
Hortonworks Data Platform

 (August 31, 2017)

Apache Hive Performance Tuning

docs.cloudera.com

http://docs.cloudera.com

Hortonworks Data Platform August 31, 2017

ii

Hortonworks Data Platform: Apache Hive Performance Tuning
Copyright © 2012-2017 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
Contact Us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks Data Platform August 31, 2017

iii

Table of Contents
1. Optimizing an Apache Hive Data Warehouse ... 1

1.1. Hive Processing Environments ... 1
1.1.1. Overall Architecture ... 1
1.1.2. Dependencies for Optimal Hive Query Processing 1
1.1.3. Connectivity to Admission Control (HiveServer2) 2
1.1.4. Execution Engines (Apache Tez and Hive LLAP) 3

1.2. Setting up Hive LLAP .. 5
1.2.1. Enabling YARN Preemption for Hive LLAP .. 5
1.2.2. Enable Hive LLAP: Typical Setup ... 6
1.2.3. Enable Hive LLAP: Advanced Setup ... 10
1.2.4. Connect Clients to a Dedicated HiveServer2 Endpoint 15

2. Hive LLAP on Your Cluster ... 17
3. Best Practices Prior to Tuning Performance .. 19
4. Connectivity and Admission Control ... 20

4.1. HiveServer2 ... 20
4.1.1. Sizing HiveServer2 Heap Memory ... 21
4.1.2. HiveServer2 Interactive UI .. 21
4.1.3. Multiple HiveServer2 Instances for Different Workloads 22
4.1.4. Security .. 22

4.2. Workload Management with YARN Capacity Scheduler Queues 23
4.2.1. Queues for Batch Processing ... 23
4.2.2. Queues in Hive LLAP Sites .. 25

5. Using the Cost-Based Optimizer for Optimal Performance .. 26
5.1. Statistics .. 26
5.2. SQL Optimization and Planning Properties .. 27

6. Optimizing the Hive Execution Engine .. 28
6.1. Explain Plans ... 28
6.2. Tuning the Execution Engine Manually .. 28

6.2.1. Tune Tez Service Configuration Properties .. 28
7. Maximizing Storage Resources ... 31

7.1. ORC File Format .. 31
7.2. Designing Data Storage with Partitions and Buckets .. 32

7.2.1. Partitioned Tables ... 33
7.2.2. Bucketed Tables ... 34

7.3. Supported Filesystems ... 35
8. Debugging Performance Issues .. 36

8.1. Debugging Hive Queries with Tez View ... 36
8.2. Viewing Metrics in Grafana ... 36

Hortonworks Data Platform August 31, 2017

iv

List of Figures
1.1. YARN Features Pane ... 5
1.2. Enable Interactive Query Toggle on the Settings Tab ... 7
1.3. Select HiveServer2 Interactive Host Window .. 7
1.4. Enabled Interactive Query Configuration Settings .. 8
1.5. Restart All in Top Right Corner of Ambari Window ... 10
1.6. Enable Interactive Query Toggle on the Settings Tab ... 11
1.7. Select HiveServer2 Interactive Host Window .. 11
1.8. Enabled Interactive Query Configuration Settings .. 13
1.9. Restart All in Top Right Corner of Ambari Window ... 15
1.10. Summary Tab with the HiveServer2 JDBC URLs .. 16
2.1. LLAP on Your Cluster .. 17
2.2. Hive Summary ... 17
2.3. ResourceManager Web UI ... 18
2.4. Concurrency Setting .. 18
4.1. Quick Links .. 21
4.2. YARN Capacity Scheduler .. 24
4.3. Ambari Capacity Scheduler View ... 24
4.4. YARN Queue Manager on the Views Menu ... 25
7.1. ORC File Structure ... 31
7.2. Hive Data Abstractions .. 32

Hortonworks Data Platform August 31, 2017

v

List of Tables
1.1. Manual Configuration of Custom yarn-site Properties for Enabling Hive LLAP 6
5.1. Commands for Gathering Column and Table Statistics ... 26
5.2. Settings for Optimization and Planning Properties ... 27
6.1. Settings for Execution Engine Properties ... 29
7.1. ORC Properties .. 32

Hortonworks Data Platform August 31, 2017

1

1. Optimizing an Apache Hive Data
Warehouse

Using a Hive-based data warehouse requires setting up the appropriate environment for
your needs. After you establish the computing paradigm and architecture, you can tune the
data warehouse infrastructure, interdependent components, and your client connection
parameters to improve the performance and relevance of business intelligence (BI) and
other data-analytic applications.

Tuning Hive and other Apache components that run in the background to support
processing of HiveQL is particularly important as the scale of your workload and database
volume increases. When your applications query data sets that constitute a large-scale
enterprise data warehouse (EDW), tuning the environment and optimizing Hive queries are
often part of an ongoing effort by IT or DevOps teams to ensure service-level agreement
(SLA) benchmarks or other performance expectations.

Increasingly, most enterprises require that Hive queries run against the data warehouse
with low-latency analytical processing, which is often referred to as LLAP by Hortonworks.
LLAP of real-time data can be further enhanced by integrating the EDW with the Druid
business intelligence engine.

Tip

The best approach is to use Apache Ambari to configure and monitor
applications and queries that run on a Hive data warehouse. These tips are
described throughout this guide.

1.1. Hive Processing Environments
The environment that you use to process queries and return results can depend on one
or more factors, such as the capacity of your system resources, how in-depth you want to
analyze data, how quickly you want queries to return results, or what tradeoffs that you
can accept to favor one model over another.

1.1.1. Overall Architecture

A brief overview of the components and architecture of systems using Hive EDW for data
processing is in the Hive Architectural Overview of HDP 2.5. With a few exceptions, the
architecture information there applies to both batch processing and LLAP of Hive queries.
However, there are some differences in the way the components of an environment
processing batch workloads operate from the functioning of the same components in a
Hive LLAP environment.

1.1.2. Dependencies for Optimal Hive Query Processing

Increasingly, enterprises want to run SQL workloads that return faster results than batch
processing can provide. Hortonworks Data Platform (HDP) supports Hive LLAP, which
enables application development and IT infrastructure to run queries that return real-time

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.3/bk_hive-performance-tuning/content/ch_hive_architectural_overview.html

Hortonworks Data Platform August 31, 2017

2

or near-real-time results. Use cases for implementing this technology include environments
where users of business intelligence (BI) tools or web dashboards need to accelerate
analysis of data stored in a Hive EDW.

A performance benchmark that enterprises increasingly want to reach with data analytics
applications is support for interactive queries. Interactive queries are queries on Hive data
sets that meet low-latency benchmarks that are variably gauged but for Hive LLAP in HDP is
specified as 15 seconds or less.

Important

Hive LLAP with Apache Tez utilizes newer technology available in Hive 2.x to be
an increasingly needed alternative to other execution engines like MapReduce
and earlier implementations of Hive on Tez. Tez runs in conjunction with Hive
LLAP to form a newer execution engine architecture that can support faster
queries.

Important

The Hive LLAP with Tez engine requires a different Apache Hadoop YARN
configuration from the configuration required for environments where Hive on
Tez is the execution engine. With Ambari 2.5.0 and later versions, you can more
easily enable and configure YARN components that are the foundation of Hive
LLAP than you could in previous HDP releases.

1.1.3. Connectivity to Admission Control (HiveServer2)

HiveServer2 is a service that enables multiple clients to simultaneously execute queries
against Hive using an open API driver, such as JDBC or ODBC.

For optimal performance, use HiveServer2 as the connectivity service between your
client application and the Hive EDW. HiveServer1 is deprecated because HiveServer2 has
improvements for multiclient concurrency and authentication. Also, HiveServer2 is designed
to provide better support for open API clients like JDBC and ODBC.

HiveServer2 is one of several architectural components for admission control, which enables
optimal Hive performance when multiple user sessions generate asynchronous threads
simultaneously. Admission control operates by scaling the Hive processing of concurrent
queries to a workload that is suited to the system resources and to the total demand of
incoming threads, while holding the other queries for later processing or cancelling the
queries if conditions warrant this action. Admission control is akin to “connection pooling”
in RDBMS databases.

To optimize Hive performance, you must set parameters that affect admission control
according to your needs and system resources.

Important

HiveServer2 coordinates admission control in conjunction with YARN and
Apache Tez for batch queries and with YARN and the LLAP daemons for
interactive queries.

Hortonworks Data Platform August 31, 2017

3

1.1.4. Execution Engines (Apache Tez and Hive LLAP)

Both the Hive on Tez engine for batch queries and the enhanced Tez + Hive LLAP engine
run on YARN nodes.

1.1.4.1. Tez Execution on YARN

Hive on Tez is an advancement over earlier application frameworks for Hadoop data
processing, such as using Hive on MapReduce2 or MapReduce1. The Tez framework is
required for high-performance batch workloads. Tez is also part of the execution engine for
Hive LLAP.

After query compilation, HiveServer2 generates a Tez graph that is submitted to YARN. A
Tez ApplicationMaster (AM) monitors the query while it is running.

The maximum number of queries that can be run concurrently is limited by the number of
ApplicationMasters.

1.1.4.2. Hive LLAP Execution Engine

The architecture of Hive LLAP is illustrated in the following

diagram.

• HiveServer2: provides JDBC and ODBC interface, and query compilation

• Query coordinators: coordinate the execution of a single query LLAP daemon: persistent
server, typically one per node. This is the main differentiating component of the
architecture, which enables faster query runtimes than earlier execution engines.

• Query executors: threads running inside the LLAP daemon

• In-memory cache: cache inside the LLAP daemon that is shared across all users

Hortonworks Data Platform August 31, 2017

4

1.1.4.3. Workload Management with Queues and Containers (Hive,
YARN, and Tez)

1.1.4.3.1. Batch Processing

Each queue must have the capacity to support one complete Tez Application, as defined
by its ApplicationMaster (AM). Consequently, the maximum number of queries that can be
run concurrently is also limited by the number of Apache Tez Application Masters.

A Hive-based analytic application relies on execution resources called YARN containers.
Containers are defined by the Hive configuration. The number and longevity of containers
that reside in your environment depend on whether you want to run with batch workloads
or enable Hive LLAP in HDP.

1.1.4.3.2. Interactive Workloads

Interactive workloads operate with YARN and queues differently from the way that batch
workloads manage workloads.

When using the Hive LLAP on Tez engine, Admission Control is handled differently than for
earlier Hive on Tez implementations. Resources are managed by Hive LLAP globally, rather
than each Tez session managing its own.

Hive LLAP has its own resource scheduling and pre-emption built in that doesn't rely on
YARN. As a result, a single queue is needed to manage all LLAP resources. In addition, each
LLAP daemon runs as a single YARN container.

1.1.4.4. SQL Planner and Optimizer (Apache Hive and Apache Calcite)

A cost-based optimizer (CBO) generates more efficient query plans. In Hive, the CBO is
enabled by default, but it requires that column statistics be generated for tables. Column
statistics can be expensive to compute so they are not automated. Hive has a CBO that is
based on Apache Calcite and an older physical optimizer. All of the optimizations are being
migrated to the CBO. The physical optimizer performs better with statistics, but the CBO
requires statistics.

1.1.4.5. Storage Formats

Hive supports various file formats. You can write your own SerDes (Serializers, Deserializers)
interface to support new file formats.

Tip

The Optimized Row Columnar (ORC) file format for data storage is
recommended because this format provides the best Hive performance overall.

1.1.4.6. Storage Layer (Example: HDFS Filesystem)

While a Hive EDW can run on one of a variety of storage layers, HDFS and Amazon S3 are
the most prevalently used and known filesystems for data analytics that run in the Hadoop
stack. By far, the most common filesystem used for a public cloud infrastructure is Amazon
S3.

Hortonworks Data Platform August 31, 2017

5

A Hive EDW can store data on other filesystems, including WASB and ADLS.

Depending on your environment, you can tune the filesystem to optimize Hive
performance by configuring compression format, stripe size, partitions, and buckets. Also,
you can create bloom filters for columns frequently used in point lookups.

1.2. Setting up Hive LLAP

Important

Using Ambari 2.5.0+ to enable Hive LLAP and configure most of its basic
parameters is highly recommended for most users. Ambari not only has a GUI
to ease the tasks, but also contains multiple wizards that can automatically tune
interactive query property settings to suit your environment.

While most of the Hive LLAP installation and configuration steps can be completed in
Ambari, you must manually configure two properties in the yarn-site.xml file before
sliding the Enable Interactive Query toggle to "Yes." Then there are two paths for enabling
Hive LLAP using Ambari: Typical Setup and Advanced Setup. Typical Setup is recommended
for most users because it requires less decision-making and leverages more autotuning
features of Ambari than the Advanced Setup.

1.2.1. Enabling YARN Preemption for Hive LLAP

About this Task

You must enable and configure YARN preemption, which directs the Capacity Scheduler
to position a Hive LLAP queue as the top-priority workload to run among cluster node
resources. See YARN Preemption for more information about how YARN preemption
functions.

Steps

1. In Ambari, select Services > YARN > Configs tab > Settings subtab.

2. Set the Pre-emption slider of the YARN Features section to Enabled:

Figure 1.1. YARN Features Pane

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_yarn-resource-management/content/preemption.html

Hortonworks Data Platform August 31, 2017

6

3. Click the Advanced subtab.

4. Set the yarn-site.xml properties required to enable Hive LLAP.

a. Open the Custom yarn-site drop-down menu.

b. Use the Add Property ... link in the GUI to add and configure the properties as
documented in the following table.

Table 1.1. Manual Configuration of Custom yarn-site Properties for
Enabling Hive LLAP

Property Name Recommended Setting

yarn.resourcemanager.monitor.

capacity.preemption.natural_termination_factor

1

yarn.resourcemanager.monitor.capacity.

preemption.total_preemption_per_round

Calculate the value by dividing 1 by the
number of cluster nodes. Enter the value as a
decimal.

Example: If your cluster has 20 nodes, then
divide 1 by 20 and enter 0.05 as the value of
this property setting.

5. Click Save in the upper right area of the window.

Next Step

Complete either the Enable Hive LLAP: Typical Setup task or the Enable Hive LLAP:
Advanced Setup in Ambari in the following sections.

1.2.2. Enable Hive LLAP: Typical Setup

About this Task

Follow this procedure if you are new to Hive LLAP or prefer to let autotuning features of
Ambari configure interactive queries.

Prerequisites

• Installation of Ambari 2.5.x

• The Hive Service and other interdependencies as prompted in Ambari must be running.

• YARN preemption must be enabled and configured as documented in the Enabling
YARN Preemption for Hive LLAP section above.

• If enabled, you must disable maintenance mode for the Hive service and target host for
HiveServer Interactive (HSI); otherwise, enabling LLAP fails to install HSI. Alternatively,
you need to install HiveServer Interactive on the Ambari server as follows:curl -u
admin:<password> -H "X-Requested-By:ambari" -i -X POST http://

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hive-performance-tuning/content/ch_hive-perf-tuning-intro.html#enabling-yarn-preemption
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hive-performance-tuning/content/ch_hive-perf-tuning-intro.html#enabling-yarn-preemption

Hortonworks Data Platform August 31, 2017

7

host:8080/api/v1/clusters/<cluster_name>/hosts/<host_name>/
host_components/HIVE_SERVER_INTERACTIVE

Steps

1. Select the Hive service in the Ambari dashboard.

2. Click the Configs tab.

3. In the Settings tab, locate the Interactive Query section and set the Enable Interactive
Query slider to Yes.

Figure 1.2. Enable Interactive Query Toggle on the Settings Tab

4. Select the server to host the HiveServer2 Interactive instance in the HiveServer2
Interactive field. In most cases, you can keep the default server host assignment.

Figure 1.3. Select HiveServer2 Interactive Host Window

5. Click Select in the Select HiverServer2 Interactive host window.

6. When the Settings subtab opens again, review the additional configuration fields that
appear in the Interactive Query section of the window:

Hortonworks Data Platform August 31, 2017

8

Figure 1.4. Enabled Interactive Query Configuration Settings

Hortonworks Data Platform August 31, 2017

9

Retain llap as the setting in the Interactive Query Queue drop-down menu. This setting
dedicates all the LLAP daemons and all the YARN ApplicationMasters of the system to
the single, specified queue.

7. Set the Number of nodes used by Hive LLAP slider to the number of cluster nodes on
which to run Hive LLAP. LLAP automatically deploys to the nodes, and you do not need
to label the nodes.

8. Set the Maximum Total Concurrent Queries slider to the maximum number of
concurrent LLAP queries to run. The Ambari wizard calculates and displays a range of
values in the slider based on the number of nodes that you selected and the number of
CPUs in the Hive LLAP cluster.

9. Review the following settings, which are autogenerated for informational purposes only.
(No interactive elements allow you to directly change the values.)

Memory per Daemon: YARN container size for each daemon (MB)
In-Memory Cache per Daemon: Size of the cache in each container (MB)
Number of executors per LLAP Daemon: The number of executors per daemon: for
example, the number of fragments that can execute in parallel on a daemon

10.Review the property settings outside the Interactive Query section of the window
to learn how the Hive LLAP instance is configured. The Ambari wizard calculates
appropriate values for most other properties on the Settings subtab, based on the
configurations in the Interactive Query section of the window.

Important

When enabling Hive LLAP, the Run as end user instead of Hive user slider
on the Settings subtab has no effect on the Hive instance. If you set the
slider to True, this property switches from Hive user to end user only when
you run Hive in batch-processing mode.

11.Click the Save button near the top of the Ambari window.

12.If the Dependent Configurations window appears, review recommendations and adjust
if you know settings need to be changed for your environment.

13.Click Service Actions > Restart All.

Hortonworks Data Platform August 31, 2017

10

Figure 1.5. Restart All in Top Right Corner of Ambari Window

Next Steps

Connect Clients to a Dedicated HiveServer2 Endpoint [15]

Tip

Hive View 2.0 in Ambari integrates with the general availability release of Hive
LLAP. If you plan to use Hive View 2.0 with a Hive LLAP instance, ensure that
the Use Interactive Mode property of Manage Ambari Views is set to true. See
Settings and Cluster Configuration of the Ambari Views Guide.

1.2.3. Enable Hive LLAP: Advanced Setup

About this Task

If you are a more advanced user of Hive LLAP and want to use a customized query queue
rather than the default llap queue, then use the following procedure to enable interactive
queries.

Prerequisites

https://docs.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-views/content/configuring_your_cluster.html#settings_and_cluster_configuration

Hortonworks Data Platform August 31, 2017

11

• Installation of Ambari 2.5.x

• The Hive Service and other interdependencies as prompted in Ambari must be running.

• Your customized interactive query queue must be set up. For more information, see the
Capacity Scheduler chapter of the Hortonworks YARN Resource Management Guide.

• Complete the tasks in the Queues for Hive LLAP Sites section.

• YARN preemption must be enabled and configured as documented in the Enabling
YARN Preemption for Hive LLAP section above.

Steps

1. Select the Hive service in the Ambari dashboard.

2. Click the Configs tab.

3. In the Settings tab, locate the Interactive Query section and set the Enable Interactive
Query slider to Yes.

Figure 1.6. Enable Interactive Query Toggle on the Settings Tab

4. Select the server to host the HiveServer2 Interactive instance in the HiveServer2
Interactive field. In most cases, you can accept the default server host assignment.

Figure 1.7. Select HiveServer2 Interactive Host Window

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_yarn-resource-management/content/ch_capacity_scheduler.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_yarn-resource-management/content/ch_capacity_scheduler.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hive-performance-tuning/content/ch_connectivity-admission-control.html#yarn-llap-queues
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hive-performance-tuning/content/ch_hive-perf-tuning-intro.html#enabling-yarn-preemption
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hive-performance-tuning/content/ch_hive-perf-tuning-intro.html#enabling-yarn-preemption

Hortonworks Data Platform August 31, 2017

12

5. Select a predefined queue to use for the Hive LLAP cluster.

a. Hover over the Interactive Query Queue field to display the hover-action tools, as
illustrated in the following screenshot.

b. Click the Edit (pencil icon) hover action to make the Interactive Query Queue field a
drop-down list.

c. Select the queue for Hive LLAP. This setting dedicates all the LLAP daemons and all
the YARN ApplicationMasters of the system to the single, specified queue.

Hortonworks Data Platform August 31, 2017

13

Figure 1.8. Enabled Interactive Query Configuration Settings

Important

Hover-action tools also appear when you move your pointer to hover over
other editable elements of the Ambari window.

Hortonworks Data Platform August 31, 2017

14

6. Set the Number of nodes used by Hive LLAP slider to the number of cluster nodes on
which to run Hive LLAP. LLAP automatically deploys to the nodes, and you do not need
to label the nodes.

7. Set the Maximum Total Concurrent Queries slider to the maximum number of
concurrent Hive LLAP queries to run. The Ambari wizard calculates and displays a range
of values in the slider based on the number of nodes that you selected and the number
of CPUs in the Hive LLAP cluster. If you want to set the value outside the slider range,
move your pointer over the field to enable the hover actions and select the Override
tool.

8. Review the following settings, which are autogenerated for informational purposes only.
(No interactive elements allow you to directly change the values.)

Memory per Daemon: YARN container size for each daemon (MB)
In-Memory Cache per Daemon: Size of the cache in each container (MB)
Number of executors per LLAP Daemon: The number of executors per daemon: for
example, the number of fragments that can execute in parallel on a daemon

9. Review the property settings outside the Interactive Query section of the window
to learn how the Hive LLAP instance is configured. The Ambari wizard calculates
appropriate values for most other properties on the Settings tab, based on the
configurations in the Interactive Query section of the window.

Important

When enabling Hive LLAP, the Run as end user instead of Hive user slider
on the Settings tab has no effect on the Hive instance. If you set the slider to
True, this property switches from Hive user to end user only when you run
Hive in batch-processing mode.

10.Click the Save button near the top of the Ambari window.

11.If the Dependent Configurations window appears, review recommendations and adjust
if you know settings need to be changed for your environment.

12.Click Service Actions > Restart All.

Hortonworks Data Platform August 31, 2017

15

Figure 1.9. Restart All in Top Right Corner of Ambari Window

Next Steps

Connect Clients to a Dedicated HiveServer2 Endpoint [15]

Tip

Hive View 2.0 in Ambari integrates with the general availability release of Hive
LLAP. If you plan to use Hive View 2.0 with a Hive LLAP instance, ensure that
the Use Interactive Mode property of Manage Ambari Views is set to true. See
Settings and Cluster Configuration of the Ambari Views Guide.

1.2.4. Connect Clients to a Dedicated HiveServer2 Endpoint

About this Task

Hortonworks supports Hive JDBC drivers that enable you to connect to HiveServer2 so that
you can query, analyze, and visualize data stored in the Hortonworks Data Platform. In this
task, you get the autogenerated HiveServer2 JDBC URL so that you can connect your client
to the Hive LLAP instance.

https://docs.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-views/content/configuring_your_cluster.html#settings_and_cluster_configuration

Hortonworks Data Platform August 31, 2017

16

Important

Do not use Hive CLI as your JDBC client for Hive LLAP queries.

Prerequisite

Complete setup of Hive LLAP with Ambari, including restarting the Hive Service after saving
the Enable Interactive Query settings.

Steps

1. Select the Hive service in the Ambari dashboard.

2. Click the Summary tab.

3. Use the clipboard icon to the right of the HiveServer2 Interactive JDBC URL value to
copy the URL.

Figure 1.10. Summary Tab with the HiveServer2 JDBC URLs

4. Paste the URL into a JDBC client that you use to query the Hive EDW. For example, the
client could be a BI tool or Beeline.

Next Steps

You can run your queries in the client. Hive LLAP should be booted and ready to use.

If query performance is too slow, see the following chapters of this guide.

Hortonworks Data Platform August 31, 2017

17

2. Hive LLAP on Your Cluster
After setup, Hive LLAP is transparent to Apache Hive users and business intelligence tools.
Interactive queries run on Apache Hadoop YARN as an Apache Slider application. You can
monitor the real-time performance of the queries through the YARN ResourceManager
Web UI or by using Slider and YARN command-line tools. Running through Slider enables
you to easily open your cluster, share resources with other applications, remove your
cluster, and flexibly utilize your resources. For example, you could run a large Hive LLAP
cluster during the day for BI tools, and then reduce usage during nonbusiness hours to use
the cluster resources for ETL processing.

Figure 2.1. LLAP on Your Cluster

On your cluster, an extra HiveServer2 instance is installed that is dedicated to interactive
queries. You can see this HiveServer2 instance listed in the Hive Summary page of Ambari:

Figure 2.2. Hive Summary

In the YARN ResourceManager Web UI, you can see the queue of Hive LLAP daemons or
running queries:

Hortonworks Data Platform August 31, 2017

18

Figure 2.3. ResourceManager Web UI

The Apache Tez ApplicationMasters are the same as the selected concurrency. If you
selected a total concurrency of 5, you see 5 Tez ApplicationMasters. The following example
shows selecting a concurrency of 2:

Figure 2.4. Concurrency Setting

Hortonworks Data Platform August 31, 2017

19

3. Best Practices Prior to Tuning
Performance

Tip

Before tuning an Apache Hive system in depth, ensure that you adhere to the
following best practices with your Hive deployment.

Use ORCFile format

Store all data in ORCFile format. See Maximizing Storage Resources for Hive.

Run the Hive EDW on Tez

Use Hive LLAP with Tez or the Hive on Tez execution engine rather than MapReduce.

Verify LLAP status for interactive queries

If you want to run interactive queries, ensure that the Hive LLAP engine is activated and
configured. The best way to enable Hive LLAP or check if it is enabled is to use Ambari.

Check explain plans

Ensure queries are fully vectorized by examining their explain plans. See Optimizing the
Hive Execution Engine for a conceptual explanation of different explain plans. Go directly
to the Query Tab section of the Ambari Hive View 2.0 documentation to learn how to
generate and interpret visual explain plans.

Run SmartSense

Use the SmartSense tool to detect common system misconfigurations. See the SmartSense
documentation site for more information.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hive-performance-tuning/content/ch_maximizing-storage-resources.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hive-performance-tuning/content/ch_optimizing-hive-execution-engine.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hive-performance-tuning/content/ch_optimizing-hive-execution-engine.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-views/content/section_query_tab_hive_view.html
https://docs.hortonworks.com/HDPDocuments/SS1/SmartSense-1.4.2/index.html
https://docs.hortonworks.com/HDPDocuments/SS1/SmartSense-1.4.2/index.html

Hortonworks Data Platform August 31, 2017

20

4. Connectivity and Admission Control
Creating and maintaining an environment for performant data analytics applications using
a Hive EDW requires orchestrating several software components that reside on your cluster
and using compatible client tools. The main pieces that concern the application developer
and IT or DevOps staff are the following:

• HiveServer2: A service that connects your client application to the Hive EDW.

• YARN: A system resource for queuing data queries.

• Cost-Based Optimizer: An enhanced queuing mechanism of Hive.

• Apache Tez: An application framework for running high-performance batch and
interactive data applications.

• For interactive and sub-second queries: Hive LLAP daemons. The daemons manage
resources across all YARN nodes, rather than relying on separate Tez sessions on each
node of the cluster.

HiveServer2, YARN, and Tez are components that work together to “intelligently” queue
incoming queries on your Hive data set to minimize latency of returned results.

HiveServer2 is one of several architectural components for admission control. Admission
control is designed to minimize query response time while enabling high concurrency.
It operates by scaling the Hive processing of concurrent queries to the available system
resources while removing the traditional launch time associated with MapReduce or Tez
applications by maintaining long-living sessions. Admission control is akin to “connection
pooling” in RDBMS databases.

To optimize Hive performance, configuration parameter settings that affect admission
control must be optimized in line with your needs and system resources.

This chapter focuses on what you need to know about the components listed above to
ensure clients connect to the Hive data warehouse and receive query results with high
performance. To achieve optimal results, you also need to tune the data warehouse
infrastructure so that it can handle concurrent queries in the way that comes closest to
meeting your priorities.

4.1. HiveServer2
HiveServer2 is a server interface that enables remote clients to execute queries against Hive
and retrieve the results using a JDBC or ODBC connection. For a client, you can use one of
various BI tools (for example, Microstrategy, Tableau, and BusinessObjects) or another type
of application that can access Hive over a JDBC or ODBC connection. In addition, you can
also use a command-line tool, such as Beeline, that uses JDBC to connect to Hive.

Important

Do not use the Hive command-line interface (CLI). Instead, use the Beeline
command-line shell or another JDBC CLI.

Hortonworks Data Platform August 31, 2017

21

An embedded metastore, which is different from the MetastoreDB, also runs in
HiveServer2. This metastore performs the following tasks:

• Get statistics and schema from the MetastoreDB

• Compile queries

• Generate query execution plans

• Submit query execution plans

• Return query results to the client

4.1.1. Sizing HiveServer2 Heap Memory
The following are general recommendations for sizing heap memory of a HiveServer2
instance:

• 1 to 20 concurrent executing queries: Set to 6 GB heap size.

• 21 to 40 concurrent executing queries: Set to 12 GB heap size.

• More than 40 concurrent executing queries: Create a new HiveServer2 instance. See
Multiple HiveServer2 Instances for Different Workloads for how to add a HiveServer2
instance.

4.1.2. HiveServer2 Interactive UI

Important

The HiveServer2 Interactive UI functions only with clusters that have LLAP
enabled.

The HiveServer2 Interactive UI monitors and displays heap, system, and cache metrics of
each Hive LLAP node.

Tip

The HiveServer2 Interactive UI enables you to view executing queries in real
time, a recent history of queries, and access running LLAP daemons. The Tez
View provides diagnostics for debugging queries that executed or attempted to
execute in the past.

From the Quick Links menu of Ambari, shown in the following figure, you can open the
HiveServer2 Interactive UI.

Figure 4.1. Quick Links

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hive-performance-tuning/content/ch_connectivity-admission-control.html#hiveserver2-different-workloads
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hive-performance-tuning/content/ch_connectivity-admission-control.html#hiveserver2-different-workloads

Hortonworks Data Platform August 31, 2017

22

4.1.3. Multiple HiveServer2 Instances for Different
Workloads

Multiple HiveServer2 instances can be used for:

• Load-balancing and high availability using ZooKeeper

• Running multiple applications with different settings

Because HiveServer2 uses its own settings file, using one for ETL operations and another
for interactive queries is a common practice. All HiveServer2 instances can share the same
MetastoreDB.

Adding a HiveServer2 Instance to Your Cluster

1. In Ambari, select the Hosts window

2. Click the name of the host node where you want to create the HiveServer2 instance.

3. On the Summary tab, click the Add button and select HiveServer2.

4.1.4. Security
HiveServer2 performs standard SQL security checks when a query is submitted, including
connection authentication. After the connection authentication check, the server runs

Hortonworks Data Platform August 31, 2017

23

authorization checks to make sure that the user who submits the query has permission to
access the databases, tables, columns, views, and other resources required by the query.
Hortonworks recommends that you use SQLStdAuth or Ranger to implement security.
Storage-based access controls, which is suitable for ETL workloads only, is also available.

4.2. Workload Management with YARN Capacity
Scheduler Queues

YARN allocates Hadoop cluster resources among users and groups with Capacity Scheduler
queues. The Hive queries that are submitted from your data analytics applications compose
just one set of the competing resource demands from different Hortonworks Data Platform
(HDP) components.

You can configure the Capacity Scheduler queues to scale Hive batch and LLAP workloads
as needed for your environment. However, the queue configuration in YARN for batch
processing is different from the YARN configuration for Hive LLAP.

4.2.1. Queues for Batch Processing

Capacity Scheduler queues can be used to allocate cluster resources among users and
groups. These settings can be accessed from Ambari > YARN > Configs > Scheduler or in
conf/capacity-scheduler.xml.

The following configuration example demonstrates how to set up Capacity Scheduler
queues. This example separates short- and long-running queries into two separate queues:

• hive1--This queue is used for short-duration queries and is assigned 50% of cluster
resources.

• hive2--This queue is used for longer-duration queries and is assigned 50% of cluster
resources.

The following capacity-scheduler.xml settings are used to implement this configuration:

yarn.scheduler.capacity.root.queues=hive1,hive2
yarn.scheduler.capacity.root.hive1.capacity=50
yarn.scheduler.capacity.root.hive2.capacity=50

Configure usage limits for these queues and their users with the following settings:

yarn.scheduler.capacity.root.hive1.maximum-capacity=50
yarn.scheduler.capacity.root.hive2.maximum-capacity=50
yarn.scheduler.capacity.root.hive1.user-limit=1
yarn.scheduler.capacity.root.hive2.user-limit=1

Setting maximum-capacity to 50 restricts queue users to 50% of the queue capacity with
a hard limit. If the maximum-capacity is set to more than 50%, the queue can use more
than its capacity when there are other idle resources in the cluster. However, any user can
use only the configured queue capacity. The default value of "1" for user-limit means that
any single user in the queue can at a maximum occupy 1X the queue's configured capacity.
These settings prevent users in one queue from monopolizing resources across all queues in
a cluster.

Hortonworks Data Platform August 31, 2017

24

Figure 4.2. YARN Capacity Scheduler

This example is a basic introduction to queues. For more detailed information on allocating
cluster resources using Capacity Scheduler queues, see the "Capacity Scheduler" section of
the YARN Resource Management Guide.

Setup Using the Ambari Capacity Scheduler View

If you are using Ambari 2.1 or later, queues can be set up using the Ambari Capacity
Scheduler View as shown in the following image:

1. In Ambari, navigate to the administration page.

2. Click Views > CAPACITY-SCHEDULER > <your_view_name>, and then click Go to
instance at the top of your view page.

3. In your view instance page, select the queue you want to use or create a queue. See the
Ambari Views Guide.

To create the scenario that is shown in the following screen capture, select the root
queue and add hive1 and hive2 at that level.

Figure 4.3. Ambari Capacity Scheduler View

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_yarn-resource-management/content/ch_capacity_scheduler.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-views/content/setting_up_queues.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-views/content/setting_up_queues.html

Hortonworks Data Platform August 31, 2017

25

4.2.2. Queues in Hive LLAP Sites

If you accept the default llap queue of the Hive LLAP Service in Ambari, then no manual
configuration of the YARN Capacity Scheduler is required. But if you prefer to create and
customize the workload queue for interactive queries, then you need to complete the
following task before enabling and configuring Hive LLAP in Ambari.

Important

If you are an advanced Hive user and want to launch Hive LLAP with a
customized queue, complete the following task before enabling Hive LLAP. Do
not complete the following task if plan to use the default llap queue that can
be deployed automatically by starting the Hive LLAP Service in Ambari.

Setup of YARN for a Non-Default LLAP Queue

1. Create and configure a queue with the YARN Capacity Scheduler.

2. Open the Queue Manager View of Ambari:

Figure 4.4. YARN Queue Manager on the Views Menu

3. Select the queue that should be used by Hive LLAP.

4. In the Resources pane, set the Priority field with a number that is larger than the
priority value of the other queues. The default value of the Priority field after a queue is
created is zero.

Hortonworks Data Platform August 31, 2017

26

5. Using the Cost-Based Optimizer for
Optimal Performance

Hive’s Cost-Based Optimizer (CBO) is a core component in Hive’s query processing engine.
Powered by Apache Calcite, the CBO optimizes and calculates the cost of various plans for a
query.

The main goal of a CBO is to generate efficient execution plans by examining the tables
and conditions specified in the query, ultimately cutting down on query execution time and
reducing resource utilization. After parsing, query gets converted to a logical tree (Abstract
Syntax Tree) that represents the operations that the query must perform, such as reading a
particular table or performing an inner JOIN.

Calcite applies various optimizations such as query rewrite, JOIN reordering, deriving
implied predicates and JOIN elimination to produce logically equivalent plans. The current
model prefers bushy plans for maximum parallelism. Each logical plan is assigned a cost
based in number of distinct value based heuristics.

Calcite has an efficient plan pruner that can select the cheapest query plan. The chosen
logical plan is then converted by Hive to a physical operator tree, optimized and converted
to Tez jobs, then executed on the Hadoop cluster.

5.1. Statistics
Column and table statistics must be calculated for optimal Hive performance because they
are critical for estimating predicate selectivity and cost of the plan. In the absence of table
statistics, Hive CBO is turned off. Certain advanced rewrites require column statistics. For
best results, both types of statistics are recommended.

Important

If table statistics are not generated, Hive CBO is turned off.

Tip

Enable both column and table statistics for best query performance.

Table 5.1. Commands for Gathering Column and Table Statistics

Purpose Command

Gathering table statistics for non-partitioned tables ANALYZE TABLE [table_name] COMPUTE STATISTICS;

Gathering table statistics for partitioned tables ANALYZE TABLE [table_name]
PARTITION(partition_column) COMPUTE
STATISTICS;

Gathering column statistics ANALYZE TABLE [table_name] COMPUTE STATISTICS
for COLUMNS [comma_separated_column_list];
ANALYZE TABLE [table_name]
PARTITION(partition_column) COMPUTE STATISTICS
for COLUMNS [comma_separated_column_list];

Hortonworks Data Platform August 31, 2017

27

Purpose Command

Gathering statistics for newly added partition2 on a
table partitioned on col1 with key x

ANALYZE TABLE partition2 (col1="x") COMPUTE
STATISTICS for COLUMNS;

5.2. SQL Optimization and Planning Properties
Ambari has a configuration wizard that automatically tunes some of the optimization- and
planner-related configuration properties of Hive, Tez, and YARN.

Tip

In most cases, do not change the settings for properties that have Auto-
tuned default settings listed in the following table. The values that are set for
these properties are calculated by your cluster profile and rarely need to be
overwritten.

Table 5.2. Settings for Optimization and Planning Properties

Property Setting Guideline If Manual
Configuration Is Needed

Default Value in Ambari

hive.auto.convert.join.

noconditionaltask.size

one-third of -Xmx value Auto-tuned: Depends on environment

hive.cbo.enable true true

hive.tez.container.size Production Systems: 4 to 8 GB

Small VMs: 1 to 2 GB

Auto-tuned: Depends on environment

hive.tez.java.opts -Xmx value must be 80% to 90% of
container size

Auto-tuned: Depends on environment

tez.grouping.min.size Decrease for better latency

Increase for more throughput

16777216

tez.grouping.max.size Decrease for better latency

Increase for more throughput

1073741824

tez.grouping.split-waves Increase to launch more containers

Decrease to enhance multitenancy

1.7

yarn.scheduler.minimum-
allocation-mb

1 GB is usually sufficient Auto-tuned: Depends on environment

Hortonworks Data Platform August 31, 2017

28

6. Optimizing the Hive Execution Engine
To maximize the data analytics capabilities of applications that query Hive, you might need
to tune the Apache Tez execution engine. Tez is an advancement over earlier application
frameworks for Hadoop data processing, such as MapReduce2 and MapReduce1. The
Tez framework is required for high-performance batch workloads and for all interactive
applications.

6.1. Explain Plans
When you use Hive for interactive queries, you can generate explain plans. An explain plan
shows you the execution plan of a query by revealing the series of operations that occur
when a particular query is run. By understanding the plan, you can determine if you want
to adjust your application development.

For example, an explain plan might help you see why the query optimizer runs a query with
a nested loops JOIN operation instead of a hash JOIN. With this knowledge, you might
want to rewrite queries in the application so that they better align with user goals and the
environment.

Hive in HDP can generate two types of explain plans. A textual plan, such as information
printed in a CLI query editor, displays the execution plan in descriptive lines. A graphical
plan, such as the Visual Explain feature of Hive Views in Ambari, shows the execution plan
as a flow diagram. Learn more about Visual Explain Plans in the Query Tab documentation
for Hive View 2.0.

6.2. Tuning the Execution Engine Manually
If you encounter subpar performance of your Hive queries after debugging them with Tez
View and Hive View, then you might need to adjust Tez Service configuration properties.

6.2.1. Tune Tez Service Configuration Properties

About this Task

Important

Check and adjust the following property settings only if you think these
execution engine properties degrade the performance of Hive LLAP queries.

Advanced users: If you want to add or configure a property that is not listed in the table
below, open the Custom tez-site section of the Configs tab to enter or edit the custom
property.

Steps

1. In Ambari, open Services > Tez > Configs tab.

https://docs.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-views/content/section_query_tab_hive_view.html

Hortonworks Data Platform August 31, 2017

29

2. Use the following table as a reference checklist. Some

Tip

Ambari automatically customizes the value for the
tez.am.resource.memory.mb property to suit your cluster profile.
Generally, you should not change the default value of this property at this
stage if you are not changing resources on the cluster.

3. You can view the properties by either of these methods:

Type each property name in the Filter field in the top right corner.
Open the General, Advanced tez-env, etc., sections and scan the lists of each category.

4. Click Save.

5. If prompted to restart, restart the Tez Service.

Table 6.1. Settings for Execution Engine Properties

Property Setting Guideline If Manual
Configuration Is Needed

Default Value in Ambari

tez.am.resource.memory.mb 4 GB maximum for most sites Depends on your environment

tez.session.am.dag.submit.

timeout.secs

300 minimum 300

tez.am.container.idle.

release-timeout-min.millis

20000 minimum 10000

tez.am.container.idle.

release-timeout-max.millis

40000 minimum 20000

tez.shuffle-vertex-
manager.desired-task-input-
size

Increase for large ETL jobs that run
too long

No default value set

tez.min.partition.factor Increase for more reducers

Decrease for fewer reducers

0.25

tez.max.partition.factor Increase for more reducers 2.0

Hortonworks Data Platform August 31, 2017

30

Property Setting Guideline If Manual
Configuration Is Needed

Default Value in Ambari

Decrease for fewer reducers

tez.shuffle-vertex-
manager.min-task-
parallelism

Set a value if reducer counts are too
low, even if the tez.shuffle-
vertex-manager.min-src-
fraction property is already
adjusted

No default value set

tez.shuffle-vertex-
manager.min-src-fraction

Increase to start reducers later

Decrease to start reducers sooner

0.2

tez.shuffle-vertex-
manager.max-src-fraction

Increase to start reducers later

Decrease to start reducers sooner

0.4

hive.vectorized.

execution.enabled

true 0.4

hive.mapjoin.hybridgrace.

hashtable

true for slower but safer processing

false for faster processing

false

Hortonworks Data Platform August 31, 2017

31

7. Maximizing Storage Resources

7.1. ORC File Format
The Optimized Row Columnar (ORC) file format provides the following advantages over
many other file formats:

• Efficient compression: Stored as columns and compressed, which leads to smaller disk
reads. The columnar format is also ideal for vectorization optimizations in Tez.

• Fast reads: ORC has a built-in index, min/max values, and other aggregates that cause
entire stripes to be skipped during reads. In addition, predicate pushdown pushes filters
into reads so that minimal rows are read. And Bloom filters further reduce the number of
rows that are returned.

• Proven in large-scale deployments: Facebook uses the ORC file format for a 300+ PB
deployment.

Figure 7.1. ORC File Structure

Specifying the Storage Format as ORC

In addition, to specifying the storage format, you can also specify a compression algorithm
for the table:

CREATE TABLE addresses (
 name string,
 street string,
 city string,
 state string,
 zip int
) STORED AS orc tblproperties ("orc.compress"="Zlib");

Hortonworks Data Platform August 31, 2017

32

Note

Setting the compression algorithm is usually not required because your Hive
settings include a default algorithm.

Switching the Storage Format to ORC

You can read a table and create a copy in ORC with the following command:

CREATE TABLE a_orc STORED AS ORC AS SELECT * FROM A;

Ingestion as ORC

A common practice is to land data in HDFS as text, create a Hive external table over it, and
then store the data as ORC inside Hive where it becomes a Hive-managed table.

Advanced Settings

ORC has properties that usually do not need to be modified. However, for special cases you
can modify the properties listed in the following table when advised to by Hortonworks
Support.

Table 7.1. ORC Properties

Key Default Setting Notes

orc.compress ZLIB Compression type (NONE, ZLIB,
SNAPPY).

orc.compress.size 262,144 Number of bytes in each compression
block.

orc.stripe.size 268,435,456 Number of bytes in each stripe.

orc.row.index.stride 10,000 Number of rows between index entries
(>= 1,000).

orc.create.index true Sets whether to create row indexes.

orc.bloom.filter.columns -- Comma-separated list of column
names for which a Bloom filter must be
created.

orc.bloom.filter.fpp 0.05 False positive probability for a Bloom
filter. Must be greater than 0.0 and less
than 1.0.

7.2. Designing Data Storage with Partitions and
Buckets

Figure 7.2. Hive Data Abstractions

Hortonworks Data Platform August 31, 2017

33

7.2.1. Partitioned Tables

In Hive, tables are often partitioned. Partitions map to physical directories on the filesystem.
Frequently, tables are partitioned by date-time as incoming data is loaded into Hive each
day. Large deployments can have tens of thousands of partitions.

Using partitions can significantly improve performance if a query has a filter on the
partitioned columns, which can prune partition scanning to one or a few partitions that
match the filter criteria. Partition pruning occurs directly when a partition key is present in
the WHERE clause. Pruning occurs indirectly when the partition key is discovered during
query processing. For example, after joining with a dimension table, the partition key might
come from the dimension table.

Partitioned columns are not written into the main table because they are the same for
the entire partition, so they are "virtual columns." However, to SQL queries, there is no
difference:

CREATE TABLE sale(id in, amount decimal)
PARTITIONED BY (xdate string, state string);

To insert data into this table, the partition key can be specified for fast loading:

INSERT INTO sale (xdate='2016-03-08', state='CA')
SELECT * FROM staging_table
WHERE xdate='2016-03-08' AND state='CA';

Without the partition key, the data can be loaded using dynamic partitions, but that makes
it slower:

hive-site.xml settings for loading 1 to 9 partitions:

SET hive.exec.dynamic.partition.mode=nonstrict;
SET hive.exec.dynamic.partition=true;

For bulk-loading data into partitioned ORC tables, invoke a specific property that is
designed specifically for this purpose. Enabling the property optimizes the performance of
data loading into 10 or more partitions.

hive-site.xml setting for loading 10 or more partitions:

hive.optimize.sort.dynamic.partition=true

Examples of HiveQL query on partitioned data

INSERT INTO sale (xdate, state)
SELECT * FROM staging_table;

The virtual columns that are used as partitioning keys must be last. Otherwise, you must re-
order the columns using a SELECT statement similar to the following:

INSERT INTO sale (xdate, state='CA')
SELECT id, amount, other_columns..., xdate
FROM staging_table
WHERE state='CA';

Hortonworks Data Platform August 31, 2017

34

Tip

Follow these best practices when you partition tables and query partitioned
tables:

• Never partition on a unique ID.

• Size partitions so that on average they are greater than or equal to 1 GB.

• Formulate a query so that it does not process more than 1000 partitions.

7.2.2. Bucketed Tables

Tables or partitions can be further divided into buckets, which are stored as files in the
directory for the table or the directories of partitions if the table is partitioned. Bucketing
can optimize Hive's scanning of a data set that is the target of repeated queries.

When buckets are used with Hive tables and partitions, a common challenge is to maintain
query performance while workload or data scales up or down. For example, you could have
an environment where picking 16 buckets to support 1000 users operates smoothly, but
a spike in the number of users to 100,000 for a day or two could create problems if the
buckets and partitions are not promptly tuned. Tuning the buckets is complicated by the
fact that after you have constructed a table with buckets, the entire table containing the
bucketed data must be reloaded to reduce, add, or eliminate buckets.

With Tez, you only need to deal with the buckets of the biggest table. If workload
demands change rapidly, the buckets of the smaller tables dynamically change to complete
table JOINs.

hive-site.xml setting for enabling table buckets:

SET hive.tez.bucket.pruning=true

Bulk-loading tables that are both partitioned and bucketed:

When you load data into tables that are both partitioned and bucketed, set the following
property to optimize the process:

SET hive.optimize.sort.dynamic.partition=true

Example of using HiveQL with bucketed data:

If you have 20 buckets on user_id data, the following query returns only the data
associated with user_id = 1:

select * from tab where user_id = 1;

To best leverage the dynamic capability of table buckets on Tez:

• Use a single key for the buckets of the largest table.

• Usually, you need to bucket the main table by the biggest dimension table. For example,
the sales table might be bucketed by customer and not by merchandise item or store.
However, in this scenario, the sales table is sorted by item and store.

Hortonworks Data Platform August 31, 2017

35

• Normally, do not bucket and sort on the same column.

Tip

A table that has more bucket files than the number of rows is an indication that
you should reconsider how the table is bucketed.

7.3. Supported Filesystems
While a Hive EDW can run on one of a variety of storage layers, HDFS and Amazon S3 are
the most prevalently used and known filesystems for data analytics that run in the Hadoop
stack. By far, the most common filesystem used for a public cloud infrastructure is Amazon
S3.

A Hive EDW can store data on other filesystems, including WASB and ADLS.

Depending on your environment, you can tune the filesystem to optimize Hive
performance by configuring compression format, stripe size, partitions, and buckets. Also,
you can create Bloom filters for columns frequently used in point lookups.

Hortonworks Data Platform August 31, 2017

36

8. Debugging Performance Issues

8.1. Debugging Hive Queries with Tez View
The Tez View of Ambari displays dashboards and visualizations that represent performance
issues of problematic Hive queries. You can use the Tez View to troubleshoot what aspects
of a Hive query are not running optimally or do not function at all. See Using Tez View in
the Hortonworks Apache Ambari Views Guidefor more information.

8.2. Viewing Metrics in Grafana
The Ambari Metrics System includes Grafana, with prebuilt dashboards for advanced
visualization of cluster metrics. You can monitor the performance of the system through
the Hive LLAP dashboards. The following dashboards are available. To learn more about
these monitoring tools, see Hive LLAP Dashboards in the Hortonworks Apache Ambari
Operations Guide.

Hive LLAP Heatmap: Shows all the nodes that are running LLAP daemons, with percentage
summaries for available executors and cache. This dashboard enables you to identify the
hotspots in the cluster in terms of executors and cache.

Hive LLAP Overview: Shows the aggregated information across all of the clusters: for
example, the total cache memory from all the nodes. This dashboard enables you to
see that your cluster is configured and running correctly. For example, you might have
configured 10 nodes but see executors and cache accounted for only 8 nodes running.

If you find an issue in this dashboard, you can open the LLAP Daemon dashboard to see
which node is having the problem.

Hive LLAP Daemon: Metrics that show operating status for a specific Hive LLAP Daemon

https://docs.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-views/content/ch_using_tez_view.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-operations/content/grafana_hive_llap_dashboards.html

	Hortonworks Data Platform
	Table of Contents
	1. Optimizing an Apache Hive Data Warehouse
	1.1. Hive Processing Environments
	1.1.1. Overall Architecture
	1.1.2. Dependencies for Optimal Hive Query Processing
	1.1.3. Connectivity to Admission Control (HiveServer2)
	1.1.4. Execution Engines (Apache Tez and Hive LLAP)
	1.1.4.1. Tez Execution on YARN
	1.1.4.2. Hive LLAP Execution Engine
	1.1.4.3. Workload Management with Queues and Containers (Hive, YARN, and Tez)
	1.1.4.3.1. Batch Processing
	1.1.4.3.2. Interactive Workloads

	1.1.4.4. SQL Planner and Optimizer (Apache Hive and Apache Calcite)
	1.1.4.5. Storage Formats
	1.1.4.6. Storage Layer (Example: HDFS Filesystem)

	1.2. Setting up Hive LLAP
	1.2.1. Enabling YARN Preemption for Hive LLAP
	1.2.2. Enable Hive LLAP: Typical Setup
	1.2.3. Enable Hive LLAP: Advanced Setup
	1.2.4. Connect Clients to a Dedicated HiveServer2 Endpoint

	2. Hive LLAP on Your Cluster
	3. Best Practices Prior to Tuning Performance
	4. Connectivity and Admission Control
	4.1. HiveServer2
	4.1.1. Sizing HiveServer2 Heap Memory
	4.1.2. HiveServer2 Interactive UI
	4.1.3. Multiple HiveServer2 Instances for Different Workloads
	4.1.4. Security

	4.2. Workload Management with YARN Capacity Scheduler Queues
	4.2.1. Queues for Batch Processing
	4.2.2. Queues in Hive LLAP Sites

	5. Using the Cost-Based Optimizer for Optimal Performance
	5.1. Statistics
	5.2. SQL Optimization and Planning Properties

	6. Optimizing the Hive Execution Engine
	6.1. Explain Plans
	6.2. Tuning the Execution Engine Manually
	6.2.1. Tune Tez Service Configuration Properties

	7. Maximizing Storage Resources
	7.1. ORC File Format
	7.2. Designing Data Storage with Partitions and Buckets
	7.2.1. Partitioned Tables
	7.2.2. Bucketed Tables

	7.3. Supported Filesystems

	8. Debugging Performance Issues
	8.1. Debugging Hive Queries with Tez View
	8.2. Viewing Metrics in Grafana

