Apache Spark 3

Developing Apache Spark Applications

Date of Publish: 2018-04-01

P

Hortonworks

http://docs.hortonwor ks.com

http://docs.hortonworks.com

Contents

18 oo [ox 1 o o TSR 3
Using the Spark DataFrame APl ...t 3
USING SPArK SQL ..ottt sttt sbe e este e s nne e s e eneee e 5
Access Spark SQL through the Spark Shell...........o e 6
Access Spark SQL through JDBC or ODBC: Prer@qUISITES.........coeiieireriiniiniesie e esesae s see e see e 6
Access Spark SQL through JDBC........coeiiiiiiiiieie ettt st se st st s e et se e s et b e sbesaesbesbeseeseenean 6
Accessing Spark SQL through ODBC.......ccooiiiiiiiie ettt s b b e bt se e e e e e e e e e e neenes 8
Using the Hive Warehouse Connector with Spark........cccoeveviieiieiieevecceeee, 8
Calling Hive User-Defined FUNCLIONS..........ccceiiiiieeiie e 9
USING SPark SErEaMING......cooeeiieeiieiie ettt e reesnee s 10
Building and Running a Secure Spark Streaming JOD...........ccooeeiriiiiiniene e e 11
Running Spark Streaming Jobs on a Kerberos-Enabled CIUSLES...........ooiiiiiiiieere e 13
Sample pom.xml File for Spark Streaming with KafKaw.........ccccoriiieiiii e 13
HBase Data on Spark with CONNECLOrS.........cccovviieerereieesie e 16
SEECHING 8 CONMECTON.......cteiiiteeeiee ettt ettt ettt ettt b et bt b et b e se ke st b e s e b e s e e bt s b e bt s bt s b et b et st ee 16
Using the Connector with APache PROENIX..........coiiiiiriiinee s 17
Accessing HDFS Files from SparkK.......cccceeoeiiie et 17
Accessing ORC Data in Hive TabIes.........ccoooeiiiiieenieeeese e 18
ACCESS ORC FIlES FIOM SPAIK.....ceeieiieeee ettt b e bbb e e e e e e 18
Predicate PUSh-DOWN OPtIMIZAION. ..ottt e e e et be e s besbesbesaesbesbesee s eneenes 19
Load ORC Data into DataFrames Using Predicate PUSN-DOWN............ccouiiiiiiiereereeeeeeeesiese e 20
Optimize Queries Using Partition PrUNiNg............ooeooeeireeeene st sre s s sbe e e 20
Enable Vectorized QUENY EXECULION.........ciiiiiireriiriie sttt ettt st b e st s ee e b e e et e e ebesaesaesbeneas 21
REA0 HIVE ORC TaIES.....c.eiiiiteiie ettt bbbt sttt b bbb bt et et be e et 21
AAAItIONE] RESDUITES........coteiiiteiiiteietere ettt ettt b et b et b e e bt e b e b e e bbbt bt r e b 21
Using Custom Libraries with Spark.......cccccceeveieiiiciee e 22

Using Spark from R: SParkR......cccoociiiiiiiiece s 22

Apache Spark Introduction

| ntroduction

Apache Spark enables you to quickly develop applications and process jobs.

Apache Spark is designed for fast application development and processing. Spark Coreis the underlying execution
engine; other services, such as Spark SQL, MLIib, and Spark Streaming, are built on top of the Spark Core.

Depending on your use case, you can extend your use of Spark into several domains, including the following
described in this chapter:

e Spark DataFrames

» Spark SQL

« Cdling Hive user-defined functions from Spark SQL

e Spark Streaming

» Accessing HBase tables, HDFSfiles, and ORC data (Hive)
« Using custom libraries

For more information about using Livy to submit Spark jobs, see " Submitting Spark Applications Through Livy" in
this guide.

Related Information

Apache Spark Quick Start

Apache Spark Overview

Apache Spark Programming Guide

Using the Spark DataFrame API

A DataFrameis adistributed collection of data organized into named columns. It is conceptually equivalent to atable
in arelationa database or adataframein R or in the Python pandas library. Y ou can construct DataFrames from a
wide array of sources, including structured data files, Apache Hive tables, and existing Spark resilient distributed
datasets (RDD). The Spark DataFrame API is availablein Scala, Java, Python, and R.

This section provides examples of DataFrame APl use.
To list JSON file contents as a DataFrame:
1. Asuser spark, upload the people.txt and people.json sample files to the Hadoop Distributed File System (HDFS):

cd /usr/ hdp/current/spark-client

su spark

hdf s dfs -copyFroniocal exanpl es/src/ nmain/resources/people.txt people.txt
hdf s dfs -copyFroniocal exanpl es/src/ nmai n/resources/ peopl e.json
peopl e. j son

2. Launch the Spark shell:

cd /usr/ hdp/current/spark-client

su spark

. I bi n/ spark-shell --numexecutors 1 --executor-nenory 512m --naster yarn-
client

3. At the Spark shell, type the following:

scal a> val df = sql Context.read.format("json").|oad("people.json")

http://spark.apache.org/docs/2.0.0/quick-start.html
http://spark.apache.org/docs/2.0.1/
http://spark.apache.org/docs/2.0.0/programming-guide.html

Apache Spark

Using the Spark DataFrame API

4. Using df.show, display the contents of the DataFrame:

scal a> df . show
17/ 03/ 12 11:24:10 | NFO YarnSchedul er: Renbved TaskSet 2.0, whose tasks
have all conpl eted, from pool

nul I'	M chael
30	Andy
19	Justin

The following examples use Scala to access DataFrame df defined in the previous subsection:

/1 Inmport the DataFrane functions AP
scal a> i nport org. apache. spark.sql.functions. _

/1 Select all rows, but increnent age by 1
scal a> df . sel ect (df ("name"), df("age") + 1).show()

/1 Sel ect people older than 21
scala> df . filter(df ("age") > 21).show)

/1 Count people by age
scal a> df. groupBy("age").count().show)

The following example uses the DataFrame API to specify a schemafor people.txt, and then retrieves names from a
temporary table associated with the schema:

i nport org.apache. spark.sql._

val sql Context = new org. apache. spark. sql . SQ_.Cont ext (sc)
val people = sc.textFile("people.txt")
val schemaString = "nane age"

i mport org.apache. spark.sql.types. {Struct Type, StructFi el d, Stri ngType}

val schema = Struct Type(schemaString.split(" ").map(fiel dName =>
Struct Fi el d(fiel dNane, StringType, true)))

val rowRDD = people.map(_.split(",")).map(p => Row(p(0), p(1).trim)

val peopl eDat aFrame = sql Cont ext . creat eDat aFr ane(r owRDD, schena)

peopl eDat aFr ane. r egi st er TenpTabl e(" peopl e")
val results = sql Context.sql ("SELECT nane FROM peopl e")

results. map(t => "Nane: " + t(0)).collect().foreach(println)
This produces output similar to the following:

17/ 03/ 12 14:36:49 | NFO cl uster. YarnSchedul er: Renoved TaskSet 13.0, whose
tasks have all conpl eted, from pool
17/ 03/ 12 14:36:49 | NFO schedul er. DAGSchedul er: Result Stage 13 (col | ect
at :33) finished in 0.129 s
17/ 03/ 12 14:36:49 | NFO schedul er. DAGSchedul er: Job 10 fi ni shed: coll ect
at :33, took 0.162827 s
Nanme: M chael
Name: Andy
Nanme: Justin

Apache Spark Using Spark SQL

Using Spark SQL

This section provides information about using Spark SQL.

Using SQL Context, Apache Spark SQL can read data directly from the file system. Thisis useful when the data you
aretrying to analyze does not reside in Apache Hive (for example, JSON files stored in HDFS).

Using HiveContext, Spark SQL can also read data by interacting with the Hive MetaStore. If you already use Hive,
you should use HiveContext; it supports all Hive data formats and user-defined functions (UDFs), and it enables you
to have full access to the Hive parser. HiveContext extends SQL Context, so HiveContext supports all SQL Context
functionality.

There are two ways to interact with Spark SQL:

* Interactive access using the Spark shell (see"Accessing Spark SQL through the Spark Shell” in this guide).
» From an application, operating through one of the following two APIs and the Spark Thrift server:

» JDBC, using your own Java code or the Beeline JDBC client
e ODBC, through the Simba ODBC driver

For more information about JDBC and ODBC access, see "Accessing Spark SQL through JDBC: Prerequisites’
and "Accessing Spark SQL through JDBC and ODBC" in this guide.

The following diagram illustrates the access process, depending on whether you are using the Spark shell or business
intelligence (BI) application:

The following diagram illustrates the access process, depending on whether you are using the Spark shell or business
intelligence (BI) application:

Bl Application
7o -
JDBC / ODBC
Spark shell T2
SQLC,D..MM HNECT e Spark Thrift Server
@ ()
@ @ Hive Metastore @
HDFS

The following subsections describe how to access Spark SQL through the Spark shell, and through JDBC and ODBC.

Related I nformation
Beeline Command Line Shell

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-Beeline%E2%80%93CommandLineShell

Apache Spark Using Spark SQL

Access Spark SQL through the Spark shell
Use the following steps to acess Spark SQL using the Spark shell.
The following sample command launches the Spark shell onaYARN cluster:
Jbin/spark-shell --num-executors 1 --executor-memory 512m --master yarn-client

To read data directly from the file system, construct a SQL Context. For an exampl e that uses SQL Context and the
Spark DataFrame API to access a JSON file, see "Using the Spark DataFrame API™ in this guide.

To read data by interacting with the Hive Metastore, construct a HiveContext instance (HiveContext extends
SQL Context). For an example of the use of HiveContext (instantiated as val sglContext), see "Accessing ORC Files
from Spark™ in this guide.

Access Spark SQL through JDBC or ODBC: prerequisites

This section describes prerequisites for accessing Spark SQL through JDBC or ODBC.

Using the Spark Thrift server, you can remotely access Spark SQL over JDBC (using the JDBC Beeline client) or
ODBC (using the Simbadriver).

The following prerequisites must be met before accessing Spark SQL through JDBC or ODBC:

» The Spark Thrift server must be deployed on the cluster. See "Installing and Configuring Spark Over Ambari” in
this guide for more information).

» Ensurethat SPARK_HOME is defined as your Spark directory:
export SPARK_HOM E=/usr/hdp/current/spark-client
Before accessing Spark SQL through JDBC or ODBC, note the following caveats:

» The Spark Thrift server worksin YARN client mode only.

* ODBC and JDBC client configurations must match Spark Thrift server configuration parameters. For example, if
the Thrift server is configured to listen in binary mode, the client should send binary requests and use HTTP mode
when the Thrift server is configured over HTTP.

» All client requests coming to the Spark Thrift server share a SparkContext.
Additiona Spark Thrift Server Commands
To list available Thrift server options, run ./sbin/start-thriftserver.sh --help.

To manually stop the Spark Thrift server, run the following commands:

su spark
./Isbin/stop-thriftserver.sh

Related Information
Beeline Command Line Shell

Access Spark SQL through JDBC
Use the following steps to access Spark SQL through JDBC.

To access Spark SQL through JDBC, you need a JDBC URL connection string to supply connection information to
the JDBC data source. Connection strings for the Spark SQL JDBC driver have the following format:

jdbc:hive2://<host>:<port>/<dbName>;<sessionConfs>?<hiveConfs>#<hiveVars>

JDBC Parameter Description

host The node hosting the Thrift server

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-Beeline%E2%80%93CommandLineShell

Apache Spark Using Spark SQL

JDBC Parameter Description

port The port number on which the Thrift server listens

dbName The name of the Hive database to run the query against

sessionConfs Optional configuration parameters for the JDBC or ODBC driver in the

following format: <keyl>=<valuel>;<key2>=<key2>...;

hiveConfs Optional configuration parameters for Hive on the server in the
following format: <keyl>=<valuel>;<key2>=<key2>; ...

These settings last for the duration of the user session.

hiveVars Optional configuration parameters for Hive variables in the following
format: <keyl>=<valuel>;<key2>=<key2>; ...

These settings persist for the duration of the user session.

Note:

E The Spark Thrift server isavariant of HiveServer2, so you can use many of the same settings. For more
information about JDBC connection strings, including transport and security settings, see "Hive JDBC and
ODBC Drivers' in the HDP Data Access guide.

The following connection string accesses Spark SQL through JDBC on a K erberos-enabled cluster:

beel i ne> ! connect jdbc: hive2://1ocal host: 10002/
defaul t; httpPat h=/; pri nci pal =hi ve/ hdp-t eam exanpl e. com@&XAMPLE. COM

The following connection string accesses Spark SQL through JDBC over HTTP transport on a Kerberos-enabled
cluster:

beel i ne> ! connect jdbc: hive2://1ocal host: 10002/
def aul t; transport Mode=htt p; htt pPat h=/; pri nci pal =hi ve/ hdp-
t eam exanpl e. com@XAMPLE. COM

To access Spark SQL, complete the following steps:
1. Connect to the Thrift server over the Beeline JDBC client.
a. From the SPARK_HOME directory, launch Beeline:

su spark
./ bi n/ beel i ne

b. At the Beeline prompt, connect to the Spark SQL Thrift server with the JDBC connection string:
beel i ne> ! connect jdbc: hive2://Iocal host: 10015

The host port must match the host port on which the Spark Thrift server is running.

Y ou should see output similar to the following:

beel i ne> ! connect jdbc: hive2://Ilocal host: 10015
Connecting to jdbc: hive2://1ocal host: 10015

Enter usernane for jdbc: hive2://I1ocal host: 10015:
Enter password for jdbc: hive2://1ocal host: 10015:

Connected to: Spark SQ (version 2.0.0)

Driver: Spark Project Core (version 2.0.0.2.4.0.0-169)
Transaction isolation: TRANSACTI ON REPEATABLE READ

0: jdbc: hive2://1ocal host:10015>

2. When connected, issue a Spark SQL statement.

Apache Spark Using the Hive Warehouse Connector with Spark

The following example executes a SHOW TABLES query:

0: jdbc: hive2://1ocal host: 10015> show t abl es;
feccoocoocoon feccoococcooooo +- -+

sanple_07	false
sanple_ 08	false
testtable	false

3 rows sel ected (2.399 seconds)
0: jdbc: hive2://1ocal host:10015>

Accessing Spark SQL through ODBC
Use the following steps to access Spark SQL through ODBC.

If you want to access Spark SQL through ODBC, first download the ODBC Spark driver for the operating system you
want to use for the ODBC client. After downloading the driver, refer to the Hortonworks ODBC Driver with SQL
Connector for Apache Spark User Guide for installation and configuration instructions.

Drivers and associated documentation are available in the "Hortonworks Data Platform Add-Ons" section of the
Hortonworks Downloads page under "Hortonworks ODBC Driver for SparkSQL." If the latest version of HDPis
newer than your version, check the Hortonworks Data Platform Archive area of the add-ons section for the version of
the driver that corresponds to your version of HDP.

Related Information
Hortonworks Downloads

Using the Hive War ehouse Connector with Spark

This section provides information about using the Hive Warehouse Connector with Apache Spark.

Significant improvements were introduced for Hive in HDP-3.0, including performance and security improvements,
aswell as ACID compliance. Spark cannot read from or write to ACID tables, so Hive catalogs and the Hive
Warehouse Connector (HWC) have been introduced in order to accommodate these improvements.

https://hortonworks.com/downloads/

Apache Spark Calling Hive User-Defined Functions

. ___tlw_c_____',{' "
| Executors | LLAP Daemons
HWC ’
i — —— — o o o ey
_ Driver HiveServer+Tez
SpﬂfK Spark | Hive ¢

. Meta | | Meta

MetaStore

Updates for HDP-3.0:

« Hiveusesthe"hive" catalog, and Spark usesthe "spark" catalog. No extra configuration steps are required
—these catalogs are created automatically when you install or upgrade to HDP-3.0 (in Ambari the Spark
metastore.catal og.default property is set to spark in "Advanced spark2-hive-site-override™).

e You can use the Hive Warehouse Connector to read and write Spark DataFrames and Streaming DataFrames to
and from Apache Hive using low-latency, analytical processing (LLAP). Apache Ranger and the Hive Warehouse
Connector now provide fine-grained row and column access control to Spark data stored in Hive.

Related Information
Hive Warehouse Connector for accessing Apache Spark data
Hive Schema Tool

Calling Hive User-Defined Functions

Use the following stepsto call Hive user-defined functions.

About thistask
You can cdl built-in Hive UDFs, UDAFs, and UDTFs and custom UDFs from Spark SQL applicationsif the
functions are available in the standard Hive .jar file. When using Hive UDFs, use HiveContext (not SQL Context).

Using Built-in UDFs

The following interactive example reads and writes to HDFS under Hive directories, using hiveContext and the
built-in collect_list(col) UDF. The collect_list(col) UDF returns alist of objects with duplicates. In a production
environment, this type of operation runs under an account with appropriate HDFS permissions; the following example
uses hdfs user.

1. Launch the Spark Shell onaYARN cluster:

su hdfs

cd $SPARK_HOVE

. I bi n/ spark-shell --numexecutors 2 --executor-nenory 512m --nmaster yarn-
client

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.0/integrating-hive/content/hive_hivewarehouseconnector_for_handling_apache_spark_data.html
https://cwiki.apache.org/confluence/display/Hive/Hive+Schema+Tool

Apache Spark

Using Spark Streaming

2. Atthe Scala REPL prompt, construct a HiveContext instance:

val hi veContext = new org. apache. spark. sql . hi ve. H veCont ext (sc)

3. Invokethe Hive collect_list UDF:

scal a> hi veContext.sql ("from Test Tabl e SELECT key, collect I|ist(val ue)
group by key order by key").collect.foreach(println)

Using Custom UDFs
Y ou can register custom functionsin Python, Java, or Scala, and use them within SQL statements.

When using a custom UDF, ensure that the .jar file for your UDF isincluded with your application, or use the --jars
command-line option to specify the file.

The following example uses a custom Hive UDF. This example uses the more limited SQL Context, instead of
HiveContext.

1. Launch spark-shell with hive-udf.jar as its parameter:

./ bin/spark-shell --jars <path-to-your-hive-udf>.jar
2. From spark-shell, define a function:

scal a> sql Cont ext . sql (create tenporary function bal ance as
' or g. package. hi veudf . Bal anceFr onRechar gesAndOrders' """);

3. From spark-shell, invoke your UDF:

scal a> sqgl Cont ext . sql (
create table recharges_w th bal ance _array as
sel ect
reseller_id,
phone_nunber,
phone_credit_id,
dat e_rechar ge,
phone_credit_val ue,
bal ance(orders, 'date order', 'order_value', reseller_id, date recharge,
phone_credit_val ue) as bal ance
from orders

")

Using Spark Streaming

This section provides information on using Spark streaming.

Before you begin
Before running a Spark Streaming application, Spark and Kafka must be deployed on the cluster.

Unless you are running ajob that is part of the Spark examples package installed by Hortonworks Data Platform
(HDP), you must add or retrieve the HDP spark-streaming-kafka .jar file and associated .jar files before running your
Spark job.

About thistask

Spark Streaming is an extension of the core spark package. Using Spark Streaming, your applications can ingest
data from sources such as Apache Kafka and Apache Flume; process the data using complex algorithms expressed

10

Apache Spark Using Spark Streaming

with high-level functions like map, reduce, join, and window; and send results to file systems, databases, and live
dashboards.

Spark Streaming receives live input data streams and divides the data into batches, which are then processed by the
Spark engine to generate the final stream of results in batches:

input data batches of batches of
slream Spark input data Spa rk processed data

Streaming Engine Il

See the Apache Spark Streaming Programming Guide for conceptual information; programming examplesin Scala,
Java, and Python; and performance tuning recommendations.

Apache Spark has built-in support for the Apache Kafka 08 API. If you want to access a Kafka 0.10 cluster

using new Kafka 0.10 APIs (such as wire encryption support) from Spark streaming jobs, the spark-kafka-0-10-
connector package supports a Kafka 0.10 connector for Spark streaming. See the package readme file for additional
documentation.

The remainder of this subsection describes general steps for developers using Spark Streaming with Kafka on a
Kerberos-enabled cluster; it includes a sample pom.xml file for Spark Streaming applications with Kafka. For
additional examples, see the Apache GitHub example repositories for Scala, Java, and Python.

f Important:

Dynamic Resource Allocation does not work with Spark Streaming.

Related Information

Apache Streaming Programming Guide
spark-kafka-0-10-connector

Apache GitHub Scala Streaming Examples
Apache GitHub Java Streaming Examples
Apache GitHub Python Streaming Examples

Building and Running a Secure Spark Streaming Job
Use the following steps to build and run a secure Spark streaming job.

Depending on your compilation and build processes, one or more of the following tasks might be required before
running a Spark Streaming job:

« |If you are using maven as a compile tool:

1. Add the Hortonworks repository to your pom.xml file:

<r eposi tory>

<i d>hort onwor ks</ i d>

<name>hort onwor ks r epo</ nanme>

<url >http://repo. hortonworks. conf content/repositories/rel eases/ </
url >
</repository>

2. Specify the Hortonworks version number for Spark streaming Kafka and streaming dependencies to your
pom.xml file:

<dependency>
<gr oupl d>or g. apache. spar k</ gr oupl d>

11

https://spark.apache.org/docs/2.0.0/streaming-programming-guide.html
https://github.com/hortonworks-spark/skc
https://github.com/apache/spark/tree/master/examples/src/main/scala/org/apache/spark/examples/streaming
https://github.com/apache/spark/tree/master/examples/src/main/java/org/apache/spark/examples/streaming
https://github.com/apache/spark/tree/master/examples/src/main/python/streaming

Apache Spark Using Spark Streaming

<artifactl|d>spark-streani ng-kafka_2.10</artifactld>
<versi on>2. 0. 0. 2. 4. 2. 0- 90</ ver si on>
</ dependency>

<dependency>
<gr oupl d>or g. apache. spar k</ gr oupl d>
<artifactld>spark-streaning_2.10</artifactld>
<versi on>2.0. 0. 2. 4. 2. 0-90</ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

Note that the correct version number includes the Spark version and the HDP version.

3. (Optional) If you prefer to pack an uber .jar rather than use the default ("provided"), add the maven-shade-
plugin to your pom.xml file:

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>naven-shade- pl ugi n</artifactl d>
<ver si on>2. 3</ver si on>
<executi ons>
<executi on>
<phase>package</ phase>
<goal s>
<goal >shade</ goal >
</ goal s>
</ executi on>
</ executi ons>
<confi gurati on>
<filters>
<filter>
<artifact>*:*</artifact>
<excl udes>
<excl ude>META- | NF/ *. SF</ excl ude>
<excl ude>META- | NF/ *. DSA</ excl ude>
<excl ude>META- | NF/ *. RSA</ excl ude>
</ excl udes>
</filter>
</filters>
<f i nal Name>uber - ${proj ect.artifactld}-S${project.version}</
fi nal Name>
</ configuration>
</ pl ugi n>

 Instructions for submitting your job depend on whether you used an uber .jar file or not:

« |f you kept the default .jar scope and you can access an external network, use --packages to download
dependenciesin the runtime library:

spark-submt --master yarn-client \

--num executors 1 \

- - packages org. apache. spar k: spar k- st r eani ng-
kafka 2.10:2.0.0.2.4.2.0-90 \

--repositories http://repo. hortonworks. conf content/repositories/
rel eases/ \

--cl ass <user-nmain-class> \

<user-application.jar>\

<user arg lists>

The artifact and repository locations should be the same as specified in your pom.xml file.

12

Apache Spark Using Spark Streaming

« |If you packed the .jar fileinto an uber .jar, submit the .jar file in the same way as you would aregular Spark
application:

spark-submit --master yarn-client \
--num executors 1 \
--class <user-nmain-class> \
<user - uber-application.jar> \
<user arg lists>

For a sample pom.xml file, see " Sample pom.xml file for Spark Streaming with Kafka" in this guide.

Running Spark Streaming Jobs on a Kerberos-Enabled Cluster
Use the following steps to run a Spark Streaming job on a Kerberos-enabled cluster.
1. Select or create a user account to be used as principal.

This should not be the kafka or spark service account.
2. Generate a keytab for the user.
Create a Java Authentication and Authorization Service (JAAS) login configuration file: for example, key.conf.
4. Add configuration settings that specify the user keytab.

w

The keytab and configuration files are distributed using Y ARN local resources. Because they reside in the current
directory of the Spark YARN container, you should specify the location as ./v.keytab.

The following example specifies keytab location ./v.keytab for principa vagrant@example.com:

Kaf kad i ent {
com sun. security. aut h. nodul e. Kr b5Logi nMbdul e requi red
useKeyTab=t r ue
keyTab="./v. keyt ab"
st or eKey=t rue
useTi cket Cache=f al se
servi ceNane="kaf ka"
pri nci pal ="vagr ant @XAMPLE. COM';
b

5. Inyour spark-submit command, pass the JAAS configuration file and keytab aslocal resourcefiles, using the
--files option, and specify the JAAS configuration file options to the VM options specified for the driver and
executor:

spark-subnmit \
--files key.conf#key. conf, v. keyt ab#v. keytab \
--driver-java-options "-Djava. security.auth.login.config=./key.conf" \
--conf "spark. executor. extraJdavaOpti ons=-

D ava. security. auth. | ogin. config=./key.conf" \

6. Passany relevant Kafka security optionsto your streaming application.
For example, the KafkaWordCount example accepts PLAINTEXTSASL asthe last option in the command line:

Kaf kawbr dCount /vagr ant/ spar k- exanpl es. jar c6402: 2181 abc ts 1
PLAI NTEXTSASL

Sample pom.xml Filefor Spark Streaming with Kafka

<?xm version="1.0" encodi ng="UTF-8"?>

13

Apache Spark Using Spark Streaming

<project xm ns="http:// maven. apache. org/ POV 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="htt p:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>t est </ gr oupl d>
<artifactl|d>spark-kaf ka</artifactld>
<versi on>1. 0- SNAPSHOT</ ver si on>

<repositories>
<r eposi tory>
<i d>hor t onwor ks</i d>
<name>hor t onwor ks r epo</ nanme>
<url >http://repo. hort onwor ks. conf cont ent/repositories/rel eases/
<furl>
</repository>
</repositories>

<dependenci es>
<dependency>
<gr oupl d>or g. apache. spar k</ gr oupl d>
<artifactld>spark-stream ng-kaf ka_2. 10</artifactld>
<versi on>2.0.0. 2. 4. 2. 0-90</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. apache. spar k</ gr oupl d>
<artifactld>spark-stream ng_2.10</artifactld>
<versi on>2.0.0. 2. 4. 2. 0-90</ ver si on>
<scope>pr ovi ded</ scope>
</ dependency>
</ dependenci es>
<bui | d>
<def aul t Goal >package</ def aul t Goal >
<r esour ces>
<r esour ce>
<di rect ory>src/ mai n/ resour ces</di rectory>
<filtering>true</filtering>
</ resource>
<r esour ce>
<di rectory>src/test/resources</directory>
<filtering>true</filtering>
</resource>
</ resources>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-resources-plugin</artifactld>
<confi guration>
<encodi ng>UTF- 8</ encodi ng>
</ configuration>
<executions>
<executi on>
<goal s>
<goal >copy-resour ces</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>
<pl ugi n>
<gr oupl d>net . al chi nB1. maven</ gr oupl d>
<artifactld>scal a- maven- pl ugi n</artifactl d>
<ver si on>3. 2. 0</ ver si on>
<confi guration>

14

Apache Spark

Using Spark Streaming

<r econpi | eMbde>i ncr enent al </ r econpi | eMbde>
<ar gs>
<arg>-target:jvm 1. 7</arg>
</ args>
<j avacAr gs>
<j avacAr g>- sour ce</j avacAr g>
<j avacArg>1. 7</j avacAr g>
<j avacAr g>-t ar get </ j avacAr g>
<j avacArg>1. 7</j avacAr g>
</javacArgs>
</ configuration>
<executi ons>
<executi on>
<i d>scal a- conpi | e</i d>
<phase>pr ocess-resour ces</ phase>
<goal s>
<goal >conpi | e</ goal >
</ goal s>
</ executi on>
<executi on>
<i d>scal a-test-conpil e</id>
<phase>process-test-resour ces</ phase>
<goal s>
<goal >t est Conpi | e</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>
<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifact!|d>maven-conpil er-plugi n</artifactld>
<confi guration>
<sour ce>1. 7</ sour ce>
<target>1.7</target>
</ configuration>

<executi ons>
<executi on>
<phase>conpi | e</ phase>
<goal s>
<goal >conpi | e</ goal >
</ goal s>
</ execution>
</ executi ons>
</ pl ugi n>

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-shade- pl ugi n</artifactl d>
<ver si on>2. 3</ver si on>
<executions>
<executi on>
<phase>package</ phase>
<goal s>
<goal >shade</ goal >
</ goal s>
</ executi on>
</ executions>
<confi guration>
<filters>
<filter>
<artifact>*:*</artifact>
<excl udes>

15

Apache Spark

HBase Data on Spark with Connectors

<excl ude>META- | NF/ *. SF</ excl ude>
<excl ude>META- | NF/ * . DSA</ excl ude>
<excl ude>META- | NF/ * . RSA</ excl ude>
</ excl udes>
</filter>
</[filters>
<fi nal Name>uber-${project.artifactld}-
${ proj ect . versi on} </ fi nal Nane>
</ configuration>
</ pl ugi n>

</ pl ugi ns>

</ buil d>
</ proj ect >

HBase Data on Spark with Connectors

This section provides information on streaming HBase data into Spark using connectors.

Software connectors are architectural elementsin the cluster that facilitate interaction between different Hadoop
components. For real-time and near-real-time data analytics, there are connectors that bridge the gap between the
HBase key-value store and complex relational SQL queries that Spark supports. Developers can enrich applications
and interactive tools with connectors because connectors allow operations such as complex SQL queries on top of an
HBase table inside Spark and table JOINs against data frames.

f Important:
The HDP bundle includes two different connectors that extract datasets out of HBase and streams them into
Spark:
¢ Hortonworks Spark-HBase Connector

* RDD-Based Spark-HBase Connector: a connector from Apache HBase that uses resilient distributed
datasets (RDDs)

Selecting a Connector

Use the following information to select an HBase connector for Spark.

The two connectors are designed to meet the needs of different workloads. In general, use the Hortonworks Spark-
HBase Connector for SparkSQL, DataFrame, and other fixed schema workloads. Use the RDD-Based Spark-HBase
Connector for RDDs and other flexible schema workloads.

Hortonworks Spark-HBase Connector

When using the connector developed by Hortonworks, the underlying context is data frame, with support for

optimizations such as partition pruning, predicate pushdowns, and scanning. The connector is highly optimized to
push down filtersinto the HBase level, speeding up workload. The tradeoff is limited flexibility because you must
specify your schema upfront. The connector leverages the standard Spark DataSource API for query optimization.

The connector is open-sourced for the community. The Hortonworks Spark-HBase Connectorlibrary is available as
adownloadable Spark package at https://github.com/hortonworks-spark/shc. The repository readme file contains
information about how to use the package with Spark applications.

For more information about the connector, see A Year in Review blog.
RDD-Based Spark-HBase Connector

16

https://github.com/hortonworks-spark/shc
https://hortonworks.com/blog/spark-hbase-connector-a-year-in-review/

Apache Spark

Accessing HDFS Files from Spark

The RDD-based connector is developed by the Apache community. The connector is designed with full flexibility
in mind: you can define schema on read and therefore it is suitable for workloads where schema is undefined at
ingestion time. However, the architecture has some tradeoffs when it comes to performance.

Refer to the following table for other factors that might affect your choice of connector, source repos, and code

examples.

Table 8.1. Comparison of the Spark-HBase Connectors

Hortonwor ks Spar k-HBase Connector
Connector

RDD-Based Spark-HBase Connector

Source

Hortonworks

Apache HBase community

Apache Open Source?

Yes

Yes

Reguires a Schema?

Yes:. Fixed schema

No: Flexible schema

Suitable Data for Connector SparkSQL or DataFrame RDD

Main Repo shc git repo Apache hbase-spark git repo
Sample Code for Java Not available Apache hbase.git repo
Sample Code for Scala shc git repo Apache hbase.git repo

Using the Connector with Apache Phoenix

If you use a Spark-HBase connector in an environment that uses Apache Phoenix as a SQL skin, be aware that both
connectors use only HBase .jar files by default. If you want to submit jobs on an HBase cluster with Phoenix enabled,
you must include --jars phoenix-server.jar in your spark-submit command. For example:

./ bi n/spark-submt --class your.application.class \

--master yarn-client \

--num executors 2 \

--driver-nenory 512m\

--executor-nmenory 512m --executor-cores 1 \

- - packages com hortonworks: shc:1.0.0-1.6-s_2.10 \
--repositories http://repo. hortonworks. conf cont ent/groups/
public/ \

--jars [usr/ hdp/current/phoeni x-client/phoeni x-server.jar \
--files /etc/hbase/conf/hbase-site.xm /To/your/application/jar

Accessing HDFS Files from Spark

This section contains information on running Spark jobs over HDFS data.

Specifying Compression

To add a compression library to Spark, you can use the --jars option. For an example, see "Adding Librariesto Spark
in this guide.

To save a Spark RDD to HDFS in compressed format, use code similar to the following (the example uses the GZip
algorithm):

rdd. saveAsHadoopFi | e("/t np/ spar k_conpressed”,
"or g. apache. hadoop. mapr ed. Text Qut put For nat ",

conpr essi onCodecC ass="or g. apache. hadoop. i 0. conpress. &i pCodec")

17

https://github.com/hortonworks-spark/shc
https://github.com/hortonworks-spark/shc/tree/master/examples/src/main/scala/org/apache/spark/sql/execution/datasources/hbase

Apache Spark Accessing ORC Datain Hive Tables

For more information about supported compression algorithms, see " Configuring HDFS Compression” in the HDP
Data Storage guide.

Accessing HDFS from PySpark

When accessing an HDFS file from PySpark, you must set HADOOP_CONF_DIR in an environment variable, asin
the following example:

export HADOOP_CONF DI R=/ et ¢/ hadoop/ conf

[hrt_ga@ p-172-31-42-188 spark] $ pyspark

[hrt_qa@ p-172-31-42-188 spark]$ >>>lines = sc.textFile("hdfs://
i p-172-31-42-188. ec2.internal : 8020/t np/ PySpar kTest/fil e-01")

If HADOOP_CONF_DIR isnot set properly, you might see the following error:

Error from secure cluster

2016- 08-22 00: 27: 06, 046| t 1. machi ne| | NFQ 1580| 140672245782272|

Mai nThr ead| Py4JJavaError: An error occurred while calling
z: or g. apache. spar k. api . pyt hon. Pyt honRDD. col | ect AndSer ve.

2016-08-22 00: 27: 06, 047|t 1. machi ne| | NFQ 1580| 140672245782272| Mai nThr ead| :
or g. apache. hadoop. security. AccessControl Excepti on: SI MPLE authentication is
not enabl ed. Avail abl e: [TOKEN, KERBEROS]

2016- 08-22 00: 27: 06, 047|t 1. machi ne| | NFQ 1580| 140672245782272| Mai nThr ead| at
sun. refl ect. Nati veConstruct or Accessor | npl . new nst anceO(Nati ve Met hod)

2016-08-22 00: 27:06,047|t 1. machi ne| | NFQ 1580| 140672245782272| Mai nThr ead| at
sun. refl ect. Nati veConstruct or Accessor | npl . new nst ance(Nati veConst ruct or Accessor | npl . j a\

2016- 08-22 00: 27: 06, 048]t 1. machi ne| | NFQ 1580| 140672245782272| Mai nThr ead| at

{code}

Accessing ORC Datain Hive Tables

Apache Spark on HDP supports the Optimized Row Columnar (ORC) file format, a self-describing, type-aware,
column-based file format that is one of the primary file formats supported in Apache Hive.

ORC reduces /0 overhead by accessing only the columns that are required for the current query. It requires
significantly fewer seek operations because all columns within asingle group of row data (known as a"stripe") are
stored together on disk.

Spark ORC data source supports ACID transactions, snapshot isolation, built-in indexes, and complex data types
(such as array, map, and struct), and provides read and write access to ORC files. It leverages the Spark SQL Catalyst
engine for common optimizations such as column pruning, predicate push-down, and partition pruning.

This subsection has several examples of Spark ORC integration, showing how ORC optimizations are applied to user
programs.

Related I nformation
ORC File Format
Apache Hive ACID Transactions

Access ORC filesfrom Spark
Use the following steps to access ORC files from Apache Spark.

18

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC#LanguageManualORC-FileStructure
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions

Apache Spark Accessing ORC Datain Hive Tables

About thistask
To start using ORC, you can define a SparkSession instance:

i mport org. apache. spark. sqgl . Spar kSessi on
val spark = SparkSession. builder().getO Create()
i mport spark.inplicits.

The following example uses data structures to demonstrate working with complex types. The Person struct data type
has a name, an age, and a sequence of contacts, which are themselves defined by names and phone numbers.
Procedure

1. Define Contact and Person data structures:

case class Contact(nanme: String, phone: String)
case class Person(nane: String, age: Int, contacts: Seq[Contact])

2. Create 100 Person records:

val records = (1 to 100).map { i =>;
Person(s"name_$i", i, (0to 1).map { m => Contact(s"contact_$ni,
s"phone_$nt') })

In the physical file, these records are saved in columnar format. When accessing ORC files through the
DataFrame API, you see rows.

3. To write person records as ORC files to a directory hamed “ people”, you can use the following command:

records.toDF().wite.format ("orc").save("people")

4. Read the objects back:

val people = sqgl Context.read.format("orc").| oad("people.json")

5. For reuse in future operations, register the new "people" directory as temporary table “people”:

peopl e. cr eat eOr Repl aceTenpVi ew " peopl e")

6. After you register the temporary table “people’, you can query columns from the underlying table:

sql Cont ext . sqgl (" SELECT name FROM peopl e WHERE age < 15"). count ()

Results

In this example the physical table scan loads only columns name and age at runtime, without reading the contacts
column from the file system. This improves read performance.

Y ou can also use Spark DataFrameReader and DataFrameWriter methods to access ORC files.

Related Information
Apache Spark DataFrameReader Methods
Apache Spark DataFrameWriter Methods

Predicate Push-Down Optimization

The columnar nature of the ORC format helps avoid reading unnecessary columns, but it is still possible to read
unnecessary rows. The examplein this subsection reads all rows in which the age value is between 0 and 100, even

19

https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/sql/DataFrameReader.html
https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/sql/DataFrameWriter.html

Apache Spark Accessing ORC Datain Hive Tables

though the query requested rows in which the age value is less than 15 (... WHERE age < 15"). Such full table
scanning is an expensive operation.

ORC avoids this type of overhead by using predicate push-down, with three levels of built-in indexes within each file:
filelevel, stripelevel, and row level:

» File-level and stripe-level statistics are in the file footer, making it easy to determine if the rest of the file must be
read.

* Row-level indexes include column statistics for each row group and position, for finding the start of the row
group.

ORC uses these indexes to move the filter operation to the data loading phase by reading only data that potentially

includes required rows.

This combination of predicate push-down with columnar storage reduces disk 1/0O significantly, especially for larger
datasets in which I/O bandwidth becomes the main bottleneck to performance.

ORC predicate push-down is enabled by default in Spark SQL .

L oad ORC Data into DataFrames Using Predicate Push-Down

DataFrames are similar to Spark RDDs but have higher-level semantics built into their operators. This allows
optimization to be pushed down to the underlying query engine.

Hereisthe Scala API version of the SELECT query used in the previous section, using the DataFrame API:

val spark = SparkSession. builder().getO Create()
val people = spark.read. format("orc").| oad("peopl ePartiti oned")
peopl e. filter(people("age") < 15).sel ect("nane").show)

DataFrames are not limited to Scala. ThereisaJava APl and, for data scientists, a Python API binding:

from pyspark.sql inport SparkSession

spark = SparkSession. bui |l der. get Or Creat e()

peopl e = spark.read. format("orc").| oad("peopl ePartiti oned")
peopl e. filter(people.age < 15). sel ect ("nane"). show)

Optimize Queries Using Partition Pruning

When predicate push-down optimization is not applicable—for example, if all stripes contain records that match the
predicate condition—a query with a WHERE clause might need to read the entire data set. This becomes a bottleneck
over alarge table. Partition pruning is another optimization method; it exploits query semanticsto avoid reading large
amounts of data unnecessarily.

Partition pruning is possible when data within atable is split across multiple logical partitions. Each partition
corresponds to a particular value of a partition column and is stored as a subdirectory within the table root directory
on HDFS. Where applicable, only the required partitions (subdirectories) of atable are queried, thereby avoiding
unnecessary |/O.

Spark supports saving data in a partitioned layout seamlessly, through the partitionBy method available during data
source write operations. To partition the "people" table by the “age” column, you can use the following command:

people.wite.format ("orc").partitionBy("age").save("peopl ePartitioned")

Asaresult, records are automatically partitioned by the age field and then saved into different directories: for
example, peoplePartitioned/age=1/, peopl ePartitioned/age=2/, and so on.

20

Apache Spark Accessing ORC Datain Hive Tables

After partitioning the data, subsegquent queries can omit large amounts of 1/0 when the partition column is referenced
in predicates. For example, the following query automatically locates and loads the file under peopl ePartitioned/
age=20/and omits all others:

val peopl ePartitioned = spark.read. format ("orc"). | oad("peopl ePartitioned")
peopl ePartitioned. creat eO Repl aceTenpVi ew " peopl ePartiti oned")
spark. sql ("SELECT * FROM peopl ePartitioned WHERE age = 20")

Enable Vectorized Query Execution

About thistask

Vectorized query execution is afeature that greatly reduces the CPU usage for typical query operations such as scans,
filters, aggregates, and joins. Vectorization is also implemented for the ORC format. Spark also uses Whole Stage
Codegen and this vectorization (for Parquet) since Spark 2.0 (released on July 26, 2016).

Use the following steps to implement the new ORC format and enable vectorization for ORC files with SparkSQL.

Procedure

1. On the Ambari Dashboard, select Spark2 > Configs. For Spark shells and applications, click Custom spark2-
defaults, then add the following properties. For the Spark Thrift Server, add these properties under Custom
spark2-thrift-sparkconf.

» gpark.sgl.orc.enabled=true — Enables the new ORC format to read/write Spark data source tables and files.

« gpark.sgl.hive.convertMetastoreOrc=true — Enables the new ORC format to read/write Hive tables.

e gpark.sgl.orc.char.enabled=true — Enables the new ORC format to use CHAR typesto read Hive tables.
By default, STRING types are used for performance reasons. Thisis an optional configuration for Hive
compatibility.

2. Click Save, then restart Spark and any other components that require a restart.

Read Hive ORC Tables

For existing Hive tables, Spark can read them without createOrReplaceTempView. If the tableis stored as ORC
format (the default), predicate Push-down, partition pruning, and vectorized query execution are also applied
according to the configuration.

spar k. sql ("SELECT * FROM hi veTabl e WHERE age = 20")

Additional Resour ces

» Apache ORC website: https://orc.apache.org/
e ORC performance:

 http://hortonworks.com/blog/orcfile-in-hdp-2-better-compressi on-better-performance/

« https://lwww.slideshare.net/Hadoop Summit/performance-update-when-apache-orc-met-apache-
spark-81023199

* Get Started with Spark: http://hortonworks.com/hadoop/spark/get-started/

21

https://orc.apache.org/
https://hortonworks.com/blog/orcfile-in-hdp-2-better-compression-better-performance/
https://www.slideshare.net/Hadoop_Summit/performance-update-when-apache-orc-met-apache-spark-81023199
https://www.slideshare.net/Hadoop_Summit/performance-update-when-apache-orc-met-apache-spark-81023199
https://hortonworks.com/hadoop/spark/get-started/

Apache Spark Using Custom Libraries with Spark

Using Custom Librarieswith Spark

Spark comes equipped with a selection of libraries, including Spark SQL, Spark Streaming, and MLIib.

If you want to use a custom library, such as a compression library or Magellan, you can use one of the following two
spark-submit script options:

* The--jars option, which transfers associated .jar files to the cluster. Specify alist of comma-separated .jar files.

* The--packages option, which pullsfiles directly from Spark packages. This approach requires an internet
connection.

For example, you can use the --jars option to add codec files. The following example adds the LZO compression
library:

spark-submit --driver-nenory 1G\
--executor-nenory 1G\
--master yarn-client \
--jars /usr/hdp/2.6.0. 3-8/ hadoop/|ib/hadoop-12z0-0.6.0.2.6.0.3-8.jar \
test_read_wite. py

For more information about the two options, see Advanced Dependency Management on the Apache Spark
"Submitting Applications" web page.

E Note:

If you launch a Spark job that references a codec library without specifying where the codec resides, Spark
returns an error similar to the following:

Caused by: java.lang. |l egal Argurment Excepti on: Conpressi on codec
com hadoop. conpr essi on. | zo. LzoCodec not found.

To address thisissue, specify the codec file with the --jars option in your job submit command.

Related Information
Magellan: Geospatial Analytics on Spark
Submitting Applications: Advanced Dependency Management

Using Spark from R: SparkR

About thistask

SparkR is an R package that provides a lightweight front end for using Apache Spark from R, supporting large-scale
analytics on Hortonworks Data Platform (HDP) from the R language and environment.

SparkR provides a distributed data frame implementation that supports operations like selection, filtering, and
aggregation on large datasets. In addition, SparkR supports distributed machine learning through MLIib.

This section lists prerequisites, followed by a SparkR example. Here are severa links to additional information:

Before you begin

Before you run SparkR, ensure that your cluster meets the following prerequisites:

22

https://hortonworks.com/blog/magellan-geospatial-analytics-in-spark/
http://spark.apache.org/docs/2.0.0/submitting-applications.html#advanced-dependency-management

Apache Spark

Using Spark from R: SparkR

* R must beinstalled on all nodes. Commands for installing R are specific to the operating system. For example, for
CentOS you would log on as root and run the following command:

yum install R
« JAVA HOME must be set on al nodes.
Note: SparkR is not currently supported on SLES.

SparkR Example

The following example launches SparkR, and then uses R to create a people DataFrame in Spark. The example then
lists part of the DataFrame, and reads the DataFrame. (For more information about Spark DataFrames, see "Using the
Spark DataFrame API™).

1. Launch SparkR:

su spark
cd /usr/hdp/2.6.0.0-598/ spar k/ bi n
. [spar kR

Output similar to the following displays:

I _ N
A\ A A A AN version 2.0.0

Spark context is available as sc, SQ context is avail able as sql Cont ext
>

2. From your R prompt (not the Spark shell), initialize SQL Context, create a DataFrame, and list the first few rows:
sql Cont ext <- sparkRSQL.init(sc)
df <- createDataFrane(sql Context, faithful)
head(df)

Y ou should see results similar to the following:

eruptions waiting

1 3. 600 79
2 1. 800 54
3 3. 333 74
4 2.283 62
5 4.533 85
6 2.883 55

3. Read the people DataFrame;

peopl e <- read. df (sqgl Context, "people.json", "json")
head(peopl e)

Y ou should see results similar to the following:

age name
1 NA M chae
2 30 Andy
3 19 Justin

23

Apache Spark Using Spark from R: SparkR

Related Information

Integrate SparkR and R for Better Data Science Workflow
Using R Packages with SparkR

Apache SparkR Documentation

24

https://hortonworks.com/blog/integrate-sparkr-and-r-for-better-data-science-workflow/
https://community.hortonworks.com/content/kbentry/105781/using-r-packages-with-sparkr-3.html
https://spark.apache.org/docs/2.0.0/sparkr.html

	Contents
	Introduction
	Using the Spark DataFrame API
	Using Spark SQL
	Access Spark SQL through the Spark shell
	Access Spark SQL through JDBC or ODBC: prerequisites
	Access Spark SQL through JDBC
	Accessing Spark SQL through ODBC

	Using the Hive Warehouse Connector with Spark
	Calling Hive User-Defined Functions
	Using Spark Streaming
	Building and Running a Secure Spark Streaming Job
	Running Spark Streaming Jobs on a Kerberos-Enabled Cluster
	Sample pom.xml File for Spark Streaming with Kafka

	HBase Data on Spark with Connectors
	Selecting a Connector
	Using the Connector with Apache Phoenix

	Accessing HDFS Files from Spark
	Accessing ORC Data in Hive Tables
	Access ORC files from Spark
	Predicate Push-Down Optimization
	Load ORC Data into DataFrames Using Predicate Push-Down
	Optimize Queries Using Partition Pruning
	Enable Vectorized Query Execution
	Read Hive ORC Tables
	Additional Resources

	Using Custom Libraries with Spark
	Using Spark from R: SparkR

