Scaling Namespaces and Optimizing Data Storage 3

Scaling Namespaces and Optimizing Data Storage

Date of Publish: 2018-07-12

P

Hortonworks

http://docs.hortonwor ks.com

http://docs.hortonworks.com

Scaling Namespaces and Optimizing Data Storage | Contents | ii

Contents

18 oo [ox 1 o o TSR 4
OVErVIEW OF APACNE HDFS...... .ottt b e st b e e bt e bt e bt s e e st b e e nrene s 4
SCAliNG NAMESPACES........c.veeireeiriestieeiteeseeesteeseeeste e sree e reessaeebeesseeesseesnseenseesnseenseesnnens 4
Scaling a cluster uSING HDFS fEUEIALION.........cceiiieieseceee et sa e eeneere e sresreneennens 5
FEEration tEIMINOIOQY.ciieiertirierieseerieiee et e st s et te e st e et e st eseesa e e e e eseesesseasesteseesaesteseeseensensenannnenens 5

Benefits of an HDFS FEAErAON........cccoiiiiiriieineese st 7

Configure an HDFS fEAEIGLON..........c.cvceie et sttt e e sa e neeresnesnesrenes 7

Configure a federation with a cluster UPgrade............cccvveeieieiinie s s 9

Cluster MmanagemMeENt OPEIALIONS........c.cieiuerieriereereeeeeeeseste e sesre s e stesresteseeseeseseeeeseeseesessessessesseseesrenseses 9

Using ViewFs to manage multiple NAMESPACES........c.cucieieririereriereeseeiesestesesesrestesaessessessessessssssssesesessessessens 10
Namespace view in a non-federated enVIirONMENL..........c.coveoveeririeiiesiesie s 11

Namespace VIew iN @ FEABIAION..........cccivie e et e e s neenenne s 11

Pathnames on clusters with federated and non-federated NameNOdES............coovevrennennenncnceens 12
Considerations for working with ViewFs mount table entries...........cccovvevevecrcsce e 13

Example of ViewFs mount table ENIIES.........coceveieieieeeceees st st ne e 14

(@] o181 gl b4l glo o F= 1=K Lo o= To <SPS 15
Balancing data across disks Of @ DaaNOGE..........c.oiiiiriiiiiieeeere e 15

Plan the data movemeNt aCrOSS QiSKS.......cciiiiiiriie et e e 15

Execute the Disk BalanCer Plan.........oie ittt s e e e 16

Disk BalanCer COMIMANGS........cooiuiriiiiitinierie ettt sb st et se e e e e et ebeebesaesbesbeseeseeeas 17

Increasing storage capacity with HDFS €rasure COQING........coeoueriereiririnenese e 19
BenefitS Of erasure COOIMNG.ottt b ettt b e bbb e e enean 19

How the DataNode recovers failed erasure-coded DIOCKS..........cocoiiiiiiiniiiniee e 19

Erasure COAING POIICIES.......ciuiiuiieie ettt sttt se ettt eb e be b s besbese e b e e s 20

Limitations Of €rasure COUING.........couerieirereeieeere ettt sttt b et sb e bbbt b e se e e e e e e e enennas 20
Considerations for deploying erasure COUING.........coouuiaireririrere et see e seeseeseens 20

Erasure coding CLI COMMANG.........coiiiiiiiiriitise ettt b e bbb e e e e e 21

Erasure COdiNG EXAMPIES.......co.oiiii ettt ettt bbb et se et e et et eseebenae b sbe b es 22

Increasing storage capacity With HDFS COMPIESSION........couiiiiieirieeeiericre sttt s 24
Enable GZipCodec as the default cOMPresSioN COOEC.........uueririririre e 24

Use GZipCodeC With @ ONE-TIME JOD.......cciiiiiiiiiiee et e eneas 25

Setting archival StOrage POIICIES.........cii ittt sttt sttt e st e e e e e et e e e eneenesaeabeas 25
HDFS SIOTAOE TYPES....c ettt ettt ettt re et b et e s bt st e b e e ae e e b e e meeeb e e s e ebeeneeeaeesbesaeesbeenneneean 25

HDFS StOrage POIICIES. ..ottt et h bbbt bbbt e b se e e e s e e e e e aeeneene e 25

Configure archival SLOFBOE..........coeiiriiiiie ettt b e bt et b et e bt se et e e e e e ne s enas 26

Balancing data across @n HDFS CIUSLE ..ot s 27

Why HDFS data BECOMES UNDalANCEA..........oouiieieeeeeeee e 27
Configurations and CLI options for the HDFS BalanCer...........ccceeririneneninene e 28

Cluster balanCing @l gOrthM..... ..o et neenas 32

Exit statuses for the HDFS Bal@NCET.......c..ciiieiiiiieiere ettt s st s 34
OptimiZING PEfOrMANCE......cciieeecie e eereennes 34
Improving performance with centralized cache ManagemMent...........ccooeireierriniene e 34

Benefits of centralized cache management in HDFS...........ccoooiiiiiniineesee e 34

Scaling Namespaces and Optimizing Data Storage | Contents | iii

Use cases for centralized cache Management..........c.oooerrrenenne e e 35
Centralized cache management arChiteCIUIE............ooireiiieieeeeeee e 35

(0= ot o 1 oTo [N = 10011 oo Voo 1Y 20U SRS 36
Properties for configuring centralized CaChing............couerereerieiieereeerre e e 36
Commands for using cache pools and ir€CLIVES...........cooeiiiireiieieeere e e 38
Configuring HDFS FaCK GWEIENESS.........oiuieeieeiieeetieteeie sttt sttt s se e et s e et aeebesbesbesbesbeseese e be b e e e e eneenes 41
Create @ rack tOPOIOQY SCHIPL......c.eieiiiirerie ettt sttt se et aeeaesae b sbe e seeneas 42

Add the topology script property t0 COre-SItEXMI ..ot 43
Restart HDFS and MapREJUCE SEIVICES........coeiiririirieiisiesie ettt sbe e s sbe e e e e 43

VENTY TACK BIWBIEINESS.......eeieeieiee ettt ettt b et bbb et st e b e e s et et e e e e e ens 43
CUSIOMIZING HDFS...... ..ot ettt he bbbt sb e b e s e e s e et e b et e neeseeneereebeebesaesaentas 44
Customize the HDFS hOmMe QIF€CLOMYccciiiiiiiiiiisesie ettt e e 44
Properties to set the size of the NameNode edits direCtory..........ccoviereriiinene e 44
Optimizing NameNode disk space with Hadoop archives............ccooooriiiii e 44
Overview Of Had0op @rChiVES...........ooiiiiiiee ettt sae b e e 45
Hadoop arChive COMPONENLS.........coiiiiirerie ittt b st sa e st s be e e e e e e et se e e aesbesbeseesbeneas 45

Create @ Hal00D @rChIVE........o.eiiiieeie sttt ettt s a e b e et e b e e e e e e e e e aeebeene e 46

List files in HAO00P @rChIVES..........coui ittt st be e sne e 47
Format for using Hadoop archives with MapREAUCE............c.o i 47
Detecting SIOW DELANOUES........ccueeeueeeeeeieiere ettt sttt b b st sbesbe s besbeebe b se et e nbene e e eneeneene e 47
ENaDIE diSK 1O SALISHICS......ccveeereeeteseetese ettt s et r e 48
Enable detection Of SIOW DataNOUES.............cceiiiirieiiterierere ettt seene e 48
Allocating DataNode memory as storage (TEChNICal PrEVIEW)........cc.eiveriereiieeeeeeee e 49
HDFS SIOTAOE TYPES....e ettt ettt b ettt ree st e et s b e st e b e e s e e e b e e meeeb e e b e ebeeneeeaeessesanesresneeneean 49

LAZY _PERSIST MemOry StOrage POIICYcoueiverteriereeieie ettt st e s sse e 49
Configure DataNOde MEMONY 8S SLOMAQE.......coueererereeterere ettt se e se e sbesbesaesbesbeseeseens 50
Improving performance with short-Circuit 10Cal FEAAS..........c.oovriririreii s 50
Prerequisites for configuring short-Ciruit 10Cal reads............cooeriiiiiiinine e 50
Properties for configuring short-circuit local reads on HDFS...........cccoiiiininineneee e 51
Using the NFS Gateway for accessing HDFS..........ccccooveiie e 53
ConfigUIe the NFS GaLEWEYcerueirieinieietereete sttt sttt b et b e s b e et se bt seebesa st sbenesbe e ebeneas 53
Start and SO the NFS GaIEWEY SEVICES.......ccccirieiirieieriee ettt sttt st a ettt be b nbe s 55
Verify validity Of the NFS SEIVICES.... ..ottt 56
ACCESS HDFS from the NFS GaIEWEYcerueiirieiirieierieis ettt sttt st se et st b et ebese b seebeseene s 56
How NFS Gateway authentiCateS and MaPS USEIS.........cureuerieereeerieerseesseessesessesesse s ssesessesessssessenes 57

Using the NFS Gateway With VIEWES.........cc.ciirer bbb 57
Export ViewFs mounts using the NFS GaleWaycccveireireireiisieeseesese s 58
Data StOrage MELTICS......cccieeieecie ettt e e s et e e beesneeenreesnne s 59
Using IMX for accessing HDFS MELMCS.......ccoviiiiieieseeieseee ettt a e ese e nestesaesnentenaennens 59
Configure the G1GC garbage collector (TechniCal Preview)........cccveveirieie s 60
Recommended Sattings fOr GLGC........ooviiiiieieeeeeeeeee st s e s nesresaesrenre e es 60
Switching from CIMS t0 GLGC........cciiicieiie ettt te et s ettt saeste e sae s enae e e e enneneens 60
APIs for accessing HDFS..........o o e 61

Set UPp WEDHDFS 0N @ SECUIE CIUSLEN ...ttt sttt 61

Scaling Namespaces and Optimizing Data Storage Introduction

| ntroduction

Hadoop Distributed File System (HDFS) is a Java-based file system that provides scalable and reliable data storage.
An HDFS cluster contains a NameNode to manage the cluster namespace and DataNodes to store data.

Overview of Apache HDFS

Hadoop Distributed File System (HDFS) is a Java-based file system for storing large volumes of data. Designed to
span large clusters of commodity servers, HDFS provides scalable and reliable data storage.

HDFS and Y et Another Resource Navigator (Y ARN) form the data management layer of Apache Hadoop. YARN
provides the resource management while HDFS provides the storage.

HDFSisascaable, fault-tolerant, distributed storage system that works closely with awide variety of concurrent
data access applications. By distributing storage and computation across many servers, the combined storage resource
grows linearly with demand.

Components of an HDFS cluster
An HDFS cluster contains the following main components: a NameNode and DataNodes.

The NameNode manages the cluster metadata that includes file and directory structures, permissions, modifications,
and disk space quotas. The file content is split into multiple data blocks, with each block replicated at multiple
DataNodes.

The NameNode actively monitors the number of replicas of ablock. In addition, the NameNode maintains the
namespace tree and the mapping of blocks to DataNodes, holding the entire namespace image in RAM.

Benefits of HDFS

HDFS provides the following benefits as a result of which datais stored efficiently and is highly available in the
cluster:

» Rack awareness: A node' s physical location is considered when all ocating storage and scheduling tasks.

« Minimal data motion: Hadoop moves compute processes to the data on HDFS. Processing tasks can occur on the
physical node where the data resides. This significantly reduces network 1/0 and provides very high aggregate
bandwidth.

« Utilities: Dynamically diagnose the health of the file system and rebalance the data on different nodes.

« Versionrollback: Allows operators to perform arollback to the previous version of HDFS after an upgrade, in
case of human or systemic errors.

« Standby NameNode: Provides redundancy and supports high availability (HA).

» Operability: HDFS requires minimal operator intervention, allowing a single operator to maintain a cluster of
thousands of nodes

Related Information
Apache Hadoop HDFS

Scaling namespaces

Y ou can configure an HDFS federation to use multiple NameNodes and namespaces in asingle cluster. By using
multiple NameNodes, an HDFS federation can horizontally scale namespaces in a cluster. Y ou can use ViewFs with a
federation to create personalized namespace views.

https://hortonworks.com/apache/hdfs/

Scaling Namespaces and Optimizing Data Storage Scaling namespaces

Scaling a cluster using HDFS feder ation

An HDFS federation scales a cluster horizontally by providing support for multiple independent NameNodes and
namespaces, with the DataNodes available as common block storage for all the NameNodes. The support for multiple
namespaces improves cluster scalability and provides isolation in a multitenanted environment.

The earlier HDFS configurations without support for federations can be constrained by a single namespace, and
consequently, a single NameNode for the entire cluster. In this non-federated environment, the NameNode stores the
entire file system metadata in memory. This limits the number of blocks, files, and directories supported on the file
system to what can be accommodated in the memory of a single NameNode. In addition, file system operations are
limited to the throughput of a single NameNode. These issues of scalability and performance are addressed through
an HDFS federation.

In order to scale the name service horizontally, afederation uses multiple independent NameNodes and namespaces.
The NameNodes are federated; that is, the NameNodes are independent and do not require coordination with one
another. A shared pool of DataNodes is used as common storage for blocks by all the NameNodes. Each DataNode
registers with all the NameNodes in the cluster. DataNodes send periodic heartbeats and block reports. They also
handle commands from the NameNodes.

Note: You can use ViewFsto create personalized namespace views. ViewFs is analogous to client side
mount tablesin UNIX or Linux systems.

Related Concepts

Using ViewFs to manage multiple namespaces
Related Information

An Introduction to HDFS Federation

Federation ter minology

A block pool isaset of data blocks that belongs to a single namespace. A namespace and its block pool together form
a namespace volume.

Block pool

A block pool isaset of blocks that belong to a single namespace. DataNodes store blocks for al the block pools
in the cluster. Each block pool is managed independently. This allows a namespace to generate Block I1Ds for new
blocks without the need for coordination with the other namespaces. A NameNode failure does not prevent the
DataNode from serving other NameNodes in the cluster.

https://hortonworks.com/blog/an-introduction-to-hdfs-federation/

Scaling Namespaces and Optimizing Data Storage

Scaling namespaces

Namespace

AN

Block
Storage

N

Namespace volume

[
DataNode 1

Common Storage

DataNode m

A namespace and its block pool together are called namespace volume. A namespace volume is a self-contained unit
of management. When a NameNode or a namespace is deleted, the corresponding block pool at the DataNodesis

deleted.

Cluster ID

A Cluster ID isan identifier for al the nodesin the cluster. When a NameNode is formatted, this identifier is either
provided or automatically generated. The same Cluster ID is used for formatting the other NameNodes into the

cluster.

Scaling Namespaces and Optimizing Data Storage Scaling namespaces

Benefits of an HDFS Federation
HDFS federation provides namespace scal ability, performance advantage because of scaling read/write throughput,
and isolation of applications and usersin a multitenanted environment.
« Namespace Scalability: Federation adds namespace horizontal scaling. Large deployments or deployments using
lot of small files benefit from namespace scaling by allowing more NameNodes to be added to the cluster.

« Performance: File system throughput is not limited by a single NameNode. Adding more NameNodes to the
cluster scales the file system read/write throughput.

« Isolation: A single NameNode does not offer namespace isolation in a multi-user environment. By using multiple
NameNodes, different categories of applications and users can be isolated to different namespaces.

Configurean HDFS federation

All the nodes in a federation share a common set of configuration files. To support the common configuration, you
must configure a NameService ID for all the NameNodes that you want to include in the federation.

Before you begin

« Ensurethat you are configuring the federation during a cluster maintenance window.

» Verify that you have configured HA for all the NameNodes that you want to include in the federation. In addition,
ensure that you have configured the value of dfs.nameservices for the NameNodes in hdfs-site.xml.

About thistask

A federation allows you to add new NameService IDs to a cluster. Each NameService denotes a new filesystem
namespace. Y ou can configure a maximum of four namespaces in a federated environment.

An active NameNode and its standby belong to the NameService ID. To support the common configuration, you must
suffix the parameters for the various NameNodes in a federation with the NameService ID.

For example, if you define ns2 as the NameService I D for afederation, then you must add ns2 as a suffix to
parameters such as dfs.namenode.rpc-address, dfs.namenode.http-address, and dfs.namenode.secondaryhttp-address.

Note: Thistask explains how you can configure an HDFS federation using the command line interface. For
B information about using Ambari to configure a federation, see the topic Configure HDFS Federation in the
Ambari documentation.

Procedure

1. Verify whether the newly added namespaces are added to the dfs.internal .nameservices parameter in hdfs-
sitexml.
The particular parameter lists all the namespaces that belong to the local cluster.

2. Add the following configuration parameters suffixed with the correct NameService ID for the active and standby
NameNodes in the hdfs-site.xml.

Daemon Configuration Parameter

NameNode + dfs.namenode.rpc-address
 dfs.namenode.http-address

» dfs.namenode.https-address

» dfs.namenode.servicerpc-address
» dfs.namenode keytab.file

» dfs.namenode.name.dir

» dfs.namenode.checkpoint.dir

» dfs.namenode.checkpoint.edits.dir

Note: The parameters dfs.namenode.http-
address and dfs.namenode.https-address

Scaling Namespaces and Optimizing Data Storage Scaling namespaces

Daemon Configuration Parameter

are optional depending on the http policy
configured. In addition, the parameters
dfs.namenode.checkpoint.dir and
dfs.namenode.checkpoint.edits.dir are
optional.

3. Propagate the configuration file updates to all the nodes in the cluster.
Example

The following example shows the configuration for two NameNodes in a federation:

<confi guration>

<property>
<nanme>df s. naneser vi ces</ nane>
<val ue>ns1, ns2</ val ue>

</ property>

<property>
<name>df s. nanenode. r pc- addr ess. ns1</ nane>
<val ue>nn- host 1: r pc- port </ val ue>

</ property>

<property>
<nanme>df s. nanenode. ht t p- addr ess. ns1</ nane>
<val ue>nn-host 1: htt p- port </ val ue>

</ property>

<property>
<nane>df s. nanenode. r pc- addr ess. ns2</ nane>
<val ue>nn- host 2: rpc- port </ val ue>

</ property>

<property>
<nanme>df s. nanenode. htt p- addr ess. ns2</ name>
<val ue>nn- host 2: htt p- port </ val ue>

</ property>

. O her common configuration ...
</ configuration>

What to do next
Format every new NameNode that you want to include in the federation.

Format NameNodes
To add aNameNode HA to a federation, you must format each new active NameNode that you want to add to the
federation. In addition, you must bootstrap the standby NameNode.

Before you begin
Y ou must have configured the parameters for the NameNodes.
About thistask

Note: Ensure that you format only those NameNodes that are associated with newly created namespaces for
E the federation. Formatting any NameNode with already existing namespaces could result in data loss.

Procedure

1. Format the active NameNode by specifying the Cluster ID.

Scaling Namespaces and Optimizing Data Storage Scaling namespaces

The Cluster 1D must be the same as that of the existing namespaces.

hdf s nanenode -format [-clusterld <cluster_id>]

2. Bootstrap the standby NameNode as specified.

hdf s nanenode -boot strapStandby

Add a NameNode to an existing HDFS cluster

Adding aNameNode HA to an existing cluster with federated NameNodes requires updating the cluster
configuration, propagating the update to all the nodes in the cluster, starting the new NameNodes, and refreshing the
DataNodes to identify the new NameNodes.

Procedure

1. Add dfs.nameservices to hdfs-site.xml of the NameNodes that you want to include in the federation.

2. For the active NameNode and its corresponding standby node, update the configuration with the NameService ID
suffix.

3. Add the configuration for the new NameNodes to the cluster configuration file.
For more information about steps 1, 2, and 3; see.

4. Propagate the configuration file updates to all the nodesin the cluster.

Start the new active NameNode and its standby node.

6. Refresh the DataNodesin the cluster to identify the new NameNodes.

o

hdf s df sadni n -refreshNanenodes <datanode_host nane>: <dat anode_r pc_port >

Configure a federation with a cluster upgrade

Hortonworks Data Platform versions starting with 3.0.0 support HDFS federations. Y ou can configure the federation
as you upgrade your cluster.

Procedure

Use the hdfs start namenode command during the upgrade process as specified.

hdf s start nanenode --config $HADOOP_CONF DI R -upgrade -clusterld
<cluster_I| D>

If you do not specify the Cluster ID, then aunique ID is auto-generated.

Cluster management operations
To start and stop a cluster, use the start-dfs.sh and stop-dfs.sh commands respectively. To balance datain a cluster

with federated NameNodes, run the HDFS Balancer. To decommission a DataNode from a federated cluster, add the
DataNode details to an exclude file and distribute the file among all the NameNodes in the cluster.

Balance data in a federation
Depending on your requirements, you can use the HDFS Balancer to balance data either at the level of the DataNodes
or the block poolsin acluster with federated NameNodes.

About thistask
Balancer balances only data across the cluster and not the namespace.

Scaling Namespaces and Optimizing Data Storage Scaling namespaces

Procedure

* Runthe Balancer using the hadoop-daemon.sh start command.
hadoop- daenon. sh start bal ancer [-policy <policy>]

Specify either of the following values for policy:

» datanode: The default policy that balances data at the level of the DataNode.
» blockpool: Balances data at the level of the block pool.

Related reference
Balancer commands

Decommission a DataNode from a federation

To decommission a DataNode from a federation, you must add the node to the exclude file and distribute the updated
exclude file among all the NameNodes. Each NameNode decommissionsits block pool. When all the NameNodes
finish decommissioning a DataNode, the DataNode is considered decommissioned.

Procedure

1. Intheexcludefile, specify the DataNode to decommission.
If you want to decommission multiple DataNodes, add the corresponding host names separated by a newline
character to the exclude file.

2. Distribute the updated exclude file among all the NameNodes.
distribute-exclude.sh <exclude file>

3. Refresh all the NameNodes to identify the new excludefile.

The following command uses HDFS configuration to determine the configured NameNodes in the cluster and
refreshes them to identify the new excludefile:

refresh-namenodes.sh

Using cluster web console to monitor a federation
The cluster web console for a federation helps you monitor the cluster. Y ou can use any NameNode in the cluster to
access the console at http://<namenode_host: port>/dfsclusterhealth.jsp.

The cluster web console provides the following information:

e A cluster summary that shows the number of files, number of blocks, total configured storage capacity, and the
available and used storage for the entire cluster.

« A list of NameNodes and a summary that includes the number of files, blocks, missing blocks, and live and dead
DataNodes for each NameNode. The summary also provides alink to access the web Ul for each NameNode.

e The decommissioning status of DataNodes.

Using ViewFsto manage multiple namespaces

View File System (ViewFs) helps you manage clusters with multiple NameNodes; and therefore, multiple
namespaces, in an HDFS federation.

ViewFsis analogousto client side mount tablesin UNIX or Linux systems. Y ou can use ViewFsto create
personalized namespace views and cluster-specific common views for file and directory paths corresponding
to locations on different NameNodes of the cluster. Y ou can create a cluster-specific global namespace such
that applications behave the same way in afederation as they would in a cluster without support for federated
NameNodes.

Note: For information about using Ambari to configure ViewFs, see Configure ViewFsin the Ambari
documentation.

10

Scaling Namespaces and Optimizing Data Storage Scaling namespaces

Related Concepts
Scaling a cluster using HDFS federation

Namespace view in a non-federated environment

Each cluster in an non-federated environment contains a single NameNode that provides a single independent
namespace. In addition, the cluster does not share DataNodes with other clusters.

The core-sitexml file has the fs.default.name configuration property set to the NameNode of the cluster.

<property>

<name>f s. def aul t . name</ name>

<val ue>hdf s: // namenodeCf C ust er X: port </ val ue>
</ property>

Using the value of the fs.default.name configuration property, you can use path names relative to the
NameNode of the cluster instead of the absolute path names. For example, you can use foo/bar to refer to hdfs://
namenodeOf ClusterX:port/foo/bar.

Namespace view in a feder ation
Each of the multiple NameNodes in a federation has its own namespace. The NameNodes share the DataNodes of the
cluster. Using ViewFs, you can create a cluster namespace view that is similar to a namespace in a cluster without
support for federation.

Consider a federation with namespace volumes where each volume contains data distinct from that of others. For
example, afederation containing namespace volumes such as /data, /project, /user, and /tmp. Using ViewFs, you can
create a cluster namespace view that defines mount points for the namespace volumes at the root level or below. The
following figure shows a mount table for the namespace volumes /data, /project, /user, and /tmp:

tmp

11

Scaling Namespaces and Optimizing Data Storage Scaling namespaces

For the cluster, you can set the default file system to the ViewFs mount table in the core-site.xml file, as shown in the
following example:

<property>
<nanme>f s. def aul t . nane</ nane>
<val ue>vi ewf s: // cl ust er X</ val ue>
</ property>

In this example, the authority following the viewfs:// schemein the URI isthe mount table name. For easier
management of the federation, you should consider specifying the cluster name as the mount table name. In your
Hadoop environment, ensure that the configuration files for all the gateway nodes contain the mount tables for all the
clusters such that, for each cluster, the default file system is set to the ViewFs mount table for that cluster.

Note: After setting the default file system to the ViewFs mount table for a given cluster, you must remap any
directory paths mounted earlier to point to the corresponding namespaces that contain those directories.

Related Concepts
Considerations for working with ViewFs mount table entries

Pathnames on clusterswith feder ated and non-feder ated NameNodes

The pathnames of the namespace URIs used in clusters with federated and non-federated NameNodes depend on the
value configured for the default file system.

In cluster without federated NameNodes, the default file system is set to the NameNode of the cluster. For example,
fs.defaultFS= hdfs://nnOf ThatCluster:port/. In afederation with ViewFs, the default file system for each cluster is set
to the name of the cluster. For example, fs.defaultFS=viewfs://clusterX/.

The value configured for the default file system determines the pathnames of the various URIs used in clusters.

The following table contains examples of pathnamesin URIs used in clusters without federated NameNodes:

Pathname Example Description

[fool/bar The relative path equivalent to hdfs://nnOfClusterX:port/
foo/bar.

hdfs.//nnOfClusterX: port/foo/bar The fully qualified path to the foo/bar directory on
cluster X.

Note: You should consider using the relative
path instead of the absolute path as that
approach helpsin moving an application and its
data transparently across clusters when required.

hdfs://nnOfClusterY :port/foo/bar The URI for referring to the foo/bar directory on cluster
Y. For example, the command for copying files from one
cluster to another can be as follows:

di stcp hdfs://nanmenodeC usterY: port/
pat hSrc hdfs://
nanenodeC ust er Z: port/ pat hDest

hftp://nnClusterX:port/foo/bar The URI for accessing the foo/bar directory on cluster X
through the HFTP file system.

webhdfs://nnClusterX:port/foo/bar The URI for accessing the foo/bar directory on cluster X
through the WebHDFS file system.

http://namenodeClusterX:http_port/webhdfs/vl/foo/bar | The HTTP URLS respectively for accessing files through
and http://proxyClusterX:http_port/foo/bar WebHDFS REST API and HDFS proxy.

12

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/WebHDFS.html

Scaling Namespaces and Optimizing Data Storage Scaling namespaces

The following table contains examples of pathnamesin URIs used in clusters with ViewFs:

Pathname Example Description
/foo/bar The relative path equivalent to viewfs://clusterX/foo/bar.
viewfs://clusterX/foo/bar The fully qualified path to the foo/bar directory on

cluster X. Unlike a non-federated environment where
you must specify the NameNode in the path to each
namespace volume, you can use the mount table name
in afederated environment to qualify the pathsto al the
namespace volumes of the cluster.

Note: You should consider using the relative
path instead of the absolute path as that
approach helpsin moving an application and its
data transparently across clusters when required.

viewfs://clusterY /foo/bar The URI for referring to the foo/bar directory on cluster
Y. For example, the command for copying files from one
cluster to another can be as follows:

distcp viewfs://clusterY/ pathSrc
vi ewfs://clusterz/ pat hDest

viewfs://clusterX -hftp/foo/bar The URI for accessing the foo/bar directory on cluster X
through the HFTP file system.

viewfs://clusterX -webhdfs/foo/bar The URI for accessing the foo/bar directory on cluster X
through the WebHDFS file system.

http://namenodeClusterX:http_port/webhdfs/vl/foo/bar | The HTTP URLS respectively for accessing files through
and http://proxyClusterX:http_port/foo/bar WebHDFS REST API and HDFS proxy.

Note: You cannot rename files or directories across NameNodes or clusters in both federated and non-

B federated environments. For example, while the following renaming operation can be performed within
the scope of a NameNode, the sameis hot possible if the source and destination paths belong to different
NameNodes:

renane /user/joe/ nyStuff /datalfoolbar

Considerations for working with ViewFs mount table entries
After specifying the ViewFs mount table name, you must define the mount table entries to map physical locations on

the federation to their corresponding mount points. Y ou must consider factors such as data access, mount levels, and
application requirements while defining ViewFs mount table entries.

» Definethe ViewFs mount table entries for a cluster in a separate file and reference the file using XInclude in core-
sitexml.

» For access to data across clusters, ensure that a cluster configuration contains mount table entries for al the
clustersin your environment.

« For anested directory path, you can define separate ViewFs mounts to point to the top-level directory and the sub-
directories based on requirements.

For adirectory user that contains sub-directories such as joe and jane, you can define separate ViewFs mount
points to /user, /user/joe, and /user/jane.

» For applications that work across clusters and store persistent file paths, consider defining mount paths of type
viewfs://cluster/path.

13

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/WebHDFS.html

Scaling Namespaces and Optimizing Data Storage Scaling namespaces

Such a path definition insulates users from movement of data within the cluster if the data movement is
transparent.

* When moving files from one NameNode to another inside a cluster, update the mount point corresponding to the
files so that the mount point specifies the correct NameNode.

Consider an example where the cluster administrator moves /user and /data, originally present on acommon
NameNode, to separate NameNodes. Before the movement, if the mount points for both /user and /data specified
the same NameNode namenodeContai ningUserAndData, the administrator must change the mount points after
the data movement to specify separate NameNodes namenodeContaingUser and namenodeContainingData
respectively.

» A client reads the cluster mount table when submitting ajob. The XInclude in core-sitexml is expanded only
at the time of job submission. Therefore, if you make any changes to the mount table entries, the jobs must be
resubmitted.

Related Concepts
Namespace view in afederation

Example of ViewFs mount table entries

Y ou can specify the ViewFs mount table entries for a cluster in a separate configuration file and reference the file
using XInclude in core-sitexml.

Consider acluster named ClusterX for which the configuration file containing ViewFs mount table entriesis
referenced as follows:

<configuration xm ns: xi ="http://ww.w3. org/ 2001/ Xl ncl ude" >
<xi :include href="nountTabl e. xm"/>
</ configuration>

Assume ClusterX to be afederation of three NameNodes that host different directories as specified:

¢ nnl-clusterx.example.com:8020: /home and /tmp
e nn2-clusterx.example.com:8020: /foo
e nn3-clusterx.example.com:8020: /bar

In addition, the home directory base path is set to /home.

The following example contains the ViewFs mount table entries for the federated cluster ClusterX:

<confi guration>
<property>
<nanme>fs. vi ewf s. mount t abl e. C ust er X. honedi r </ nanme>
<val ue>/ home</ val ue>
</ property>
<property>
<name>f s. vi ewf s. nount t abl e. C ust er X. | i nk. / home</ nane>
<val ue>hdf s: // nnl- cl ust er x. exanpl e. com 8020/ hone</ val ue>
</ property>
<property>
<name>fs. vi ewf s. mount t abl e. d ust er X. I i nk. / t np</ name>
<val ue>hdf s: // nnl-cl ust er x. exanpl e. com 8020/ t np</ val ue>
</ property>
<property>
<nanme>fs. vi ewf s. mount t abl e. d ust er X. I i nk. / f oo</ name>
<val ue>hdf s: // nn2- cl ust er x. exanpl e. com 8020/ f oo</ val ue>
</ property>
<property>
<nanme>f s. vi ewf s. nount t abl e. C ust er X. | i nk. / bar </ name>
<val ue>hdf s: // nn3- cl ust er x. exanpl e. com 8020/ bar </ val ue>
</ property>

14

Scaling Namespaces and Optimizing Data Storage Optimizing data storage

</ configuration>

Optimizing data storage

Y ou can consider the following options to optimize data storage in HDFS clusters: balancing data across disks of
aDataNode, balancing data across the DataNodes of a cluster, increasing storage space through erasure coding,
applying storage policies for archiving cold data, and using codecs for compressing data.

Balancing data acr oss disks of a DataNode

The HDFS Disk Balancer is acommand line tool that evenly distributes data across all the disks of a DataNode to
ensure that the disks are effectively utilized. Unlike the HDFS Balancer that balances data across DataNodes of a
cluster, the Disk Balancer balances data at the level of individual DataNodes.

Disks on a DataNode can have an uneven spread of data because of reasons such as large amount of writes and
deletes or disk replacement. To ensure uniformity in the distribution of data across disks of a specified DataNode, the
Disk Balancer operates against the DataNode and moves data blocks from one disk to another.

For a specified DataNode, the Disk Balancer determines the ideal amount of data to store per disk based on its total
capacity and used space, and computes the amount of data to redistribute between disks. The Disk Balancer captures
thisinformation about data movement across the disks of a DataNode in a plan. On executing the plan, the Disk
Balancer moves the data as specified.

Plan the data movement across disks

A Disk Balancer plan identifies the amount of data that should move between the disks of a specified DataNode. The
plan contains move steps, where each move step specifies the source and destination disks for data movement and the
number of bytesto move.

Before you begin
Y ou must set the dfs.disk.balancer.enabled property in hdfs-sitexml to true.

Procedure

Run the hdfs diskbalancer -plan command by specifying the path to the DataNode.
For example, hdfs diskbalancer -plan nodel.mycluster.com.
The specified command generates the following two JSON documents as output in the HDFS namespace:

<nodename>.before.json that indicates the state of the cluster before running Disk Balancer, and
<nodename>.plan.json that details the data movement plan for the DataNode.

By default, the JSON documents are placed in the following location: /system/diskbalancer/<Creation _Timestamp>.
Here, <Creation_Timestamp> indicates the folder named according to the date and time of creation of the JSON
documents.

What to do next
Execute the generated plan.
Related Tasks

Execute the Disk Balancer plan

Parametersto configure the Disk Balancer
Y ou must configure various parameters in hdfs-site.xml for effectively planning and executing the Disk Balancer.

15

Scaling Namespaces and Optimizing Data Storage Optimizing data storage

Par ameter Description

dfs.disk.balancer.enabled Controls whether the Disk Balancer is enabled for
the cluster. The Disk Balancer executes only if this
parameter is set to True. The default value is False.

dfs.disk.balancer.max.disk.throughput!nM BperSec The maximum disk bandwidth that Disk Balancer
consumes while transferring data between disks. The
default value is 10 MB/s.

dfs.disk.balancer.max.disk.errors The maximum number of errorsto ignore for amove
operation between two disks before abandoning the
move. The default value of the maximum errors to
ignoreisb.

For example, if a plan specifies data move operation
between three pairs of disks, and if the move between the
first pair encounters more than five errors, that moveis
abandoned and the next move between the second pair of
disks starts.

dfs.disk.balancer.block.tol erance.percent Specifies athreshold value in percentage to consider a
move operation successful, and stop moving further data.

For example, setting this value to 20% for an operation
requiring 10GB data movement indicates that the
movement will be considered successful only after 8GB
of datais moved.

dfs.disk.balancer.plan.threshol d.percent Theideal storage value for a set of disksin a DataNode
indicates the amount of data each disk should have

for achieving perfect data distribution across those
disks. The threshold percentage defines the value at
which disks start participating in data redistribution or
balancing operations. Minor imbalances are ignored
because normal operations automatically correct some of
these imbalances.

The default threshold percentage for adisk is 10%;
indicating that adisk is used in balancing operations only
if the disk contains 10% more or less data than the ideal
storage value.

Executethe Disk Balancer plan

For a DataNode, the HDFS Disk Balancer moves data according to the details specified in the JSON document
generated as the Disk Balancer plan.

Before you begin
Y ou must have generated the data movement plan for the DataNode.

Procedure

Run the hdfs diskbalancer -execute command by specifying the path to the JSON plan document.
hdfs diskbalancer -execute /system/diskbal ancer/<Creation_Timestamp>/nodename.plan.json

The command reads the DataNode's address from the JSON file and executes the plan.

Related Tasks
Plan the data movement across disks

16

Scaling Namespaces and Optimizing Data Storage Optimizing data storage

Disk Balancer commands

In addition to planning for data movement across disks and executing the plan, you can use hdfs diskbalancer sub-
commands to query the status of the plan, cancel the plan, identify at a cluster level the DataNodes that require
balancing, or generate a detailed report on a specific DataNode that can benefit from running the Disk Balancer.

Planning the data movement for a DataNode
Command:hdfs diskbalancer -plan <datanode>

Argument Description

<datanode> Fully qualified name of the DataNode for which you
want to generate the plan.

hdfs diskbalancer -plan nodel.mycluster.com

The following table lists the additional options that you can use with the hdfs diskbalancer -plan command.

Option Description

-out Specify the location within the HDFS namespace where
you want to save the output JSON documents that
contain the generated plans.

-bandwidth Specify the maximum bandwidth to use for running
the Disk Balancer. This option helpsin minimizing
the amount of data moved by the Disk Balancer on an
operational DataNode.

Disk Balancer uses the default bandwidth of 10 MB/s if
you do not specify this value.

-threshol dPercentage Theideal storage value for a set of disksin a DataNode
indicates the amount of data each disk should have

for achieving perfect data distribution across those
disks. The threshold percentage defines the value at
which disks start participating in data redistribution or
balancing operations. Minor imbalances are ignored
because normal operations automatically correct some of
these imbalances.

The default value of -thresholdPercentage for a disk
is 10%; indicating that adisk is used in balancing
operations only if the disk contains 10% more or less
data than the ideal storage value.

-maxerror Specify the number of errorsto ignore for amove
operation between two disks before abandoning the
move.

Disk Balancer uses the default if you do not specify this
value.

-v Verbose mode. Specify this option for Disk Balancer to
display asummary of the plan as outpui.

-fs Specify the NameNode to use.

Disk Balancer uses the default NameNaode from the
configuration if you do not specify this value.

17

Scaling Namespaces and Optimizing Data Storage

Optimizing data storage

Executing the plan
Command:hdfs diskbalancer -execute <JSON file path>

Argument

Description

<JSON file path>

Path to the JISON document that contains the generated
plan (nodename.plan.json).

hdfs diskbalancer -execute /system/diskbal ancer/nodename.plan.json

Querying the current status of execution
Command:hdfs diskbalancer -query <datanode>

Argument

Description

<datanode>

Fully qualified name of the DataNode for which the plan
IS running.

hdfs diskbalancer -query nodename.mycluster.com

Cancelling a running plan
Commands:

hdfs diskbalancer -cancel <JSON file path>

Argument

Description

<JSON file path>

Path to the JISON document that contains the generated
plan (nodename.plan.json).

hdfs diskbalancer -cancel /system/diskbal ancer/nodename.plan.json

OR

hdfs diskbalancer -cancel <planlD> -node <nodename>

Argument Description

planiD ID of the plan to cancel.
Y ou can get this value from the output of the hdfs
diskbalancer -query command.

nodename The fully qualified name of the DataNode on which the

plan is running.

Viewing detailed report of DataNodes that require Disk Balancer

Commands:

hdfs diskbalancer -fs http://namenode.uri -report -node <file://>

Argument Description
<file://> Hosts file listing the DataNodes for which you want to
generate the reports.
OR

hdfs diskbalancer -fs http://namenode.uri -report -node [<DataNodel D|I P|Hostname>,...]

18

Scaling Namespaces and Optimizing Data Storage

Argument Description

[<DataNodel D|IP[Hosthame>,...] Specify the DataNode ID, P address, and the host name
of the DataNode for which you want to generate the
report. For multiple DataNodes, provide the details using
comma-separated values.

Viewing details of the top DataNodesin a cluster that require Disk Balancer
Command:hdfs diskbalancer -fs http://namenode.uri -report-node -top <topnum>

Argument Description

<topnum> The number of the top DataNodes that require Disk
Balancer to be run.

| ncreasing stor age capacity with HDFS erasur e coding

HDFS Erasure Coding (EC) can be used to reduce the amount of storage space required for replication.

The default 3x replication scheme in HDFS adds 200% overhead in storage space and other resources such as
network bandwidth. For warm and cold datasets with relatively low /O activities, additional block replicas are rarely
accessed during normal operations, but still consume the same amount of resources as the first replica.

Erasure coding provides the same level of fault-tolerance as 3x replication, but uses much less storage space. In a
typical erasure coding setup, the storage overhead is not more than 50%.

In storage systems, the most notable usage of EC isin a Redundant Array of Independent Disks (RAID). RAID
implements EC through striping, which divides logically sequentia data such asafileinto smaller units (such as a hit,
byte, or block) and stores consecutive units on different disks. This unit of striping distribution istermed as a striping
cell. EC uses an encoding process to calculate and store a certain number of parity cells for each stripe of original data
cells. An error on any striping cell can be recovered using a decoding cal culation based on the surviving data and the
parity cells.

Integrating EC with HDFS can improve storage efficiency while still providing similar data durability as traditional
replication-based HDFS deployments. As an example, a 3x replicated file with 6 blocks consumes 6* 3 = 18 blocks of
disk space. But with EC (6 data, 3 parity) deployment, the file consumes only 9 blocks of disk space.

Benefits of erasure coding

HDFS supports Erasure Coding (EC) with data striping at the directory level.
In the context of EC, striping has critical advantages.

Striping enables online EC (writing dataimmediately in EC format). Clients can directly write erasure-coded data
asit requires only asmall amount of buffering to calculate parity data. Online EC also enhances sequential 1/0
performance by leveraging multiple disk spindlesin parallel; thisis especially desirable in clusters with high-end
networking.

In addition, EC with striping naturally distributes a small file to multiple DataNodes and eliminates the need to bundle
multiple files into a single coding group.

In typical HDFS clusters, small files can account for over 3/4 of total storage consumption. To better support small
files, HDFS supports EC with striping.

How the DataNode r ecoversfailed erasure-coded blocks

The NameNode is responsible for tracking any missing blocksin an EC stripe. The NameNode assigns the task
of recovering the blocks to the DataNodes. When a client requests for data and a block is missing, additional read
reguests are issued to fetch the parity blocks and decode the data.

19

Optimizing data storage

Scaling Namespaces and Optimizing Data Storage Optimizing data storage

The recovery task is passed as a heartbeat response. This process is similar to how replicated blocks are recovered
after failure. The recovery task consists of the following three phases:

1. Reading the data from source nodes: Input dataiis read in parallel from the source nodes. Based on the EC policy,
it schedules the read requeststo all source targets and reads only the minimum number of input blocks for
reconstruction.

2. Decoding the data and generating output: New data and parity blocks are decoded from the input data. All missing
data and parity blocks are decoded together.

3. Transferring the generated data blocks to target nodes: After the completion of decoding, the recovered blocks are
transferred to target DataNodes.

Erasure coding policies

To accommodate heterogeneous workloads, files and directoriesin an HDFS cluster are allowed to have different
replication and EC policies.

Each policy is defined by the following 2 pieces of information:

e The EC Schema: Includes the numbers of data and parity blocksin an EC group (e.g., 6+3), aswell as the codec
agorithm (for example, Reed-Solomon).

» Thesize of astriping cell: Determines the granularity of striped reads and writes, including buffer sizes and
encoding work.

HDP supports the Reed-Solomon Erasure Coding algorithm. The system default scheme is Reed-Solomon with 6 data
blocks, 3 parity blocks, and a 1024 KB cell size (RS-6-3-1024Kk).

In addition, the following policies are supported: RS-3-2-1024k (Reed-Solomon with 3 data blocks, 2 parity blocks
and 1024 KB cell size), RS-LEGACY -6-3-1024k, and XOR-2-1-1024k.

Limitations of erasure coding

Erasure coding works only on new data written to a directory. Files already existing in the directory configured
for erasure coding continue using the default 3x replication scheme. In addition, erasure coding might impact the
performance of a cluster because of consuming considerable CPU resources and network bandwidth.

B Note: Given the current limitations, it is recommended that you use erasure coding only for cold data.

Effect of erasure coding on existing data

Erasure Coding (EC) is set on a per-directory basis; therefore, setting an EC policy on anew or existing directory
does not affect existing datain the cluster. Unless Erasure Coding is explicitly set, the default 3x replication scheme
continues to be used.

« |If you set an Erasure Coding policy on a non-empty directory, the existing files are NOT converted to use Erasure
Coding. The default 3x replication will still be used for these existing files.

* You can aso move afile from anon-EC directory to an EC directory, or from an EC directory to anon-EC
directory. This movement between EC and non-EC directories does NOT change the file's EC or replication
strategy. The only way to convert an existing file from non-EC to EC isto copy the fileinto adirectory with an
EC policy. You can use distcp to copy files.

Considerationsfor deploying erasure coding

Y ou must consider factors like network bisection bandwidth and fault-tolerance at the level of the racks while
deploying erasure coding in your HDFS clusters.

Erasure Coding places additional demands on the cluster in terms of CPU and network.

Erasure coded files are spread across racks for fault-tolerance. This means that when reading and writing striped files,
most operations are off-rack. Thus, network bisection bandwidth is very important.

For fault-tolerance at the rack level, it is also important to have at least as many racks as the configured EC stripe
width. For the default EC policy of RS (6,3), this means minimally 9 racks, and around 10 or 11 to handle planned

20

Scaling Namespaces and Optimizing Data Storage Optimizing data storage

and unplanned outages. For clusters with fewer racks than the stripe width, HDFS cannot maintain fault-tolerance at
the rack level, but still attempts to spread a striped file across multiple nodes to preserve fault-tolerance at the node
level.

Erasure coding CLI command
Use the hdfs ec command to set erasure coding policies on directories.

hdf s ec [generic options]
[-setPolicy -path <path> [-policy <policyNane>] [-replicate]]
[-getPolicy -path <path>]
[-unset Policy -path <path>]
[-listPolicies]
[-addPol i cies -policyFile <file>]
[-1istCodecs]
[-renmovePol icy -policy <policyNanme>]
[-enabl ePolicy -policy <policyName>]
[-di sabl ePolicy -policy <policyNane>]
[-help [cmd ...]]

Options:

e [-setPolicy [-p <policyName>] <path>]: Sets an EC policy on adirectory at the specified path. The following EC
policies are supported: RS-3-2-1024k (Reed-Solomon with 3 data blocks, 2 parity blocks and 1024 KB cell size),
RS-6-3-1024k, RS-LEGACY-6-3-1024k, and X OR-2-1-1024k.

<path>: A directory in HDFS. Thisis a mandatory parameter. Setting a policy only affects newly created files, and
does not affect existing files.

<policyName>: The EC policy to be used for files under the specified directory. Thisis an optional parameter,
specified using the -p flag. If no policy is specified, the system default Erasure Coding policy is used. The default
policy is RS-6-3-1024k.

« -replicate: Forces a directory to use the default 3x replication scheme.

E Note: You cannot specify -replicate and -policy <policyName> at the same time. Both the arguments are
optional.

« -getPolicy -path <path>: Gets details of the EC policy of afile or directory for the specified path.

« [-unsetPolicy -path <path>]: Removes an EC policy already set by a setPolicy on a directory. This option does not
work on adirectory that inherits the EC policy from a parent directory. If you run this option on a directory that
does not have an explicit policy set, no error is returned.

« [-addPolicies -policyFile <file>]: Addsalist of EC policies. HDFS allows you to add 64 policiesin total, with the
policy ID in the range of 64 to 127. Adding policiesfailsif there are already 64 policies.

» [-listCodecs]: Lists al the supported EC erasure coding codecs and coders in the system.
« [-removePalicy -policy <policyName>]: Removes an EC policy.

« [-enablePolicy -policy <policyName>]: Enables an EC policy.

» [-disablePolicy -policy <policyName>]: Disables an EC policy.

« [-help]: Displays help for agiven command, or for all commands if noneis specified.

Erasure coding background recovery work on the DataNodes can be tuned using the following configuration
parameters in hdfs-site.xml.

 dfs.datanode.ec.reconstruction.stripedread.timeout.millis: Timeout for striped reads. Default value is 5000 ms.

 dfs.datanode.ec.reconstruction.threads: Number of threads used by the DataNode for the background recovery
task. The default valueis 8 threads.

 dfs.datanode.ec.reconstruction.stripedread.buffer.size: Buffer size for reader service. Default value is 64 KB.

» dfs.datanode.ec.reconstruction.xmits.weight: The relative weight of xmits used by the EC background recovery
task when compared to replicated block recovery. The default value is 0.5.

21

Scaling Namespaces and Optimizing Data Storage Optimizing data storage

If the parameter is set to O, the EC task always has one xmit. The xmits of an erasure coding recovery task are
calculated as the maximum value between the number of read streams and the number of write streams. For
example, if an EC recovery task needs to read from six nodes and write to two nodes, the xmit value is max(6, 2) *
05=3.

Erasure coding examples
Y ou can use the hdfs ec command with its various options to set erasure coding policies on directories.

Viewing thelist of erasure coding policies

The following example shows how you can view the list of available erasure coding policies:

hdfs ec -listPolicies
Erasure Codi ng Policies:
Er asur eCodi ngPol i cy=[Nane=RS- 10- 4- 1024k, Schenma=[ECSchena=[Codec=rs,

nunDat aUni t s=10, nunParityUnits=4]], Cell Size=1048576, |d=5], State=Dl SABLED
Er asur eCodi ngPol i cy=[Nane=RS- 3- 2- 1024k, Schema=[ECSchema=[Codec=rs,

nunDat aUni t s=3, nunParityUnits=2]], Cell Si ze=1048576, |d=2], State=D SABLED
Er asur eCodi ngPol i cy=[Nane=RS- 6- 3- 1024k, Schema=[ECSchema=[Codec=rs,

nunDat aUni t s=6, nunParityUnits=3]], Cell Si ze=1048576, |d=1], State=ENABLED
Er asur eCodi ngPol i cy=[Nane=RS- LEGACY- 6- 3- 1024k, Schenma=[ECSchema=[Codec=rs-
| egacy, nunDat aUnits=6, nunParityUnits=3]], Cell Size=1048576, |d=3],

St at e=DI SABLED
Er asur eCodi ngPol i cy=[Nane=XOR- 2- 1- 1024k, Schema=[ECSchenma=[Codec=xor ,

nunmDat aUni t s=2, nunParityUnits=1]], Cell Si ze=1048576, |d=4], State=DlI SABLED

Enabling an erasure coding policy
In the previous example, the list of erasure coding policies indicates that RS-6-3-1024Kk is already enabled. If

required, you can enable additional policies as mentioned in the following example:

hdf s ec -enabl ePolicy -policy RS-3-2-1024k
Erasure coding policy RS-3-2-1024k is enabl ed
Setting an erasure coding policy

The following example shows how you can set the erasure coding policy RS-6-3-1024k on a particular directory:

hdfs ec -setPolicy -path /data/dirl -policy RS- 6-3-1024k
Set erasure coding policy RS-6-3-1024k on /data/dirl

To confirm whether the specified directory has the erasure coding policy applied, run the hdfs ec -getPolicy
command:

hdfs ec -getPolicy -path /data/dirl
RS- 6- 3- 1024k

Checking the block status on an erasure-coded directory
After enabling erasure coding on a directory, you can check the block status by running the hdfs fsck command. The

following example output shows the status of the erasure-coded blocks:

hdfs fsck /data/dirl

Er asure Coded Bl ock G oups:

Total size: 434424 B

Total files: 1

Total block groups (validated): 1 (avg. block group size 434424 B)

22

Scaling Namespaces and Optimizing Data Storage Optimizing data storage

M nimal |y erasure-coded bl ock groups: 1 (100.0 %

Over -erasure-coded bl ock groups: 0 (0.0 %

Under - er asur e- coded bl ock groups: 0 (0.0 %

Unsati sfactory placenent block groups: 0 (0.0 %

Aver age bl ock group size: 4.0

M ssi ng bl ock groups: O

Corrupt block groups: 0

M ssing internal blocks: 0 (0.0 %

FSCK ended at Fri Mar 21 19:39:11 UTC 2018 in 1 mlliseconds

The fil esystem under path '/data/dirl" is HEALTHY

Changing the erasur e coding policy

Y ou can use the hdfs ec setPolicy command to change the erasure coding policy applied on a particular directory.

hdfs ec -setPolicy -path /data/dirl -policy RS- 3-2-1024k
Set erasure coding policy RS-3-2-1024k on /data/dirl

Y ou can check the check the block status after applying the new policy. The following example output shows the
status of the erasure-coded blocks for a directory that has the RS-3-2-1024k policy:

hdfs fsck /data/dirl

Er asure Coded Bl ock G oups:

Total size: 68644 B

Total files: 2

Total bl ock groups (validated): 2 (avg. bl ock group size 34322 B)
M ninmal |y erasure-coded bl ock groups: 2 (100.0 %

Over -erasure-coded bl ock groups: 0 (0.0 %

Under - er asur e- coded bl ock groups: 0 (0.0 %

Unsati sfactory placenment bl ock groups: 0 (0.0 %

Aver age bl ock group size: 2.5

M ssing bl ock groups: O

Corrupt block groups: O

M ssing internal blocks: 0 (0.0 %

FSCK ended at Mon Apr 09 10:11: 06 UTC 2018 in 3 mlliseconds

The filesystem under path '/data/dirl" is HEALTHY

Y ou can apply the default 3x replication policy and check the block status as specified in the following examples:

hdfs ec -setPolicy -path /data/dirl -replicate

Set erasure coding policy replication on /tnp/datal/

Warni ng: setting erasure coding policy on a non-enpty directory will not
automatically convert existing files to replication

hdfs fsck /data/dirl

Erasure Coded Bl ock G oups:

Total size: 34322 B

Total files: 1

Total block groups (validated): 1 (avg. bl ock group size 34322 B)
M ninmal |y erasure-coded bl ock groups: 1 (100.0 %

Over - erasure-coded bl ock groups: 0 (0.0 %

Under - er asur e- coded bl ock groups: 0 (0.0 %

Unsati sfactory placenment block groups: 0 (0.0 %

Aver age bl ock group size: 2.0

23

Scaling Namespaces and Optimizing Data Storage Optimizing data storage

M ssing bl ock groups: O

Corrupt block groups: O

M ssing internal blocks: 0 (0.0 %

FSCK ended at Tue Apr 10 04:34:14 UTC 2018 in 2 mlliseconds

The fil esystem under path '/data/dirl" is HEALTHY

| ncreasing stor age capacity with HDFS compression

Linux supports GzipCodec, DefaultCodec, BZip2Codec, LzoCodec, and SnappyCodec. Typically, GzipCodec is used
for HDFS compression.

To configure data compression, you can either enable a data compression codec, for example, GZipCodec, as the
default or use the codec from the command line with a one-time job.

Enable GZipCodec asthe default compression codec
For the MapReduce framework, update relevant properties in core-site.xml and mapred-site.xml to enable GZipCodec
as the default compression codec.

Procedure
1. Edit the core-site.xml file on the NameNode host machine.

<property>
<name>i 0. conpr essi on. codecs</ name>
<val ue>or g. apache. hadoop. i 0. conpress. &i pCodec,
or g. apache. hadoop. i 0. conpr ess. Def aul t Codec, com hadoop. conpr essi on. | zo.
LzoCodec, or g. apache. hadoop. i 0. conpr ess. SnappyCodec</ val ue>
<description>A list of the conpression codec classes that can be used

for conpressi on/ deconpressi on. </ descri ption>
</ property>

2. Edit the mapred-site.xml file on the JobTracker host machine.

<property>
<nane>mapr educe. nap. out put . conpr ess</ nanme>
<val ue>t rue</ val ue>

</ property>

<property>
<name>mapr educe. map. out put . conpr ess. codec</ nanme>
<val ue>or g. apache. hadoop. i 0. conpress. &i pCodec</ val ue>

</ property>

<property>
<name>mapr educe. out put . fi | eout put f or mat . conpr ess. t ype</ name>
<val ue>BLOCK</ val ue>

</ property>

3. Optional: Enable the following two configuration parameters to enable job output compression. Edit the mapred-
site.xml file on the Resource Manager host machine.

<property>
<name>mapr educe. out put .. fil eout put f or mat . conpr ess</ nanme>
<val ue>t rue</val ue>

</ property>

24

Scaling Namespaces and Optimizing Data Storage Optimizing data storage

<property>
<name>mapr educe. out put . fil eout put f or mat . conpr ess. codec</ nane>
<val ue>or g. apache. hadoop. i 0. conpress. &i pCodec</ val ue>

</ property>

4. Restart the cluster.

Use GZipCodec with a one-timejob
Y ou can configure GZipcodec to compress the output of a MapReduce job.

Procedure

To use GzipCodec with a one-time only job, add the options to configure compression for the MapReduce job and
configure GZipCodec for the output of the job.

hadoop jar hadoop- exanpl es-1. 1. 0- SNAPSHOT. j ar sort sbr"-

Dmapr ed. conpr ess. map. out put =t r ue"

sbr" -

Dmapr ed. nap. out put . conpr essi on. codec=or g. apache. hadoop. i 0. conpr ess. &i pCodec"

sbr " - Dmapred. out put. conpress=true"

sbr"-

Dmapr ed. out put . conpr essi on. codec=or g. apache. hadoop. i 0. conpr ess. Gzi pCodec" sbr
- out Key org. apache. hadoop. i 0. Text sbr

- out Val ue org. apache. hadoop. i 0. Text i nput out put

Setting archival storage policies

Archival storage lets you store data on physical media with high storage density and low processing resources.

HDFS storagetypes
HDFS storage types can be used to assign data to different types of physical storage media.

The following storage types are available:

« DISK: Disk drive storage (default storage type)

* ARCHIVE: Archiva storage (high storage density, low processing resources)
» SSD: Solid State Drive

* RAM_DISK: DataNode Memory

If no storage typeisassigned, DISK is used as the default storage type.

HDFS storage policies
Y ou can store data on DISK or ARCHIVE storage types using preconfigured storage policies.

The following preconfigured storage policies are available:

e HOT: Used for both storage and compute. Data that is being used for processing will stay in this policy. When a
block isHOT, all replicas are stored on DISK. Thereis no fallback storage for creation, and ARCHIVE is used for
replication fallback storage.

« WARM: Partially HOT and partially COLD. When ablock is WARM, the first replicais stored on DISK, and the
remaining replicas are stored on ARCHIVE. The fallback storage for both creation and replication is DISK, or
ARCHIVE if DISK isunavailable.

e COLD: Used only for storage, with limited compute. Data that is no longer being used, or data that needs to
be archived, is moved from HOT storage to COLD storage. When ablock is COLD, al replicas are stored on
ARCHIVE, and there is no fallback storage for creation or replication.

The following table summarizes these replication policies:

25

Scaling Namespaces and Optimizing Data Storage

Optimizing data storage

Policy ID Policy Name Replica Block Placement | Fallback storage for Fallback storage for
(for nreplicas) creation replication

12 HOT (default) Disk: n <none> ARCHIVE

8 WARM Disk: 1, ARCHIVE: n-1 DISK, ARCHIVE DISK, ARCHIVE

4 COLD ARCHIVE: n <none> <none>

Configurearchival storage

To configure archival storage for a DataNode, you must assign the ARCHIVE storage type to the DataNode, set
storage policies, and move blocks that violate the storage policy to the appropriate storage type.

Procedure

1. Shut down the DataNode.
2. Assignthe ARCHIVE Storage Type to the DataNode.

Y ou can use the dfs.datanode.data.dir property in the /etc/hadoop/conf/hdfs-sitexml file to assign the ARCHIVE
storage type to a DataNode.

The dfs.datanode.data.dir property determines where on the local filesystem a DataNode should store its blocks.

If you specify a comma-delimited list of directories, datawill be stored in all named directories, typically on
different devices. Directories that do not exist are ignored. Y ou can specify that each directory resideson a
different type of storage: DISK, SSD, ARCHIVE, or RAM_DISK.

To specify a DataNode as DISK storage, specify [DISK] and alocal file system path. For example:

<property>

<name>df s. dat anode. dat a. di r </ name>

<val ue>[DI SK] / gri d/ 1/t np/ dat a_t r unk</ val ue>
</ property>

To specify a DataNode as ARCHIVE storage, insert [ARCHIV E] at the beginning of the local file system path.
For example:

<pr operty>

<nanme>df s. dat anode. dat a. di r </ nane>

<val ue>[ARCHI VE] / gri d/ 1/ t np/ dat a_t r unk</ val ue>
</ property>

. Depending on your requirements, either set a storage policy or list the already applied storage policies on a
specified file or directory.

If you want to... Use thiscommand...

Set a storage policy hdfs storagepolicies -setStoragePolicy <path>
<policyname>

List storage policies hdfs storagepolicies -getStoragePolicy <path>

Note: When you update a storage policy setting on afile or directory, the new policy is not automatically
enforced. Y ou must use the HDFS mover data migration tool to actually move blocks as specified by the
new storage policy.

4. Start the DataNode.
5. Usethe HDFS mover tool according to the specified storage policy.

26

Scaling Namespaces and Optimizing Data Storage Optimizing data storage

The HDFS mover data migration tool scans the specified filesin HDFS and verifiesif the block placement
satisfies the storage policy. For the blocks that violate the storage policy, the tool moves the replicas to a different
storage typein order to fulfill the storage policy requirements.

Commandsfor configuring storage policies
Depending on your requirements, use the hdfs storagepolicy sub-commands to set storage policies or list the storage
policies applied on afile or adirectory.

Setting storage policies
Command: hdfs storagepolicies -setStoragePolicy <path> <policyName>

Argument Description
<path> The path to a directory or file.
<policyName> The name of the storage policy.

hdfs storagepolicies -setStoragePolicy /coldl COLD

Listing storage policies
Command: hdfs storagepolicies -getStoragePolicy <path>

Argument Description

<path> The path to a directory or file.

hdfs storagepolicies -getStoragePolicy /coldl

The HDFS mover command
Y ou can use the hdfs mover command to move replicas of data blocks that violate the storage policy set on afileor a
directory to a storage type that fulfills the policy requirements.

Command: hdfs mover [-p <files/dirs> | -f <local file name>]

Argument Description

-f <local file> Specify alocal file containing alist of HDFS files or
directoriesto migrate.

-p <fileg/dirs> Specify a space-separated list of HDFSfiles or
directoriesto migrate.

E Note: When both -p and -f options are omitted, the default path is the root directory.

Balancing data across an HDFS cluster
The HDFS Balancer isatool for balancing the data across the storage devices of aHDFS cluster.

Y ou can also specify the source DataNodes, to free up the spaces in particular DataNodes. Y ou can use a block
distribution application to pin its block replicas to particular DataNodes so that the pinned replicas are not moved for
cluster balancing.

Why HDFS data Becomes unbalanced

Factors such as addition of DataNodes, block alocation in HDFS, and behavior of the client application can lead to
the data stored in HDFS clusters becoming unbalanced.

27

Scaling Namespaces and Optimizing Data Storage Optimizing data storage

Addition of DataNodes

When new DataNodes are added to a cluster, newly created blocks are written to these DataNodes from time to time.
The existing blocks are not moved to them without using the HDFS Balancer.

Behavior of the client application

In some cases, a client application might not write data uniformly across the DataNode machines. A client application
might be skewed in writing data, and might always write to some particular machines but not others. HBaseis an
example of such aclient application. In other cases, the client application is not skewed by design, for example,
MapReduce or YARN jobs.

The datais skewed so that some of the jobs write significantly more data than others. When a Datanode receives the
data directly from the client, it stores a copy toitslocal storage for preserving datalocality. The DataNodes receiving
more data generally have higher storage utilization.

Block Allocation in HDFS

HDFS uses a constraint satisfaction algorithm to alocate file blocks. Once the constraints are satisfied, HDFS
allocates a block by randomly selecting a storage device from the candidate set uniformly. For large clusters, the
blocks are essentially allocated randomly in a uniform distribution, provided that the client applications write data
to HDFS uniformly across the DataNode machines. Uniform random allocation might not result in a uniform data
distribution because of randomness. Thisis generally not a problem when the cluster has sufficient space. The
problem becomes serious when the cluster is nearly full.

Configurationsand CLI optionsfor the HDFS Balancer
Y ou can configure the HDFS Balancer by changing various configuration options or by using the command line.

Propertiesfor configuring the Balancer
Depending on your requirements, you can configure various properties for the HDFS Balancer.

dfs.datanode.balance.max.concurrent.moves Limits the maximum number of concurrent block moves

that a Datanode is alowed for balancing the cluster. If
you set this configuration in a Datanode, the Datanode
throws an exception when the limit is exceeded. If you
set this configuration in the HDFS Balancer, the HDFS
Balancer schedules concurrent block movements within
the specified limit. The Datanode setting and the HDFS
Balancer setting can be different. As both settings impose
arestriction, an effective setting is the minimum of them.

It is recommended that you set this to the highest
possible value in Datanodes and adjust the runtime value
in the HDFS Balancer to gain the flexibility. The default
valueis>s.

Y ou can reconfigure without Datanode restart. Follow
these steps to reconfigure a Datanode:

1. Change the value of
dfs.datanode.bal ance.max.concurrent.movesin the
configuration xml file on the Datanode machine.

2. Start areconfiguration task. Use the hdfs dfsadmin
-reconfig datanode <dn_addr>:<ipc_port> start
command.

For example, suppose a Datanode has 12 disks. Y ou
can set the configuration to 24, a small multiple of
the number of disks, in the Datanodes. Setting it to a

28

Scaling Namespaces and Optimizing Data Storage Optimizing data storage

higher value might not be useful, and only increases
disk contention. If the HDFS Balancer isrunning in a
maintenance window, the setting in the HDFS Balancer
can bethe same, that is, 24, to use all the bandwidth.
However, if the HDFS Balancer is running at sametime
as other jobs, you set it to a smaller value, for example,
5, in the HDFS Balancer so that there is bandwidth
available for the other jobs.

dfs.datanode.balance.bandwidthPer Sec Limits the bandwidith in each Datanode using for
balancing the cluster. Changing this configuration does
not require restarting Datanodes. Use the dfsadmin -
setBalancerBandwidth command.

The default is 1048576 (=1MB/s).

dfs.balancer. mover Threads Limits the number of total concurrent moves for
balancing in the entire cluster. Set this property to the
number of threads in the HDFS Balancer for moving
blocks. Each block move requires a thread.

The default is 1000.

dfs.balancer.max-size-to-move With each iteration, the HDFS Balancer chooses
DataNodes in pairs and moves data between the
DataNode pairs. Limits the maximum size of data that
the HDFS Balancer moves between a chosen DataNode
pair. If you increase this configuration when the network
and disk are not saturated, increases the data transfer
between the DataNode pair in each iteration while the
duration of an iteration remains about the same.

The default is 10737418240 (10GB).

dfs.balancer.getBlocks.size Specifies the total data size of the block list returned by a
getBlocks(..).

When the HDFS Balancer moves a certain amount

of data between source and destination DataNodes, it
repeatedly invokes the getBlocks(..) rpc to the Namenode
to get lists of blocks from the source DataNode until the
required amount of datais scheduled.

The default is 2147483648 (2GB).

dfs.balancer .getBlocks.min-block-size Specifies the minimum block size for the blocks used to
balance the cluster.

The default is 10485760 (10MB)

dfs.datanode.block-pinning.enabled Specifiesif block-pinning is enabled. When you

create afile, auser application can specify alist of
favorable DataNodes by way of the file creation API

in DistributedFileSystem. The NameNode uses its best
effort, allocating blocks to the favorable DataNodes. If
dfs.datanode.block-pinning.enabled is set to true, if a
block replicaiswritten to afavorable DataNode, it is
“pinned” to that DataNode. The pinned replicas are not
moved for cluster balancing to keep them stored in the

29

Scaling Namespaces and Optimizing Data Storage

Optimizing data storage

Balancer commands

specified favorable DataNodes. This featureis useful for
block distribution aware user applications such as HBase.

The default isfalse.

Y ou can use various command line options with the hdfs balancer command to work with the HDFS Balancer.

Balancing Policy, Threshold, and Blockpools

[-policy <policy>]

[-threshold <threshold>]

[-blockpools <comma-separated list of blockpool ids>]

Include and Exclude Lists

[-include [-f <hosts-file> | <comma-separ ated list of

hosts>]]

[-exclude [-f <hosts-file> | <comma-separated list of

hosts>]]

Idle-Iterations and Run During Upgrade

[-idleiterations <idleiter ations>]

Specifies which policy to use to determineif acluster is
balanced.

The two supported policies are blockpool and datanode.
Setting the policy to blockpool means that the cluster

is balanced if each pool in each nodeis balanced

while datanode means that a cluster is balanced if each
DataNode is balanced.

The default policy is datanode.

Specifies anumber in [1.0, 100.0] representing the
acceptable threshold of the percentage of storage
capacity so that storage utilization outside the average +/-
the threshold is considered as over/under utilized.

The default threshold is 10.0.

Specifies alist of block pools on which the HDFS
Balancer runs. If the list is empty, the HDFS Balancer
runs on all existing block pools.

The default value is an empty list.

When the include list is non-empty, only the DataNodes
specified in the list are balanced by the HDFS Balancer.
An empty include list meansincluding all the DataNodes
in the cluster. The default valueis an empty list.

The DataNodes specified in the exclude list are excluded
so that the HDFS Balancer does not balance those
DataNodes. An empty exclude list means that no
DataNodes are excluded. When a DataNode is specified
in both in the include list and the exclude list, the
DataNode is excluded. The default valueis an empty list.

Specifies the number of consecutive iterationsin which
no blocks have been moved before the HDFS Balancer
terminates with the NO_MOVE_PROGRESS exit status.

Specify -1 for infinite iterations. The default is 5.

30

Scaling Namespaces and Optimizing Data Storage Optimizing data storage

[-runDuringUpgrade] If specified, the HDFS Balancer runs even
if there is an ongoing HDFS upgrade. If not
specified, the HDFS Balancer terminates with the
UNFINALIZED_UPGRADE exit status.

When there is no ongoing upgrade, this option has no
effect. It isusually not desirable to run HDFS Balancer
during upgrade. To support rollback, blocks being
deleted from HDFS are moved to the internal trash
directory in DataNodes and not actually deleted. Running
the HDFS Balancer during upgrading cannot reduce the
usage of any DataNode storage.

Sour ce Datanodes

[-sour ce[-f <hosts-file> | <comma-separ ated list of Specifies the source DataNode list. The HDFS

hosts>]] Balancer selects blocks to move from only the specified
DataNodes. When thelist is empty, al the DataNodes
are chosen as a source. The option can be used to free up
the space of some particular DataNodes in the cluster.
Without the -source option, the HDFS Balancer can be
inefficient in some cases.

The default value is an empty list.

The following table shows an example, where the
average utilization is 25% so that D2 is within the 10%
threshold. It is unnecessary to move any blocks from

or to D2. Without specifying the source nodes, HDFS
Balancer first moves blocks from D2 to D3, D4 and
D5, since they are under the same rack, and then moves
blocks from D1 to D2, D3, D4 and D5. By specifying
D1 as the source node, HDFS Balancer directly moves
blocks from D1 to D3, D4 and D5.

Table 1. Example of Utilization M ovement

Datanodes (with the Utilization Rack
same capacity)

D1 95% A
D2 30%

D3, D4, and D5 0% B

Related Tasks
Balance datain a federation

Recommended configurationsfor the Balancer
The HDFS Balancer can run in either Background or Fast modes. Depending on the mode in which you want the
Balancer to run, you can set various properties to recommended values.

31

Scaling Namespaces and Optimizing Data Storage Optimizing data storage

Background and Fast Modes

HDFS Balancer runs as a background process. The
cluster serves other jobs and applications at the same

time.
Fast Mode HDFS Balancer runs at maximum (fast) speed.
Table 2: DataNode Configuration Properties
Property Default Background Mode Fast Mode
dfs.datanode.balance.- 5 4x (# of dISkS) 4 x (# of di SkS)
max.concurrent.moves
dfs.datanode.balance.- 1048576 (1 MB) use default 10737418240 (10 GB)
max.bandwidthPerSec
Table 3: Balancer Configuration Properties
Property Default Background Mode Fast Mode
dfs.datanode.balance.- 5 # of disks 4x (# of di SkS)
max.concurrent.moves
dfs.balancer.- 1000 use default 20,000
moverThreads
dfs.balancer - 10737418240 (10 GB) | 1073741824 (1GB) 107374182400 (100 GB)
max-size-to-move
dfs.balancer .- 10485760 (10 MB) use default 104857600 (100 MB)
getBlocks.min-block-size

Cluster balancing algorithm

The HDFS Baancer runsin iterations. Each iteration contains the following four steps: storage group classification,
storage group pairing, block move scheduling, and block move execution.

Storage group classification

The HDFS Balancer first invokes the getLiveDatanodeStorageReport rpc to the Namenode to the storage report for
al the storages in all Datanodes. The storage report contains storage utilization information such as capacity, dfs used
space, remaining space, and so forth, for each storage in each DataNode.

A Datanode can contain multiple storages and the storages can have different storage types. A storage group Gi,T is
defined to be the group of al the storages with the same storage type T in Datanode i. For example, Gi,DISK isthe
storage group of al the DISK storages in Datanode i. For each storage type T in each DataNode i, HDFS Balancer
computes Storage Group Utilization (%)

Ui, T = 100% (storage group used space)/(storage group capacity),

and Average Utilization (%)

Uavg, T = 100% * (sum of al used spaces)/(sum of all capacities).

Let # be the threshold parameter (default is 10%) and GI, T be the storage group with storage type T in DataNode |.

Over-Utilized: {@,T: Uavg, T+ # < U, T},

32

Scaling Namespaces and Optimizing Data Storage Optimizing data storage

Average + Threshold

Above- Average: {G,T : Uavg, T < U, T <= Uavg, T + #},

Bel ow Average: {G,T : Uavg, T - # <= U, T <= Uavg, T},

Average - Threshold

Under-Uilized: {G@,T: U,T< Uavg, T - # }.

A storage group is over-utilized or under-utilized if its utilization is larger or smaller than the difference between the
average and the threshold. A storage group is above-average or below-average if its utilization is larger or smaller
than average but within the threshold.

If there are no over-utilized storages and no under-utilized storages, the cluster is said to be balanced. The HDFS
Balancer terminates with a SUCCESS state. Otherwise, it continues with storage group pairing.

Storage group pairing

The HDFS Balancer selects over-utilized or above-average storage as source storage, and under-utilized or below-
average storage astarget storage. It pairs a source storage group with atarget storage group (source # target) in a
priority order depending on whether or not the source and the target storage reside in the same rack.

The Balancer uses the following priority orders for pairing storage groups from the source and the target.

Same-Rack (where the source and the target storage reside in the same rack)
Over-Utilized # Under-Utilize
Over-Utilized # Below-Average

Above-Average # Under-Utilized
Any (where the source and target storage do not reside in the same rack)

Over-Utilized # Under-Utilized
Over-Utilized # Below-Average
Above-Average # Under-Utilized

Block move scheduling
For each source-target pair, the HDFS Balancer chooses block replicas from the source storage groups and schedules
block moves.

A block replicain asource DataNode is a good candidate if it satisfies all of the following conditions:

The storage type of the block replicain the source DataNode is the same as the target storage type.
The storage type of the block replicais not already scheduled.

The target does not already have the same block replica.

The number of racks of the block is not reduced after the move.

Logically, the HDFS Balancer schedules a block replicato be “moved” from a source storage group to atarget
storage group. In practice, ablock usually has multiple replicas. The block move can be done by first copying the
replicafrom a proxy, which can be any storage group containing one of the replicas of the block, to the target storage
group, and then deleting the replicain the source storage group.

After a candidate block in the source DataNode is specified, the HDFS Balancer selects a storage group containing
the same replica as the proxy. The HDFS Balancer selects the closest storage group as the proxy in order to minimize
the network traffic.

When it isimpossible to schedule a move, the HDFS Balancer terminates withaNO_MOVE_BLOCK exit status.

Block move execution
The HDFS Baancer dispatches a scheduled block move by invoking the DataT ransferProtocol.replaceBlock(..)
method to the target DataNode.

33

Scaling Namespaces and Optimizing Data Storage Optimizing performance

The Balancer specifies the proxy, and the source as delete-hint in the method call. The target DataNode copies
the replica directly from the proxy to itslocal storage. When the copying process has been completed, the target
DataNode reports the new replica to the NameNode with the delete-hint. NameNode uses delete-hint to delete the
extrareplica, that is, delete the replica stored in the source.

After all block moves are dispatched, the HDFS Balancer waits until all the moves are completed. Then, the HDFS
Balancer continues running a new iteration and repeats all of the steps. If the scheduled moves fail for 5 consecutive
iterations, the HDFS Balancer terminates withaNO_MOVE_PROGRESS exit status.

Exit statuses for the HDFS Balancer

THe HDFS Balancer concludes a cluster balancing operation with a specific exit status that indicates whether the
operation succeeded or failed, with supporting reasons.

Table 4: Exit Statusesfor the HDFS Balancer

Status Value Description

SUCCESS 0 The cluster is balanced. There are no over
or under-utilized storages, with regard to the
specified threshold.

ALREADY_RUNNING -1 Another HDFS Baancer is running.

NO_MOVE_BLOCK -2 The HDFS Balancer is not able to schedule a
move.

NO_MOVE_PROGRESS -3 All of the scheduled moves have failed for 5
consecutive iterations.

10_EXCEPTION -4 An |OException occurred.

ILLEGAL_ARGUMENTS -5 Anillegal argument in the command or
configuration occurred.

INTERUPTED -6 The HDFS Balancer process was interrupted.

UNFINALIZED_UPGRADE -7 The cluster is being upgraded.

Optimizing performance

Y ou can consider the following options to optimize the performance of an HDFS cluster: swapping disk drives on
a DataNode, caching data, configuring rack awareness, customizing HDFS, optimizing NameNode disk space with
Hadoop archives, identifying slow DataNodes and improving them, optimizing small write operations by using
DataNode memory as storage, and implementing short-circuit reads.

I mproving performance with centralized cache management

Centralized cache management enables you to specify paths to directories that are cached by HDFS, thereby
improving performance for applications that repeatedly access the same data.

Centralized cache management in HDFS is an explicit caching mechanism. The NameNode communicates with
DataNodes that have the required data blocks available on disk, and instructs the DataNodes to cache the blocks in
off-heap caches.

Benefits of centralized cache management in HDFS
Centralized cache management in HDFS offers many significant advantages such as explicit pinning, querying cached
blocks for task placement, and improving cluster memory utilization.

« Explicit pinning prevents frequently used data from being evicted from memory. Thisis particularly important
when the size of the working set exceeds the size of main memory, which is common for many HDFS workl oads.

34

Scaling Namespaces and Optimizing Data Storage Optimizing performance

Because DataNode caches are managed by the NameNode, applications can query the set of cached block
locations when making task placement decisions. Co-locating a task with a cached block replicaimproves read
performance.

When ablock has been cached by a DataNode, clients can use a more efficient zero-copy read API. Since
checksum verification of cached data is done once by the DataNode, clients can incur essentially zero overhead
when using this new API.

Centralized caching can improve overal cluster memory utilization. When relying on the operating system buffer
cache on each DataNode, repeated reads of ablock will result in all n replicas of the block being pulled into the
buffer cache. With centralized cache management, you can explicitly pin only m of the n replicas, thereby saving
n-m memory.

Use casesfor centralized cache management

Centralized cache management is useful for files that are accessed repeatedly and for mixed workloads that have
performance SLAS.

Filesthat are accessed repeatedly: For example, asmall fact table in Hive that is often used for joinsis agood
candidate for caching. Conversely, caching the input of a once-yearly reporting query is probably less useful,
since the historical data might only be read once.

Mixed workloads with performance SLAs: Caching the working set of a high priority workload ensures that it
does not compete with low priority workloads for disk /0.

Centralized cache management ar chitecture
In acentralized cache management, the NameNode is responsible for coordinating all of the DataNode off-heap
caches in the cluster. The NameNode periodically receives a cache report from each DataNode. The cache report
describes al of the blocks cached on the DataNode. The NameNode manages DataNode caches by piggy-backing
cache and uncache commands on the DataNode heartbeat.

The following figure illustrates the centralized cached management architecture.

User asks NN to
cache a path (e.
g. via Hive DDL)

NN translates path
to a set of blocks,
adds to pending

caching gueue

¥

User NameNMNode

DN heartbeats contain

Cache commands cache block report

piggybacked on
heartbeat response

DFSClients can be
scheduled for DFSClient
memory locality

The NameNode queriesits set of cache directives to determine which paths should be cached. Cache directives

are persistently stored in the fsimage and edit logs, and can be added, removed, and modified through Java and
command-line APIs. The NameNode al so stores a set of cache pools, which are administrative entities used to group
cache directives together for resource management, and to enforce permissions.

35

Scaling Namespaces and Optimizing Data Storage Optimizing performance

The NameNode periodically re-scans the namespace and active cache directives to determine which blocks need to be
cached or uncached, and assigns caching work to DataNodes. Re-scans can also be triggered by user actions such as
adding or removing a cache directive or removing a cache pool.

Cache blocks that are under construction, corrupt, or otherwise incomplete are not cached. If a Cache directive covers
asymlink, the symlink target is not cached.

Caching can only be applied to directories and files.

Related reference
Caching terminology

Caching terminology
A cache directive defines the path to cache while a cache pool manages groups of cache directives.

Cachedirective

Defines the path to be cached. Paths can point either directories or files. Directories are cached non-recursively,
meaning only filesin the first-level listing of the directory will be cached.

Cache directives also specify additional parameters, such as the cache replication factor and expiration time. The
replication factor specifies the number of block replicasto cache. If multiple cache directives refer to the samefile,
the maximum cache replication factor is applied.

The expiration time is specified on the command line as atime-to-live (TTL), which represents arelative expiration
time in the future. After a cache directive expires, it is no longer taken into consideration by the NameNode when
making caching decisions.

Cache pool

An administrative entity that manages groups of cache cirectives. Cache pools have UNIX-like permissions that
restrict which users and groups have access to the pool. Write permissions allow users to add and remove cache
directives to the pool. Read permissions allow usersto list the Cache Directivesin apool, aswell as additional
metadata. Execute permissions are unused.

Cache pools are also used for resource management. Cache pools can enforce a maximum memory limit, which
restricts the aggregate number of bytes that can be cached by directivesin the pool. Normally, the sum of the pool
limits will approximately equal the amount of aggregate memory reserved for HDFS caching on the cluster. Cache
pools aso track a number of statisticsto help cluster users track what is currently cached, and to determine what else
should be cached.

Cache pools can also enforce a maximum time-to-live. This restricts the maximum expiration time of directives being
added to the poal.

Related Concepts
Centralized cache management architecture

Propertiesfor configuring centralized caching

Y ou must enable JNI to use centralized caching. In addition, you must configure various properties and consider the
locked memory limit for configuring centralized caching.

Nativelibraries

In order to lock block filesinto memory, the DataNode relies on native JNI code found in libhadoop.so. Be sure to
enable NI if you are using HDFS centralized cache management.

Configuration properties

Configuration properties for centralized caching are specified in the hdfs-site.xml file.

36

Scaling Namespaces and Optimizing Data Storage Optimizing performance

Required properties
Only the following property is required:

» dfs.datanode.max.locked.memory This property determines the maximum amount of memory (in bytes) that a
DataNode will use for caching. The "locked-in-memory size" ulimit (ulimit -1) of the DataNode user aso needs
to be increased to exceed this parameter (for more details, see the following section on). When setting this value,
remember that you will need space in memory for other things as well, such as the DataNode and application VM
heaps, and the operating system page cache. Example:

<property>
<nanme>df s. dat anode. max. | ocked. nenor y</ name>
<val ue>268435456</ val ue>

</ property>

Optional Properties
The following properties are not required, but can be specified for tuning.

 dfs.namenode.path.based.cache.refresh.interval.ms The NameNode will use this value as the number of
milliseconds between subsequent cache path re-scans. By default, this parameter is set to 300000, which isfive
minutes. Example:

<property>
<nane>df s. nanenode. pat h. based. cache. refresh. i nterval . ns</ nane>
<val ue>300000</ val ue>

</ property>

« dfs.time.between.resending.caching.directives.ms The NameNode will use this value as the number of
milliseconds between resending caching directives. Example:

<property>
<name>dfs. ti me. bet ween. r esendi ng. cachi ng. di recti ves. ns</ nane>
<val ue>300000</ val ue>

</ property>

 dfs.datanode.fsdatasetcache.max.threads.per.volume The DataNode will use this value as the maximum number of
threads per volume to use for caching new data. By default, this parameter is set to 4. Example:

<property>
<nane>df s. dat anode. f sdat aset cache. nmax. t hr eads. per. vol une</ name>
<val ue>4</val ue>

</ property>

» dfs.cachereport.intervalMsec The DataNode will use this value as the number of milliseconds between sending
afull report of its cache state to the NameNode. By default, this parameter is set to 10000, which is 10 seconds.
Example:

<property>
<nanme>df s. cacher eport.interval Msec</ nane>
<val ue>10000</ val ue>

</ property>

« dfs.namenode.path.based.cache.block.map.all ocation.percent The percentage of the Java heap that will be
alocated to the cached blocks map. The cached blocks map is a hash map that uses chained hashing. Smaller
maps may be accessed more slowly if the number of cached blocksis large. Larger maps will consume more
memory. The default value is 0.25 percent. Example:

<property>
<name>df s. nanenode. pat h. based. cache. bl ock. map. al | ocati on. per cent </ name>

37

Scaling Namespaces and Optimizing Data Storage Optimizing performance

<val ue>0. 25</ val ue>
</ property>

OSlimits

If you get the error "Cannot start datanode because the configured max locked memory size...is more than the
datanode's available RLIMIT_MEMLOCK ulimit,” this means that the operating system isimposing a lower limit
on the amount of memory that you can lock than what you have configured. To fix this, you must adjust the ulimit -
| value that the DataNode runs with. Thisvalue is usually configured in /etc/security/limits.conf, but this may vary
depending on what operating system and distribution you are using.

Y ou have correctly configured this value when you can run ulimit - | from the shell and get back either a higher value
than what you have configured or the string "unlimited”, which indicates that thereis no limit. Typically, ulimit -I
returns the memory lock limit in kilobytes (KB), but dfs.datanode.max.locked.memory must be specified in bytes.

For example, if the value of dfs.datanode.max.locked.memory is set to 128000 bytes:
<property>
<name>df s. dat anode. max. | ocked. nenor y</ name>

<val ue>128000</ val ue>
</ property>

Set the memlock (max |ocked-in-memory address space) to aslightly higher value. For example, to set memlock to
130 KB (130,000 bytes) for the hdfs user, you would add the following line to /etc/security/limits.conf.

hdfs - nmeml ock 130

Commandsfor using cache pools and directives

Y ou can use the Command-Line Interface (CL1) to create, modify, and list cache pools and cache directives using the
hdfs cacheadmin subcommand.

Cache Directives are identified by a unique, non-repeating, 64-bit integer ID. IDswill not be reused even if a Cache
Directive is removed.

Cache Pools are identified by a unique string name.
Y ou must first create a Cache Pool, and then add Cache Directives to the Cache Pool.
Cache Pool Commands
» addPool -- Adds a new Cache Pool.
Usage:

hdf s cacheadm n -addPool <nane> [-owner <owner>] [-group <group>]
[-mode <npde>] [-limt <limt>] [-maxTtl <maxTtl>]

Options:

Table5: Cache Pool Add Options

Option Description

<name> The name of the pool.

<owner> The user name of the owner of the pool. Defaults to the current user.

<group> The group that the pool is assigned to. Defaults to the primary group
name of the current user.

<mode> The UNIX-style permissions assigned to the pool. Permissions are
specified in octal (e.g. 0755). Pool permissions are set to 0755 by
default.

38

Scaling Namespaces and Optimizing Data Storage Optimizing performance

Option Description

<limit> The maximum number of bytes that can be cached by directivesin
the pool, in aggregate. By default, no limit is set.

<maxTtl> The maximum allowed time-to-live for directives being added to the
pool. This can be specified in seconds, minutes, hours, and days (e.g.
120s, 30m, 4h, 2d). Valid units are [smhd]. By default, no maximum
isset. A value of "never" specifies that thereis no limit.

» modifyPool -- Modifies the metadata of an existing Cache Pool.
Usage:

hdf s cacheadm n - nodi fyPool <name> [-owner <owner>] [-group <group>]
[-mode <npde>] [-limt <limt>] [-maxTtl <maxTtl>]

Options:

Table 6: Cache Pool Modify Options

Option Description

<name> The name of the pool to modify.

<owner> The user name of the owner of the pool.

<group> The group that the pool is assigned to.

<mode> The UNIX-style permissions assigned to the pool. Permissions are

specified in octal (e.g. 0755).

<limit> The maximum number of bytes that can be cached by directivesin
the pool, in aggregate.

<maxTtl> The maximum allowed time-to-live for directives being added to the
pool. This can be specified in seconds, minutes, hours, and days (e.g.
120s, 30m, 4h, 2d). Valid units are [smdh]. By default, no maximum
isset. A value of "never" specifies that thereis no limit.

» removePool -- Removes a Cache Pool. This command aso "un-caches" paths that are associated with the pool.
Usage:
hdf s cacheadni n -renobvePool <nane>
Options:

Table 7: Cache Pool Remove Options

Option Description

<name> The name of the Cache Pool to remove.

» listPools -- Displays information about one or more Cache Pools, such as name, owner, group, permissions, and so
on.

Usage:
hdf s cacheadmi n -listPools [-stats] [<nane>]

Options:

39

Scaling Namespaces and Optimizing Data Storage

Optimizing performance

Table 8: Cache PoolsList Options

Option Description
-stats Displays additional Cache Pool statistics.
<name> If specified, lists only the named Cache Pool.

help -- Displays detailed information about a command.

Usage:
hdf s cacheadm n -hel p <command- nane>
Options:

Table 9: Cache Pool Help Options

Option

Description

<command-name

Displays detailed information for the specified command name. If
no command name is specified, detailed help is displayed for all
commands.

Cache Directive Commands

addDirective -- Adds anew Cache Directive.
Usage:

hdf s cacheadm n -addDi rective -path <path> -pool
<time-to-live>]

[-replication <replication>] [-ttl
Options:

Table 10: Cache Pool Add Directive Options

<pool - nanme> [-force]

Option Description

<path> The path to the cache directory or file.

<pool-name> The Cache Pooal to which the Cache Directive will be added. You
must have Write permission for the Cache Pool in order to add new
directives.

-force Skips checking of the Cache Pool resource limits.

<replication> The cache replication factor to use. Default setting is 1.

<time-to-live>

How long the directive is valid. This can be specified in minutes,
hours and days (e.g. 30m, 4h, 2d). Valid units are [smdh]. A value
of "never" indicates a directive that never expires. If unspecified, the
directive never expires.

removeDirective -- Removes a Cache Directive.

Usage:

hdf s cacheadm n -renpveDirective <id>

Options:

40

Scaling Namespaces and Optimizing Data Storage Optimizing performance

Table 11: Cache Pool Remove Directive Options

Option Description

<id> The ID of the Cache Directive to remove. Y ou must have Write
permission for the pool that the directive belongs to in order to
removeit. You can use the -listDirectives command to display alist
of Cache Directive IDs.

* removeDirectives -- Removes al of the Cache Directivesin a specified path.
Usage:
hdf s cacheadm n -renoveDirectives <path>
Options:

Table 12: Cache Pool Remove Directives Options

Option Description

<path> The path of the Cache Directives to remove. Y ou must have Write
permission for the pool that the directives belong to in order to
remove them. Y ou can use the -listDirectives command to display a
list of Cache Directives.

» listDirectives -- Returns alist of Cache Directives.
Usage:
hdf s cacheadm n -listDirectives [-stats] [-path <path>] [-pool <pool >]
Options:

Table 13: Cache PoolsList Directives Options

Option Description

<path> Lists only the Cache Directives in the specified path. If thereis
a Cache Directive in the <path> that belongs to a Cache Pool for
which you do not have Read access, it will not be listed.

<pool> Lists on the Cache Directives in the specified Cache Pool.

-stats Lists path-based Cache Directive statistics.

Configuring HDFSrack awar eness

The NameNode in an HDFS cluster maintains rack 1Ds of all the DataNodes. The NameNode uses this information
about the distribution of DataNodes among various racks in the cluster to select the closer DataNodes for effective
block placement during read/write operations. This concept of selecting the closer DataNodes based on their location
in the cluster istermed as rack awareness. Rack awareness helps in maintaining fault tolerance in the event of a
failure.

About thistask
Configuring rack awareness on an HDP cluster involves creating a rack topology script, adding the script to core-
site.xml, restarting HDFS, and verifying the rack awareness.

41

Scaling Namespaces and Optimizing Data Storage Optimizing performance

Create arack topology script

HDFS uses topology scripts to determine the rack location of nodes and uses this information to replicate block data
to redundant racks.

Procedure

1. Create an executable topology script and atopology datafile.
Consider the following examples:
Thefollowing is an example topology script named rack-topology.sh.

#!/ bi n/ bash

Adjust/Add the property "net.topol ogy.script.file.nane"
to core-site.xm with the "absolute" path the this

file. ENSURE the file is "executable".

Supply appropriate rack prefix
RACK_PREFI X=def aul t

To test, supply a hostnane as script input:
if [$# -gt 0]; then

CTL_FI LE=${ CTL_FI LE: - "r ack_t opol ogy. dat a"}
HADOOP_CONF=${ HADOOP_CONF: - "/ et ¢/ hadoop/ conf "}
if [! -f ${HADOOP_CONF}/${CTL_FILE}]; then
echo -n "/ $RACK _PREFI X/ rack "
exit O
fi

while [$# -gt 0] ; do

nodeAr g=$1

exec< ${ HADOOP_CONF}/ ${ CTL_FI LE}

resul t=""

while read line ; do

ar=($line)

if ["${ar[0]}" = "$nodeArg"] ; then
result="%${ar[1]}"

fi

done

shift

if [-z "$result"] ; then

echo -n "/ $RACK _PREFI X/ rack "

el se

echo -n "/ $RACK _PREFI X/ rack_$resul t
fi

done

el se
echo -n "/ $RACK _PREFI X/ rack "
fi

Thefollowing is an example topology data file named rack _topology.data.

This file should be:

- Placed in the /etc/hadoop/conf directory

On the Nanenode (and backups |E: HA, Failover, etc)

- On the Job Tracker OR Resource Manager (and any Failover JT's/RMs)
This file should be placed in the /etc/hadoop/conf directory.

HFHEHFEHH
1

42

Scaling Namespaces and Optimizing Data Storage Optimizing performance

Add Hostnanmes to this file. Format <host ip> <rack_ | ocation>
192. 168. 2. 10 01
192. 168. 2. 11 02
192. 168. 2. 12 03
2. Copy the topology script and the data file to the /etc/hadoop/conf directory on all cluster nodes.

3. Run thetopology script to ensure that it returns the correct rack information for each host.

Add thetopology script property to core-site.xmi
Assign the name of the topology script to the net.topol ogy.script.file.name property in core-site.xml.

Procedure
1. Stopthe HDFS cluster.

2. Add thetopology script file to core-site.xml.

In the following example, the value of the property net.topology.script.file.name is the name of the topology script
file

<property>

<name>net . t opol ogy. scri pt.fil e. nane</ nane>

<val ue>/ et ¢/ hadoop/ conf / r ack-t opol ogy. sh</ val ue>
</ property>

By default, the topology script processes up to 100 requests per invocation. Y ou can specify a number other than
the default value with the net.topol ogy.script.number.args property, as shown in the following example:

<property>
<nanme>net . t opol ogy. scri pt. nunber. ar gs</ nane>
<val ue>75</ val ue>

</ property>

Restart HDFS and MapReduce services
After adding the topology script property to core-sitexml, you must restart the HDFS and M apReduce services.

Verify rack awareness
Y ou must perform a series of checksto verify if rack awarenessis activated on the cluster.

Procedure

1. Check the NameNode logs located in /var/log/hadoop/hdfs/ for the addition of nodes.

014-01-13 15:58: 08,495 | NFO org. apache. hadoop. net. Net wor kTopol ogy: Addi ng
a new node: /rackO01/<i paddress>

2. Run the hdfs fsck command to ensure that there are no inconsistencies.
For a cluster with two racks, the fsck command returns a status similar to the following:

Status: HEALTHY Total size: 123456789 B Total dirs: 0O Total files: 1
Total blocks (validated): 1 (avg. block size 123456789 B)

Mninmally replicated blocks: 1 (100.0 % Over-replicated blocks: 0 (0.0 %
Under-replicated blocks: 0 (0.0 %9 Ms-replicated blocks: 0 (0.0 %
Default replication factor: 3 Average block replication: 3.0 Corrupt

bl ocks: 0 Mssing replicas: 0 (0.0 % Nunmber of data-nodes: 40 Nunmber of
racks: 2 FSCK ended at Mon Jan 13 17:10:51 UTC 2014 in 1 milliseconds

43

Scaling Namespaces and Optimizing Data Storage Optimizing performance

3. Run the dfsadmin -report command for areport that includes the rack name next to each DataNode.
The dfsadmin -report command returns a report similar to the following excerpted example:

Configured Capacity: 19010409390080 (17.29 TB) Present Capacity:
18228294160384 (16.58 TB) DFS Renmi ni ng: 5514620928000 (5.02 TB) DFS
Used: 12713673232384 (11.56 TB) DFS Used% 69.75% Under replicated
bl ocks: 181 Bl ocks with corrupt replicas: 0 M ssing blocks: 0
--- Dat anodes avai |l abl e:
5 (5 total, 0 dead) Name: 192.168.90.231: 50010 (h2d1. hdp. | ocal)

Host name: h2dl. hdp. | ocal Rack: /default/rack_ 02 Deconmi ssion Status :
Normal Configured Capacity: 15696052224 (14.62 GB) DFS Used: 314380288
(299.82 MB) Non DFS Used: 3238612992 (3.02 GB) DFS Remmi ning: 12143058944

(11.31 GB) DFS Used% 2.00% DFS Renmi ni ng% 77.36%

Confi gured Cache Capacity: O (0 B) Cache Used: 0 (0 B) Cache Renmining: O
(0 B) Cache Used% 100.00% Cache Rerai ni ng% 0.00% Last contact: Thu Jun
12 11:39:51 EDT 2014

Customizing HDFS

Y ou can use the dfs.user.home.base.dir property to customize the HDFS home directory. In addition, you can
configure propertiesto control the size of the directory that holds the NameNode edits directory.

Customizethe HDFS home directory

By default, the HDFS home directory is set to /user/<user_name>. Use the dfs.user.home.base.dir property to
customize the HDFS home directory.

Procedure

In hdfs-site.xml file, set the value of the dfs.user.home.base.dir property.

<property>

<nane>df s. user. hone. base. di r </ name>

<val ue>/ user </ val ue>

<descri pti on>Base directory of user hone.</description>
</ property>

In the example, <vaue> is the path to the new home directory.

Propertiesto set the size of the NameNode edits directory

Y ou can configure the dfs.namenode.num.checkpoints.retained and dfs.namenode.num.extra.edits.retained properties
to control the size of the directory that holds the NameNode edits directory.

» dfs.namenode.num.checkpoints.retained: The number of image checkpoint files that are retained in storage
directories. All edit logs necessary to recover an up-to-date namespace from the oldest retained checkpoint are
also retained.

» dfs.namenode.num.extra.edits.retained: The number of extratransactions that should be retained beyond what is
minimally necessary for aNameNode restart. This can be useful for audit purposes, or for an HA setup where a
remote Standby Node may have been offline for some time and require alonger backlog of retained editsin order
to start again.

Optimizing NameNode disk space with Hadoop ar chives
Hadoop Archives (HAR) are special format archives that efficiently pack small filesinto HDFS blocks.

The Hadoop Distributed File System (HDFS) is designed to store and process large data sets, but HDFS can be less
efficient when storing alarge number of small files. When there are many small files stored in HDFS, these small

44

Scaling Namespaces and Optimizing Data Storage Optimizing performance

files occupy alarge portion of the namespace. As aresult, disk space is under-utilized because of the namespace
limitation.

Hadoop Archives (HAR) can be used to address the namespace limitations associated with storing many small files.
A Hadoop Archive packs small filesinto HDFS blocks more efficiently, thereby reducing NameNode memory usage
while still allowing transparent access to files. Hadoop Archives are also compatible with MapReduce, alowing
transparent access to the original files by MapReduce jobs.

Overview of Hadoop ar chives

Storing alarge number of small filesin HDFS leads to inefficient utilization of space — the namespace is overutilized
while the disk space might be underutilized. Hadoop Archives (HAR) address this limitation by efficiently packing
small filesinto large files without impacting the file access.

The Hadoop Distributed File System (HDFS) is designed to store and process large (terabytes) data sets. For example,
alarge production cluster may have 14 PB of disk space and store 60 million files.

However, storing alarge number of small filesin HDFSisinefficient. A fileis generally considered to be "small”
when its size is substantially less than the HDFS block size, which is 256 MB by default in HDP. Files and blocks are
name objectsin HDFS, meaning that they occupy namespace (space on the NameNode). The namespace capacity of
the system is therefore limited by the physical memory of the NameNode.

When there are many small files stored in the system, these small files occupy alarge portion of the namespace. As
a consequence, the disk spaceis underutilized because of the namespace limitation. In one real-world example, a
production cluster had 57 million files less than 256 MB in size, with each of these files taking up one block on the
NameNode. These small files used up 95% of the namespace but occupied only 30% of the cluster disk space.

Hadoop Archives (HAR) can be used to address the namespace limitations associated with storing many small files.
HAR packs a number of small filesinto large files so that the original files can be accessed transparently (without
expanding thefiles).

HAR increases the scalability of the system by reducing the namespace usage and decreasing the operation load in the
NameNode. Thisimprovement is orthogonal to memory optimization in the NameNode and distributing namespace
management across multiple NameNodes.

Hadoop Archive is aso compatible with MapReduce — it allows parallel accessto the origina files by MapReduce
jobs.

Hadoop ar chive components

Y ou can use the Hadoop archiving tool to create Hadoop Archives (HAR). The Hadoop Archive isintegrated with
the Hadoop file system interface. Filesin aHAR are exposed transparently to users. File datain aHAR is stored in
multipart files, which are indexed to retain the original separation of data.

Hadoop archiving tool

Hadoop Archives can be created using the Hadoop archiving tool. The archiving tool uses MapReduce to efficiently
create Hadoop Archivesin parallel. The tool can be invoked using the command:

hadoop archive -archi veNane nane -p <parent> <src>* <dest>

A list of filesis generated by traversing the source directories recursively, and then the list is split into map task
inputs. Each map task creates a part file (about 2 GB, configurable) from a subset of the source files and outputs the
metadata. Finally, areduce task collects metadata and generates the index files.

HAR file system

Most archival systems, such astar, aretools for archiving and de-archiving. Generally, they do not fit into the actual

file system layer and hence are not transparent to the application writer in that the archives must be expanded before
use.

45

Scaling Namespaces and Optimizing Data Storage Optimizing performance

The Hadoop Archive isintegrated with the Hadoop file system interface. The HarFileSystem implements the
FileSystem interface and provides access via the har:// scheme. This exposes the archived files and directory tree
structures transparently to users. Filesin aHAR can be accessed directly without expanding them.

For example, if we have the following command to copy an HDFSfile to alocal directory:
hdf s df s —get hdfs://nanenode/foo/file-1 localdir

Suppose a Hadoop Archive bar.har is created from the foo directory. With the HAR, the command to copy the
original file becomes:

hdf s df s —get har://nanmenode/ bar. har/foo/file-1 |ocal dir

Users only need to change the URI paths. Alternatively, users may choose to create a symbolic link (from hdfs://
namenode/foo to har://namenode/bar.har/foo in the example above), and then even the URIs do not need to be
changed. In either case, HarFileSystem will be invoked automatically to provide access to the filesin the HAR.
Because of this transparent layer, HAR is compatible with the Hadoop APIs, MapReduce, the FS shell command-line
interface, and higher-level applications such as Pig, Zebra, Streaming, Pipes, and DistCp.

HAR format data model

The Hadoop Archive data format has the following layout:

foo. har/ _masterindex //stores hashes and of fsets
foo.har/ _index //stores file statuses
foo.har/part-[1..n] //stores actual file data

Thefile datais stored in multipart files, which are indexed in order to retain the original separation of data. Moreover,
the file parts can be accessed in parallel by MapReduce programs. The index files also record the original directory
tree structures and file status.

Create a Hadoop archive
Use the hadoop archive command to invoke the Hadoop archiving tool.

Procedure

Run the hadoop archive command by specifying the archive name to create, the parent directory relative to the
archive location, the source filesto archive, and the destination archive location.

hadoop archive -archi veNane nane -p <parent> <src>* <dest>

The archive name must have a .har extension

Note:
E < Archiving does not delete the source files. If you want to delete the input files after creating an archive to
reduce namespace, you must manually delete the source files.
« Although the hadoop archive command can be run from the host file system, the archivefileis created
in the HDFSfile system from directories that exist in HDFS. If you reference a directory on the host file
system and not HDFS, the system displays the following error:

The resol ved paths set is enpty. Please check whether the srcPaths
exi st, where srcPaths
= [</directory/ pat h>]

46

Scaling Namespaces and Optimizing Data Storage Optimizing performance

Example

Consider the following example of archiving two files:
hadoop archive -archi veNane foo. har -p /user/hadoop dirl dir2 /user/zoo

This example creates an archive using /user/hadoop as the relative archive directory. The directories /user/hadoop/dirl
and /user/hadoop/dir2 will be archived in the /user/zoo/foo.har archive.

List filesin Hadoop ar chives
Use the hdfs dfs -Is command to list files in Hadoop archives.

Procedure

Run the hdfs dfs -Is command by specifying the archive directory location.
To specify the directoriesin an archive directory foo.har located in /usr/zoo, run the following command:

hdfs dfs -1Is har:///user/zoo/foo. har/

Assuming the archive directory foo.har contains two directories dirl and dir2, the command returns the following

har:///user/zoo/foo. har/dirl
har:///user/zoo/foo. har/dir2

E Note:
Consider an archive created using the following command:

hadoop archi ve -archi veNane foo. har -p /user/ hadoop/dirl hadoop/dir2 /
user/ zoo

If you list the files of the archive created in the preceding command, the command returns the following:

har:///user/zoo/ f 0oo. har/ hadoop
har:///user/zoo/ foo. har/ hadoop/ dir1
har:///user/zoo/ f oo. har/ hadoop/ dir 2

Note that the modified parent argument causes the files to be archived relative to /user/.

Format for using Hadoop ar chives with MapReduce

To use Hadoop Archives with MapReduce, you must reference files differently than you would with the default file
system. If you have a Hadoop Archive stored in HDFS in /user/zoo/foo.har, you must specify the input directory as
har:///user/zoo/foo.har to use it as a MapReduce input.

Because Hadoop Archives are exposed as afile system, MapReduce can use al of the logical input filesin Hadoop
Archives asinput.

Detecting slow DataNodes

Slow DataNodes in an HDFS cluster can negatively impact the cluster performance. Therefore, HDFS provides a
mechanism to detect and report slow DataNodes that have a negative impact on the performance of the cluster.

HDFSis designed to detect and recover from complete failure of DataNodes:

* Thereisno single point of failure.
« Automatic NameNode failover takes only afew seconds.

47

Scaling Namespaces and Optimizing Data Storage Optimizing performance

» Because datareplication can be massively parallelized in large clusters, recovery from DataNode loss occurs
within minutes.

* Most jobs are not affected by DataNode failures.
However, partial failures can negatively affect the performance of running DataNodes:

» Slow network connection due to afailing or misconfigured adapter.
» Bad OSor JVM settings that affect service performance.

* Slow hard disk.

» Bad disk controller.

Slow DataNodes can have a significant impact on cluster performance. A slow DataNode may continue sending
heartbeats successfully, and the NameNode will keep redirecting clients to slow DataNodes. HDFS DataNode
monitoring provides detection and reporting of slow DataNodes that negatively affect cluster performance.

Enabledisk 10 statistics

Disk |0 statistics are disabled by default. To enable disk 10 statistics, you must set the file IO sampling percentage to
anon-zero vauein the hdfs-sitexml file.

Procedure

1. Set the dfs.datanode.fileio.profiling.sampling.percentage property to a non-zero value in hdfs-site.xml.

<property>
<nanme>df s. dat anode. fil ei 0. profiling. sanpling.fraction</name>
<val ue>25</val ue>

</ property>

E Note: Sampling disk 10 might have a minor impact on cluster performance.
2. Accessthedisk 10 statistics from the NameNode IM X page at http://<namenode_host>:50070/jmx.

In the following IMX output example, the time unit is milliseconds, and the disk is healthy because the IO
latencies are low:

"name" : "Hadoop: servi ce=Dat aNode, nanme=Dat aNodeVol une-/ dat a/ di sk2/ df s/
data/",

"nodel er Type" : "Dat aNodeVol une-/ dat a/ di sk2/df s/ data/",

"tag. Context" : "dfs",

"tag. Host nane" : "n001. hdfs. exanpl e. conf',

"Tot al Met adat aCper ati ons" : 67,
" Met adat aOper at i onRat eAvgTi ne" : 0. 08955223880597014,

"Witel oRat eNunOps” : 7321,
"W i tel oRat eAvgTi me" : 0.050812730501297636

Enable detection of slow DataNodes

When slow DataNode detection is enabled, DataNodes collect latency statistics on their peers during write pipelines,
and use periodic outlier detection to determine slow peers. The NameNode aggregates reports from all DataNodes and
flags potentially slow nodes. Slow DataNode detection is disabled by default.

Procedure

1. To enable dow DataNode detection, set the value of the dfs.datanode.peer.stats.enabled property to true in hdfs-
sitexml.

48

Scaling Namespaces and Optimizing Data Storage Optimizing performance

<property>
<nanme>df s. dat anode. peer. st at s. enabl ed</ nanme>
<val ue>t rue</ val ue>

</ property>

2. Accessthe ow DataNode statistics either from the NameNode IMX page at http://<namenode_host>:50070/jmx
or from the DataNode JIM X page at http://<datanode_host>:50075/jmx.
In the following IMX output example, the time unit is milliseconds, and the peer DataNodes are healthy because
the latencies are in milliseconds:

"nanme" : "Hadoop: servi ce=Dat aNode, nanme=Dat aNodel nf 0",
"nodel er Type" : "org.apache. hadoop. hdf s. server. dat anode. Dat aNode"
" SendPacket Downst r eamAvgl nfo" : "{
\"[192. 168. 7. 202: 50075] Rol | i ngAvgTi ne\" : 1.4476967370441458,
\"[192. 168. 7. 201: 50075] Rol | i ngAvgTi ne\" : 1.5569170444798432

pr

Allocating DataNode memory as storage (Technical Preview)

HDFS supports efficient writes of large data sets to durable storage, and also provides reliable access to the data. This
works well for batch jobs that write large amounts of persistent data. Emerging classes of applications are driving use
cases for writing smaller amounts of temporary data. Using DataNode memory as storage addresses the use case of
applications that want to write relatively small amounts of intermediate data sets with low latency.

Note: Thisfeatureisatechnical preview and considered under development. Do not use this feature in your
production systems. If you have questions regarding this feature, contact Support by logging a case on our
Hortonworks Support Portal at https://support.hortonworks.com.

Writing block datato memory reduces durability, as data can be lost due to process restart before it is saved to disk.
HDFS attempts to save replica datato disk in atimely manner to reduce the window of possible dataloss.

DataNode memory is referenced using the RAM_DISK storage type and the LAZY _PERSIST storage policy.

HDFS storage types
HDFS storage types can be used to assign data to different types of physical storage media.

The following storage types are available;

« DISK: Disk drive storage (default storage type)

e ARCHIVE: Archiva storage (high storage density, low processing resources)
e SSD: Solid State Drive

« RAM_DISK: DataNode Memory

If no storage typeisassigned, DISK is used as the default storage type.

LAZY PERSIST memory storage policy
Usethe LAZY PERSIST storage policy to store data blocks on the configured DataNode memory.

For LAZY_ PERSIST, thefirst replicais stored on RAM_DISK (DataNode memory), and the remaining replicas are
stored on DISK. The fallback storage for both creation and replication is DISK.

The following table summarizes these replication policies:

Policy ID Policy Name Block Placement (for n Fallback storage for Fallback storage for
replicas) creation replication
15 LAZY_PERSIST RAM_DISK: 1, DISK:n-1 | DISK DISK

49

https://support.hortonworks.com

Scaling Namespaces and Optimizing Data Storage Optimizing performance

Configure DataNode memory as stor age

Configuring memory on a DataNode as storage requires you to shut down the particular DataNode, set RAM_DISK
asthe storage type, set the LAZY _PERSIST storage policy to store data, and then start the DataNode.

Procedure

1. Shut down the DataNode.

2. Userequired mount commands to allocate a certain portion of the DataNode memory as storage.
The following example shows how you can alocate 2GB memory for use by HDFS.

sudo nkdir -p /mmt/hdfsrandi sk
sudo nmount -t tnpfs -0 size=2048m tnpfs /mt/ hdf srandi sk
sudo nkdir -p /usr/lib/hadoop-hdfs

3. Assignthe RAM_DISK storage type to ensure that HDFS can assign data to the DataNode memory configured as
storage.
To specify the DataNode as RAM_DISK storage, insert [RAM_DISK] at the beginning of the local file system
mount path and add it to the dfs.name.dir property in hdfs-default.xml.

The following example shows the updated mount path values for dfs.datanode.data.dir

<property>

<name>df s. dat anode. dat a. di r </ name>

<val ue>file:///grid/3/aal hdfs/data/,[RAM DI SK] fil e:/// mt/hdf srandi sk/ </
val ue>
</ property>

4. Setthe LAZY_PERSIST storage policy to store data on the configured DataNode memory.
The following example shows how you can use the hdfs df sadmin -getStoragepolicy command to configure the
LAZY_PERSIST storage policy:

hdf s df sadni n - get St oragePol i cy /nenoryl LAZY PERSI ST

Note: When you update a storage policy setting on afile or directory, the new policy is not automatically
enforced. Y ou must use the HDFS mover data migration tool to actually move blocks as specified by the
new storage policy.

5. Start the DataNode.

6. Usethe HDFS mover tool to move data blocks according to the specified storage policy.

The HDFS mover data migration tool scans the specified filesin HDFS and verifiesif the block placement
satisfies the storage policy. For the blocks that violate the storage policy, the tool moves the replicas to adifferent
storage typein order to fulfill the storage policy requirements.

I mproving performance with short-circuit local reads

In HDFS, reads normally go through the DataNode. Thus, when a client asks the DataNode to read afile, the
DataNode reads that file off of the disk and sends the data to the client over a TCP socket. " Short-circuit” reads
bypass the DataNode, alowing the client to read the file directly. Thisisonly possible in cases where the client is co-
located with the data. Short-circuit reads provide a substantial performance boost to many applications.

Prerequisitesfor configuring short-ciruit local reads
To configure short-circuit local reads, you must enable libhadoop.so.

See the Native Libraries Guide for details on enabling thislibrary.

50

Scaling Namespaces and Optimizing Data Storage Optimizing performance

Related Information
Native Libraries Guide

Propertiesfor configuring short-circuit local readson HDFS

To configure short-circuit local reads, you must add various properties to the hdfs-site.xml file. Short-circuit local
reads must be configured on both the DataNode and the client.

Property Name Property Value Description

dfs.client.read.shortcircuit true Set this to true to enable short-circuit local
reads.

dfs.domain.socket.path Ivar/lib/hadoop-hdfs/ dn_socket The path to the domain socket. Short-circuit

reads make use of a UNIX domain socket.
Thisisaspecial path in the file system

that allows the client and the DataNodes to
communicate. Y ou will need to set apath to
this socket. The DataNode needs to be able to
create this path. On the other hand, it should
not be possible for any user except the hdfs
user or root to create this path. For this reason,
paths under /var/run or /var/lib are often used.

In the file system that allows the client and the
DataNodes to communicate. Y ou will need to
set a path to this socket. The DataNode needs
to be able to create this path. On the other
hand, it should not be possible for any user
except the hdfs user or root to create this path.
For this reason, paths under /var/run or /var/lib
are often used.

dfs.client.domain.socket.data.traffic fase This property controls whether or not normal
data traffic will be passed through the

UNIX domain socket. This feature has not
been certified with HDP releases, so it is
recommended that you set the value of this
property to false.

Abnormal data traffic will be passed through
the UNIX domain socket.

dfs.client.use.legacy.blockreader.local fase Setting this value to false specifies that

the new version (based on HDFS-347) of
the short-circuit reader is used. This new
new short-circuit reader implementation is
supported and recommended for use with
HDP. Setting this value to true would mean
that the legacy short-circuit reader would be
used.

dfs.datanode.hdfs-bl ocks-metadata.enabled true Boolean which enables back-end DataNode-
side support for the experimental

DistributedFileSystem#getFile
VBlockStoragel ocationsAPI.

dfs.client.file-block-storage-locations.timeout | 60 Timeout (in seconds) for the parallel RPCs
madein

DistributedFileSystem
#getFileBlockStoragel ocations().

This property is deprecated but is still
supported for backward

compatibility

51

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/NativeLibraries.html

Scaling Namespaces and Optimizing Data Storage Optimizing performance

Property Name Property Value Description
dfs.client.file-block-storage- 60000 Timeout (in milliseconds) for the parallel
locations.timeout.millis RPCsmadein

DistributedFileSystem
#getFileBlockStoragelocations().

This property replaces
dfs.client.file-block-storage-locations.timeout,

and offers afiner level of granularity.

dfs.client.read.shortcircuit.skip.checksum fase If this configuration parameter is set, short-
circuit local reads will skip checksums.
Thisisnormally not recommended, but it
may be useful for special setups. Y ou might
consider using thisif you are doing your own
checksumming outside of HDFS.

dfs.client.read.shortcircuit.streams.cache.size | 256 The DFSClient maintains a cache of recently
opened file descriptors. This parameter
controls the size of that cache. Setting this
higher will use more file descriptors, but
potentially provide better performance on
workloads involving many seeks.

dfs.client.read.shortcircuit.streams.cache.expiry J\390000 This controls the minimum amount of time (in
milliseconds) file descriptors need to sit in the
client cache context before they can be closed
for being inactive for too long.

The XML for these entries:

<confi guration>

<property>
<nane>dfs. client.read. shortcircuit</nane>
<val ue>t rue</ val ue>

</ property>

<property>

<nanme>df s. domai n. socket . pat h</ name>

<val ue>/var/ Il i b/ hadoop- hdf s/ dn_socket </ val ue>
</ property>

<pr operty>
<nane>dfs. client.domai n. socket.data.traffic</nane>
<val ue>f al se</ val ue>

</ property>

<property>
<nanme>dfs. client. use. | egacy. bl ockreader. | ocal </ name>
<val ue>f al se</ val ue>

</ property>

<property>
<nane>df s. dat anode. hdf s- bl ocks- net adat a. enabl ed</ nane>
<val ue>t rue</ val ue>

</ property>

<property>
<name>dfs.client.file-bl ock-storage-locations.tineout.nillis</nane>
<val ue>60000</ val ue>

</ property>

52

Scaling Namespaces and Optimizing Data Storage

Using the NFS Gateway for accessing HDFS

<property>
<nane>dfs.client.read
<val ue>f al se</ val ue>
</ property>

<property>
<nane>dfs.client.read
<val ue>256</ val ue>

</ property>

<property>
<nane>dfs.client.read
<val ue>300000</ val ue>
</ property>

</ configuration>

.shortcircuit. skip.checksunx/ nane>

.shortcircuit.streans. cache. si ze</ nane>

.shortcircuit.streans. cache. expiry. ms</ name>

Using the NFS Gateway for accessing HDFS

The NFS Gateway for HDFS allows clients to mount HDFS and interact with it through NFS, asif it were part of
their local file system. The Gateway supports NFSv3.

After mounting HDFS, aclient user

can perform the following tasks:

* Browsethe HDFSfile system through their local file system on NFSv3 client-compatible operating systems.
» Upload and download files between the HDFS file system and their local file system.
« Stream data directly to HDFS through the mount point. File append is supported, but random write is not

supported.

Prerequisitesfor using NFS Gateway

¢ The NFS Gateway machine must be running all components that are necessary for running an HDFS client, such
as aHadoop core JAR fileand aHADOOP_CONF directory.

» The NFS Gateway can be installed on any DataNode, NameNode, or HDP client machine. Start the NFS server on

that machine.

Configurethe NFS Gateway

Y ou must ensure that the proxy user for the NFS Gateway can proxy all the users accessing the NFS mounts. In
addition, you must configure settings specific to the Gateway.

Procedure

1. Ensurethat the proxy user for the NFS Gateway can proxy all the users accessing the NFS mounts.
In non-secure mode, the user running the Gateway is the proxy user, while in secure mode the user in Kerberos

keytab isthe proxy user.
If auser nfsserver isrunning the

Gateway and there are users belonging to groups nfs-usersl and nfs-users2, then

set the following values in core-site.xml on the NameNode.

E Note:
Replace nfsserver with the user account that starts the Gateway in your cluster.

<property>

<nanme>hadoop. pr oxyuser . nf sserver. gr oups</ name>
<val ue>nf s-usersl, nfs-users2</val ue>

53

Scaling Namespaces and Optimizing Data Storage Using the NFS Gateway for accessing HDFS

<descri pti on>
The 'nfsserver' user is allowed to proxy all nenbers of the
"nfs-usersl' and 'nfs-users2' groups. Set this to '*" to allow
nfsserver user to proxy any group
</ descri pti on>
</ property>

<property>
<nanme>hadoop. pr oxyuser. nf sserver. host s</ nane>
<val ue>nfs-client-hostl. conx/val ue>
<descri pti on>
This is the host where the nfs gateway is running. Set this to
"*' to allow requests fromany hosts to be proxied.
</ descri ption>
</ property>

For aKerberized cluster, set the following propertiesin hdfs-sitexml:

<property>
<nane>df s. nf sgat eway. keyt ab. fi | e</ name>
<val ue>/ et ¢/ hadoop/ conf / nf sserver. keyt ab</val ue> <!'-- path to the
nfs gateway keytab -->
</ property>

<property>
<nane>df s. nf sgat eway. ker ber os. pri nci pal </ nane>
<val ue>nf sserver/ HOST@OUR- REALM COW/ val ue>

</ property>

2. Configure settings for the NFS Gateway .

The NFS Gateway uses the same settings that are used by the NameNode and DataNode. Configure various
properties based on your application's requirements:
a) Edit the hdfs-sitexml file on your NFS Gateway machine.

<property>
<name>df s. nanenode. accesst i ne. preci si on</ nane>
<val ue>3600000</ val ue>
<descri pti on>
The access tine for HDFS file is precise up to this val ue.
The default value is 1 hour. Setting a value of 0 disables
access tines for HDFS.
</ descri pti on>
</ property>

Note: If the export is mounted with access time update allowed, ensure that this property is not
disabled in the configuration file. Only the NameNode needs to restart after this property is changed.
If you have disabled access time update by mounting with noatime, you do NOT have to change this
property nor restart your NameNode.

b) Add the value of the dfs.nfs3.dump.dir property in hdfs-sitexml.

<property>
<nanme>df s. nf s3. dunp. di r </ nane>
<val ue>/t np/ . hdf s- nf s</ val ue>
</ property>

Note: The NFS client often reorders writes. Sequential writes can arrive at the NFS Gateway in a
Ij random order. This directory is used to temporarily save out-of-order writes before writing to HDFS.
Ensure that the directory has enough space. For example, if the application uploads 10 files with each

Scaling Namespaces and Optimizing Data Storage Using the NFS Gateway for accessing HDFS

having 100MB, it is recommended for this directory to have 1GB space in case awrite reorder happens
to every file.
€) Update the value of the dfs.nfs.exports.allowed.hosts property in hdfs-site.xml as specified.

<property>
<nanme>dfs. nfs. exports. al | oned. host s</ nane>
<val ue>* rw</val ue>

</ property>

Note: By default, the export can be mounted by any client. Y ou must update this property to control

B access. The value string contains the machine name and access privilege, separated by whitespace
characters. The machine name can be in single host, wildcard, or IPv4 network format. The access
privilege uses rw or ro to specify readwrite or readonly access to exports. If you do not specify an
access privilege, the default machine access to exportsis readonly. Separate machine entries by ;. For
example, 192.168.0.0/22 rw ; host* .example.com ; host1.test.org ro;.

d) Restart the NFS Gateway.
€) Optional: Customize log settings by modifying the log4j.property file.
To change the trace level, add the following:

log4j.logger.org.apache.hadoop.hdfs.nf'ssDEBUG
To view more information about ONCRPC requests, add the following:

log4j.logger.org.apache.hadoop.oncrpc=DEBUG
3. Specify VM heap space (HADOOP_NFS3_OPTS) for the NFS Gateway.

Y ou can increase the VM heap allocation for the NFS Gateway using this option. To set this option, specify the
following in hadoop-env.sh:

export HADOOP_NFS3_OPT S=<memory-setting(s)>
The following example specifies a 2GB process heap (2GB starting size and 2GB maximum):

export HADOOP_NFS3_OPTS="- Xns82048m - Xnx2048n{

4. Toimprove the performance of large file transfers, you can increase the values of the dfs.nfs.rtmax and
dfs.nfs.wtmax properties.

These properties are configuration settings on the NFS Gateway server that change the maximum read and write
reguest size supported by the Gateway. The default value for both settingsis IMB.

Start and stop the NFS Gateway services

Y ou must start the following daemons to run the NFS services on the Gateway: rpchbind (or portmap), mountd,
and nfsd. The NFS Gateway process includes both nfsd and mountd. Although NFS Gateway works with portmap
included with most Linux distributions, you must use the portmap included in the NFS Gateway package on some
Linux systems such as SLES 11 and RHEL 6.2.

Procedure

1. Stop the nfs/rpchind/portmap services provided by the platform.
service nfs stop

service rpcbind stop

2. Start the included portmap package using one of the following commands. hadoop portmap or hadoop-daemon.sh
start portmap.

E Note: You must have root privileges to run these commands.

55

Scaling Namespaces and Optimizing Data Storage Using the NFS Gateway for accessing HDFS

3. Start mountd and nfsd using one of the following commands: hdfs nfs3 or hadoop-daemon.sh start nfs3.
Note: hdfs nfs3 starts the services as a foreground process while hadoop-daemon.sh start nfs3 starts the
services as a background process.
No root privileges are required for this command. However, verify that the user starting the Hadoop cluster and
the user starting the NFS Gateway are the same.

Note: If the hadoop-daemon.sh script starts the NFS Gateway, its log file can be found in the hadoop log
E folder (/var/log/hadoop).

For example, if you launched the NFS Gateway services as the root user, the log file would be found in a
path similar to the following:

Ivar/log/hadoop/root/hadoop-root-nfs3-63ambarihdp21.log
4. Stop the NFS Gateway services.
hadoop-daemon.sh stop nfs3

hadoop-daemon.sh stop portmap

What to do next
Verify the validity of the NFS services

Verify validity of the NFS services

After starting the NFS services on the Gateway, you must verify whether all the services are running. Additionally,
you must ensure that the HDFS namespace is exported and can be mounted.

Procedure

1. Run the rpcinfo command to verify whether al the NFS services are running.
rpcinfo -p $nfs_server_ip

The command returns an output similar to the following:

programvers proto port

100005 1 tcp 4242 nountd
100005 2 udp 4242 nountd
100005 2 tcp 4242 nountd
100000 2 tcp 111 port mapper
100000 2 udp 111 port nmapper
100005 3 udp 4242 nountd
100005 1 udp 4242 nountd
100003 3 tcp 2049 nfs

100005 3 tcp 4242 nountd

2. Verify that the HDFS namespace is exported and can be mounted.
showmount -e $nfs_server_ip

The command returns an exports list similar to the following:

Exportslist on $nfs_server_ip : / (everyone)

Access HDFS from the NFS Gateway

To access HDFS, you must first mount the namespace and then set up the NFS client hosts to interact with HDFS
through the Gateway.

56

Scaling Namespaces and Optimizing Data Storage Using the NFS Gateway for accessing HDFS

Procedure

1. Mount the HDFS namespace.
mount -t nfs -0 vers=3,proto=tcp,nol ock,sync,rsize=1048576,wsi ze=1048576 $server:/ $mount_point

Access HDFS as part of the local file system, except that hard link or symbolic link and random write are not
supported.

E Note: Because NLM is not supported, the mount option nolock is required.

Y ou can use the sync option for improving the performance and reliability when writing large files. If
the sync option is specified, the NFS client flushes write operations to the NFS Gateway before returning
control to the client application. Additionally, the client does not issue reordered writes. This reduces
buffering requirements on the NFS gateway.

2. Set up the NFS client usersto interact with HDFS through the NFS Gateway.

Related Concepts
How NFS Gateway authenticates and maps users

How NFS Gateway authenticates and maps users

The manner in which NFS Gateway authenticates and maps users determines how NFS client users access HDFS
through the NFS Gateway.

NFS Gateway uses AUTH_UNIX-style authentication, which means that the user logged on the client is the same that
NFS passesto HDFS.

For example, suppose that the NFS client has current user as admin. When the user accesses the mounted HDFS
directory, NFS gateway accesses HDFS as the user admin. To access HDFS as hdfs user, you must first switch the
current user to hdfs on the client system before accessing the mounted directory.

For the NFS client users accessing HDFS, the Gateway converts the User Identifier (UID) to a username, which is
used by HDFS to check permissions. Therefore, you must ensure that the user on the NFS client host has the same
name and UID asthat on the NFS Gateway host.

Note: If you use the same user management system such as LDAP/NIS to create and deploy users to the
HDP nodes and to the client host, then the user names and UIDs are usually identical on both the client and
the Gateway.

If the user is created manually on different hosts, you might need to modify the UID, as specified in the following
example, on either the client or the NFS Gateway to make them the same:

usermod -u 123 $myusername

The following diagram illustrates how the UID and name are communicated between the NFS client, NFS gateway,
and NameNode.

; . Lookup UID,
Login user: find Lsar
Joe name Joe
Joe's

UID/GID Joe
- | NN

Using the NFS Gateway with ViewFs

Y ou can use the NFS Gateway to export federated namespaces that are available as ViewFs mounts. Y ou can access
multiple ViewFs mounts simultaneously using asingle NFS Gateway and perform operations on them.

57

Scaling Namespaces and Optimizing Data Storage

Considerationsfor using NFS Gateway with ViewFs

Y ou can use NFS Gateway to export only those ViewFs mounts that have HDFS as the underlying file system.
The ViewFs root cannot be mounted.
Files and directories cannot be renamed across mounts.

Export ViewFs mounts using the NFS Gateway

Y ou can export ViewFs mounts using the NFS Gateway. For every ViewFs mount entry to export, you must specify

an NFS export point and mount it to a corresponding directory path on the NFS Gateway.

Before you begin
The file with the ViewFs mount table entries must already be created.

About thistask

Y ou can export only those ViewFs mounts that have HDFS as the underlying file system.

Procedure

1

Configure the proxy user for the NFS Gateway and the various Gateway settings.

Configure the NFS Gateway

Start the following daemons to run the NFS services on the Gateway: rpcbind (or portmap), mountd, and nfsd.
Start and stop the NFS Gateway services

In the NFS Gateway node, specify an export point corresponding to each ViewFs mount that you want to export.
Consider the following example of a ViewFs mount table entry:

<property>
<name>fs. vi ewf s. mount t abl e. d ust er X. | i nk. / home</ nanme>
<val ue>hdf s: // nnl-cl ust er x. exanpl e. com 8020/ hone</ val ue>
</ property>

Y ou can specify a corresponding NFS export point as follows:

<property>
<nanme>nfs. export. poi nt </ nane>
<val ue>/ hone</ val ue>

</ property>

Verify if the exported namespace can be mounted.

showmount -e $nfs_server_ip

IS Note: The IP address of the NFS Gateway need not be the same as the | P address of the NameNode.
Mount the exported namespace to a corresponding path on the NFS Gateway.
For the export point example in step 3, you can create a mount as follows:

mount -t nfs -0 vers=3, prot o=t cp, nol ock, noacl , sync nfs_server _ip:/hone /
nmount _dir

Related Concepts
Example of ViewFs mount table entries

58

Using the NFS Gateway for accessing HDFS

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.0/data-storage/content/configure_hdfsnfs_gateway.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.0/data-storage/content/start_and_stop_the_nfs_gateway_service.html

Scaling Namespaces and Optimizing Data Storage Data storage metrics

Related Information
HDFS NFS Gateway - Mount the export

Data storage metrics

Use Java Management Extensions (JM X) APIsto collect the metrics exposed by the various HDFS daemons. For the
garbage collection metrics from the NameNode, you can use the Concurrent Mark Sweep (CMS) GC or configure the
Garbage First Garbage Collector (G1GC).

Using IM X for accessing HDFS metrics

Y ou can access HDFS metrics over Java Management Extensions (IM X) through either the web interface of an HDFS
daemon or by directly accessing the IMX remote agent.

Using the HDFS Daemon Web Interface
Y ou can access IM X metrics through the web interface of an HDFS daemon. This is the recommended method.

For example, use the following command format to access the NameNode IMX:
curl -i http://1ocal host: 50070/ nx
Y ou can use the gry parameter to fetch only a particular key:

curl -i http://1ocal host: 50070/) nx?
gr y=Hadoop: ser vi ce=NaneNode, nane=NaneNodel nf o

Directly Accessing the JM X Remote Agent
This method requires that the IMX remote agent is enabled with a VM option when starting HDFS services.

For example, the following JVM options in hadoop-env.sh are used to enable the IMX remote agent for
the NameNode. It listens on port 8004 with SSL disabled. The user name and password are saved in the
mxremote.password file.

export HADOOP_NAMENODE OPTS="-Dcom sun. managenent . j nxrenot e

- Dcom sun. managenent . j nxr enot e. passwor d. fi | e=$HADOOP_CONF_DI R/
j mxr enot e. passwor d

- Dcom sun. managenent . j nxr enot e. ssl =f al se

- Dcom sun. managenent . j nxr enot e. por t =8004 $HADOOP_NAMENODE _OPTS"

See the Oracle Java SE documentation for more information about the related settings.
Y ou can also use the jmxquery tool to retrieve information through JIMX.

Hadoop has abuilt-in IMX query tool, jmxget. For example:

hdfs jmxget -server |ocal host -port 8004 -service NaneNode

IS Note: jmxget requires that authentication be disabled, asit does not accept a user name and password.
Using IMX can be challenging for operations personnel who are not familiar with IMX setup, especially IMX with

SSL and firewall tunnelling. Therefore, we recommend that you collect IMX information through the web interface
of HDFS daemons rather than directly accessing the IMX remote agent.

59

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsNfsGateway.html#Mount_the_export_

Scaling Namespaces and Optimizing Data Storage Data storage metrics

Related Information
JMX Query
Monitoring and Management Using IMX Query

Configurethe G1GC garbage collector (Technical Preview)

The Oracle JDK 7 update 4 introduced the Garbage First Garbage Collector (G1GC). Y ou must follow certain
recommendations when switching from the currently used Concurrent Mark Sweep (CMS) GC to G1GC.

Note: Thisfeatureisatechnical preview and considered under development. Do not use this feature in your
production systems. If you have questions regarding this feature, contact Support by logging a case on our
Hortonworks Support Portal at https://support.hortonworks.com.

Recommended settingsfor G1GC

The recommended settings for configuring Garbage First Garbage Collector (G1GC) include allocating more Java
heap space when compared to the Concurrent Mark Sweep (CMS) GC, and setting specific values for properties such
as MaxGCPauseMillis and Parallel GCThreads.

No significant improvements have been observed in the NameNode startup process when using G1GC instead of
CMS.

The following NameNode settings are recommended for G1GC in alarge cluster:

« Approximately 10% more Java heap space (-XX:Xms and -XX:Xmx) should be allocated to the NameNode, as
compared to CM S setup.

See Command Line Installation Guide for recommendations on setting the CM S heap size.
» For large clusters (>50M files), MaxGCPauseMillis should be set to 4000.
* You should set Parallel GCThreads to 20 (default for a 32-core machine), as opposed to 8 for CMS.
e Other G1GC parameters should be left set to their default values.

We have observed that the G1GC does not comply with the maximum heap size (-XX:XmXx) setting. For Xmx = 110
GB, we observed the following VM statistics:

e For CMS: Maximum heap (VmPeak) = 113 GB.
¢ For G1GC: Maximum heap (VmPeak) = 147 GB.

Related Tasks
Switching from CMSto G1GC

Switching from CM Sto G1GC

To move from Concurrent Mark Sweep (CMS) GC to Garbage First (G1) GC, you must update the
HADOOP_NAMENODE_OPTS settings in hadoop-env.sh.

Procedure

On the Ambari dashboard, select HDFS > Configs > Advanced > Advanced hadoop-env.
Make the following changes to the HADOOP_NAMENODE_OPTS settings:

* Replace -XX:+UseConcMarkSweepGC with -XX:+UseG1GC

* Remove -XX:+UseCM Sl nitiatingOccupancyOnly and -X X:CM Sl nitiatingOccupancyFracti on=#####
* Remove -XX:NewSize=##### and -X X:MaxNewSi ze=##H#

e (Optiona) Add -XX:MaxGCPauseMilli s=##

e (Optiona) Add -XX:InitiatingHeapOccupancy Percent=###H

e (Optional) Add -X X:Parallel GCThreads=####, if not present.

The default value of this parameter is set to the number of logical processors (up to avalue of 8). For more than
eight logical processors, the default valueis set to 5/8th the number of logical processors.

60

https://code.google.com/p/jmxquery/
http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html
https://support.hortonworks.com

Scaling Namespaces and Optimizing Data Storage APIsfor accessing HDFS

Related Concepts
Recommended settings for G1GC

APIsfor accessing HDFS

Use the WebHDFS REST API to access an HDFS cluster from applications external to the cluster. WebHDFS
supports all HDFS user operations including reading files, writing to files, making directories, changing permissions
and renaming. In addition, WebHDFS uses Kerberos and delegation tokens for authenticating users.

Related Information
WebHDFS - HTTP REST Accessto HDFS

Set up WebHDFS on a secure cluster

Setting up WebHDFS on a secure cluster requires you to update certain properties on hdfs-site.xml, create an HTTP
service user principal, create a keytab for the principal, and verify the association of the principal and keytab with the
correct HTTP service.

Procedure
1. Set the value of the dfs.webhdfs.enabled property in hdfs-site.xml to true.

<property>
<nane>df s. webhdf s. enabl ed</ nane>
<val ue>t rue</ val ue>

</ property>

2. Createan HTTP service user principal.

kadm n: addprinc -randkey HTTP/ $<Fully_ Qualifi ed Domai n_Nanme>@
$<Real m Nane>. COM

where:

e Fully_Qualified Domain_Name: Host where the NameNode is deployed.
« Realm_Name: Name of your Kerberos realm.
3. Create akeytab file for the HTTP principal.

kadmi n: xst -norandkey -k /etc/security/spnego.service. keytab HITP/
$<Ful |y _Qualified_Domai n_Nanme>

4. Verify that the keytab file and the principal are associated with the correct service.

klist —k -t /etc/security/spnego. service. keytab

5. Add the dfs.web.authentication.kerberos.principal and dfs.web.authentication.kerberos.keytab properties to hdfs-
sitexml.

<property>

<name>df s. web. aut hent i cati on. ker ber os. pri nci pal </ nane>

<val ue>HTTP/ $<Ful | y_Qual i fi ed_Domai n_Nane>@<Real m Nane>. COW/ val ue>
</ property>
<property>

<nanme>df s. web. aut henti cati on. ker ber os. keyt ab</ nane>

61

https://hortonworks.com/blog/webhdfs-http-rest-access-to-hdfs/

Scaling Namespaces and Optimizing Data Storage APIsfor accessing HDFS

<val ue>/ et c/ security/ spnego. servi ce. keyt ab</ val ue>
</ property>

6. Restart the NameNode and the DataNodes.

62

	Contents
	Introduction
	Overview of Apache HDFS

	Scaling namespaces
	Scaling a cluster using HDFS federation
	Federation terminology
	Benefits of an HDFS Federation
	Configure an HDFS federation
	Format NameNodes
	Add a NameNode to an existing HDFS cluster

	Configure a federation with a cluster upgrade
	Cluster management operations
	Balance data in a federation
	Decommission a DataNode from a federation
	Using cluster web console to monitor a federation

	Using ViewFs to manage multiple namespaces
	Namespace view in a non-federated environment
	Namespace view in a federation
	Pathnames on clusters with federated and non-federated NameNodes
	Considerations for working with ViewFs mount table entries
	Example of ViewFs mount table entries

	Optimizing data storage
	Balancing data across disks of a DataNode
	Plan the data movement across disks
	Parameters to configure the Disk Balancer

	Execute the Disk Balancer plan
	Disk Balancer commands

	Increasing storage capacity with HDFS erasure coding
	Benefits of erasure coding
	How the DataNode recovers failed erasure-coded blocks
	Erasure coding policies
	Limitations of erasure coding
	Effect of erasure coding on existing data

	Considerations for deploying erasure coding
	Erasure coding CLI command
	Erasure coding examples

	Increasing storage capacity with HDFS compression
	Enable GZipCodec as the default compression codec
	Use GZipCodec with a one-time job

	Setting archival storage policies
	HDFS storage types
	HDFS storage policies
	Configure archival storage
	Commands for configuring storage policies
	The HDFS mover command

	Balancing data across an HDFS cluster
	Why HDFS data Becomes unbalanced
	Configurations and CLI options for the HDFS Balancer
	Properties for configuring the Balancer
	Balancer commands
	Recommended configurations for the Balancer

	Cluster balancing algorithm
	Storage group classification
	Storage group pairing
	Block move scheduling
	Block move execution

	Exit statuses for the HDFS Balancer

	Optimizing performance
	Improving performance with centralized cache management
	Benefits of centralized cache management in HDFS
	Use cases for centralized cache management
	Centralized cache management architecture
	Caching terminology
	Properties for configuring centralized caching
	Commands for using cache pools and directives

	Configuring HDFS rack awareness
	Create a rack topology script
	Add the topology script property to core-site.xml
	Restart HDFS and MapReduce services
	Verify rack awareness

	Customizing HDFS
	Customize the HDFS home directory
	Properties to set the size of the NameNode edits directory

	Optimizing NameNode disk space with Hadoop archives
	Overview of Hadoop archives
	Hadoop archive components
	Create a Hadoop archive
	List files in Hadoop archives
	Format for using Hadoop archives with MapReduce

	Detecting slow DataNodes
	Enable disk IO statistics
	Enable detection of slow DataNodes

	Allocating DataNode memory as storage (Technical Preview)
	HDFS storage types
	LAZY_PERSIST memory storage policy
	Configure DataNode memory as storage

	Improving performance with short-circuit local reads
	Prerequisites for configuring short-ciruit local reads
	Properties for configuring short-circuit local reads on HDFS

	Using the NFS Gateway for accessing HDFS
	Configure the NFS Gateway
	Start and stop the NFS Gateway services
	Verify validity of the NFS services

	Access HDFS from the NFS Gateway
	How NFS Gateway authenticates and maps users

	Using the NFS Gateway with ViewFs
	Export ViewFs mounts using the NFS Gateway

	Data storage metrics
	Using JMX for accessing HDFS metrics
	Configure the G1GC garbage collector (Technical Preview)
	Recommended settings for G1GC
	Switching from CMS to G1GC

	APIs for accessing HDFS
	Set up WebHDFS on a secure cluster

