by
default. These permissions need to be hardened for secure clusters in order to avoid
inappropriate access or modification of this critical platform state.

This paper collects the required steps for tightening the ZooKeeper ACLs/permissions when
provisioning a secure cluster to be used as a best practices guideline for ops and security
management.

Unaffected Components

The following components require no action:

• Ambari

• ZooKeeper Usage: Ambari does not use ZooKeeper; however it does install, configure,
and manage it so that services running on the cluster can use it.

• Default ACLs: None. Ambari does not create or use any znodes.

• Security Best Practice ACLs/Permissions and Required Steps: None. Ambari does not
create or use any znodes.

• Calcite

• DataFu

• Falcon

• Flume

• HDP Flume currently does not depend upon ZooKeeper for any of its core operations.
However, ZooKeeper is used by the HBase or Kafka connectors, as the respective client
libraries need them.

• There are no pre-created (i.e at install time) znodes that it depends upon.

hdp-security August 29, 2016

515

• Hue

• Knox

• Mahout

• MapReduce

• Phoenix

• ZooKeeper Usage: Phoenix does not use ZooKeeper on its own. All usages are covered
in the HBase section.

• Security Best Practice ACLs/Permissions and Required Steps: None. HBase correctly
protects all ZNodes in ZooKeeper automatically.

• Pig

• Spark

• Sqoop

• Stargate/HBase RestServer

• No ZooKeeper usage outside of normal HBase client usage.

• Tez

• Zeppelin

7.1.1. Accumulo

• ZooKeeper Usage:

• /accumulo - Parent ZNode for all of Accumulo use in ZooKeeper

• /accumulo/$UUID - Parent ZNode for a specific Accumulo instance

• /accumulo/instances - Contains mappings of human-readable Accumulo names to
the UUID

• /accumulo/$UUID/users - Accumulo user database

• /accumulo/$UUID/problems - Persisted advertisement of reported problems in
Accumulo

• /accumulo/$UUID/root_tables - The “root” Accumulo table (points to the
Accumulo metadata table)

• /accumulo/$UUID/hdfs_reservations - ZNode to coordinate unique directories
in HFDS for bulk imports of Accumulo files to a table

• /accumulo/$UUID/gc - Advertisement and leader election for Accumulo
GarbageCollector

hdp-security August 29, 2016

516

• /accumulo/$UUID/table_locks - RW-locks per Accumulo table

• /accumulo/$UUID/fate - Parent znode for Accumulo’s FATE (distributed, multi-
step transactions)

• /accumulo/$UUID/tservers - Advertisement and ephemeral znodes(keep-alive)
for TabletServers

• /accumulo/$UUID/tables - The “database” of Accumulo tables (metadata)

• /accumulo/$UUID/namespaces - The “database” of Accumulo namespaces
(metadata)

• /accumulo/$UUID/next_file - Coordinates unique name generation for files in
HDFS

• /accumulo/$UUID/config - Dynamic configuration for Accumulo

• /accumulo/$UUID/masters - Advertisement and leader election for the Accumulo
Master

• /accumulo/$UUID/monitor - Advertisement and leader election for the Accumulo
Monitor

• /accumulo/$UUID/bulk_failed_copyq - Tracking files to bulk import which
failed

• /accumulo/$UUID/recovery - Used to coordinate recovery of write-ahead logs

• Default ACLs:

• All znodes not specified otherwise are world-readable and cdrwa ‘accumulo’. Those
below are not world-readable:

/accumulo/$UUID/users/*

• Security Best Practice ACLs/Permissions and Required Steps:

• The user does not need to alter any ACLs in ZooKeeper. Accumulo protects all ZNodes
automatically.

7.1.2. Ambari Solr
Ambari Solr is used by LogSearch, Ranger and Atlas.

• ZooKeeper Usage:

• /ambari-solr - Solr node for storing collection, leaders, configuration, etc.

• Default ACLs:

• /ambari-solr - world:anyone:cdrwa

• Security Best Practice ACLs/Permissions and Required Steps:

hdp-security August 29, 2016

517

• /ambari-solr - world:anyone:r

• /ambari-solr - sasl:solr:cdrwa

7.1.3. Atlas
• ZooKeeper Usage:

• /apache_atlas - Root zookeeper node which is configured for curator, under which
nodes for leader election are created.

• /apache_atlas/active_server_info - Znode used in HA environments for
storing active server information.

• /apache_atlas/setup_in_progress - Transient Znode used to ensure some
setup steps are executed only from one instance. This gets deleted after use and
should normally not be seen.

• Default ACLs:

• All znodes have world:anyone:cdrwa by default.

• Security Best Practice ACLs/Permissions and Required Steps:

• No user intervention is required for creating/using the Znodes. They are all
managed internally by Atlas. Atlas exposes two configuration properties that
define the auth and ACL - to use while creating these Znodes. Ambari should
configure these correctly for a secure cluster. The recommended configuration
is atlas.server.ha.zookeeper.auth=sasl:atlas@<domain.com>
and atlas.server.ha.zookeeper.acl=sasl:atlas@<domain.com>,
where <domain.com> should be replaced with the right value
of the atlas service user principal. (Assuming atlas is the service
user name). When set this way, the ACLs for all znodes will be
atlas.server.ha.zookeeper.acl=sasl:atlas@<domain.com>:cdrwa.
(Note we don’t allow configuration of the permissions from Ambari).

7.1.4. HBase
• ZooKeeper Usage:

• /hbase-unsecure - Default znode for unsecured clusters

• /hbase-secure - Default znode used for secured clusters

• Default ACLs:

• /hbase-unsecure - world:hbase:cdrwa

• All children ZNodes are also world cdrwa

• Open for global read, write protected: world:anyone:r, sasl:hbase:cdrwa

• /hbase-secure

hdp-security August 29, 2016

518

• /hbase-secure/master

• /hbase-secure/meta-region-server

• /hbase-secure/hbaseid

• /hbase-secure/table

• /hbase-secure/rs

• No global read, r/w protected: sasl:hbase:cdrwa:

• /hbase-secure/acl

• /hbase-secure/namespace

• /hbase-secure/backup-masters

• /hbase-secure/online-snapshot

• /hbase-secure/draining

• /hbase-secure/replication

• /hbase-secure/region-in-transition

• /hbase-secure/splitWAL

• /hbase-secure/table-lock

• /hbase-secure/recovering-regions

• /hbase-secure/running

• /hbase-secure/tokenauth

• Security Best Practice ACLs/Permissions and Required Steps:

• HBase code determines which ACL to enforce based on the configured security
mode of the cluster/hbase. Users are not expected to perform any modification of
ZooKeeper ACLs on ZNodes and users should not alter any ACLs by hand.

7.1.5. HDFS/WebHDFS

• ZooKeeper Usage:

• hadoop-ha - hdfs zkfc automatic NameNode failover

• Default ACLs:

• hadoop-ha - world: anyone:cdrwa

• Security Best Practice ACLs/Permissions and Required Steps:

hdp-security August 29, 2016

519

• hadoop-ha - sasl: nn:cdrwa

• Existing SmartSense rule recommends ACL of sasl:nn:rwcda for secured clusters. To
set this:

1. Set ha.zookeeper.acl to sasl:nn:rwcda:

• Using Ambari:

Add ha.zookeeper.acl with value sasl:nn:rwcda in
Configs>Advanced>Custom core-site.

• Manually:

Add this to core-site. xml as root user:

<property>
 <name>ha.zookeeper.acl</name>
 <value>sasl:nn:rwcda</value>
</property>

2. Add this HADOOP_ZKFC_OPTS export:

• Using Ambari:

In Configs > Advanced > Advanced hadoop-env > hadoop-env template, add the
following:

export HADOOP_ZKFC_OPTS="Dzookeeper.sasl.client=true
 Dzookeeper.sasl.client.username=
zookeeper
 Djava.security.auth.login.config=/
etc/hadoop/conf/hdfs_jaas.conf
 Dzookeeper.sasl.clientconfig=Client
 ${HADOOP_ZKFC_OPTS}"

• Manually:

Add this to hadoop-env.sh as root user:

export HADOOP_ZKFC_OPTS="Dzookeeper.sasl.client=true
 Dzookeeper.sasl.client.username=
zookeeper
 Djava.security.auth.login.config=/
etc/hadoop/conf/hdfs_jaas.conf
 Dzookeeper.sasl.clientconfig=Client
 ${HADOOP_ZKFC_OPTS}"

3. On two Namenodes, create /etc/hadoop/conf/hdfs_jaas.conf as root user
with the following contents:

hdp-security August 29, 2016

520

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 storeKey=true
 useTicketCache=false
 keyTab="/etc/security/keytabs/nn.service.keytab"
 principal="nn/<HOST>@EXAMPLE.COM";
};

nn/<HOST>@EXAMPLE.COM must be changed to the actual hostname and realm,
e.g. nn/c6401.ambari.apache.org@EXAMPLE.COM. To get actual principal, on
two Namenodes, run the command as hdfs user: klist -k /etc/security/
keytabs/nn.service.keytab.

4. Stop the two ZKFCs.

5. On one of Namenodes, run the command as hdfs user: hdfs zkfc -formatZK -
force.

6. Start the two ZKFCs.
One of two Namenodes may be stopped in the process, or standby Namenode may be
transitioned to active one. Start the stopped namenode if any.

7.1.6. Hive/HCatalog
• ZooKeeper Usage:

• /hiveserver2 - The parent znode used by HiveServer2 when supporting dynamic
service discovery. Each server instance creates an ephemeral znode under this
namespace. Exposed via the hive config: hive.server2.zookeeper.namespace

• /hivedelegation/METASTORE - HA ONLY - The root path for token store data,
used by Metastore servers to store delegation tokens. Exposed via hive config:
hive.cluster.delegation.token.store.zookeeper.znode

• /hivedelegation/HIVESERVER2 - HA ONLY - The root path for token store
data, used by HiveServer2 servers to store delegation tokens. Exposed via hive config:
hive.cluster.delegation.token.store.zookeeper.znode

• /hive_zookeeper_namespace - Used by ZooKeeper-based implementation of
Hive’s LockMgr (ZooKeeperHiveLockManager) if used. This usage is writable-to
by any user as it tries to co-ordinate locking among multiple users. Controlled by hive
config : hive.zookeeper.namespace. In addition, which LockMgr we use is also
controlled by hive config : hive.lock.manager. (Note also, that if ACID is used, we
do not use a ZooKeeper-based lock manager)

• /llap-<sasl|unsecure>/user-<user_name> is used by LLAP to store cluster
node locations. Should be writable by hive, readable by anyone. LLAP takes care of
enforcing the ACLs for the secure path.

• /zkdtsm_<cluster_id>/ZKDTSMRoot/* is used by LLAP token/secret manager, in
secure cluster only. Should only be accessible by hive. LLAP sets and validates the ACLs.

• Default ACLs:

hdp-security August 29, 2016

521

• /hiveserver2 - world:anyone:r

• /hiveserver2 - sasl:hive:cdrwa

• /hivedelegation - world:anyone:r

• /hivedelegation - sasl:hive:cdrwa

• /hive_zookeeper_namespace - completely-open

• /llap-sasl/user-<user_name> - sasl:hive:cdrwa, world:anyone:r

• /llap-unsecure/user-<user_name> - world:anyone:cdrwa

• /zkdtsm_<cluster_id>/ZKDTSMRoot/* - sasl:hive:cdrwa

Note that ACLs are considered recursively applied to nodes inside these roots -
i.e., /hivedelegation/METASTORE, /hivedelegation/HIVESERVER2, or /
hiveserver2/<first_server>.

• Security Best Practice ACLs/Permissions and Required Steps:

• /hiveserver2 - world:anyone:r

• /hiveserver2 - sasl:hive:cdrwa

• /hivedelegation - world:anyone:r

• /hivedelegation - sasl:hive:cdrwa

• /hive_zookeeper_namespace - completely-open

• /llap-sasl/user-<user_name> - sasl:hive:cdrwa, world:anyone:r

• /llap-unsecure/user-<user_name> - world:anyone:cdrwa

• /zkdtsm_<cluster_id>/ZKDTSMRoot/* - sasl:hive:cdrwa

Note that ACLs are considered recursively applied to nodes inside these roots -
i.e., /hivedelegation/METASTORE, /hivedelegation/HIVESERVER2, or /
hiveserver2/<first_server>.

7.1.7. Kafka

• ZooKeeper Usage:

• /controller - Kafka Znode for controller leader election

• /brokers - Kafka Znode for broker metadata

• /kafka-acl - Kafka Znode for SimpleAclAuthorizer ACL storage

• /admin - Kafka admin tool metadata

hdp-security August 29, 2016

522

• /isr_change_notification - Track changes to In Sync Replication

• /controller_epoch - Track movement of controller

• /consumers - Kafka Consumer list

• /config - Entity configuration

• Default ACLs:

• N/A

• Security Best Practice ACLs/Permissions and Required Steps:

• /controller - world:anyone:r

• /controller - sasl:kafka:cdrwa

• /brokers - world:anyone:cdrwa

• /kafka-acl - sasl:kafka:cdrwa

• /admin - world:anyone:cdrwa

• /isr_change_notification - world:anyone:r

• /isr_change_notification - sasl:kafka:cdrwa

• /controller_epoch - world:anyone:cdrwa

• /consumers - world:anyone:cdrwa

• /config - world:anyone:cdrwa
When security is enabled zookeeper.set.acl=true should be in kafkaConfig.
Which is not happening now. Users can add this using Advanced Property
zookeeper.set.acl and add a new zkroot to zookeepr.connect =
"host.name:2181:/kafka" to create new nodes as it won't update the ACLs
on existing node. Alternatively, they can use kafka.service.keytab to log into
zookeeper and set ACLs recursively.

7.1.8. Oozie

• ZooKeeper Usage:

• Used to coordinate multiple Oozie servers.

• Default ACLs:

In a secure cluster, Oozie restricts the access to Oozie Znodes to the oozie principals only
using Kerberos backed ACLs.

• /oozie - node that stores oozie server information in HA mode

Default ACLs:

hdp-security August 29, 2016

523

• /oozie - world:anyone:cdrwa

• Security Best Practice ACLs/Permissions and Required Steps:

• Set oozie.zookeeper.secure to secure

7.1.9. Ranger

• ZooKeeper Usage:

• Ranger does not use ZooKeeper directly. Only if Audit to Solr is enabled and Solr
is configured in SolrCloud mode, Solr nodes will need to access zookeeper node /
ranger_audits.

/ranger_audits

• Default ACLs:

• /ranger_audits - world:anyone:cdrwa

• Security Best Practice ACLs/Permissions and Required Steps:

• Only Solr needs access to this Znode:

/ranger_audits - sasl:solr:cdrwa

• After enabling SolrCloud, edit the Ranger collection path permission on Znode:

1. SSH to the cluster where SolrCloud is present.

2. Go to /usr/hdp/<version>/zookeeper/bin.

3. Run ./zkCli.sh -server <FQDN SolrCloud host>:2181

4. After it connects, run: ls /

5. Verify there is a folder for the Ranger Solr collection.

6. Execute getAcl /ranger_audits and if the permission is for world,anyone:
cdrwa, restrict the permission to “sasl:solr:cdrwa” using this command:
setAcl /ranger_audits sasl:solr:cdrwa.

7. Repeat the above step for all clusters where SolrCloud is installed.

[zk: as-ha-27-3.openstacklocal:2181(CONNECTED) 0] ls /
[zookeeper, rmstore, ranger_audits]
[zk: as-ha-27-3.openstacklocal:2181(CONNECTED) 1] getAcl /ranger_audits
'world,'anyone
: cdrwa
[zk: as-ha-27-3.openstacklocal:2181(CONNECTED) 2] setAcl /ranger_audits
 sasl:solr:cdrwa
cZxid = 0x200000037
ctime = Wed Jun 29 10:40:24 UTC 2016
mZxid = 0x200000037
mtime = Wed Jun 29 10:40:24 UTC 2016

hdp-security August 29, 2016

524

pZxid = 0x200000056
cversion = 7
dataVersion = 0
aclVersion = 1
ephemeralOwner = 0x0
dataLength = 0
numChildren = 7
[zk: as-ha-27-3.openstacklocal:2181(CONNECTED) 3] getAcl /ranger_audits

'sasl,'solr
: cdrwa
[zk: as-ha-27-3.openstacklocal:2181(CONNECTED) 4]

7.1.10. Ranger KMS/Hadoop KMS

• ZooKeeper Usage:

• If multiple instances of KMS are configured, both Ranger KMS and Hadoop KMS
use zookeeper znode /hadoop-kms to store HTTP cookie signature secret. See “Http
Authentication Signature” section here.

/hadoop-kms - <HTTP cookie signature secret>

• Default ACLs:

• /hadoop-kms - world:anyone:cdrwa

• Security Best Practice ACLs/Permissions and Required Steps:

• /hadoop-kms - sasl:kms:cdrwa

• Ranger KMS uses the user kms. Only KMS needs access to this znode. This path
(hadoop.kms.authentication.signer.secret.provider.zookeeper.path)
can be configured in Ambari for Ranger KMS. Set the ACL using these steps:

1. SSH to the cluster where Ranger KMS is present.

2. Go to /usr/hdp/<version>/zookeeper/bin

3. Run ./zkCli.sh -server <FQDN of Ranger KMS host>:2181”

4. After it connects, run: ls /

5. Verify there is a folder as specified in
hadoop.kms.authentication.signer.secret.provider.zookeeper.path
property of Ranger KMS configuration.

6. Execute getAcl /hadoop-kms and if the permission is for world,anyone:
cdrwa, restrict the permission to sasl:kms:cdrwa using this command:
setAcl /hadoop-kms sasl:kms:cdrwa.

7. Repeat the above step for all the clusters where Ranger KMS is installed.

[zk: dk-test-0706-3.openstacklocal:2181(CONNECTED) 0] getAcl /hadoop-kms
'world,'anyone
: cdrwa

https://hadoop.apache.org/docs/stable/hadoop-kms/index.html

hdp-security August 29, 2016

525

[zk: dk-test-0706-3.openstacklocal:2181(CONNECTED) 4] setAcl /hadoop-kms
 sasl:kms:cdrwa
cZxid = 0x20000001e
ctime = Tue Jun 07 12:22:58 UTC 2016
mZxid = 0x20000001e
mtime = Tue Jun 07 12:22:58 UTC 2016
pZxid = 0x20000001f
cversion = 1
dataVersion = 0
aclVersion = 1
ephemeralOwner = 0x0
dataLength = 0
numChildren = 1
[zk: dk-test-0706-3.openstacklocal:2181(CONNECTED) 5] getAcl /hadoop-kms
'sasl,'kms
: cdrwa
[zk: dk-test-0706-3.openstacklocal:2181(CONNECTED) 6]

7.1.11. Slider

• ZooKeeper Usage:

• /services/slider/users/username/applicationName- A node created by
slider for use by an application if the “create.default.zookeeper.node” property is set
to “true” in the Slider appConfig file. It is intended for use by the application so ACL
modification would be application specific.

• Default ACLs:

• /services/slider/users/username/applicationName - world:anyone:r,
world:user:cdrwa

• Security Best Practice ACLs/Permissions and Required Steps:

• The application node is created with the above ACLs during Slider application launch,
so no further steps are required.

7.1.12. Storm

• ZooKeeper Usage:

• /storm - All data for storm metadata, Storm's root znode

• Default ACLs:

• /storm - world:anyone:cr

• /storm - sasl:storm-PRD1:cdrwa

Where -PRD1 comes from StormClient Principal and Ambari creates the principal with
storm-<cluster_name>.

• Security Best Practice ACLs/Permissions and Required Steps:

• /storm - world:anyone:cr

hdp-security August 29, 2016

526

• /storm - sasl:storm-PRD1:cdrwa

Where -PRD1 comes from StormClient Principal and Ambari creates the principal with
storm-<cluster_name>.

7.1.13. WebHCat

• ZooKeeper Usage:

• /templeton-hadoop - WebHCat stores status of jobs that users can query in
zookeeper (if ZooKeeperStorage is configured to find out the status of jobs - it can
also use HDFS for this storage). WebHCat typically will create three znodes inside
this root : “jobs”, “overhead” and “created”. This root node is exposed via config :
templeton.storage.root. In addition, whether or not ZooKeeperStorage is used
is configured by another config parameter : templeton.storage.class. Both
these parameters are part of webhcat-site.xml. These nodes are altered from
launcher map task as well, which runs as the end user.

• Default ACLs:

• /templeton-hadoop - world:anyone:cdrwa

• Security Best Practice ACLs/Permissions and Required Steps:

• /templeton-hadoop - world:anyone:cdrwa

7.1.14. YARN

• ZooKeeper Usage:

• /yarn-leader-election - used for RM leader election

• /rmstore - used for storing RM application state

• Default ACLs:

• /yarn-leader-election - world:anyone:cdrwa

• /rmstore - world:anyone:cdrwa

• Security Best Practice ACLs/Permissions and Required Steps:

• /yarn-leader-election - world:anyone:r

• /yarn-leader-election - sasl:rm:rwcda

• /rmstore - world:anyone:r

• /rmstore - sasl:rm:rwcda

hdp-security August 29, 2016

527

7.1.15. YARN Registry
The YARN registry is a location into which statically and dynamically deployed applications
can register service endpoints; client applications can look up these entries to determine
the URLs and IPC ports with which to communicate with a service.

It is implemented as a zookeeper tree: services register themselves as system services,
under the registry path /system, or user services, which are registered under /
users/USERNAME where USERNAME is the name of the user registering the service.

As the purpose of the mechanism is to allow arbitrary clients to look up a service, the
entries are always world readable. No secrets should be added to service entries.

In insecure mode, all registry paths are world readable and writeable: nothing may be
trusted.

In a secure cluster, the registry is designed to work as follows:

1. Kerberos + SASL provides the identification and authentication.

2. /system services can only be registered by designated system applications (YARN,
HDFS, etc)/

3. User-specific services can only be registered by the user deploying the application.

4. If a service is registered under a user's path, it may be trusted, and any published public
information (such as HTTPS certifications) assumed to have been issued by the user.

5. All user registry entries should also be registered as world writeable with the list of
system accounts defined in hadoop.registry.system.accounts; this is a list
of ZK SASL-authenticated accounts to be given full access. This is needed to support
system administration of the entries, especially automated deletion of old entries after
application failures.

6. The default list of system accounts are yarn, mapred, hdfs, and hadoop; these are
automatically associated with the Kerberos realm of the process interacting with the
registry, to create the appropriate sasl:account@REALM ZK entries.

7. If applications are running from different realms, the configuration option
hadoop.registry.kerberos.realm must be set to the desired realm, or
hadoop.registry.system.accounts configured with the full realms of the
accounts.

8. There is support for ZooKeeper id:digest authentication; this is to allow a user's
short-lived YARN applications to register service endpoints without needing the
Kerberos TGT. This needs active use by the launching application (which must
explicitly create a user service node with an id:digest permission, or by setting
hadoop.registry.user.accounts, to the list of credentials to be permitted.

9. System services must not use id:digest authentication —nor should they need to; any
long-lived service already needs to have a kerberos keytab.

10.The per-user path for their user services, /users/USERNAME, is created by the YARN
resource manager when users launch services, if the RM is launched with the option
hadoop.registry.rm.enabled set to true.

hdp-security August 29, 2016

528

11.When hadoop.registry.rm.enabled is true, the RM will automatically purge
application and container service records when the applications and containers
terminate.

12.Communication with ZK is over SASL, using the
java.security.auth.login.config system property to configure the binding.
The specific JAAS context to use can be set in hadoop.registry.jaas.context if
the default value, Client, is not appropriate.

ZK Paths and Permissions:

All paths are world-readable; permissions are set up when the RM creates the root entry
and user paths and hadoop.registry.secure=true.

Path Role Permissions

/registry Base registry path yarn, hdfs, mapred, hadoop :
cdrwa

/registry/system System services yarn, hdfs, mapred, hadoop :
cdrwa

/registry/users Users yarn, hdfs, mapred, hadoop :
cdrwa

/registry/users/USER The registry tree for the user USER. USER: rwa

yarn, hdfs, mapred, hadoop :
cdrwa

Configuration options for secure registry access

Name Recommended Value

hadoop.registry.secure true

hadoop.registry.rm.enabled true

hadoop.registry.system.accounts sasl:yarn@, sasl:mapred@, sasl:hdfs@,
sasl:hadoop@

Grants system accounts write access to the root registry
paths. A tighter version would be sasl:yarn@ which
will only give the RM the right to manipulate these, or
explicitly declare a realm, such as sasl:yarn@EXAMPLE

hadoop.registry.kerberos.realm (empty)

The Kerberos realm to use when converting the system
accounts to full realms. If left empty, uses the realm of the
user

hadoop.registry.user.accounts (empty)

hadoop.registry.client.auth kerberos

How to authenticate with ZK. Alternative (insecure)
options: anonymous, digest.

hadoop.registry.jaas.context Client

The JAAS context to use for registry clients to authenticate
with ZooKeeper.

7.1.16. ZooKeeper

• ZooKeeper Usage:

hdp-security August 29, 2016

529

• /zookeeper - node stores metadata of ZooKeeper itself.

• /zookeeper/quota stores quota information. In the Apache ZooKeeper 3.5 release
line.

• /zookeeper/config stores dynamic reconfiguration information, but this is not
applicable to HDP, which bases its ZooKeeper release off of the Apache ZooKeeper 3.4
release line.

• Default ACLs:

• /zookeeper - world:anyone:cdrwa

• Security Best Practice ACLs/Permissions and Required Steps:

The following steps must be manually performed by users who are using the ZooKeeper
quota feature. Components in HDP do not use this feature by default -- most users do
not need to execute the following commands.

• /zookeeper - sasl:zookeeper:cdrwa

• setAcl sasl:zookeeper:rwcda

	Hortonworks Data Platform
	Table of Contents
	1. HDP Security Overview
	1.1. Understanding Data Lake Security
	1.2. HDP Security Features
	1.2.1. Administration
	1.2.2. Authentication and Perimeter Security
	1.2.3. Authorization
	1.2.4. Audit
	1.2.5. Data Protection

	2. Authentication
	2.1. Enabling Kerberos Authentication Using Ambari
	2.1.1. Kerberos Overview
	2.1.2. Kerberos Principals
	2.1.3. Installing and Configuring the KDC
	2.1.3.1. Use an Existing MIT KDC
	2.1.3.2. Use an Existing Active Directory
	2.1.3.3. Use Manual Kerberos Setup
	2.1.3.4. (Optional) Install a new MIT KDC

	2.1.4. Enabling Kerberos Security
	2.1.4.1. Installing the JCE
	2.1.4.1.1. Install the JCE

	2.1.4.2. Running the Kerberos Security Wizard
	2.1.4.2.1. Launching the Kerberos Wizard (Automated Setup)
	2.1.4.2.2. Launching the Kerberos Wizard (Manual Setup)

	2.1.5. Kerberos Client Packages
	2.1.6. Disabling Kerberos Security
	2.1.7. Customizing the Attribute Template
	2.1.8. Managing Admin Credentials

	2.2. Configuring HDP Components for Kerberos Using Ambari
	2.2.1. Configuring Kafka for Kerberos Using Ambari
	2.2.1.1. Preparing the Cluster
	2.2.1.2. Configuring the Kafka Broker for Kerberos
	2.2.1.3. Creating Kafka Topics
	2.2.1.4. Producing Events/Messages to Kafka on a Secured Cluster
	2.2.1.5. Consuming Events/Messages from Kafka on a Secured Cluster
	2.2.1.6. Authorizing Access when Kerberos is Enabled
	2.2.1.6.1. Kafka Authorization Command Line Interface
	2.2.1.6.2. Authorization Examples
	2.2.1.6.2.1. Grant Read/Write Access to a Topic
	2.2.1.6.2.2. Grant Full Access to Topic, Cluster, and Consumer Group
	2.2.1.6.2.3. Add a Principal as Producer or Consumer
	2.2.1.6.2.4. Deny Access to a Principal
	2.2.1.6.2.5. Remove Access
	2.2.1.6.2.6. List ACLs
	2.2.1.6.2.7. Configure Authorizer Settings

	2.2.1.6.3. Troubleshooting Authorizer Settings

	2.2.1.7. Appendix: Kafka Configuration Options
	2.2.1.7.1. Server.properties key-value pairs
	2.2.1.7.2. JAAS Configuration File for the Kafka Server
	2.2.1.7.3. Configuration Setting for the Kafka Producer
	2.2.1.7.4. JAAS Configuration File for the Kafka Client

	2.2.2. Configuring Storm for Kerberos Using Ambari
	2.2.2.1. Prerequisites
	2.2.2.2. Designating a Storm Client Node
	2.2.2.2.1. Dedicate or Use an Existing Gateway Node
	2.2.2.2.2. Use an Existing Storm Node
	2.2.2.2.3. Running Storm Commands

	2.2.2.3. Running Workers as Users
	2.2.2.4. Accessing the Storm UI
	2.2.2.5. Accessing the Storm UI (Active Directory Trust Configuration)
	2.2.2.6. Storm Security Properties
	2.2.2.7. Known Issues

	2.3. Configuring Ambari Authentication with LDAP or AD
	2.3.1. Configuring Ambari for LDAP or Active Directory Authentication
	2.3.1.1. Setting Up LDAP User Authentication
	2.3.1.2. Configure Ambari to use LDAP Server
	2.3.1.2.1. Example Active Directory Configuration

	2.3.1.3. Synchronizing LDAP Users and Groups
	2.3.1.4. Specific Set of Users and Groups
	2.3.1.5. Existing Users and Groups
	2.3.1.6. All Users and Groups

	2.3.2. Configuring Ranger Authentication with UNIX, LDAP, or AD
	2.3.2.1. UNIX Authentication Settings
	2.3.2.2. Active Directory Authentication Settings
	2.3.2.2.1. AD Settings
	2.3.2.2.2. Custom ranger-admin-site Settings for Active Directory (Optional)

	2.3.2.3. LDAP Authentications Settings
	2.3.2.3.1. LDAP Settings
	2.3.2.3.2. Custom ranger-admin-site Settings for LDAP (Optional)
	2.3.2.3.3. Advanced ranger-admin-site Settings

	2.3.3. Encrypting Database and LDAP Passwords in Ambari
	2.3.3.1. Reset Encryption
	2.3.3.2. Remove Encryption Entirely
	2.3.3.3. Change the Current Master Key

	2.4. Configuring LDAP Authentication in Hue
	2.4.1. Enabling the LDAP Backend
	2.4.2. Enabling User Authentication with Search Bind
	2.4.3. Setting the Search Base to Find Users and Groups
	2.4.4. Specifying the URL of the LDAP Server
	2.4.5. Specifying LDAPS and StartTLS Support
	2.4.6. Specifying Bind Credentials for LDAP Searches
	2.4.7. Synchronizing Users and Groups
	2.4.8. Setting Search Bind Authentication and Importing Users and Groups
	2.4.9. Setting LDAP Users' Filter
	2.4.10. Setting an LDAP Groups Filter
	2.4.11. Setting Multiple LDAP Servers

	2.5. Advanced Security Options for Ambari
	2.5.1. Configuring Ambari for Non-Root
	2.5.1.1. How to Configure Ambari Server for Non-Root
	2.5.1.2. How to Configure an Ambari Agent for Non-Root
	2.5.1.2.1. Sudoer Configuration - Ambari Agents
	2.5.1.2.2. Customizable Users - Ambari Agents
	2.5.1.2.3. Commands - Ambari Agents
	2.5.1.2.4. Sudo Defaults - Ambari Agents

	2.5.2. Optional: Ambari Web Inactivity Timeout
	2.5.3. Optional: Set Up Kerberos for Ambari Server
	2.5.4. Optional: Set Up Two-Way SSL Between Ambari Server and Ambari Agents
	2.5.5. Optional: Configure Ciphers and Protocols for Ambari Server
	2.5.6. Optional: HTTP Cookie Persistence

	2.6. Enabling SPNEGO Authentication for Hadoop
	2.6.1. Configure Ambari Server for Authenticated HTTP
	2.6.2. Configuring HTTP Authentication for HDFS, YARN, MapReduce2, HBase, Oozie, Falcon and Storm
	2.6.3. Enabling Browser Access to a SPNEGO-enabled Web UI

	2.7. Setting Up Kerberos Authentication for Non-Ambari Clusters
	2.7.1. Preparing Kerberos
	2.7.1.1. Kerberos Overview
	2.7.1.2. Installing and Configuring the KDC
	2.7.1.3. Creating the Database and Setting Up the First Administrator
	2.7.1.4. Creating Service Principals and Keytab Files for HDP

	2.7.2. Configuring HDP for Kerberos
	2.7.2.1. Creating Mappings Between Principals and UNIX Usernames
	2.7.2.1.1. Examples

	2.7.2.2. Adding Security Information to Configuration Files
	2.7.2.2.1. core-site.xml
	2.7.2.2.1.1. HTTP Cookie Persistence

	2.7.2.2.2. hdfs-site.xml
	2.7.2.2.3. yarn-site.xml
	2.7.2.2.4. mapred-site.xml
	2.7.2.2.5. hbase-site.xml
	2.7.2.2.6. hive-site.xml
	2.7.2.2.7. oozie-site.xml
	2.7.2.2.8. webhcat-site.xml
	2.7.2.2.9. limits.conf

	2.7.2.3. Configuring HBase and ZooKeeper
	2.7.2.3.1. Configure HBase Master
	2.7.2.3.2. Create JAAS configuration files
	2.7.2.3.3. Start HBase and ZooKeeper services
	2.7.2.3.4. Configure secure client side access for HBase
	2.7.2.3.5. Optional: Configure client-side operation for secure operation - Thrift Gateway
	2.7.2.3.6. Optional: Configure client-side operation for secure operation - REST Gateway
	2.7.2.3.7. Configure HBase for Access Control Lists (ACL)

	2.7.2.4. Configuring Phoenix Query Server
	2.7.2.5. Configuring Hue

	2.7.3. Setting up One-Way Trust with Active Directory
	2.7.3.1. Configure Kerberos Hadoop Realm on the AD DC
	2.7.3.2. Configure the AD Domain on the KDC and Hadoop Cluster Hosts

	2.7.4. Configuring Proxy Users

	2.8. Perimeter Security with Apache Knox
	2.8.1. Apache Knox Gateway Overview
	2.8.1.1. Knox Gateway Deployment Architecture
	2.8.1.2. Supported Hadoop Services
	2.8.1.3. Knox Gateway Samples

	2.8.2. Configuring the Knox Gateway
	2.8.2.1. Create and Secure the Gateway Directories
	2.8.2.2. Customize the Gateway Port and Path
	2.8.2.3. Manage the Master Secret
	2.8.2.4. Manually Redeploy Cluster Topologies
	2.8.2.5. Manually Start and Stop Apache Knox

	2.8.3. Defining Cluster Topologies
	2.8.4. Configuring a Hadoop Server for Knox
	2.8.4.1. Setting up Hadoop Service URLs
	2.8.4.2. Example Service Definitions
	2.8.4.3. Validating Service Connectivity
	2.8.4.4. Adding a New Service to the Knox Gateway
	2.8.4.4.1. Service Directory Structure
	2.8.4.4.2. Adding a New Service to the Knox Gateway

	2.8.5. Mapping the Internal Nodes to External URLs
	2.8.5.1. Setting Up a Hostmap Provider
	2.8.5.2. Example of an EC2 Hostmap Provider
	2.8.5.3. Example of Sandbox Hostmap Provider
	2.8.5.4. Enabling Hostmap Debugging

	2.8.6. Configuring Authentication
	2.8.6.1. Authentication Providers
	2.8.6.2. Setting Up LDAP Authentication
	2.8.6.3. Configuring Advanced LDAP Authentication
	2.8.6.3.1. Using Advanced LDAP Authentication
	2.8.6.3.2. Advanced LDAP Configuration Parameters
	2.8.6.3.3. Advanced LDAP Configuration Combinations
	2.8.6.3.4. Advanced LDAP Authentication Errata
	2.8.6.3.4.1. Problem with userDnTemplate-Based Authentication
	2.8.6.3.4.2. Special Note on Parameter main.ldapRealm.contextFactory.systemPassword

	2.8.6.4. Setting Up SPNEGO Authentication
	2.8.6.5. LDAP Authentication Caching
	2.8.6.6. Example Active Directory Configuration
	2.8.6.7. Example OpenLDAP Configuration
	2.8.6.8. Testing an LDAP Provider
	2.8.6.9. Setting Up HTTP Header Authentication for Federation_SSO
	2.8.6.10. Example SiteMinder Configuration
	2.8.6.11. Testing HTTP Header Tokens
	2.8.6.12. Setting Up 2-Way SSL Authentication

	2.8.7. Configuring Identity Assertion
	2.8.7.1. Structure of the Identity-Assertion Provider
	2.8.7.2. Define Pseudo Identity Assertion
	2.8.7.3. Mapping Authenticated User to Cluster
	2.8.7.3.1. Principal Mapping Enhancements

	2.8.7.4. Example User Mapping
	2.8.7.5. Mapping Authenticated Users to Groups
	2.8.7.6. Configuring Group Mapping
	2.8.7.7. Examples of Group Mapping

	2.8.8. Configuring Service Level Authorization
	2.8.8.1. Setting Up an Authorization Provider
	2.8.8.2. Examples of Authorization

	2.8.9. Audit Gateway Activity
	2.8.9.1. Audit Log Fields
	2.8.9.2. Change Roll Frequency of the Audit Log

	2.8.10. Gateway Security
	2.8.10.1. Implementing Web Application Security
	2.8.10.2. Configuring Protection Filter Against Cross Site Request Forgery Attacks
	2.8.10.3. Validate CSRF Filtering
	2.8.10.4. Configuring Knox With a Secured Hadoop Cluster

	2.8.11. Setting Up Knox Services for HA
	2.8.11.1. Prerequisites
	2.8.11.2. Configure WebHDFS for Knox
	2.8.11.3. Configure Knox for HA

	2.8.12. Knox CLI Testing Tools
	2.8.12.1. Knox CLI LDAP Authentication and Authorization Testing

	2.9. Knox SSO
	2.9.1. Identity Providers (IdP)
	2.9.1.1. Form-based Identity Provider (IdP)
	2.9.1.2. SAML-based Identity Provider (IdP)

	2.9.2. Setting up Knox SSO for Ambari
	2.9.3. Setting up Knox SSO for Ranger

	3. Configuring Authorization in Hadoop
	3.1. Installing Ranger Using Ambari
	3.1.1. Overview
	3.1.2. Installation Prerequisites
	3.1.2.1. Setting Up Hadoop Group Mapping for LDAP/AD
	3.1.2.1.1. Configure Hadoop Group Mapping for LDAP/AD Using SSSD (Recommended)
	3.1.2.1.2. Configure Hadoop Group Mapping in core-site.xml
	3.1.2.1.3. Manually Create the Users and Groups in the Linux Environment

	3.1.2.2. Configuring MySQL for Ranger
	3.1.2.3. Configuring PostgreSQL for Ranger
	3.1.2.4. Configuring Oracle for Ranger

	3.1.3. Ranger Installation
	3.1.3.1. Start the Installation
	3.1.3.2. Customize Services
	3.1.3.2.1. Ranger Admin Settings
	3.1.3.2.2. Ranger Audit Settings
	3.1.3.2.3. Configure Ranger User Sync
	3.1.3.2.3.1. Test Run Ranger Usersync
	3.1.3.2.3.2. Configuring Ranger User Sync for UNIX
	3.1.3.2.3.3. Configuring Ranger User Sync for LDAP/AD

	3.1.3.2.4. Configure Ranger Tagsync
	3.1.3.2.5. Configure Ranger Authentication
	3.1.3.2.5.1. Configuring Ranger UNIX Authentication
	3.1.3.2.5.2. Configuring Ranger LDAP Authentication
	3.1.3.2.5.3. Configuring Ranger Active Directory Authentication

	3.1.3.3. Complete the Ranger Installation
	3.1.3.4. Advanced Usersync Settings
	3.1.3.4.1. UNIX Usersync Settings
	3.1.3.4.2. Required LDAP and AD Usersync Settings
	3.1.3.4.3. Additional LDAP and AD Usersync Settings

	3.1.3.5. Configuring Ranger for LDAP SSL
	3.1.3.6. Setting up Database Users Without Sharing DBA Credentials
	3.1.3.7. Updating Ranger Admin Passwords

	3.1.4. Enabling Ranger Plugins
	3.1.4.1. HDFS
	3.1.4.2. Hive
	3.1.4.3. HBase
	3.1.4.4. Kafka
	3.1.4.5. Knox
	3.1.4.6. YARN
	3.1.4.7. Storm
	3.1.4.8. Atlas

	3.1.5. Ranger Plugins - Kerberos Overview
	3.1.5.1. HDFS
	3.1.5.2. Hive
	3.1.5.3. HBase
	3.1.5.4. Knox

	3.2. Using Ranger to Provide Authorization in Hadoop
	3.2.1. About Ranger Policies
	3.2.1.1. Ranger Resource-Based Policies
	3.2.1.2. Ranger Tag-Based Policies
	3.2.1.2.1. Tag Store
	3.2.1.2.2. TagSync
	3.2.1.2.3. Tags

	3.2.1.3. Tags and Policy Evaluation
	3.2.1.3.1. Finding Tags
	3.2.1.3.2. Evaluating Tag-Based Policies
	3.2.1.3.3. Using Tags in Conditions

	3.2.1.4. Apache Ranger Access Conditions
	3.2.1.4.1. Allow, Deny, and Exclude Conditions
	3.2.1.4.1.1. Enable Deny Conditions for Policies

	3.2.1.4.2. Policy Evaluation of Access Conditions

	3.2.2. Using the Ranger Console
	3.2.2.1. Opening and Closing the Ranger Console
	3.2.2.2. Ranger Console Navigation

	3.2.3. Configuring Resource-Based Services
	3.2.3.1. Configure an HBase Service
	3.2.3.2. Configure an HDFS Service
	3.2.3.3. Configure a Hive Service
	3.2.3.4. Configure a Kafka Service
	3.2.3.5. Configure a Knox Service
	3.2.3.6. Configure a Solr Service
	3.2.3.7. Configure a Storm Service
	3.2.3.8. Configure a YARN Service
	3.2.3.9. Configure an Atlas Service

	3.2.4. Resource-Based Policy Management
	3.2.4.1. Create an HBase Policy
	3.2.4.2. Provide User Access to HBase Database Tables from the Command Line
	3.2.4.3. Create an HDFS Policy
	3.2.4.4. Create a Hive Policy
	3.2.4.5. Provide User Access to Hive Database Tables from the Command Line
	3.2.4.6. Create a Kafka Policy
	3.2.4.7. Create a Knox Policy
	3.2.4.8. Create a Solr Policy
	3.2.4.9. Create a Storm Policy
	3.2.4.10. Create a YARN Policy
	3.2.4.11. Create an Atlas Policy

	3.2.5. Row-level Filtering and Column Masking in Hive
	3.2.5.1. Row-level Filtering in Hive with Ranger Policies
	3.2.5.2. Dynamic Column Masking in Hive with Ranger Policies

	3.2.6. Adding Tag-based Service
	3.2.7. Adding Tag-based Policies
	3.2.7.1. Adding a Tag-based PII Policy
	3.2.7.2. Default EXPIRES_ON Policy

	3.2.8. Users/Groups and Permissions Administration
	3.2.8.1. Add a User
	3.2.8.2. Edit a User
	3.2.8.3. Delete a User
	3.2.8.4. Add a Group
	3.2.8.5. Edit a Group
	3.2.8.6. Delete a Group
	3.2.8.7. Add or Edit Permissions

	3.2.9. Reports Administration
	3.2.9.1. View Reports
	3.2.9.2. Search Reports
	3.2.9.3. Download Reports
	3.2.9.4. Edit Policies from the Reports Page

	3.2.10. Special Requirements for High Availability Environments
	3.2.11. Adding a New Component to Apache Ranger
	3.2.12. Developing a Custom Authorization Module
	3.2.13. Apache Ranger Public REST API
	3.2.13.1. Service Definition APIs
	3.2.13.1.1. Get Service Definition by ID
	3.2.13.1.2. Get Service Definition by Name
	3.2.13.1.3. Create Service Definition
	3.2.13.1.4. Update Service Definition by ID
	3.2.13.1.5. Update Service Definition by Name
	3.2.13.1.6. Delete Service Definition by ID
	3.2.13.1.7. Delete Service Definition by Name
	3.2.13.1.8. Search Service Definitions

	3.2.13.2. Service APIs
	3.2.13.2.1. Get Service by ID
	3.2.13.2.2. Get Service by Name
	3.2.13.2.3. Create Service
	3.2.13.2.4. Update Service by ID
	3.2.13.2.5. Update Service by Name
	3.2.13.2.6. Delete Service by ID
	3.2.13.2.7. Delete Service by Name
	3.2.13.2.8. Search Services

	3.2.13.3. Policy APIs
	3.2.13.3.1. Get Policy by ID
	3.2.13.3.2. Get Policy by Service Name and Policy Name
	3.2.13.3.3. Create Policy
	3.2.13.3.4. Update Policy by ID
	3.2.13.3.5. Update Policy by Service Name and Policy Name
	3.2.13.3.6. Delete Policy by ID
	3.2.13.3.7. Delete Policy by Service Name and Policy Name
	3.2.13.3.8. Search Policies in a Service

	4. Data Protection: Wire Encryption
	4.1. Enabling RPC Encryption
	4.2. Enabling Data Transfer Protocol
	4.3. Enabling SSL: Understanding the Hadoop SSL Keystore Factory
	4.4. Creating and Managing SSL Certificates
	4.4.1. Obtain a Certificate from a Trusted Third-Party Certification Authority (CA)
	4.4.2. Create and Set Up an Internal CA (OpenSSL)
	4.4.3. Installing Certificates in the Hadoop SSL Keystore Factory (HDFS, MapReduce, and YARN)
	4.4.4. Using a CA-Signed Certificate

	4.5. Enabling SSL for HDP Components
	4.6. Enable SSL for WebHDFS, MapReduce Shuffle, Tez, and YARN
	4.7. Enable SSL for HttpFS
	4.8. Enable SSL on Oozie
	4.8.1. Configure the Oozie Client to Connect Using SSL
	4.8.2. Connect to the Oozie Web UI Using SSL
	4.8.3. Configure Oozie HCatalogJob Properties

	4.9. Enable SSL on the HBase REST Server
	4.10. Enable SSL on the HBase Web UI
	4.11. Enable SSL on HiveServer2
	4.11.1. Setting up SSL with self-signed certificates
	4.11.2. Selectively disabling SSL protocol versions

	4.12. Enable SSL for Kafka Clients
	4.12.1. Configuring the Kafka Broker
	4.12.2. Configuring Kafka Producer and Kafka Consumer

	4.13. Enable SSL for Accumulo
	4.13.1. Generate a Certificate Authority
	4.13.2. Generate a Certificate/Keystore Per Host
	4.13.3. Configure Accumulo Servers
	4.13.4. Configure Accumulo Clients

	4.14. Enable SSL for Apache Atlas
	4.14.1. Configuring Apache Atlas SSL
	4.14.2. Credential Provider Utility Script

	4.15. SPNEGO setup for WebHCat
	4.16. Configure SSL for Hue
	4.16.1. Enabling SSL on Hue by Using a Private Key
	4.16.2. Enabling SSL on Hue Without Using a Private Key

	4.17. Configure SSL for Knox
	4.17.1. Self-Signed Certificate with Specific Hostname for Evaluations
	4.17.2. CA-Signed Certificates for Production
	4.17.3. Setting Up Trust for the Knox Gateway Clients

	4.18. Securing Phoenix
	4.19. Set Up SSL for Ambari
	4.19.1. Set Up Truststore for Ambari Server

	4.20. Configure Ambari Ranger SSL
	4.20.1. Configuring Ambari Ranger SSL Using Public CA Certificates
	4.20.1.1. Prerequisites
	4.20.1.2. Configuring Ranger Admin
	4.20.1.3. Configuring Ranger Usersync
	4.20.1.4. Configuring Ranger Plugins for SSL
	4.20.1.4.1. Configuring the Ranger HDFS Plugin for SSL
	4.20.1.4.2. Configuring the Ranger KMS Plugin for SSL
	4.20.1.4.3. Configuring the Ranger KMS Server for SSL

	4.20.2. Configuring Ambari Ranger SSL Using a Self-Signed Certificate
	4.20.2.1. Prerequisites
	4.20.2.2. Configuring Ranger Admin
	4.20.2.3. Configuring Ranger Usersync
	4.20.2.4. Configuring Ranger Plugins
	4.20.2.4.1. Configuring the Ranger HDFS Plugin for SSL
	4.20.2.4.2. Configuring the Ranger KMS Plugin for SSL
	4.20.2.4.3. Configuring the Ranger KMS Server for SSL

	4.21. Configure Non-Ambari Ranger SSL
	4.21.1. Configuring Non-Ambari Ranger SSL Using Public CA Certificates
	4.21.1.1. Configuring Ranger Admin
	4.21.1.2. Configuring Ranger Usersync
	4.21.1.3. Configuring Ranger Plugins

	4.21.2. Configuring Non-Ambari Ranger SSL Using a Self Signed Certificate
	4.21.2.1. Configuring Ranger Admin
	4.21.2.2. Configuring Ranger Usersync
	4.21.2.3. Configuring Ranger Plugins

	4.22. Connecting to SSL-Enabled Components
	4.22.1. Connect to SSL Enabled HiveServer2 using JDBC
	4.22.2. Connect to SSL Enabled Oozie Server
	4.22.2.1. Use a Self-signed Certificate from Oozie Java Clients
	4.22.2.2. Connect to Oozie from Java Clients
	4.22.2.3. Connect to Oozie from a Web Browser

	5. Auditing in Hadoop
	5.1. Using Apache Solr for Ranger Audits
	5.1.1. Prerequisites
	5.1.2. Installing Externally Managed SolrCloud
	5.1.2.1. Installation and Configuration Steps
	5.1.2.2. Solr Installation

	5.1.3. Configuring Externally Managed SolrCloud
	5.1.4. Configuring Externally Managed Solr Standalone
	5.1.5. Configuring SolrCloud for Kerberos
	5.1.5.1. Configure Kerberos for SolrCloud
	5.1.5.2. Configure SolrCloud for Kerberos
	5.1.5.3. Connecting to Kerberos-enabled SolrCloud

	5.2. Migrating Audit Logs from DB to Solr in Ambari Clusters
	5.3. Manually Enabling Audit Settings in Ambari Clusters
	5.3.1. Manually Updating Ambari Solr Audit Settings
	5.3.2. Manually Updating HDFS Audit Settings (for Ambari installs)

	5.4. Enabling Audit Logging in Non-Ambari Clusters
	5.5. Managing Auditing in Ranger
	5.5.1. View Operation Details
	5.5.2. Access
	5.5.3. Admin
	5.5.4. Login Sessions
	5.5.5. Plugins

	6. Data Protection: HDFS Encryption
	6.1. Ranger KMS Administration
	6.1.1. Installing the Ranger Key Management Service
	6.1.1.1. Install Ranger KMS using Ambari (Kerberized Cluster)
	6.1.1.1.1. Setting up Database Users Without Sharing DBA Credentials
	6.1.1.1.2. Configure HDFS Encryption to use Ranger KMS Access
	6.1.1.1.3. Use a Kerberos Principal for the Ranger KMS Repository

	6.1.2. Store Master Key in a Hardware Security Module (HSM)
	6.1.2.1. Install Ranger KMS Hardware Security Module (HSM)
	6.1.2.1.1. Install Ranger KMS HSM Manually
	6.1.2.1.2. Install Ranger KMS HSM via Ambari with plain text password
	6.1.2.1.3. Install Ranger KMS HSM via Ambari with JCEKS

	6.1.2.2. Configure HSM High Availability (HA)
	6.1.2.3. HSM Migration
	6.1.2.3.1. Migrate HSM to Ranger DB
	6.1.2.3.2. Migrate Ranger DB to HSM

	6.1.2.4. Optional: Clear Objects from the HSM Partition

	6.1.3. Enable Ranger KMS Audit
	6.1.3.1. Save Audits to Solr
	6.1.3.2. Save Audits to HDFS

	6.1.4. Enabling SSL for Ranger KMS
	6.1.5. Install Multiple Ranger KMS
	6.1.6. Using the Ranger Key Management Service
	6.1.6.1. Accessing the Ranger KMS Web UI
	6.1.6.2. Listing and Creating Keys
	6.1.6.3. Rolling Over an Existing Key
	6.1.6.4. Deleting a Key

	6.1.7. Ranger KMS Properties
	6.1.8. Troubleshooting Ranger KMS

	6.2. HDFS "Data at Rest" Encryption
	6.2.1. HDFS Encryption Overview
	6.2.2. Configuring and Starting the Ranger Key Management Service (Ranger KMS)
	6.2.3. Configuring and Using HDFS Data at Rest Encryption
	6.2.3.1. Prepare the Environment
	6.2.3.1.1. CPU Support for AES-NI optimization
	6.2.3.1.2. Library Support for AES-NI optimization
	6.2.3.1.3. Verifying AES-NI Support

	6.2.3.2. Create an Encryption Key
	6.2.3.3. Create an Encryption Zone
	6.2.3.4. Copy Files from/to an Encryption Zone
	6.2.3.5. Read and Write Files from/to an Encryption Zone
	6.2.3.6. Delete Files from an Encryption Zone with Trash Enabled

	6.2.4. Configuring HDP Services for HDFS Encryption
	6.2.4.1. HBase
	6.2.4.1.1. Recommendations
	6.2.4.1.2. Steps
	6.2.4.1.3. Changes in Behavior after HDFS Encryption is Enabled

	6.2.4.2. Hive
	6.2.4.2.1. Configuring Hive Tables for HDFS Encryption
	6.2.4.2.2. Loading Data into an Encrypted Table
	6.2.4.2.3. Encrypting Other Hive Directories
	6.2.4.2.4. Additional Changes in Behavior with HDFS-Encrypted Tables

	6.2.4.3. MapReduce on YARN
	6.2.4.3.1. Steps

	6.2.4.4. Oozie
	6.2.4.4.1. Recommendations

	6.2.4.5. Sqoop
	6.2.4.5.1. Recommendations

	6.2.4.6. WebHDFS
	6.2.4.6.1. Recommendations
	6.2.4.6.1.1. Steps

	6.2.5. Appendix: Creating an HDFS Admin User

	7. Addendum
	7.1. ZooKeeper ACLs Best Practices
	7.1.1. Accumulo
	7.1.2. Ambari Solr
	7.1.3. Atlas
	7.1.4. HBase
	7.1.5. HDFS/WebHDFS
	7.1.6. Hive/HCatalog
	7.1.7. Kafka
	7.1.8. Oozie
	7.1.9. Ranger
	7.1.10. Ranger KMS/Hadoop KMS
	7.1.11. Slider
	7.1.12. Storm
	7.1.13. WebHCat
	7.1.14. YARN
	7.1.15. YARN Registry
	7.1.16. ZooKeeper

