Streaming 3

Developing Apache Storm Applications

Date of Publish: 2018-07-12

P

Hortonworks

http://docs.hortonwor ks.com

http://docs.hortonworks.com

Contents

Developing Apache Storm AppPliCatioNnS.........coocvveieevie e 3
COrE SEOMM CONCEPLS.....ccueeveeierieiteereste sttt ettt b et r e E s R et R e b se e e e b e e e e e s s e e e e eae e b e e bt ebearennenneenenes 3
S 0101 £ USROS PRPRPROPI 4

BIOIES.. ettt R e R R bR R R e £ ARt Rt bt b e bt b e b n e 5
SIFEAIM GIOUDINGS. . .+cueetereetereetereetereesestesessesessesessesesbesebessesesseseseesesees e sbesesbeaeeb e e e b e s eb e s ebenbebe s b ebenbenennenennenes 6
TOPOIOGIES. ...ttt ettt sttt sttt b e bbbt b et bt b et b et e b e e eb e s e b e se e bt s e e bR e bt e R e Rt e bRt b et b et b et 6
ProcessiNg REITADIHTTY......c.ciiirieiiieetereer bbb e bbbt sb et b e eb e 7
WOTKErs, EXECULONS, ANA TASKS.....ccuiiirieeeeiiteeieeiteesteesteessesesteessesebessasessessassessesssssessesssssessesssesssessnseens 8

= = 1= o ST 8

Core Storm Example: RoIliNngTOPWOrds TOPOIOGY.......ccereereriererieiirieerieesieesieesie st seere e seene e 12
THIOENE COMOEPES. ...t eeveeetertet sttt sttt ettt ettt st b e s e bt s e e bt e bt s e e st s b e st e b e e e b e e e b e seeb e seebene ekt s e eb e seebesbenesbenesbe e nbe e 14
Introductory Example: Trident WOord COUNL..........ccoeereerierieniesieesi e 14
THAENE OPEIALHIONS......c.eiteieitieitet ettt ettt sttt b et b e st b e e e b e s e e bt s e e bt s et s b et b et st e nbens 15
THAENE AQOIEOBLIONS. ... eueieeiertetetee ettt ettt sttt bbbt b et b et b e st e b e e ebene e b e e besbese b s b 16
THIOENE SEALE. ...ttt b e e bt e b re bt se bt e bt se e st b et b et ek e e eb e st ebeseebeneebeneas 18
Further Reading aOUL THOENL.........coiiiieeee bbb 19
Moving Data Into and Out Of @ StOrM TOPOIOGYcueruererueuerieierieerieesieesree e seere e see b sben s e nes 19
Implementing Windowing Computations 0N Data SIFEAMS...........ccveirerrereeree e 20
Understanding Sliding and Tumbling WIiNAOWS...........cccoeiririnenesenesiesesie e 20
Implementing Windowing iN COre SEOM.........ccueireirieirieerieere st saenes 21
Implementing Windowing iN TrOENL. ..o 24
Implementing State MaNagEMENT...........ci ittt b et b e et se b e b e b e seebe e 28
CNECKPOINEING. ...ttt sttt b e b e b e b e s e bt se bt s b e bt sb e st eb et e b e e et e e ebene et e neebeneas 29
RECOVEIY ... e r e b s r e e s a e e s a e e e b e n e e e r e r e 29
GUBIMINEEES........eeeeeeet ettt ettt s et b bbbt Rt e R s e e R e R R Se e s e e e e e e e seeae e st e bt ebenb e e neerenreneeanens 30
Implementing Custom Actions: [Stateful Bolt HOOKS..........cccoiiiiiniinieeeeeee e 30
IMPleMENtiNG CUSLOM SEBLES.........cueieeiirieiirieiere ettt e bbb b ne s 30
Implementing Stateful WINAOWING.coviiiiieireiereeree s 31

Sample Topology With SAVEH SEALE...........cciiiiiieee e 31

Streaming Developing Apache Storm Applications

Developing Apache Storm Applications

This chapter focuses on several aspects of Storm application development. Throughout this guide you will see
references to core Storm and Trident. Trident is alayer of abstraction built on top of Apache Storm, with higher-
level APIs. Both operate on unbounded streams of tuple-based data, and both address the same use cases: real-time
computations on unbounded streams of data.

Here are some examples of differences between core Storm and Trident:

* Thebasic primitivesin core storm are bolts and spouts. The core data abstraction in Trident is the stream.

« Core Storm processes eventsindividually. Trident supports the concept of transactions, and processes datain
micro-batches.

« Trident was designed to support stateful stream processing, although as of Apache Storm 1.0, core Storm also
supports stateful stream processing.

« Core Storm supports awider range of programming languages than Trident.

» Core Storm supports at-least-once processing very easily, but for exactly-once semantics, Trident is easier (from
an implementation perspective) than using core Storm primitives.

A complete introduction to the Storm API is beyond the scope of this documentation. However, the following
sections provide an overview of core Storm and Trident concepts. See Apache Storm documentation for an extensive
description of Apache Storm concepts.

Core Storm Concepts

Developing a Storm application requires an understanding of the following basic concepts.

Table 1: Storm Concepts

Storm Concept Description

Tuple A named list of values of any datatype. A tupleisthe native data
structure used by Storm.

Stream An unbounded sequence of tuples.

Spout Generates a stream from arealtime data source.

Bolt Contains data processing, persistence, and messaging aert logic. Can

also emit tuples for downstream bolts.

Stream Grouping Controls the routing of tuplesto bolts for processing.

Topology A group of spouts and bolts wired together into a workflow. A Storm
application.

Processing Reliability Storm guarantee about the delivery of tuplesin atopology.

Workers A Storm process. A worker may run one or more executors.

Executors A Storm thread launched by a Storm worker. An executor may run one
or more tasks.

Tasks A Storm job from a spout or bolt.

Parallelism Attribute of distributed data processing that determines how many jobs

are processed simultaneously for atopology. Topology developers
adjust parallelism to tune their applications.

https://storm.apache.org/releases/1.2.3/index.html

Streaming

Developing Apache Storm Applications

Storm Concept

Description

Process Controller

Monitors and restarts failed Storm processes. Examplesinclude
supervisord, monit, and daemontools.

Master/Nimbus Node

The host in a multi-node Storm cluster that runs a process controller
(such as supervisord) and the Storm nimbus, ui, and other related
daemons. The process controller is responsible for restarting failed
process controller daemons on slave nodes. The Nimbus node is a thrift
service that is responsible for distributing code around the cluster,
assigning tasks to machines, and monitoring for failures.

Slave Node

A host in amulti-node Storm cluster that runs a process controller
daemon, such as supervisor, as well as the worker processes that run
Storm topologies. The process controller daemon is responsible for
restarting failed worker processes.

The following subsections describe several of these concepts in more detail.

Spouts

All spouts must implement the org.apache.storm.topol ogy.|RichSpout interface from the core-storm API.
BaseRichSpout is the most basic implementation, but there are several others, including ClojureSpout, DRPCSpout,
and FeederSpout. In addition, Hortonworks provides a Kafka spout to ingest data from a Kafka cluster.

The following example, RandomSentenceSpout, isincluded with the storm-starter connector installed with Storm at /
usr/lib/storm/contrib/storm-starter.

package storm starter.spout;

i mport org. apache.
i mport org. apache.
i mport org. apache.
i mport org. apache.
i mport org. apache.
i mport org. apache.
i mport org. apache.

st orm spout . Spout Qut put Col | ect or;
storm t ask. Topol ogyCont ext ;

st orm t opol ogy. Qut put Fi el dsDecl arer;
st orm t opol ogy. base. BaseRi chSpout ;
storm tupl e. Fi el ds;

storm tupl e. Val ues;

stormutils. Uils;

i mport java.util.Mp;
i mport java.util.Random

public cl ass RandonSent enceSpout extends BaseR chSpout {
Spout Qut put Col | ector _col | ector;

Random _r and;

@verride

public void open(Map conf, Topol ogyContext context, Spout QutputColl ector

col lector) {

_collector = collector;
_rand = new Randon();

}
@verride

public void nextTupl e() {
Utils.sleep(100);

String[] sentences = new String[]{ "the cow junped over the noon", "an
appl e a day keeps the doctor away", "four score and seven years ago", "snow
white and the seven dwarfs", "i amat two with nature" };

String sentence

= sentences[_rand. nextInt(sentences. | ength)];

_collector.emt(new Val ues(sentence));

}
@verride

Streaming Developing Apache Storm Applications
public void ack(Object id) {
}
@wverride
public void fail (Object id) {
}
@verride
public void decl areCQut put Fi el ds(Qut put Fi el dsDecl arer decl arer) {
decl arer. decl are(new Fi el ds("word"));
}
}
Bolts

All bolts must implement the IRichBolt interface. BaseRichBolt is the most basic implementation, but there are
severa others, including BatchBoltExecutor, ClojureBolt, and JoinResullt.

The following example, Total RankingsBolt.java, isincluded with storm-starter and installed with Storm at /ust/lib/
storm/contrib/storm-starter.

package stormstarter. bolt;

i mport org.apache. stormtuple. Tupl e;
i mport org.apache. | og4j. Logger;
i mport storm starter.tools. Ranki ngs;

/**
* This bolt merges incomng {@ink Rankings}.
* <p/>
* |t can be used to nmerge internedi ate rankings generated by {@i nk
I nt er nedi at eRanki ngsBolt} into a final,
* consolidated ranking. To do so, configure this bolt with a gl obal G oupi ng
on {@ink |nternedi at eRanki ngsBolt}.
*/
public final class Total Ranki ngsBolt extends Abstract RankerBolt {

private static final |ong serial VersionU D = -8447525895532302198L;
private static final Logger LOG =
Logger . get Logger (Tot al Ranki ngsBol t. cl ass);

publ i c Tot al Ranki ngsBolt () {
super ();

publ i c Tot al Ranki ngsBolt (i nt topN) {
super (t opN) ;
}

publ i c Tot al Ranki ngsBolt (i nt topN, int emnitFrequencyl nSeconds) {
super (topN, enitFrequencyl nSeconds) ;

@verride

voi d updat eRanki ngsW t hTupl e(Tupl e tuple) {

Ranki ngs ranki ngsToBeMerged = (Ranki ngs) tupl e. getVal ue(0);
super . get Ranki ngs() . updat eWt h(r anki ngsToBeMer ged) ;

super . get Ranki ngs() . pruneZer oCount s() ;

@verride
Logger getLogger() {

Streaming Developing Apache Storm Applications

return LOG
}

Stream Groupings

Stream grouping allows Storm devel opers to control how tuples are routed to boltsin aworkflow. The following table
describes the stream groupings available.

Table 2: Stream Groupings

Stream Grouping Description

Shuffle Sends tuples to bolts in random, round robin sequence. Use for atomic
operations, such as math.

Fields Sends tuples to a bolt based on one or morefieldsin the tuple. Use to
segment an incoming stream and to count tuples of a specified type.

All Sends asingle copy of each tupleto all instances of areceiving bolt.
Useto send asignal, such as clear cache or refresh state, to al bolts.

Custom Customized processing sequence. Use to get maximum flexibility of
topology processing based on factors such as data types, load, and
seasonality.

Direct Source decides which bolt receives atuple.

Global Sends tuples generated by all instances of a source to a single target

instance. Use for global counting operations.

Storm devel opers specify the field grouping for each bolt using methods on the TopologyBuilder.BoltGetter inner
class, as shown in the following excerpt from the the WordCountTopol ogy.java example included with storm-starter.

Topol ogyBui | der bui |l der = new Topol ogyBui | der () ;

bui | der. set Spout ("spout", new Randonfent enceSpout (), 5);

buil der.setBolt("split", new SplitSentence(), 8).shuffleG ouping("spout");

bui |l der.setBolt("count", new WrdCount (), 12).fieldsG ouping("split", new
Fi el ds("word"));

Thefirst bolt uses shuffle grouping to split random sentences generated with the RandomSentenceSpout. The second
bolt uses fields grouping to segment and perform a count of individual words in the sentences.

Topologies
The following image depicts a Storm topology with a simple workflow.

Streaming

Developing Apache Storm Applications

stream

Storm topology

The TopologyBuilder classis the starting point for quickly writing Storm topol ogies with the storm-core API. The

class contains getter and setter methods for the spouts and bolts that comprise the streaming data workflow, as shown
in the following sample code.

;beol ogyBui | der buil der = new Topol ogyBui | de

r();
bui | der. set Spout ("spout 1", new BaseRi chSpout ());
bui | der. set Spout (" spout 2", new BaseRi chSpout ());
bui | der. setBol t ("bol t1", new BaseBasicBolt());
bui | der. setBolt("bolt2", new BaseBasicBolt());
bui | der. setBol t ("bol t3", new BaseBasicBolt());

Processing Reliability

Storm provides two types of guarantees when processing tuples for a Storm topology.

Table 3: Processing Guar antees

Guarantee Description

At least once Reliable; Tuples are processed at least once, but may be processed
more than once. Use when subsecond latency is required and for
unordered idempotent operations.

Exactly once Reliable; Tuples are processed only once. (This feature requires the use

of a Trident spout and the Trident API.

Streaming Developing Apache Storm Applications

Workers, Executors, and Tasks
Apache Storm processes, called workers, run on predefined ports on the machine that hosts Storm.

« Each worker process can run one or more executors, or threads, where each executor is athread spawned by the
worker process.

« Each executor runs one or more tasks from the same component, where a component is a spout or bolt from a
topology.

Supervisor Node

Worker Process

Parallelism
Distributed applications take advantage of horizontally-scaled clusters by dividing computation tasks across nodesin
acluster. Storm offers this and additional finer-grained ways to increase the parallelism of a Storm topology:

¢ Increase the number of workers
* |Increase the number of executors
* Increase the number of tasks

By default, Storm uses a parallelism factor of 1. Assuming a single-node Storm cluster, a parallelism factor of 1
means that one worker, or VM, is assigned to execute the topology, and each component in the topology is assigned
to asingle executor. The following diagram illustrates this scenario. The topology defines a data flow with three
tasks, a spout and two bolts.

Note:

E Hortonworks recommends that Storm developers store parallelism settings in a configuration file read by the
topology at runtime rather than hard-coding the values passed to the Parallelism API. This topic describes and
illustrates the use of the API, but devel opers can achieve the same effect by reading the parallelism values
from a configuration file.

Streaming Developing Apache Storm Applications

Increasing Parallelism with Workers

Storm devel opers can easily increase the number of workers assigned to execute a topology with the
Config.setNumWorkers() method. This code assigns two workers to execute the topology, as the following figure
illustrates.

Conf i g config = new Config();
confi g. set NunWor kers(2);

Worker (JVM)

Task: Task:
MyBuolt1 MyBolt2

Worker (JVM)

Adding new workers comes at a cost: additional overhead for anew JVM.

Streaming

Developing Apache Storm Applications

This example adds an additional worker without additional executors or tasks, but to take full advantage of this
feature, Storm developers must add executors and tasks to the additional JVMs (described in the following examples).

Increasing Parallelism with Executors

The parallelism API enables Storm developers to specify the number of executors for each worker with a parallelism
hint, an optional third parameter to the setBolt() method. The following code sample sets this parameter for the
MyBolt1 topology component.

Config config = new Config();

Topol ogyBui | der bui |l der = new Topol ogyBui | der () ;

bui | der . set Spout (MY_SPOUT | D, nySpout);

bui | der. setBol t (MY_BOLT1_I D, nyBolt1, 2).shuffleG oupi ng(MY_SPOUT I D);
bui | der. set Bol t (MY_BOLT2_I D, nyBol t 2). shuffl eG oupi ng(MY_SPOUT_I D) ;

This code sample assigns two executors to the single, default worker for the specified topology component, MyBolt1,
asthe following figure illustrates.

Worker (JVM)

Task:
MyBolt1

Task:
MyBolt1

The number of executorsis set at the level of individua topology components, so adding executors affects the code
for the specified spouts and bolts. This differs from adding workers, which affects only the configuration of the
topology.

Increasing Parallelism with Tasks

Finally, Storm developers can increase the number of tasks assigned to a single topology component, such as a spout
or bolt. By default, Storm assigns a single task to each component, but devel opers can increase this number with

the setNumTasks() method on the BoltDeclarer and SpoutDeclarer objects returned by the setBolt() and setSpout()
methods.

Conf i g config = new Config();
Topol ogyBui | der bui |l der = new Topol ogyBui | der () ;

10

Streaming Developing Apache Storm Applications

bui | der . set Spout (MY_SPOUT | D, nySpout);
bui | der. set Bol t (MY_BOLT1_I D,
myBol t 1) . set NumTasks(2) . shuf fl eG oupi ng(MY_SPQUT | D) ;
bui | der.setBolt(My_BOLT1 I D, nyBolt?2).shuffleG oupi ng(M¥_SPOUT | D);

This code sample assigns two tasks to execute MyBolt1, as the following figureillustrates. This added parallelism
might be appropriate for a bolt containing alarge amount of data processing logic. However, adding tasksislike
adding executors because the code for the corresponding spouts or bolts also changes.

Worker (JVM)

Task:

MyBolt1

Task:
MyBolt1

Putting it All Together

Storm devel opers can fine-tune the parallelism of their topologies by combining new workers, executors and tasks.
The following code sample demonstrates all of the following:

« Split processing of the MySpout component between four tasks in two separate executors across two workers

» Split processing of the MyBolt1 component between two executors across two workers

» Centralize processing of the MyBolt2 component in asingle task in a single executor in asingle worker on a
single worker

Config config = new Config();
confi g. set NunWor kers(2);
Topol ogyBui | der bui |l der = new Topol ogyBui | der () ;
bui | der. set Spout (MY_SPQUT I D, nmySpout, 2).setNunirasks(4);
bui | der. setBol t (MY_BOLT1_I D, nyBolt1,
2) . set Nunifasks(2) . shuf f1 eG oupi ng(MY_SPQUT | D) ;
bui | der.setBol t (My_BOLT2 I D, nyBolt2).shuffleG oupi ng(MY¥_SPOUT | D);

11

Streaming Developing Apache Storm Applications

Task:
MyBolt1

Task:
MyBolt1

The degree of parallelism depicted might be appropriate for the following topology requirements:

» High-volume streaming data input
* Moderate data processing logic
* Low-volume topology output

See the Storm javadocs at https://storm.apache.org/releases/1.2.3/javadocs/index.html for more information about the
Storm API.

Core Storm Example: RollingTopWords Topology
The RollingTopWords.javaisincluded with storm-starter.

package storm starter;

12

https://storm.apache.org/releases/1.2.3/javadocs/index.html

Streaming

Developing Apache Storm Applications

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

/**

or g. apache.
or g. apache.
or g. apache.
or g. apache.

storm Confi g;

stormtesting. Test Wr dSpout ;

st orm t opol ogy. Topol ogyBui | der;
storm tupl e. Fi el ds;

stormstarter. bolt.Internmedi at eRanki ngsBol t ;
stormstarter. bolt.RollingCountBolt;

storm starter. bolt. Tot al Ranki ngsBol t;
stormstarter.util.StornmRunner;

* This topol ogy does a continuous conputation of the top N words that the
topol ogy has seen in terns of cardinality.

* The top N conputation is done in a conpletely scal able way, and a sinilar
approach could be used to conpute things

* |like trending topics or trending inages on Twitter.

*/

public class RollingTopWrds {

private static final int DEFAULT _RUNTI ME | N SECONDS = 60;
private static final int TOP._N = 5;

private final Topol ogyBuil der buil der;
private final String topol ogyNane;
private final Config topol ogyConfig;

private final int

runt i nel nSeconds;

public RollingTopWrds() throws |nterruptedException {
bui | der = new Topol ogyBui | der () ;

t opol ogyNane

t opol ogyConfi g
runti mel nSeconds = DEFAULT_RUNTI ME_|I N_SECONDS;

wi reTopol ogy();

}

"slidi ngW ndowCount s";
= creat eTopol ogyConfi guration();

private static Config createTopol ogyConfiguration() {
Config conf =
conf . set Debug(true);
return conf;

new Confi g();

}

private void w reTopol ogy() throws InterruptedException {
String spoutld = "wordCGenerator";
String counterld = "counter";
String internedi at eRankerld = "i nt er medi at eRanker";

String total Rankerld = "final Ranker";
bui | der . set Spout (spout | d, new Test WordSpout (), 5);
bui | der. setBolt (counterld, new RollingCountBolt (9, 3),
4).fi el dsG oupi ng(spoutld, new Fields("word"));
bui | der. set Bol t (i nt er medi at eRankerld, new
I nt er nedi at eRanki ngsBol t (TOP_N), 4).fi el dsG oupi ng(counterld, new
Fields("obj"));
bui | der. set Bol t (t ot al Ranker|d, new
Tot al Ranki ngsBol t (TOP_N)) . gl obal Gr oupi ng(i nt er medi at eRanker | d);

}

public void run() throws InterruptedException {

St or nRunner . runTopol ogyLocal | y(bui | der. creat eTopol ogy(), topol ogyNane,
t opol ogyConfi g,
}

runti mel nSeconds) ;

public static void main(String[] args) throws Exception {
new Rol | i ngTopWords().run();

13

Streaming Developing Apache Storm Applications

Trident Concepts

Trident isahigh-level API built on top of Storm core primitives (spouts and bolts). Trident provides join operations,
aggregations, grouping, functions, and filters, as well as fault-tolerant state management. With Trident it is possible to
achieve exactly-once processing semantics more easily than with the Storm core API.

In contrast to the Storm core API, Trident topologies process data in micro-batches. The micro-batch approach
provides greater overall throughput at the cost of adlight increasein overall latency.

Because Trident APIs are built on top of Storm core API, Trident topologies compile to a graph of spouts and bolts.

The Trident APl is built into Apache Storm, and does not require any additional configuration or dependencies.

Introductory Example: Trident Word Count
The following code sampleillustrates how to implement a simple word count program using the Trident API:

Tri dent Topol ogy topol ogy = new Tri dent Topol ogy();
St ream wor dCount s = t opol ogy. newSt r ean(" spout 1", spout)
.each(new Fi el ds("sentence"), new Split(), new Fields("word"))
.parallelisnHnt(16)
. groupBy(new Fi el ds("word"))
. per si st ent Aggr egat e(new MenoryMapSt at e. Factory(), new Count (),
new Fi el ds("count"))
. hewval uesSt r eam()
.parallelisnH nt(16);

Here is detailed information about lines of code in the example:
» Thefirst line creates the TridentTopol ogy object that will be used to define the topology:

TridentTopology topology = new TridentTopology();

» The second line creates a Stream object from a spout; it will be used to define subsequent operations to be
performed on the stream of data:

Stream wordCounts = topology.newStream(" spout1", spout)

« Thethird line uses the Stream.each() method to apply the Split function on the “sentence” field, and specifies that
the resulting output contains a new field named “word”:

.each(new Fields("sentence"), new Split(), new Fields("word"))

The Split classisasimple Trident function that takes the first field of atuple, tokenizesit on the space character,
and emits resulting tokens:

public class Split extends BaseFunction {

public void execute(TridentTuple tuple, TridentCollector collector) {
String sentence = tuple.getString(0);
for (String word : sentence.split(" ")) {
col l ector.emt(new Val ues(word));
}
}
}

* The next two lines set the parallelism of the Split function and apply a groupBy() operation to ensure that all
tuples with the same “word” value are grouped together in subsegquent operations.

Calling parallelismHint() before a partitioning operation applies the specified parallelism value on the resulting
bolt:

14

Streaming

Developing Apache Storm Applications

.parallelismHint(16)

The groupBy() operation is a partitioning operation; it forms the boundary between separate bolts in the resulting
topology:

.groupBy(new Fields("word"))
The groupBY() operation results in batches of tuples being repartitioned by the value of the “word” field.

For more information about stream operations that support partitioning, see the Stream JavaDoc.

The remaining lines of code aggregate the running count for individual words, update a persistent state store, and
emit the current count for each word.

The persistentAggregate() method applies a Trident Aggregator to a stream, updates a persistent state store with
the result of the aggregation, and emits the result:

.persistentAggregate(new MemoryM apState.Factory(), new Count(), new Fields("count"))

The sample code uses an in-memory state store (MemoryMapState); Storm comes with a number of state
implementations for databases such as HBase.

The Count classis a Trident CombinerAggregator implementation that sums all values in a batch partition of
tuples:

public class Count inplenents Conbi ner Aggr egat or <Long> {

public Long init(TridentTuple tuple) {
return 1L;

}
public Long conbi ne(Long val 1, Long val 2) {
return vall + val 2;

}

public Long zero() {
return OL;

}

}

When applying the aggregator, Storm passes grouped partitions to the aggregator, calling init() for each tuple.
It calls combine() repeatedly to process al tuplesin the partition. When finished, the last value returned by
combing() is used. If the partition is empty, the value of zero() is used.

The call to newV aluesStream() tells Storm to emit the result of the persistent aggregation. This consists of a
stream of individual word counts. The resulting stream can be reused in other parts of atopology.

Trident Operations

The Trident Stream class provides a number of methods that modify the content of a stream. The Stream.each()
method is overloaded to allow the application of two types of operations: filters and functions.

For acomplete list of methods in the Stream class, see the Trident JavaDoc.

Filters
Trident filters provide away to exclude tuples from a Stream based on specific criteria. Implementing a Trident filter
involves extending BaseFilter and implementing the isKeep() method of the Filter interface:

bool ean i sKeep(Tri dent Tupl e tuple);

TheisKeep() method takes a TridentTuple as input and returns a boolean. If isKeep() returnsfalse, thetupleis
dropped from the stream; otherwise the tuple is kept.

15

https://storm.apache.org/releases/1.2.3/javadocs/org/apache/storm/trident/Stream.html
https://storm.apache.org/releases/1.2.3/javadocs/org/apache/storm/trident/Stream.html

Streaming

Developing Apache Storm Applications

For example, to exclude words with fewer than three characters from the word count, you could apply the following
filter implementation to the stream:

public class ShortWrdFilter extends BaseFilter {

publ i c bool ean i sKeep(TridentTuple tuple) {
String word = tuple.getString(0);
return word. |l ength() > 3;

Functions
Trident functions are similar to Storm bolts, in that they consume individual tuples and optionally emit new tuples.
Animportant difference is that tuples emitted by Trident functions are additive.

Fields emitted by Trident functions are added to the tuple and existing fields are retained. The Split function in the
word count example illustrates a function that emits additional tuples:

public class Split extends BaseFunction {

public void execute(TridentTuple tuple, TridentCollector collector) {
String sentence = tuple.getString(0);
for (String word : sentence.split(" ")) {
coll ector.emt(new Val ues(word));
}

}
}

Note that the Split function always processes the first (index 0) field in the tuple. It guarantees this because of the way
that the function was applied using the Stream.each() method:

stream each(new Fi el ds("sentence"), new Split(), new Fields("word"))

The first argument to the each() method can be thought of as afield selector. Specifying “sentence” tells Trident to
select only that field for processing, thus guaranteeing that the “ sentence” field will be at index 0 in the tuple.

Similarly, the third argument names the fields emitted by the function. This behavior allows both filters and functions
to be implemented in a more generic way, without depending on specific field naming conventions.

Trident Aggregations

In addition to functions and filters, Trident defines a number of aggregator interfaces that allow topologies to combine
tuples.

There are three types of Trident aggregators.

e CombinerAggregator
* ReducerAggregator
* Aggregator

Aswith functions and filters, Trident aggregations are applied to streams via methods in the Stream class, namely
aggregate(), partitionAggregate(), and persistentAggregate).

Combiner Aggregator

The CombinerAggregator interface is used to combine a set of tuplesinto asingle field. In the word count
example the Count classis an example of a CombinerAggregator that summed field values across a partition. The
CombinerAggregator interfaceis as follows:

public interface Conbi ner Aggregat or<T> extends Serializable {
T init(TridentTuple tuple);
T conbine(T vall, T val2);

16

Streaming

Developing Apache Storm Applications

T zero();

When executing Aggregator, Storm calls init() for each tuple, and calls combine() repeatedly to process each tuplein
the partition.

When complete, the last value returned by combine() is emitted. If the partition is empty, the value of zero() will be
emitted.

Reducer Aggr egator
The ReducerAggregator interface has the following interface definition:

public interface Reducer Aggregator<T> extends Serializable {
Tinit();
T reduce(T curr, TridentTuple tuple);

}

When applying a ReducerAggregator to a partition, Storm first calls the init() method to obtain an initial value. It then
calls the reduce() method repeatedly, to process each tuple in the partition. The first argument to the reduce() method
is the current cumulative aggregation, which the method returns after applying the tuple to the aggregation. When all
tuplesin the partition have been processed, Storm emits the last value returned by reduce().

Aggregator
The Aggregator interface represents the most general form of aggregation operations:

public interface Aggregator<T> extends Operation {
T init(Qbject batchld, TridentCollector collector);
voi d aggregate(T val, TridentTuple tuple, TridentCollector collector);
void conplete(T val, TridentCollector collector);

}

A key difference between Aggregator and other Trident aggregation interfaces is that an instance of TridentCollector
is passed as a parameter to every method. This allows Aggregator implementations to emit tuples at any time during
execution.

Storm executes Aggregator instances as follows:
1. Storm callstheinit() method, which returns an object T representing the initial state of the aggregation.

T is also passed to the aggregate() and complete() methods.
2. Storm calls the aggregate() method repeatedly, to process each tuple in the batch.
3. Storm calls complete() with the final value of the aggregation.

The word count example uses the built-in Count class that implements the CombinerAggregator interface. The Count
class could also be implemented as an Aggregator:

public class Count extends BaseAggregator<Count St ate> {
static class CountState {
| ong count = O;
}

public CountState init(Object batchld, TridentCollector collector) {
return new Count State();
}

public void aggregate(Count State state, TridentTuple tuple,
Trident Col | ector collector) {
st at e. count +=1;
}

public void conplete(CountState state, TridentCollector collector) {
col l ector.emt(new Val ues(state.count));

17

Streaming Developing Apache Storm Applications

Trident State

Trident includes high-level abstractions for managing persistent state in atopology. State management is fault
tolerant: updates are idempotent when failures and retries occur. These properties can be combined to achieve
exactly-once processing semantics. |mplementing persistent state with the Storm core APl would be more difficult.

Trident groups tuples into batches, each of which is given a unique transaction ID. When a batch is replayed, the
batch is given the same transaction ID. State updatesin Trident are ordered such that a state update for a particular
batch will not take place until the state update for the previous batch is fully processed. Thisisreflected in Tridents
State interface at the center of the state management API:

public interface State {
voi d begi nCommi t (Long t xid);
void commit(Long txid);

}

When updating state, Trident informs the State implementation that a transaction is about to begin by calling
beginCommit(), indicating that state updates can proceed. At that point the State implementation updates state asa
batch operation. Finally, when the state update is complete, Trident calls the commit() method, indicating that the
state update is ending. The inclusion of transaction ID in both methods allows the underlying implementation to
manage any necessary rollbacks if afailure occurs.

Implementing Trident states against various data stores is beyond the scope of this document, but more information
can be found in the Trident State documentation(https.//storm.apache.org/releases/1.2.3/Trident-state.html).

Trident Spouts
Trident defines three spout types that differ with respect to batch content, failure response, and support for exactly-
once semantics:

Non-transactional spouts Non-transactional spouts make no guarantees for the
contents of each batch. As aresult, processing may be at-
most-once or at least once. It is not possible to achieve
exactly-once processing when using non-transactional
Trident spouts.

Transactional spouts Transactional spouts support exactly-once processing
in aTrident topology. They define success at the batch
level, and have several important properties that allow
them to accomplish this:

1. Batcheswith agiven transaction ID are aways
identical in terms of tuple content, even when
replayed.

2. Batch content never overlaps. A tuple can never bein
more than one batch.

3. Tuplesare never skipped.

With transactional spouts, idempotent state updates
arerelatively easy: because batch transaction IDs are
strongly ordered, the ID can be used to track data that
has already been persisted. For example, if the current
transaction ID is 5 and the data store contains a value for
ID 5, the update can be safely skipped.

18

https://storm.apache.org/releases/1.2.3/Trident-state.html

Streaming

Further Reading about Trident

Opaquetransactional spouts

The difference in focus between transactional and opaque transactional spouts—success at the batch level versus
the tuple level, respectively—has key implications in terms of achieving exactly-once semantics when combining

different spouts with different state types.

Achieving Exactly-Once M essaging in Trident

Asmentioned earlier, achieving exactly-once semanticsin a Trident topology require certain combinations of spout

and state types.

It should also be clear why exactly-once guarantees are not possible with non-transactional spouts and states. The
table below illustrates which combinations of spouts and states support exactly-once processing:

Opague transactional spouts define success at the tuple
level. Opaque transactional spouts have the following

properties:

1. Thereisno guarantee that a batch for a particular
transaction ID is always the same.

2. Eachtupleissuccessfully processed in exactly one
batch, though it is possible for atupleto fail in one
batch and succeed in another.

State
Non- sacti Opaque
transactional Tran onal transactional
Meon- |
transactional No No No
El
g' Transactional Mo Yes Yas
Opaque j
transactional hho M Yes

For additional information about Trident, refer to the following documents:
Trident Tutorial
Trident APl Overview

Trident State
Trident Spouts

Moving Data Into and Out of a Storm Topology

There are two approaches for moving datainto and out of a Storm topology:

19

Developing Apache Storm Applications

https://storm.apache.org/releases/1.2.3/Trident-tutorial.html
https://storm.apache.org/releases/1.2.3/Trident-API-Overview.html
https://storm.apache.org/releases/1.2.3/Trident-state.html
https://storm.apache.org/releases/1.2.3/Trident-spouts.html

Streaming Developing Apache Storm Applications

» Useaspout or bolt connector to ingest or write streaming data from or to a component such as Kafka, HDFS or
HBase. For more information, see Moving Data Into and Out of Apache Storm Using Spouts and Bolts.

* Usethe core Storm or Trident APIsto write a spout or bolt.

| mplementing Windowing Computations on Data Streams

Windowing is one of the most frequently used processing methods for streams of data. An unbounded stream

of data (events) is split into finite sets, or windows, based on specified criteria, such astime. A window can be
conceptualized as an in-memory table in which events are added and removed based on a set of policies. Storm
performs computations on each window of events. An example would be to compute the top trending Twitter topic
every hour.

Y ou can use high-level abstractionsto define awindow in a Storm topology, and you can use stateful computation in
conjunction with windowing. For more information, see Implementing State Management.

This chapter includes exampl es that implement windowing features. For more information about interfaces and
classes, refer to the Storm 1.1.0 javadocs.

Under standing Sliding and Tumbling Windows

This subsection describes how sliding and tumbling windows work. Both types of windows move across continuous
streaming data, splitting the datainto finite sets. Finite windows are helpful for operations such as aggregations, joins,
and pattern matching.

Sliding Windows

In asliding window, tuples are grouped within awindow that slides across the data stream according to a specified
interval. A time-based sliding window with alength of ten seconds and a dliding interval of five seconds contains
tuples that arrive within aten-second window. The set of tuples within the window are evaluated every five seconds.
Sliding windows can contain overlapping data; an event can belong to more than one sliding window.

In the following image, the first window (w1, in the box with dashed lines) contains events that arrived between the
zeroth and tenth seconds. The second window (w2, in the box with solid lines) contains events that arrived between
the fifth and fifteenth seconds. Note that events e3 through €6 are in both windows. When window w2 is evaluated at
timet = 15 seconds, events el and €2 are dropped from the event queue.

W Wa

el e2 el ed e5 e6 ef 8 29 e10e11

firme
0 5 10 15

An example would be to compute the moving average of a stock price across the last five minutes, triggered every
second.

Tumbling Windows

In atumbling window, tuples are grouped in a single window based on time or count. A tuple belongs to only one
window.

For example, consider atime-based tumbling window with alength of five seconds. The first window (w1) contains
events that arrived between the zeroth and fifth seconds. The second window (w2) contains events that arrived
between the fifth and tenth seconds, and the third window (w3) contains events that arrived between tenth and
fifteenth seconds. The tumbling window is evaluated every five seconds, and none of the windows overlap; each
segment represents a distinct time segment.

20

https://storm.apache.org/releases/1.2.3/javadocs/index.html

Streaming Developing Apache Storm Applications

W W2 Wi

el e2 eledebeb e7 eBed ellel

0 5 10 15 time
An example would be to compute the average price of astock over the last five minutes, computed every five
minutes.

Implementing Windowing in Core Storm
If you want to use windowing in abolt, you can implement the bolt interface IWindowedBolt:

public interface | WndowedBolt extends | Conponent {
voi d prepare(Mp stornConf, Topol ogyContext context, CQutputColl ector

col l ector);
/**

* Process tuples falling within the wi ndow and optionally enit
* new tupl es based on the tuples in the input w ndow.
&

voi d execut e(Tupl eW ndow i nput W ndow) ;

voi d cl eanup();

}

Every time the window slides (the sliding interval elapses), Storm invokes the execute method.

Y ou can use the TupleéWindow parameter to access current tuples in the window, expired tuples, and tuples added
since the window was last computed. Y ou can use this information to optimize the efficiency of windowing

computations.

Bolts that need windowing support would typically extend BaseWindowedBolt, which has APIs for specifying type
of window, window length, and dliding interval:

public class Slidi ngWndowBolt extends BaseW ndowedBolt {
private Qutput Coll ector collector;

@verride
public void prepare(Mp stornConf, Topol ogyContext context,

Qut put Col | ector coll ector){
this.collector = collector;

}
@verride

public void execute(Tupl eW ndow i nput Wndow) {
for(Tuple tuple: inputWndow. get()) {
// do the wi ndowi ng conputation

col l ector. emt(new Val ues(conput edVal ue)) ;

}
}

Y ou can specify window length and dliding interval as a count of the number of tuples, a duration of time, or both.
The following window configuration settings are supported:

/*

* Tupl e count based sliding window that slides after slidinglnterval nunber
of tuples

*/

wi t hW ndow(Count w ndowLengt h, Count slidi nglnterval)

/*

21

Streaming Developing Apache Storm Applications

* Tupl e count based wi ndow that slides with every inconing tuple
*/
wi t hW ndow(Count w ndowlLengt h)

/*
* Tupl e count based sliding window that slides after slidinglnterval tine
duration
*/
wi t hW ndow(Count wi ndowLengt h, Duration slidinglnterval)
/*
* Time duration based sliding window that slides after slidinglnterval tinme
duration
*/
wi t hW ndow(Dur ati on wi ndowLengt h, Duration slidinglnterval)
/*
* Time duration based wi ndow that slides with every incom ng tuple
*/

wi t hW ndow(Dur at i on wi ndowLengt h)

/*
* Time duration based sliding window that slides after slidinglnterval
nunber of tuples
*/

wi t hW ndow(Dur ati on wi ndowLength, Count slidingl nterval)

/*
* Count based tunbling w ndow that tunbles after the specified count of
tupl es
*/

wi t hTunmbl i ngW ndow(BaseW ndowedBol t . Count count)

/*
* Time duration based tunbling w ndow that tunbles after the specified tine
duration
*/

wi t hTunbl i ngW ndow(BaseW ndowedBol t . Dur ati on durati on)

To add windowed bolts to the topology, use the TopologyBuilder (as you would with non-windowed bolts):

Topol ogyBui | der bui |l der = new Topol ogyBui | der () ;

/
* A wi ndowed bolt that computes sumover a sliding window with w ndow
| engt h of
* 30 events that slides after every 10 events.
*/

bui | der. setBol t ("sunm', new W ndowSunBol t ().w t hW ndow(Count . of (30),
Count . of (10)), 1)
. shuf f 1 eG oupi ng(" spout ™) ;

For a sample topology that shows how to use the APIs to compute a sliding window sum and a tumbling window
average, see the SlidingwWindowTopology.javafile in the storm-starter GitHub directory.
For examples of tumbling and dliding windows, see the Apache document Windowing Support in Core Storm.

The following subsections describe additional aspects of windowing calculations: timestamps, watermarks,
guarantees, and state management.

Under standing Tuple Timestamps and Out-of-Order Tuples
By default, window cal culations are performed based on the processing timestamp. The timestamp tracked in each
window is the time when the tuple is processed by the bolt.

22

https://storm.apache.org/releases/1.2.3/javadocs/org/apache/storm/topology/TopologyBuilder.html
https://storm.apache.org/releases/1.2.3/Windowing.html

Streaming

Developing Apache Storm Applications

Storm can also track windows by source-generated timestamp. This can be useful for processing events based on the
time that an event occurs, such as log entries with timestamps.

The following example specifies a source-generated timestamp field. The value for fieldName is retrieved from the
incoming tuple, and then considered for use in windowing calculations.

When this option is specified, all tuples are expected to contain the timestamp field.

/**

* Specify the tuple field that represents the tinmestanp as a | ong value. If
this field

* is not present in the inconming tuple, an {@ink Illegal Argunent Excepti on}

will be thrown.
*

* @aram fieldName the nane of the field that contains the tinestanp
*/
publ i c BaseW ndowedBolt withTi nestanpFi el d(String fiel dNane)

Note: If the timestamp field is not present in the tuple, an exception is thrown and the topology terminates. To resolve
thisissue, remove the erroneous tuple manually from the source (such as Kafka), and then restart the topology.

In addition to using the timestamp field to trigger calculations, you can specify atime lag parameter that indicates the
maximum time limit for tuples with out-of-order timestamps:

/**

* Specify the maximumtine lag of the tuple timestanp in mllis. The tuple
ti mest anps

* cannot be out of order by nore than this anmount.

*

* @aramduration the max | ag duration
*/
publ i c BaseW ndowedBolt wi t hLag(Duration duration)

For example, if the lag is five seconds and tuple t1 arrives with timestamp 06:00:05, no tuples can arrive with tuple
timestamps earlier than 06:00:00. If atuple arrives with timestamp 05:59:59 after t1 and the window has moved past
t1, the tupleis considered late and is not processed; late tuples are ignored and are logged in the worker log files at the
INFO level.

Under standing Water marks

When processing tuples using atimestamp field, Storm computes watermarks based on the timestamp of an incoming
tuple. Each watermark is the minimum of the latest tuple timestamps (minus the lag) across al the input streams.

At ahigher level, thisis similar to the watermark concept used by Google's MillWheel for tracking event-based
timestamps.

Periodically (by default, every second), Storm emits watermark timestamps, which are used as the “clock tick” for the
window calculation when tuple-based timestamps are in use. Y ou can change the interval at which watermarks are
emitted by using the following API:

/**
* Specify the watermark event generation interval. Watermark events

* are used to track the progress of time
*

* @araminterval the interval at which waternmark events are generated
*/
publ i c BaseW ndowedBolt wi t hWat er mar kl nt erval (Duration interval)
When awatermark is received, all windows up to that timestamp are evaluated.
For example, consider tuple timestamp-based processing with the following window parameters:

« Window length equals 20 seconds, sliding interval equals 10 seconds, watermark emit frequency equals 1 second,
max lag equals 5 seconds.

23

https://research.google.com/pubs/pub41378.html

Streaming

Developing Apache Storm Applications

e Current timestamp eguals 09:00:00.
e Tuplesel(6:00:03), €2(6:00:05), €3(6:00:07), e4(6:00:18), €5(6:00:26), e6(6:00:36) arrive between 9:00:00 and
9:00:01.

At timet equals 09:00:01, the following actions occur:

1. Storm emits watermark w1l at 6:00:31, because no tuples earlier than 6:00:31 can arrive.
2. Three windows are evaluated.

The first window ending timestamp (06:00:10) is computed by taking the earliest event timestamp (06:00:03) and
computing the duration based on the diding interval (10 seconds):

e 5:59:50to 06:00:10 with tuples el, €2, €3

e 6:00:00 to 06:00:20 with tuples el, €2, €3, e4

e 6:00:10 to 06:00:30 with tuples e4, €5
3. Tupleebisnot evaluated, because watermark timestamp 6:00:31 is less than tuple timestamp 6:00:36.
4. Tuplese7(8:00:25), e8(8:00:26), €9(8:00:27), €10(8:00:39) arrive between 9:00:01 and 9:00:02.

At timet equals 09:00:02, the following actions occur:

1. Storm emits watermark w2 at 08:00:34, because no tuples earlier than 8:00:34 can arrive.
2. Three windows are evaluated:

e 6:00:20 to 06:00:40, with tuples €5 and €6 (from an earlier batch)
e 6:00:30 to 06:00:50, with tuple e6 (from an earlier batch)
e 8:00:10to 08:00:30, with tuples €7, €8, and €9
3. TupleelOisnot evaluated, because the tuple timestamp 8:00:39 is beyond the watermark time 8:00:34.

The window calculation considers the time gaps and computes the windows based on the tuple timestamp.

Under standing the “ at-least-once” Guarantee

The windowing functionality in Storm core provides an “ at-least-once” guarantee. Values emitted from abolt’s
execute(TupleWindow inputWindow) method are automatically anchored to all tuplesin inputWindow. Downstream
bolts are expected to acknowledge the received tuple (the tuple emitted from the windowed bolt) to complete the tuple
tree. If not acknowledged, the tuples are replayed and the windowing computation is reeval uated.

Tuplesin awindow are automatically acknowledged when they exit the window after windowLength +
dlidingInterval. Note that the configuration topol ogy.message.timeout.secs should be more than windowL ength +
dlidinglnterval for time-based windows; otherwise, the tuples expire and are replayed, which can result in duplicate
evaluations. For count-based windows, you should adjust the configuration so that windowLength + slidinglnterval
tuples can be received within the timeout period.

Saving the Window State
One issue with windowing is that tuples cannot be acknowledged until they exit the window.

For example, consider a one-hour window that slides every minute. The tuplesin the window are evaluated (passed
to the bolt execute method) every minute, but tuples that arrived during the first minute are acknowledged only after
one hour and one minute. If there is a system outage after one hour, Storm replays all tuples from the starting point
through the sixtieth minute. The bolt’ s execute method is invoked with the same set of tuples 60 times; every window
isreevaluated. One way to avoid thisisto track tuplesthat have already been evaluated, save thisinformationin an
external durable location, and use this information to trim duplicate window evaluation during recovery.

For more information about state management and how it can be used to avoid duplicate window evaluations, see
Implementing State Management.

I mplementing Windowing in Trident

Trident processes a stream in batches of tuples for adefined topology. Aswith core Storm, Trident supports tumbling
and dliding windows. Either type of window can be based on processing time, tuple count, or both.

Windowing API for Trident

24

Streaming Developing Apache Storm Applications

The common windowing API takes WindowConfig for any supported windowing configuration. It returns a stream of
aggregated results based on the given window configuration.

public Stream w ndow(W ndowConfi g wi ndowConfi g,
Fi el ds i nput Fi el ds,
Aggr egat or aggr egat or,
Fi el ds functionFi el ds)

windowConfig can be any of the following:

e SlidingCountWindow of (int windowCount, int slidingCount)
« SlidingDurationWindow of (BaseWindowedBolt.Duration windowDuration,

BaseWindowedBolt.Duration slidingDuration)
* TumblingCountWindow of (int windowL ength)
* TumblingDurationWindow of (BaseWindowedBolt.Duration windowL ength)

Trident windowing APIs aso need to implement WindowsStoreFactory, to store received tuples and aggregated
values.

Implementing a Tumbling Window

For atumbling window implementation, tuples are grouped in a single window based on processing time or count.
Any tuple belongs to only one window. Hereis the API for atumbling window:

/**
* Returns a stream of tuples which are aggregated results of a tunbling
wi ndow with
every {@ode wi ndowCount} of tuples.
*/
public Stream tunbli ngW ndow(i nt wi nhdowCount,
W ndows St or eFact ory w ndowSt or eFact ory,
Fi el ds i nput Fi el ds,
Aggr egat or aggr egat or,
Fi el ds functi onFi el ds)
/**
* Returns a stream of tuples which are aggregated results of a w ndow
that tunbles at
duration of {@ode w ndowDur ati on}
*/

public Stream tunbli ngW ndow BaseW ndowedBol t . Durati on wi ndowDur at i on,
W ndows St or eFact ory w ndowSt or eFact ory,
Fi el ds i nput Fi el ds,
Aggr egat or aggr egat or,
Fi el ds functi onFi el ds)

Implementing a Sliding Window

For a dliding window implementation, tuples are grouped in windows that slide for every sliding interval. A tuple can
belong to more than one window. Here isthe API for a dliding window:

/**
* Returns a stream of tuples which are aggregated results of a sliding
wi ndow wi t h
every {@ode wi ndowCount} of tuples and slides the wi ndow after
{@ode slideCount}.
*/

public Stream slidi ngWndow(i nt wi ndowCount,
i nt slideCount,
W ndows St or eFact ory wi ndowSt or eFact ory,
Fi el ds i nput Fi el ds,
Aggr egat or aggr egat or,

25

Streaming Developing Apache Storm Applications

Fi el ds functi onFi el ds)

/**

* Returns a stream of tuples which are aggregated results of a wi ndow which
slides at
duration of {@ode slidinglnterval}
* and conpl etes a wi ndow at {@ode wi ndowbur ati on}
*/
public Stream
sl i di ngW ndow(BaseW ndowedBol t. Durati on wi ndowDur at i on,
BaseW ndowedBol t . Dur ati on slidi ngl nterval,
W ndows St or eFact ory wi ndowSt or eFact ory,
Fi el ds i nput Fi el ds,
Aggr egat or aggr egat or,
Fi el ds functionFi el ds)

Trident Windowing I mplementation Details

For information about org.apache.storm.trident.Stream, see the Apache javadoc for Trident streams.

The following example shows a basic implementation of WindowStoreFactory for HBase, using
HBaseWindowsStoreFactory and HBaseWindowsStore. It can be extended to address other use cases.

/**

* Factory to create instances of {@ode W ndowsStore}.
*/
public interface WndowsStoreFactory extends Serializable {
public WndowsStore create();
}

/**

* Store for storing window related entities |ike wi ndowed tupl es,
triggers etc.
*

*/
public interface WndowsStore extends Serializable {

public Object get(String key);

public Iterabl e<Object> get(List<String> keys);
public Iterabl e<String> get Al Keys();

public void put(String key, Object value);
public void putAll (Collection<Entry> entries);
public void renove(String key);

public void renmoveAll (Coll ection<String> keys);

public void shutdown();

/**
* This class waps key and val ue objects which can be passed to { @ode
put Al I'} net hod.
*/

public static class Entry inplenents Serializable {
public final String key;
public final Object val ue;

26

https://storm.apache.org/releases/1.2.3/javadocs/org/apache/storm/trident/class-use/Stream.html

Streaming Developing Apache Storm Applications

A windowing operation in a Trident stream is a TridentProcessor implementation with the following lifecycle for
each batch of tuples received:

/1 This is invoked when a new batch of tuples is received.
voi d startBat ch(Processor Cont ext processor Context);

/1 This is invoked for each tuple of a batch.
voi d execut e(Processor Cont ext processor Context, String streamd,
Tri dent Tupl e tuple);

/1 This is invoked for a batch to make it conplete. Al the tuples of this
bat ch

woul d have been al ready invoked with #execut e(Processor Cont ext
processor Context, String stream d, TridentTuple tuple)

voi d fini shBat ch(Processor Cont ext processor Context);

Each tupleisreceived in window operation through Window TridentProcessor#execute (ProcessorContext
processorContext, String streamld, TridentTuple tuple). These tuples are accumulated for each batch.

When abatch is finished, associated tuple information is added to the window, and tuples are saved in the configured
WindowsStore. Bolts for respective window operations fire atrigger according to the specified windowing
configuration (like tumbling/dliding count or time). These triggers compute the aggregated result according to the
given Aggregator. Results are emitted as part of the current batch, if it exists.

When atrigger is fired outside WindowTridentProcessor#finishBatch invocation, those triggers are stored in the given
WindowsStore, and are emitted as part of the next immediate batch from that window’ s processor.

Sample Trident Application with Windowing
Here is an example that uses HBaseWindowStoreFactory for windowing:

/1 define argunents

Map<String, Object> config = new HashMap<>();

String tabl eNane = "w ndow state";

byte[] columFanily = “cf”.getBytes(“UTF-8");

byte[] columQualifier = “tuples”. getBytes(“UTF-8");

/1 wi ndowstate table should already be created with cf:tuples col um
HBaseW ndows St or eFact ory w ndowSt or eFactory = new
HBaseW ndows St or eFact ory(confi g, tablename, columFam |y, columQualifier);

Fi xedBat chSpout spout = new Fi xedBat chSpout (new Fi el ds("sentence"), 3,
new Val ues("the cow junped over the noon"),
new Val ues("the man went to the store and bought sone candy"),
new Val ues("four score and seven years ago"),
new Val ues("how many appl es can you eat"), new Values("to be or
not to be the person"));

spout . set Cycl e(true);
Tri dent Topol ogy topol ogy = new Tri dent Topol ogy();

Stream stream = t opol ogy. newSt rean(" spout 1",
spout).parall elisnHi nt(16).each(new Fi el ds("sentence"),
new Split(), new Fields("word"))
.tunbl i ngW ndow 1000, w ndowSt or eFactory, new Fi el ds("word"),
new Count AsAggregator (), new Fields("count"))
. peek(new Consurmer () {
@verride
public void accept(TridentTuple input) {
LOG i nfo("Received tuple: [{}]", input);
}

1)

27

Streaming Developing Apache Storm Applications

St or nTopol ogy st or mfopol ogy = topol ogy. buil d();

For additional examples that use Trident windowing APIs, see TridentHBaseWindowingStoreTopology and
TridentWindowinglhmemoryStoreT opol ogy.

| mplementing State M anagement
This subsection describes state management APIs and architecture for core Storm.

Stateful abstractions allow Storm boltsto store and retrieve the state of their computations. The state management
framework automatically, periodically snapshots the state of bolts across atopology. There is a default in-memory-
based state implementation, as well as a Redis-backed implementation that provides state persistence.

Bolts that require state to be managed and persisted by the framework should implement the | Stateful Bolt interface
or extend BaseStateful Bolt, and implement the void initState(T state) method. The initState method is invoked by the
framework during bolt initialization. It contains the previously saved state of the bolt. Invoke initState after prepare,
but before the bolt starts processing any tuples.

Currently the only supported State implementation is KeyV alueState, which provides key-value mapping.

The following example describes how to implement aword count bolt that uses the key-value state abstraction for
word counts:

public class WrdCount Bol t
ext ends BaseSt at ef ul Bol t <KeyVal ueSt at e<String, |nteger>> {
private KeyVal ueState<String, | nt eger> wordCounts;

@j/erri de
public void initState(KeyValueState<String,|nteger> state) {
wor dCounts = state;

}

@verride

public void execute(Tuple tuple) {
String word = tuple.getString(0);
I nteger count = wordCounts. get(word, 0);
count ++;
wor dCount s. put (word, count);
collector.emt(tuple, new Val ues(word, count));
col l ector. ack(tuple);

3

1. Extend the BaseStatefulBolt and type parameterize it with KeyValueState, to store the mapping of word to count.

2. Intheinit method, initialize the bolt with its previously saved state: the word count last committed by the
framework during the previous run.

3. Inthe execute method, update the word count.

The framework periodically checkpoints the state of the bolt (default every second). The frequency can be changed by
setting the storm config topol ogy.state.checkpoint.interval.ms.

For state persistence, use a state provider that supports persistence by setting the topology.state.provider in the

storm config. For example, for Redis based key-value state implementation, you can set topology.state.provider to
org.apache.storm.redis.state.RedisK eyVa ueStateProvider in storm.yaml. The provider implementation .jar should be
in the class path, which in this case means placing the storm-redis-* .jar in the extlib directory.

Y ou can override state provider properties by setting topology.state.provider.config. For Redis state thisis a JSON
configuration with the following properties:

"keyCl ass": "Optional fully qualified class name of the Key type.",

28

http://github.com/apache/storm/blob/v1.0.1/examples/storm-starter/src/jvm/org/apache/storm/starter/trident/TridentHBaseWindowingStoreTopology.java
http://github.com/apache/storm/blob/v1.0.1/examples/storm-starter/src/jvm/org/apache/storm/starter/trident/TridentWindowingInmemoryStoreTopology.java

Streaming Developing Apache Storm Applications

"valued ass": "Optional fully qualified class nane of the Value type.",
"keySerializerdass": "Optional Key serializer inplenentation class.",
"val ueSerializerd ass": "Optional Value Serializer inplenentation
class. ",
"j edi sPool Config": {
"host": "l ocal host",
"port": 6379,

"tinmeout": 2000,
"dat abase": O,
"password": "xyz"

Checkpointing
Checkpointing is triggered by an internal checkpoint spout at the interval specified by

topology.state.checkpoint.interval.ms. If there is at least one | Stateful Bolt in the topology, the checkpoint spout is
automatically added by the topology builder .

For stateful topologies, the topology builder wraps the | Stateful Bolt in a Stateful BoltExecutor, which handles the state
commits on receiving the checkpoint tuples. Non-stateful bolts are wrapped in a CheckpointTupleForwarder, which
simply forwards the checkpoint tuples so that the checkpoint tuples can flow through the topology directed acyclic
graph (DAG).

Checkpoint tuples flow through a separate internal stream called $checkpoint. The topology builder wires the
checkpoint stream across the whole topology, with the checkpoint spout at the root.

- default [Statetul dofoul >y | defaul Stateful
----- -+ Bolt1 | .., ~ | ez, | Bolt2
Schipt Schipt

At specified checkpoint intervals, the checkpoint spout emits checkpoint tuples. Upon receiving a checkpoint tuple,
the state of the bolt is saved and the checkpoint tuple is forwarded to the next component. Each bolt waits for the
checkpoint to arrive on all of itsinput streams before it saves its state, so state is consistent across the topology. Once
the checkpoint spout receives an ack from all bolts, the state commit is complete and the transaction is recorded as
committed by the checkpoint spout.

This checkpoint mechanism builds on Storm's existing acking mechanism to replay the tuples. It uses concepts

from the asynchronous snapshot algorithm used by Flink, and from the Chandy-L amport algorithm for distributed
snapshots. Internally, checkpointing uses a three-phase commit protocol with a prepare and commit phase, so that the
state across the topology is saved in a consistent and atomic manner.

Recovery
The recovery phaseistriggered for the following conditions:

* When atopology is started for the first time.

29

http://arxiv.org/abs/1506.08603
http://research.microsoft.com/en-us/um/people/lamport/pubs/chandy.pdf

Streaming Developing Apache Storm Applications

« |If the previous transaction was not prepared successfully, arollback message is sent across the topology to
indicate that if a bolt has some prepared transactionsit can be discarded.

« |f the previous transaction was prepared successfully but not committed, a commit message is sent across the
topology so that the prepared transactions can be committed.

After these steps finish, bolts areinitialized with the state.

« When abolt fails to acknowledge the checkpoint message; for example, if aworker crashes during a transaction.
When the worker is restarted by the supervisor, the checkpoint mechanism ensures that the bolt isinitialized with
its previous state. Checkpointing continues from the point where it left off.
Guarantees

Storm relies on the acking mechanism to replay tuplesin case of failures. It is possible that the state is committed but
the worker crashes before acking the tuples. In this case the tuples are replayed causing duplicate state updates.

The Stateful BoltExecutor continues to process the tuples from a stream after it has received a checkpoint tuple on one
stream while waiting for checkpoint to arrive on other input streams for saving the state. This can also cause duplicate
state updates during recovery.

The state abstraction does not eliminate duplicate evaluations and currently provides only at-least once guarantee.

To provide the at-least-once guarantee, al boltsin a stateful topology are expected to anchor the tuples while emitting
and ack the input tuples once it is processed. For non-stateful bolts, the anchoring and acking can be automatically
managed by extending the BaseBasicBolt. Stateful bolts are expected to anchor tuples while emitting and ack the
tuple after processing like in the WordCountBolt example in the State management subsection.

I mplementing Custom Actions: | Stateful Bolt Hooks

The I Stateful bolt interface provides hook methods through which stateful bolts can implement custom actions. This
featureis optional; stateful bolts are not expected to provide an implementation. The feature is provided so that other
system-level components can be built on top of stateful abstractions; for example, to implement actions before the
state of the stateful bolt is prepared, committed or rolled back.

/**

* This is a hook for the conponent to perform sone actions just before the
* franework conmits its state.

*/

void preCommit(long txid);

/**

* This is a hook for the conponent to perform sone actions just before the
* framework prepares its state.

*/

voi d prePrepare(long txid);

/**

* This is a hook for the conponent to perform sone actions just before the
* framework rolls back the prepared state.

*/

voi d preRol | back();

Implementing Custom States

Currently the only kind of State implementation supported is KeyValueState, which provides key-value mapping.

Custom state implementations should provide implementations for the methods defined in the State interface. These
are the void prepareCommit(long txid), void commit(long txid), and rollback() methods. The commit() method is
optional; it isuseful if the bolt manages state on its own. Thisis currently used only by internal system bolts (such as
CheckpointSpout).

KeyValueState implementations should a so implement the methods defined in the KeyValueState interface.

30

Streaming

Developing Apache Storm Applications

The framework instantiates state through the corresponding StateProvider implementation. A custom state should also
provide a StateProvider implementation that can load and return the state based on the namespace.

Each state belongs to a unique namespace. The namespace is typically unique to atask, so that each task can haveits
own state. The StateProvider and corresponding State implementation should be available in the class path of Storm,
by placing them in the extlib directory.

Implementing Stateful Windowing

The windowing implementation in core Storm acknowledges tuples in awindow only when they fall out of the
window.

For example, consider awindow configuration with awindow length of 5 minutes and a diding interval of 1 minute.
The tuples that arrived between 0 and 1 minutes are acked only when the window slides past one minute (for
example, at the 6th minute).

W1 w2 W3

el e2 e3 ed ed eb ef ed ..

o1 2 3 4 5 & T time =

last expired = e
last evaluated = e7

If the system crashes, tuples el to e8 are replayed, assuming that the ack for el and €2 did not reach the acker. Tuples
w1, w2 and w3 will be reevaluated.

Stateful windowing tries to minimize duplicate window evaluations by saving the last evaluated state and the last
expired state of the window. Stateful windowing expects a monotonically increasing message ID to be part of the
tuple, and uses the stateful abstractions discussed previously to save the last expired and last eval uated message IDs.

During recovery, Storm uses the last expired and last eval uated message | Ds to avoid duplicate window evaluations:

» Tupleswith message |Ds lower than the last expired ID are discarded.

» Tuples with message | Ds between the last expired and last evaluated message | Ds are fed into the system without
activating any triggers.

* Tuplesbeyond the last evaluated message ids are processed as usual.

State support in windowing is provided by |Stateful WindowedBolt. User bolts should typically extend

BaseStatef ulWindowedBolt for windowings operation that use the Storm framework to automatically manage the
state of the window.

Sample Topology with Saved State

A sample topology in storm-starter, Stateful WindowingTopology, demonstrates the use of | StatefulWindowedBolt to
save the state of awindowing operation and avoid recomputation in case of failures. The framework manages window
boundaries internally; it does not invoke execute(TupleWindow inputWindow) for already-evaluated windows if
thereis arestart after afailure.

31

	Contents
	Developing Apache Storm Applications
	Core Storm Concepts
	Spouts
	Bolts
	Stream Groupings
	Topologies
	Processing Reliability
	Workers, Executors, and Tasks
	Parallelism
	Core Storm Example: RollingTopWords Topology

	Trident Concepts
	Introductory Example: Trident Word Count
	Trident Operations
	Filters
	Functions

	Trident Aggregations
	CombinerAggregator
	ReducerAggregator
	Aggregator

	Trident State
	Trident Spouts
	Achieving Exactly-Once Messaging in Trident

	Further Reading about Trident

	Moving Data Into and Out of a Storm Topology
	Implementing Windowing Computations on Data Streams
	Understanding Sliding and Tumbling Windows
	Implementing Windowing in Core Storm
	Understanding Tuple Timestamps and Out-of-Order Tuples
	Understanding Watermarks
	Understanding the “at-least-once” Guarantee
	Saving the Window State

	Implementing Windowing in Trident
	Trident Windowing Implementation Details
	Sample Trident Application with Windowing

	Implementing State Management
	Checkpointing
	Recovery
	Guarantees
	Implementing Custom Actions: IStateful Bolt Hooks
	Implementing Custom States
	Implementing Stateful Windowing
	Sample Topology with Saved State

