Configuring Fault Tolerance 3

Configuring Fault Tolerance
Date of Publish: 2018-07-12

P

Hortonworks

http://docs.hortonwor ks.com

http://docs.hortonworks.com

Configuring Fault Tolerance | Contents | ii

Contents

Configuring Fault TOIEr@nNCe........coouviiieiie et 4
High Availability on Non-Ambari CIUSLErS.........cccevvvevee i 4
Configuring High Availability for the HIVE MEASIOIE.........cccvveieiceeeeecese e 4
Use Cases and FaillOVEr SCENAIOS........ccuririiriirieierieie sttt sttt st et st seebeseebesaeseseeneas 4
SOftWAre CONFIGUIALION.cueiieiieieieieie ittt st besae e e et e e e e ese e e eneenesaeenesrenreseenreten 5
Deploying Multiple HiveServer2 Instances for High Availability........cccccoovviieiiieiciccceceeec e 6
Adding an Additional HiveServer2 to Your Cluster Manually..........cccoevenienieseneieseeieeesesie e 7
Adding an Additional HiveServer2 to a Cluster with AmMDari.........cccceveveveveeieieccececc e 8
Configuring HiveServer2 High Availability USINg ZOOKEEPEN.........ccccviiiieieieeresesieseeie e et see s 8
How ZooKeeper Manages HIVESEIVEr2 REGUESES.........ccueierierieieeeeerestesese st se s steste e sessaeee e esessesneens 9
Dynamic Service Discovery Through ZOOKEEDETcc.ccevuevieieeeeiece st sres e s 9
Rolling Upgrade for HiveServer2 Through ZOOKEEPET...........cccovieierieiereeeceeeee e s 11
Configuring High Availability fOr HBaSE......ccccueieeeicecise et re e sre e snen 11
Introduction to HBase High AVailability.........cceceieieieicececece e 12
Propagating Writes t0 REQION REPIICES......cc.cvueeeieececere sttt snens 14
TIMEIINE CONSISIENCY ... eviitiieieiieietee et ee st ste et se e et e e e e e s e e e e sesaestesaesresbeseeseensense e enenneeneenensennes 15
Configuring HA RAAS fOr HBESE.........ccciieiieieeiceeeeeee ettt sttt re e sre e s 17
Creating Highly Available HBase Tables with the HBase JaVa APl.........ccccoovveveveveseseseeeeeeee 20
Creating Highly Available HBase Tables with the HBase Shell..........cccoovvvvvvvviene e, 20
QuErying SECONAary REJIONS.......ccuciiireeesirestestestestestesaesaeseeeseeeesessessessestestessessetesaessessessensesessessenns 20
Monitoring Secondary RegIiON REPIICES........ccceierieiierieieerire st se e snesre e e 21

HBase Cluster Replication for Geographic Data DistribUtion............ccccevveeeeieveeiecenence e sesesee s 22
Configuring NameNode High AVailability.........ccccieiiiiieieicecec s 32
NBMENOUIE ATCIITECIUIE. ... ecvieeie ettt sttt sttt et 33
Preparing the Hardware Resources for NameNode High Availability........c..ccocevieveveicceiccecencneeee 34
Deploying the NameNOde HA ClUSLE ..o sttt sre e e 34
Operating a NameNOde HA CIUSIEN ..ottt s es 42
Configuring and Deploying NameNode AutomatiC FaillOVEr...........cccceveveieveeiecieceseees e 43
AdMINIStrative COMMIBNGS.......cc.cerieirieiriririesess ettt b ettt s be e be e benees 46
Configuring ResourceManager High AVailability........ccceoeieieeieieee e 47
Preparing the HardWare RESOUICES..........cuciieieieiesese et te e e ettt sre e e sae e e s e e e e 47
Deploying ResourceManager HA ClIUSEN.........oceieiieieeieeeeeeee s s neens 47
Configuring Apache Ranger High Availability........ccccooeieieicieiee e 55
Configuring Ranger Admin HA ..ot re st e s sr e beseesrenean 55
D= 1= W o 1= ot o o OSSPSR 69
Preventing Accidental Deletion Of FIIES.........oooiiiririii e e e 69
Backing UpP HDFS MELAOAIAL..........ciuerieieieieeeeieeeee sttt ettt ae bbbt bbbt bese et e e e e e e eneas 71
Introduction to HDFS Metadata Files and DireCtOri€s..........cccovrirererenene s 71

T o W ol o B SR (Y = o - SRS 77

Using HDFS snapshots fOr data ProteCHiON...........cii ettt et s enen 77
Considerations for working with HDFS SNaPSNOLS........cccooiiiiinire e 78
Enable snapshot Creation 0N @ IFECLONYcoiiiiiiere et s 78

Create SNAPSNOLS ON @ GITECTONY.......iiuirie ettt st se e et e et sbeeaas 79
Recover data from @ SNBPSNOL........cc.eiiiiiiierie ettt sb e et s e et e e e e e e s s e sae b e e e 79

Options to determine differences between contents of SNEPSNOLS.........coeoeeereieriirinenr e 79

Configuring Fault Tolerance | Contents | iii

SNAPSNOL OPEFBLIONS.cveteee ettt sttt st st b e et e se et e s e et e st ebesaesbeebesbeseese e beseese et e e eneeneenennes 80

Configuring Fault Tolerance Configuring Fault Tolerance

Configuring Fault Tolerance

Y ou can configure fault tolerance in Hortonworks Data Platform using Ambari and also on non-Ambari clusters.

Y ou can configure fault tolerance in Hortonworks Data Platform in the following ways:

« Configure high availability using Apache Ambari - Use the Ambari's wizard-driven interface to configure high
availability of the components.

« Configure high availability on non-Ambari clusters - Y ou can configure HA on Hive Metastore, HiveServer2
instances, HBase, and NameNodes on HDFS. Y ou can also configure HA for Resource Manager on YARN and
Apache Ranger.

» Protect HDFS data and metadata - Y ou can configure accidental deletion of files and use HDFS snapshots for data
protection.

Apache Ambari High Availability

Ambari web provides awizard-driven user experience that enables you to configure high availability of the
components in many Hortonworks Data Platform (HDP) stack services. High availability is assured through
establishing primary and secondary components. In the event that the primary component fails or becomes
unavailable, the secondary component is available. After configuring high availability for a service, Ambari enables
you to manage and disable (roll back) high availability of componentsin that service.

See the Ambari documentation for more information about configuring High Availability using Ambari.

High Availability on Non-Ambari Clusters

Configuring High Availability (HA) on your cluster is essential for avoiding instances of service failures or cluster
downtimes.

Configuring High Availability for the Hive M etastore

Configuring and deploying the Hive Metastore service in High Availability mode can address instances of service
failure.

f Important:
Therelational database that backs the Hive Metastore itself should also be made highly available using best
practices defined for the database system in use.

Use Cases and Failover Scenarios

Deploying the Metastore service in High Availability (HA) mode can help in handling service failures. Y ou should
deploy the Metastore service on multiple systems concurrently.

Use Cases

The Metastore HA solution is designed to handle Metastore service failures. Whenever a deployed Metastore service
goes down, Metastore service can remain unavailable for a considerable time until service is brought back up. To
avoid such outages, deploy the Metastore servicein HA mode.

Deployment Scenarios

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Hortonworks recommends deploying the Metastore service on multiple systems concurrently. Each Hive Metastore
client will read the configuration property hive.metastore.uristo get alist of Metastore servers with which it can try to
communicate.

<property>
<name> hive. netastore.uris </name>
<value> thrift://$H ve_Metastore_Server_Host_Mchi ne_FQN </val ue>
<description> A conma separated |list of Metastore uris on which Metastore
service is running </description>

</ property>

Note that the relational database that backs the Hive Metastore itself should also be made highly available using the
best practices defined for the database system in use.

In the case of a secure cluster, add the following configuration property to the hive-site.xml file for each Metastore
server:

<property>

<name> hi ve. cl ust er. del egati on. t oken. st ore. cl ass</ nanme>

<val ue>or g. apache. hadoop. hi ve. t hri ft. ZooKeeper TokenSt or e</ val ue>
</ property>

Failover Scenario
The Hive metastore client randomly chooses a metastore URI when multiple metastores are configured, which helps

in load-balancing.

Softwar e Configuration

To configure high availability for Hive, you must install HDP, update the Hive Metastore, and validate the Hive
configuration.

About thistask
Complete the following tasks to configure Hive High Availability solution:

Procedure
1. Install Hortonworks Data Platform.

2. Update the Hive Metastore.
3. Validate the configuration.

Install Hortonwor ks Data Platform
Install Hortonworks Data Platform on your cluster hardware and later configure high availability.

Procedure

1. Make surethat you specify the virtual machine as your NameNode.
2. Download the Apache Ambari repository.

E Note:
Do not start the Ambari server until you have configured the relevant templates as outlined in the
following steps.

3. Edit the <master-install-machine-for-Hive-M etastore>/etc/hive/conf.server/hive-site. xml configuration file to add
the following properties:

* Provide the URI for the client to contact Metastore server. The following property can have a comma
separated list when your cluster has multiple Hive Metastore servers.

<property>

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

<name>hi ve. net ast or e. uri s</ name>

<val ue>thrift://$H ve Metastore_Server Host Machi ne_FQDN</ val ue>

<description>URl for client to contact Metastore server</description>
</ property>

» Configure Hive cluster delegation token storage class.
<property>
<name>hi ve. cl ust er. del egati on. t oken. st or e. cl ass</ nane>

<val ue>or g. apache. hadoop. hi ve. thrift.ZooKeeper TokenSt or e</ val ue>
</ property>

¢ Complete Hortonworks Data Platform installation.
See the Ambari documentation for installing, configuring, and deploying the HDP cluster.

Updatethe Hive M etastore
Hortonworks Data Platform components configured for High Availability must use a NameService rather than a
NameNode.

About thistask
Use the following instructions to update the Hive Metastore to reference the NameService rather than a Name Node.

Note: Hadoop administrators also often use the following procedure to update the Hive Metastore with the
E new URI for anode in aHadoop cluster. For example, administrators sometimes rename an existing node as
their cluster grows.

Procedure

1. Open acommand prompt on the machine hosting the Hive Metastore.
2. Setthe HIVE_CONF_DIR environment variable:

export H VE CONF_DI R=/ et c/ hi ve/ conf. server

3. Execute the following command to retrieve alist of URIs for the filesystem roots, including the location of the
NameService:

hi ve --service netatool -I|istFSRoot
4. Execute the following command with the -dryRun option to test your configuration change before implementing
it:

hi ve --service netatool -updatelocation <naneservice-uri> <nanenode-uri > -
dryRun

5. Execute the command again, this time without the -dryRun option:

hi ve --service netatool -updatelocation <nanmeservice-uri> <namenode-uri >

Validate configuration
Y ou must test various failover scenarios to validate your configuration.

Deploying Multiple HiveServer 2 I nstances for High Availability

Deploy and configure a second instance of HiveServer2 (HS2) that runsin parallel with your primary instance of HS2
to enhance availability.

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Adding an Additional HiveServer2 to Your Cluster Manually
Y ou must add the additional HiveServer2 to your cluster manually.

Procedure

1

Install Hive on the new node. For example, use one of the following commands in RHEL/CentOS/Oracle Linux
environments:

a) If the new nodeis part of acluster where Hadoop and HDFS have not been installed, use the following
command:

yuminstall hive-hcatal og hadoop hadoop- hdf s hadoop-1i bhdfs hadoop-yarn
hadoop- mapr educe hadoop-client openssl

b) If the new node is part of a cluster where Hadoop and HDFS are installed, you need only install the hive-
hcatal og package. For example, in RHEL/CentOS/Oracle Linux environments use the following command:

Copy the following configuration files from your existing HS2 instance to the new HS2 instance:

a) Under /etc/hive/conf, copy the hive-site.xml file.

For HDP version 2.2 and later, you must also copy the hiveserver2-site.xml file.
b) Under /etc/hadoop/conf, copy the core-site.xml, hdfs-site.xml, mapred-site.xml, and yarn-site.xml files.

Copy the database driver file for the Metastore database from the /usr/hdp/current/hive-server2/lib folder of the
existing HS2 instance to the /usr/hdp/current/hive-server2/lib folder of the new instance. For example, postgresql-
jdbc.jar isthe database driver file for a PostgreSQL database, and mysql-connector-java.jar is the database driver
file for aMySQL database.

Note:
E Before HDP version 2.2.0, the database driver file for the Metastore database is located in the /usr/lib
folder.

Start the HS2 service:

su $H VE_USER

[usr/libl/hivelbin/hiveserver2 -hiveconf hive.netastore. uris="
-hi veconf hive.log.file=hiveserver2.log

>$HI VE_LOG DI R/ hi veserver 2. out 2

>$HI VE_LOG DI R/ hi veserver 2.l og &

If you are using HDP 2.1.15 and earlier, the HS2 service startup script is located in the /ust/lib/hive/bin directory.
For more information about starting the HS2 service, see the

a) If youareusing HDP 2.1.15 and earlier, the HS2 service startup script is located in the /usr/lib/hive/bin
directory.

b) Specifying —hiveconf hive.metastore.uris=" " when you start the HS2 service causes HS2 to use an embedded
Metastore, which improves the performance when HS2 retrieves data from the back-end data store (RDBMS).
If you are using HDP 2.3.0 or later and have added the hive.metastore.uris=" " property to the hiveserver2-
sitexml file, it is not necessary to specify it on the command line when you start the service.

Validate your installation by connecting to the new HS2 instance using Beeline.

a) Open Beeline command-line shell to interact with HS2:

[usr/ hdp/current/hive-server 2/ bin/beeline

b) Establish a connection to HS2:

I connect jdbc: hive2://$hive.server.full.hostnane: <port_nunber>
$H VE_USER password org. apache. hi ve. jdbc. Hi veDri ver

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

¢) Run sample commands

show dat abases;
create table test2(a int, b string);
show t abl es;

This completes the manual installation of an additional HiveServer2 on a cluster.

Adding an Additional HiveServer2 to a Cluster with Ambari

If you have a new HiveServer2 (HS2) instance installed on a new host that has not been added to your cluster, you
can add it with Ambari.

Procedure

Open Ambari in abrowser and click the Hosts tab.

On the Hosts page, click Actions, and select Add New Hosts.

Follow the Add Host Wizard instructions.

When you have completed adding the host to your cluster, click the Services tab.

On the Services page, click Hivein thelist of services on the |eft side of the browser.

On the upper right side of the Hive Services page, click Service Actions, and select Add HiveServer2:

Services Hosts 3 Alerts Admin e

Service Actions ~

o 0k~ wbdpE

M Stop

C Restart All

~ Move Hive Metastore

~* Move HiveServer2

* Move MySQL Server

* Move WebHCat Server

) Run Service Check

I8 Turn On Maintenance Mode
+ Add Hive Metastore

+ Add HiveServer2

& Download Client Configs

7. Inthe Confirmation dialog box, select the host that you added in Steps 1 -3, and click Confirm Add.

The progress of adding the HS2 is displayed in the Background Operation Running dialog box. Click OK when it
isfinished to dismiss the dialog box.

Configuring HiveServer2 High Availability Using ZooK eeper
Y ou can implement HiveServer2 High Availability using ZooK eeper.
This section describes how to implement HiveServer2 High Availability through ZooK eeper.

e How ZooK eeper Manages HiveServer2 Requests
* Dynamic Service Discovery Through ZooK eeper
» Rolling Upgrade for HiveServer2 Through ZooK eeper

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

How ZooK eeper M anages HiveServer 2 Requests

Multiple HiveServer2 (HS2) instances can register themselves with ZooK eeper and then the client (client driver) can
find a HS2 through ZooK eeper.

When aclient requests an HS2 instance, ZooK eeper returns one randomly-sel ected registered HS2.
This enables the following scenarios:
« High Availability

If more than one HS2 instance is registered with ZooK eeper, and all instances fail except one, ZooK eeper passes
the link to the instance that is running and the client can connect successfully. (Failed instances must be restarted
manually.)

e Load Balancing

If there is more than one HS2 instance registered with ZooK eeper, ZooK eeper responds to client requests by
randomly passing alink to one of the HS2 instances. This ensures that all HS2 instances get roughly the same
workload.

The following situation is not handled:
* Automatic Failover

If an HS2 instance failed while a client is connected, the session islost. Since this situation need to be handed at
the client, there is no automatic failover; the client needs to reconnect using ZooK eeper.

Dynamic Service Discovery Through ZooK eeper
Y ou can implement dynamic service discovery by including an additional indirection step through ZooK eeper.

The HS2 instances register with ZooKeeper under a namespace. When a HiveServer2 instance comes up, it registers
itself with ZooK eeper by adding a znode in ZooK eeper. The znode name has the format:

/<hiveserver2_namespace>/serverUri=<host:port>;version=<versionlnfo>; sequence=<sequence_number>,
The znode stores the server host:port asits data.

The server instance sets a watch on the znode; when the znode is modified, that watch sends a notification to the
server. This notification helps the server instance keep track of whether or not it is on thelist of servers available for
new client connections.

When a HiveServer2 instance is de-registered from ZooK eeper, it is removed from the list of servers available for
new client connections. (Client sessions on the server are not affected.) When the last client session on aserver is
closed, the server is closed.

To de-register asingle HiveServer2, enter hive --service hiveserver2 --deregister <package 1D>
Query Execution Path Without ZooK eeper

As shown in theillustration below, query execution without ZooK eeper happens in the traditional client/server model
used by most databases:

1. TheJDBC/ ODBC driver isgiven ahost:port to an existing HS2 instance.
This establishes a session where multiple queries can be executed.

For each query...
2. Client submits a query to HS2 which in turn submitsit for execution to Hadoop.
The results of query are written to atemporary file.
4. Theclient driver retrieves the records from HS2 which returns them from the temporary file.

w

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

1. Connect HiveServer2
jdbc:hive2:/f<host>:<port>f
IDBC / ODBC 2. Submit Query 3. Results written to
Client for execution ternp file
4. Returns records from temp file
In response to client fetch calls Haduup

Query Execution Path With ZooK eeper

Query execution with ZooK eeper takes advantage of dynamic discovery. Thus, the client driver needs to know how to
use this capability, which isavailablein HDP 2.2 and later with the JDBC driver and ODBC driver 2.0.0.

Dynamic discovery isimplemented by including an additional indirection step through ZooK eeper. As shown in the
figure below...

1. Multiple HiveServer2 instances are registered with ZooK eeper.
2. Theclient driver connects to the ZooK eeper ensemble:

jdbc: hive2:// <zookeeper _ensenbl e>; servi ceDi scover yMbde=zooKeeper ;
zooKeeper Nanmespace=<hi veser ver 2_nanespace

In the figure below, <zookeeper_ensemble> is Host1:Port1, Host2: Port2, Host3:Port3; <hiveserver_namespace) is
hiveServer2.

3. ZooKeeper randomly returns <host>:<port> for one of the registered HiveServer2 instances.

4. Theclient driver can not connect to the returned HiveServer instance and proceed as shown in the previous section
(asif ZooK eeper was not present).

Zookeeper

2. Conmect
jdbcchive 2/ f<zookeeper_ensemblesy;
servicaDisoaver Mode =1 6ok sepor;

ooKkeeperMNamespace=hiveServer?

Hostl:portl Host2:port2 Host3:port3

1. Multiple H52 indtandes
register under the

3. fookepper relurms namespace hiveServer?

chostecports

4. Connect HiveServer2 HiveServer2
jdbc=h astesportsf
JDBC l."I ODBC 5. Submit Query 6. Results written to
I For executhon Temp file
Client
4. Returns records from temp file Hadﬂﬂl:l

In responde 1o client fetch calls

10

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Rolling Upgrade for HiveServer2 Through ZooK eeper

There are additional configuration settings and procedures that need to be implemented to support rolling upgrade for
HiveServer.

Set Configuration Parametersfor HiveServer2 Rolling Upgrade
Set the Zookeeper Quorum Configuration parameters before performing rolling upgrade for HiveServer2.

Procedure
1. Set hive.zookeeper.quorum to the ZooK eeper ensemble (a comma separated list of ZooK eeper server host:ports
running at the cluster)

2. Customize hive.zookeeper.session.timeout so that it closes the connection between the HiveServer2's client and
ZooK eeper if a heartbeat is not received within the timeout period.

3. Set hive.server2.support.dynamic.service.discovery to true

4. Set hive.server2.zookeeper.namespace to the value that you want to use as the root namespace on ZooKeeper. The
default valueis hiveserver2.

5. Theadminstrator should ensure that the ZooK eeper service is running on the cluster, and that each HiveServer2
instance gets a unique host:port combination to bind to upon startup.

Perform Rolling Upgrade for HiveServer2
After setting the required configuration parameters, perform the rolling upgrade for HiveServer2.

Procedure

1. Without altering the old version of HiveServer2, bring up instances of the new version of HiveServer2. Make sure
they start up successfully.

2. Tode-register instances of the old version of HiveServer2, enter hive service hiveserver2 deregister

3. Do not shut down the older instances of HiveServer2, asthey might have active client sessions. When sessions
complete and the last client connection is closed, the server instances shut down on their own. Eventually all
instances of the older version of HiveServer2 will become inactive.

Perform Rollback of HiveServer2
Based on your requirements, you can roll back HiveServer2 upgrades.

Procedure

1. Bring up instances of the older version of HiveServer2. Make sure they start up successfully.

2. Toexplicitly de-register the instances of the newer version of HiveServer2, enter: hive service hiveserver2
deregister

3. Do not shut down the newer instances of HiveServer2, as they might have active client sessions. When sessions

complete and the last client connection is closed, the server instances shut down on their own. Eventually all
instances of the newer version of HiveServer2 will become inactive.

Configuring High Availability for HBase
HDP enables HBase administrators to configure HBase clusters with read-only High Availability, or HA.

This feature benefits HBase applications that require low-latency queries and can tolerate minimal (near-zero-second)
staleness for read operations. Examples include queries on remote sensor data, distributed messaging, object stores,
and user profile management.

High Availability for HBase features the following functionality:

e Dataissafely protected in HDFS
» Failed nodes are automatically recovered

11

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

* Nosingle point of failure
« All HBase API and region operations are supported, including scans, region split/merge, and META table support
(the META table stores information about regions)

However, HBase administrators should carefully consider the following costs associated with using High Availability
features:

* Double or triple MemStore usage

« Increased BlockCache usage

 Increased network traffic for log replication

» Extrabackup RPCsfor secondary region replicas

HBase is adistributed key-value store designed for fast table scans and read operations at petabyte scale. Before
configuring HA for HBase, you should understand the concepts in the following table.

Table 1. Basic HBase Concepts

HBase Concept Description

Region A group of contiguous rows in an HBase table. Tables start with one
region; additional regions are added dynamically as the table grows.
Regions can be spread across multiple hosts to balance workloads and
recover quickly from failure.

There are two types of regions: primary and secondary. A secondary
region isacopy of aprimary region, replicated on a different
RegionServer.

RegionServer A RegionServer serves data requests for one or more regions. A single
region is serviced by only one RegionServer, but a RegionServer

may serve multiple regions. When region replication is enabled,

a RegionServer can serve regions in primary and secondary mode
concurrently.

Column family A column family isagroup of semanticaly related columnsthat are
stored together.
Memstore Memstore isin-memory storage for a RegionServer. RegionServers

write files to HDFS after the MemStore reaches a configurable
maximum value specified with the hbase.hregion.memstore.flush.size
property in the hbase-site.xml configuration file.

Write Ahead Log (WAL) The WAL isalog file that records al changes to data until the data

is successfully written to disk (MemStore is flushed). This protects
against dataloss in the event of afailure before MemStore contents are
written to disk.

Compaction When operations stored in the MemStore are flushed to disk, HBase
consolidates and merges many smaller filesinto fewer large files.
This consolidation is called compaction, and it isusually very fast.
However, if many RegionServers hit the data limit (specified by the
MemStore) at the same time, HBase performance may degrade from
the large number of simultaneous major compactions. Administrators
can avoid this by manually splitting tables over time.

Introduction to HBase High Availability
HBase provides afeature called region replication to achieve high availability for reads.

HBase, architecturally, has had a strong consistency guarantee from the start. All reads and writes are routed through
asingle RegionServer, which guarantees that all writes happen in order, and all reads access the most recently
committed data.

However, because of this "single homing" of reads to asingle location, if the server becomes unavailable, the regions
of the table that are hosted in the RegionServer become unavailable for some time until they are recovered. There
are three phases in the region recovery process: detection, assignment, and recovery. Of these, the detection phaseis

12

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

usualy the longest, currently on the order of 20 to 30 seconds depending on the ZooK eeper session timeout setting (if
the RegionServer became unavailable but the ZooK eeper session is alive). After that we recover data from the Write
Ahead Log and assign the region to a different server. During this time -- until the recovery is complete -- clients are
not able to read data from that region.

For some use cases the data may be read-only, or reading some amount of stale data is acceptable. With timeline-
consistent highly available reads, HBase can be used for these kind of |atency-sensitive use cases where the
application can expect to have a time bound on the read compl etion.

For achieving high availability for reads, HBase provides a feature called “region replication”. In this model, for each
region of atable, there can be multiple replicas that are opened in different RegionServers. By default, the region
replication is set to 1, so only asingle region replicais deployed and there are no changes from the original model. If
region replication is set to 2 or more, then the master assigns replicas of the regions of the table. The Load Balancer
ensures that the region replicas are not co-hosted in the same Region Servers and also in the same rack (if possible).

All of thereplicas for asingle region have aunique replica ID, starting with 0. The region replicawith replicalD =0
iscalled the "primary region." The others are called “ secondary region replicas,” or "secondaries’. Only the primary
region can accept writes from the client, and the primary always contains the latest changes. Since all writes must go
through the primary region, the writes are not highly available (meaning they might be blocked for some time if the
region becomes unavailable).

In the following image, for example, RegionServer 1 isresponsible for responding to queries and scans for keys 10
through 40. If RegionServer 1 crashes, the region holding keys 10-40 is unavailable for a short time until the region

recovers.
o Divided among
Keys within HBase different RegionServers
N
Key:10-20 HRegion
P
!
—_—
HBase Table Key:20-40
—
e
| HRegion A
TableT Key:40-60 o
\ﬂ-__d-v"' 4
Key:60-80 .
\Nf HFiagiOﬂ\
|\ Sernverd
Key:80-100 "———————______\;5‘_ _,,e/

HA provides away to access keys 10-40 even if RegionServer 1 isnot available, by hosting replicas of the region
and assigning the region replicas to other RegionServers as backups. In the following image, RegionServer 2

hosts secondary region replicas for keys 10-20, and RegionServer 3 hosts the secondary region replicafor keys
20-40. RegionServer 2 also hosts the secondary region replica for keys 80-100. There are no separate RegionServer
processes for secondary replicas. Rather, RegionServers can serve regions in primary or secondary mode. When
RegionServer 2 services queries and scans for keys 10-20, it acts in secondary mode.

13

Configuring Fault Tolerance

. Divided among
Keys within HBase different RegionServers
T
Key:10-20 = [HRegion |
: | Serverl ,l
HBase Table Key:20-40 P
W
‘ { HRegon |
Tahla1 KE?:“G'EID f=— '.1' Server? J
. # - . \:I' - _J‘_.z
Key:60-80 - RN Wl
- ri b
j‘\," HREgiD" "II
= | Serverd |
Key:B0-100 I_'___"'———-———-;L.., e g

Note:

IS Regions acting in secondary mode are also known as Secondary Region Replicas. However, thereisno
separate RegionServer process. A region in secondary mode can read but cannot write data. In addition, the
datait returns may be stale, as described in the following section.

Timeline and Strong Data Consistency

HBase guarantees timeline consistency for all data served from RegionServersin secondary mode, meaning all HBase
clients see the same data in the same order, but that data may be dlightly stale. Only the primary RegionServer is
guaranteed to have the latest data. Timeline consistency simplifies the programming logic for complex HBase queries
and provides lower latency than quorum-based consistency.

In contrast, strong data consistency means that the latest datais always served. However, strong data consistency can
greatly increase latency in case of a RegionServer failure, because only the primary RegionServer is guaranteed to
have the latest data. The HBase API allows application developers to specify which data consistency is required for a

query.

Note:
IS The HBase API contains a method called Result.isStale(), which indicates whether data returned in secondary
modeis"stale" -- the data has not been updated with the latest write operation to the primary RegionServer.

Propagating Writesto Region Replicas

StoreFile Refresher and Async WAL Replication are the mechanisms used to propagate writes from the primary
replicato secondary replicas.

Writes are written only to the primary region replica.

The following two mechanisms are used to propagate writes from the primary replicato secondary replicas.

Note:

E By default, HBase tables do not use High Availability features. After configuring your cluster for High
Availability, designate tables as HA by setting region replication to avalue greater than 1 at table creation
time.

For read-only tables, you do not need to use any of the following methods. Disabling and enabling the table
should make the data available in all region replicas.

StoreFile Refresher
The first mechanism is the store file refresher, which was introduced in Phase 1 (Apache HBase 1.0.0 and HDP 2.1).

14

High Availability on Non-Ambari Clusters

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Store file refresher is athread per RegionServer, which runs periodically, and does a refresh operation for the store
files of the primary region for the secondary region replicas. If enabled, the refresher ensures that the secondary
region replicas see the new flushed, compacted or bulk loaded files from the primary region in atimely manner.
However, this means that only flushed data can be read back from the secondary region replicas, and after the
refresher is run, making the secondaries lag behind the primary for an alonger time.

To enable this feature, configure hbase.regionserver.storefile.refresh.period to a value greater than zero.
Async WAL Replication
The second mechanism for propagating writes to secondaries is done viathe Async WAL Replication feature.

Async WAL replication works similarly to HBase' s multi-datacenter replication, but the datafrom aregion is
replicated to its secondary regions. Each secondary replica always receives writes in the same order that the primary
region committed them. In some sense, this design can be thought of as "in-cluster replication”; instead of replicating
to adifferent datacenter, the data goes to secondary regions. This process keeps the secondary region’sin-memory
state up to date. Datafiles are shared between the primary region and the other replicas, so there is no extra storage
overhead. However, secondary regions have recent non-flushed data in their MemStores, which increases memory
overhead. The primary region writes flush, compaction, and bulk load eventsto its WAL aswell, which are also
replicated through WAL replication to secondaries. When secondary replicas detect a flush/compaction or bulk load
event, they replay the event to pick up the new files and drop the old ones.

Committing writes in the same order asin the primary region ensures that the secondaries won't diverge from the
primary region's data, but because the log replication is asynchronous, the data might still be stale in secondary
regions. Because this feature works as a replication endpoint, performance and latency characteristics should be
similar to inter-cluster replication.

Async WAL Replication is disabled by default. To enable this feature, set hbase.region.replica.replication.enabled to
true.

When you create a table with High Availability enabled, the Async WAL Replication feature adds a new replication
peer (named region_replica_replication).

Once enabled, to disable this feature you'll need to perform the following two steps:

» Set hbase.region.replica.replication.enabled to false in hbase-site.xml.

* Inyour cluster, disable the replication peer named region_replica_replication, using hbase shell or
ReplicationAdmin class: hbase> disable_peer 'region_replica_replication’

StoreFile TTL

In phase 1 and 2 of the write propagation approaches mentioned above, store files for the primary replica are opened
in secondaries independent of the primary region. Thus, for files that the primary region compacted and archived, the
secondaries might still refer to these files for reading.

Both features use HFileLinks to refer to files, but there is no guarantee that the file is not deleted prematurely. To
prevent 1/0 exceptions for requests to replicas, set the configuration property hbase.master.hfilecleaner.ttl to a
sufficient time range such as 1 hour.

Region Replication for the META Table's Region

Currently, Async WAL Replication is not done for the META table’ s WAL -- the META table’s secondary
replicas still refresh themselves from the persistent store files. To ensure that the META store files are refreshed,
set hbase.regionserver.meta.storefile.refresh.period to a non-zero vaue. Thisis configured differently than
hbase.regionserver.storefile.refresh.period.

Related Tasks

Creating Highly Available HBase Tables with the HBase Java AP

Creating Highly Available HBase Tables with the HBase Shell

Configuring HA Reads for HBase

Timeline Consistency
With timeline consistency, HBase introduces a consistency definition that can be provided per read operation.

15

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

The Consistency definition that can be provided per read operation (get or scan) is as follows:

publ i c enum Consi st ency {

STRONG,
TI MELI NE

}

Consistency.STRONG isthe default consistency model provided by HBase. If atable hasregion replication = 1, or
has region replicas but the reads are done with time consistency enabled, the read is always performed by the primary
regions. This preserves previous behavior; the client receives the latest data.

If aread is performed with Consistency. TIMELINE, then the read RPC is sent to the primary RegionServer first.
After ashort interval (hbase.client.primaryCall Timeout.get, 10ms by default), a parallel RPC for secondary region
replicasis sent if the primary does not respond back. HBase returns the result from whichever RPC finishes first. If
the response is from the primary region replica, the datais current. Y ou can use Result.isStale() API to determine the
state of the resulting data:

e |f theresult isfrom aprimary region, Result.isStale() is set to false.
« If theresult isfrom a secondary region, Result.isStale() is set to true.

TIMELINE consistency as implemented by HBase differs from pure eventual consistency in the following respects:

» Single homed and ordered updates: Whether region replication is enabled or not, on the write side, there is still
only one defined replica (primary) that can accept writes. This replicais responsible for ordering the edits and
preventing conflicts. This guarantees that two different writes are not committed at the same time by different
replicas, resulting in divergent data. With this approach, there is no need to do read-repair or last-timestamp-wins
types of of conflict resolution.

* Thesecondary replicas also apply editsin the order that the primary committed them, thus the secondaries contain
a snapshot of the primary's data at any point in time. Thisis similar to RDBMS replications and HBase's own
multi-datacenter replication, but in asingle cluster.

« Ontheread side, the client can detect whether the read is coming from up-to-date data or is stale data. Also, the
client can issue reads with different consistency requirements on a per-operation basis to ensure its own semantic
guarantees.

e Theclient might still read stale dataif it receives data from one secondary replicafirst, followed by reads from
another secondary replica. There is no stickiness to region replicas, nor is there a transaction 1D-based guarantee.
If required, this can be implemented later.

Memory Accounting

Secondary region replicas refer to data filesin the primary region replica, but they have their own MemStores (in HA
Phase 2) and use block cache as well. However, one distinction is that secondary region replicas cannot flush data
when there is memory pressure for their MemStores. They can only free up MemStore memory when the primary
region does a flush and the flush is replicated to the secondary.

Because a RegionServer can host primary replicas for some regions and secondaries for others, secondary replicas
might generate extra flushesto primary regions in the same host. |n extreme situations, there might be no memory for
new writes from the primary, via WAL replication.

To resolve this situation, the secondary replicais allowed to do a“store file refresh.” A file

system list operation picks up new files from the primary, possibly dropping its MemStore. This

refresh isonly performed if the MemStore size of the biggest secondary region replicais at least
hbase.region.replica.storefile.refresh.memstore.multiplier times bigger than the biggest MemStore of a primary
replica. (The default value for hbase.region.replica.storefile.refresh.memstore.multiplier is 4.)

Note:

E If this operation is performed, the secondary replica might obtain partial row updates across column families
(because column families are flushed independently). We recommend that you configure HBase to not do this
operation frequently.

Y ou can disable this feature by setting the value to alarge number, but this might cause replication to be
blocked without resolution.

16

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Secondary Replica Failover

When a secondary region replicafirst comes online, or after a secondary region fails over, it may have contain edits
from its MemStore. The secondary replica must ensure that it does accesss stale data (data that has been overwritten)
before serving requests after assignment. Therefore, the secondary waits until it detects a full flush cycle (start flush,
commit flush) or a*“region open event” replicated from the primary.

Until the flush cycle occurs, the secondary region replicarejects all read requests via an | OException with the
following message:

The region's reads are disabled

Other replicas are probably still be available to read, thus not causing any impact for the RPC with TIMELINE
consistency.

To facilitate faster recovery, the secondary region triggers a flush request from the primary when it is opened. The
configuration property hbase.region.replica.wait.for.primary.flush (enabled by default) can be used to disable this
feature if needed.

Configuring HA Readsfor HBase

To enable High Availability for HBase reads, specify the server-side and client-side configuration propertiesin your
hbase-site.xml configuration file, and then restart the HBase Master and RegionServers.

Procedure

1. Set the server-side properties in your hbase-site.xml configuration file for al serversin your HBase cluster that
use region replicas. The following table describes server-side properties.

Table 2: Server-Side Configuration Propertiesfor HBase HA

Property Examplevalue Description

hbase.regionserver. storefile.refresh.period 30000 Specifies the period (in milliseconds) for
refreshing the store files for secondary
regions. The default value is 0, which
indicates that the feature is disabled.
Secondary regions receive new files from the
primary region after the secondary replica
refreshesthelist of filesin the region.

Note: Too-frequent refreshes might cause
extra Namenode pressure. If files cannot
be refreshed for longer than HFile TTL,
specified with hbase.master.hfilecleaner.ttl,
the requests are rejected.

Refresh period should be a non-zero
number if META replicas are enabled (see
hbase.meta.replica.count).

If you specify refresh period, we recommend
configuring HFile TTL to alarger value than
its defaullt.

17

Configuring Fault Tolerance

High Availability on Non-Ambari Clusters

Property

Example value

Description

hbase.region.replica. replication.enabled

true

Determines whether asynchronous WAL
replication is enabled or not. The value can
betrue or false. The default isfalse.

If this property is enabled, areplication peer
named region_replica_replication is created.
The replication peer replicates changes

to region replicas for any tables that have
region replication set to 1 or more.

After enabling this property, disabling it
requires setting it to false and disabling

the replication peer using the shell or

the ReplicationAdmin java class. When
replication is explicitly disabled and then re-
enabled, you must set hbase.replication to
true.

hbase.master. hfilecleaner ttl

3600000

Specifies the period (in milliseconds) to
keep storefilesin the archive folder before
deleting them from the file system.

hbase.master. loadbal ancer.class

org.apache.hadoop.hbase. master.balancer.

StochasticL oadBalancer

Specifies the Java class used for balancing
the load of all HBase clients.

The default valueis
org.apache.hadoop.hbase. master.balancer.
StochasticlL oadBalancer, which is the only
load balancer that supports reading data from
RegionServers in secondary mode.

hbase.meta.replica.count

Region replication count for the meta
regions. The default valueis 1.

hbase.regionserver.
metastorefile.refresh.period

30000

Specifies the period in milliseconds for
refreshing the store files for the HBase
META tables secondary regions. If thisis set
to O, the feature is disabled.

When the secondary region refreshes the

list of filesin the region, the secondary
regions see new files that are flushed and
compacted from the primary region. Thereis
no notification mechanism.

Note: If the secondary region is refreshed
too frequently, it may cause Namenode
pressure. Requests are rejected if the

files cannot be refreshed for longer than
HFile TTL, which is specified with
hbase.master.hfilecleaner.ttl. Configuring
HFile TTL to alarger value is recommended
with this setting.

If META replicas are enabled, set

thisto a non-zero number by setting
hbase.meta.replica.count to a value greater
than 1.

hbase.region.replicawait. for.primary.flush

true

Specifies whether to wait for afull flush
cycle from the primary before starting to
serve datain a secondary replica.

Disabling this feature might cause secondary
replicasto read stale datawhen aregion is
transitioning to another RegionServer.

18

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Property Example value Description
hbase.region.replica. storefile.refresh. 4 Multiplier for a“storefile refresh” operation
memstore.multiplier for the secondary region replica.

Thismultiplier is used to refresh a secondary
region instead of flushing a primary region.
The default value (4) configures thefile
refresh so that the biggest secondary region
replicais 4 times bigger than the biggest
primary region.

Disabling this feature is not recommended.
However, if you want to do so, set this
property to alarge value.

2. Set the client-side propertiesin your hbase-site.xml configuration file for all clients, applications, and serversin
your HBase cluster that use region replicas. The following table lists client-side properties.

Table 3: Client-Side Propertiesfor HBase HA

Property Examplevalue Description

hbase.ipc.client. specificThreadForWriting true Specifies whether to enable interruption

of RPC threads at the client side. Thisis
required for region replicas with fallback
RPC’s to secondary regions.

hbase.client. primaryCall Timeout.get 10000 Specifies the timeout (in microseconds)
before secondary fallback RPC's

are submitted for get requests with
Consistency. TIMELINE to the secondary
replicas of theregions. The default valueis
10ms.

Setting this to a smaller value increases the
number of RPC's, but lowers 99th-percentile
latencies.

hbase.client. primaryCall Timeout. multiget 10000 Specifies the timeout (in microseconds)
before secondary fallback RPC’'s

are submitted for multi-get requests
(HTable.get(List<Get>)) with
Consistency. TIMELINE to the secondary
replicas of the regions. The default valueis
10ms.

Setting this to asmaller value increases the
number of RPC’s, but lowers 99th-percentile
latencies.

hbase.client. primaryCall Timeout.scan 1000000 Specifies the timeout (in microseconds)
before secondary fallback RPC’'s

are submitted for scan requests with
Consistency. TIMELINE to the secondary
replicas of the regions. The default valueis 1
second.

Setting this to asmaller value increases the
number of RPC’s, but lowers 99th-percentile
latencies.

hbase.meta.replicas.use true Specifies whether to use META table
replicas or not. The default value is false.

3. Restart the HBase Master and RegionServers.

Related Concepts
Propagating Writes to Region Replicas

19

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Creating Highly Available HBase Tableswith the HBase Java API
HBase tables are not highly available by default. To enable high availability, designate atable as HA during table

creation.
HBase Java API
Create highly available HBase tables programmatically, using the Java API, as shown in the following example:

HTabl eDescri ptor htd =
new HTabl eDesscri pt or (Tabl eNane. val ueOf ("test _table"));
ht d. set Regi onRepl i cati on(2);

adm n. createTabl e(htd);
This example creates a table named test_table that is replicated to one secondary region. To replicate test_table to two
secondary replicas, pass 3 as a parameter to the setRegionReplication() method.

Related Concepts
Propagating Writes to Region Replicas

Creating Highly Available HBase Tables with the HBase Shell
Create HA tables using the HBase shell using the REGION_REPLICATION keyword.

HBase Shell

Vaidvauesare 1, 2, and 3, indicating the total number of copies. The default valueis 1.

The following example creates a table named t1 that is replicated to one secondary replica:
CREATE't1', 'f1', {REGION_REPLICATION => 2}

To replicate t1 to two secondary regions, set REGION_REPLICATION to 3:
CREATE't1', 'f1', {REGION_REPLICATION => 3}

Related Concepts

Propagating Writes to Region Replicas

Querying Secondary Regions

Y ou can query HA-enabled HBase tables with the Java API or HBase Shell.

This section describes how to query HA-enabled HBase tables.

Querying HBase with the Java API

The HBase Java API allows application devel opers to specify the desired data consistency for a query using the
setConsistency() method, as shown in the following example. A new enum, CONSISTENCY, specifies two levels of
data consistency: TIMELINE and STRONG.

Get get = new Get(row);
get . set Consi st ency(CONSI STENCY. Tl MELI NE) ;

i?é;sul t result = table.get(get);
HBase application developers can a so pass multiple gets:

CGet getl = new Get(row);
get 1. set Consi st ency(Consi st ency. Tl MELI NE) ;

A'r'rayLi st<CGet> gets = new ArraylList<CGet>();

20

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Resul t[] results = table.get(gets);
The setConsistency() method is also available for Scan objects:

Scan scan = new Scan();
scan. set Consi st ency(CONSI STENCY. Tl MELI NE) ;

Resul t Scanner scanner = tabl e. get Scanner (scan);

In addition, you can use the Result.isStale() method to determine whether the query results arrived from the primary
or asecondary replica:

Result result = table.get(get);
if (result.isStale()) {

}

Querying HBase Interactively

To specify the desired data consistency for each query, use the HBase shell:
hbase(main):001:0> get 't1', 'r6', { CONSISTENCY =>"TIMELINE"}
Interactive scans also accept this syntax:

hbase(main):001:0> scan 't1', { CONSISTENCY => TIMELINE}

B Note:
Thisrelease of HBase does not provide a mechanism to determine if the results from an interactive query
arrived from the primary or a secondary replica

Y ou can a'so request a specific region replicafor debugging:

hbase> get 't1', 'r6', {REG ON_REPLICA | D=>0, CONSI STENCY=>' TI MELI NE' }
hbase> get 't1', 'r6', {REG ON_REPLICA | D=>2, CONSI STENCY=>' TI MELI NE' }

Monitoring Secondary Region Replicas
Y ou can access the HBase Master server user interface and monitor the secondary region replicas.

HBase provides highly available tables by replicating table regions. All replicated regions have a unique replica

ID. ThereplicalD for aprimary region is always 0. The HBase web-based interface displays the replica IDs for all
defined table regions. In the following example, the table t1 has two regions. The secondary region isidentified by a
replicalD of 1.

21

Configuring Fault Tolerance

High Availability on Non-Ambari Clusters

Table

Tahla Attributes

Aitributn Bams abus
Enaiied)
Cernsassion EONE
Table Regicns

Mamo

b 1IESGEETR0E . badc haa |1 F5d0da Y o laz Bl S leadi T,

A TR D00 SET Tt A DS T IR0 a0 T e 1 5002

Regions by Region Server
Asglon Server

sandboot Forormarie comoBiaD

Dexerigtian

I tha fabée onaied

I ey Babule SMACENY
Region Sonsor Tt Koy End Koy Roquests [ReplicalD
sandban horlomeorks com 60020] [
Sl oy oo SO0 i}]

To access the HBase Master Server user interface, point your browser to port 16010.

HBase Cluster Replication for Geographic Data Distribution

HBase provides a cluster replication mechanism which allows you to keep one cluster’ s state synchronized with that
of another cluster, using the write-ahead log (WAL) of the source cluster to propagate the changes.

The use cases for cluster replication include the following scenarios:

» Backup and disaster recovery
« Dataaggregation

« Geographic data distribution, such as data centers
e Online data ingestion combined with offline data analytics

Note:
E Replication is enabled at the granularity of the column family. Before enabling replication for a column
family, create the table and all column families to be replicated on the destination cluster.

HBase Cluster Replication Overview

An HBase cluster can either be an active cluster or passive cluster to ensure cluster replication.

Cluster replication uses a source-push methodology. An HBase cluster can be a'source' cluster, which meansit is

the source of the new data (also known as a'master' or ‘active' cluster), a'destination’ cluster, which meansthat it is
the cluster that receives the new data by way of replication (also known as a'save' or 'passive' cluster), or an HBase
cluster can fulfill both roles at once. Replication is asynchronous, and the goal of replication is eventual consistency.
When the source receives an edit to a column family with replication enabled, that edit is propagated to all destination
clusters using the WAL for that column family on the RegionServer that manages the relevant region.

When datais replicated from one cluster to another, the original source of the datais tracked by using a cluster ID
which is part of the metadata. In HBase 0.96 and newer, all clusters that have already consumed the data are also

tracked. This prevents replication loops.

The WALSs for each RegionServer must be kept in HDFS aslong as they are needed to replicate datato aslave
cluster. Each RegionServer reads from the oldest log it needs to replicate and keeps track of its progress by processing
WALSsinside ZooK eeper to simplify failure recovery. The position marker which indicates a dlave cluster’s progress,
aswell as the queue of WALSsto process, may be different for every slave cluster.

The clusters participating in replication can be of different sizes. The master cluster relies on randomization to
attempt to balance the stream of replication on the slave clusters. It is expected that the slave cluster has storage
capacity to hold the replicated data, as well as any datait is responsible for ingesting. If a slave cluster runs out
of room, or isinaccessible for other reasons, it throws an error, the master retains the WAL, and then retries the

replication at intervals.

22

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

HBase Cluster Topologies
Clusters can propagate changes to single or multiple destination clusters.

» A central source cluster might propagate changes out to multiple destination clusters, for failover or dueto
geographic distribution.

» A source cluster might push changes to a destination cluster, which might also push its own changes back to the
original cluster.

« Many different low-latency clusters might push changes to one centralized cluster for backup or resource-
intensive data analytics jobs. The processed data might then be replicated back to the low-latency clusters.

Multiple levels of replication may be chained together to suit your organization’s needs. The following diagram
shows a hypothetical scenario for a complex cluster replication configuration. The arrows indicate the data paths.

Example of a Complex Cluster Replication Configuration

Analysis

All Data
Backup 2

HBase replication borrows many concepts from the statement-based replication design used by MySQL. Instead of
SQL statements, entire WAL Edits, which consist of multiple cell inserts that come from Put and Del ete operations on
the clients, are replicated in order to maintain atomicity.

Managing and Configuring HBase Cluster Replication

Implementing HBase cluster replication enables you to achieve High Availability (HA). HBase supports replication
across multiple clusters. This can help you setup HA and enable disaster recovery.

Related Tasks

Setting Up HBase Replication Among Kerberos Secured Clusters

Manually Enable HBase Replication
After ensuring that HBase is running on both the source and destination clusters, you must configure certain
parameters to manually enable replication.

23

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Procedure

1. Configure the source and destination clusters and ensure that you have HBase running in both clusters. HBase
master and region serversin the source cluster must be able to communicate with the master and all region servers
in the destination cluster.

2. On both clusters, create tables with the same names and column families, so that the destination cluster stores the
datathat it receivesin alogical location:

hbase shel |l >create "t1", "cf 1"

3. All hostsin the source and destination clusters should be reachable to each other. If both clusters use the same
ZooK eeper cluster, you must use a different zookeeper.znode.parent, because they cannot write in the same folder.

4. Onthe source cluster, in HBase shell, add the destination cluster as a peer:

hbase shel | >add_peer “us_east”, " host nane. of . zookeeper: 2181: / pat h-t o- hbase”

5. On HDP, path-to-hbase is either “/hbase-unsecure” or “/hbase-secure”. On the destination cluster, open the hbase-
sitexml file and look at the value of zookeeper.znode.parent to find out the HBase directory.

6. Ensure that replication has not been disabled. Ensure that the hbase.replication setting is set to true.
7. On the source cluster, in HBase shell, enable the table replication:

Run
hbase shel | >enabl e_table replication "t1"

8. Copy the HBase data from the source cluster to the destination cluster:

$>hbase org. apache. hadoop. hbase. mapr educe. CopyTabl e - -
peer . adr =host nane. of . zookeeper: 2181: / hbase- unsecure t1

Pause and Stop HBase Replication
Run HBase table replication commands to pause or stop HBase replication.

Procedure
1. To pause HBase cluster replication, use the disable_table_replication command:

Run
hbase shel |l >di sabl e_table_replication "t1"

With this, you can temporarily stop replication. To re-enable the replication, use the enable_table replication
command.

2. To permanently disable replication, remove the replication rel ationship:

Run
hbase shel | >renove_peer “us_east”

HBase Cluster Management Commands
Y ou can use the common HBase Cluster Management commands to perform operations related to replication.

24

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Table 4: Table of HBase Cluster Management Commands and Descriptions

Command Description

add_peer <ID> <CLUSTER_KEY> Adds areplication relationship between two clusters:

* ID: A unique string, which must not contain a hyphen.
* CLUSTER_KEY: Composed using the following format:

hbase.zookeeper.quorum:hbase.zookeeper.
property.clientPort:zookeeper.znode.parent

list_peers Listsal replication relationships known by the cluster.
enable_peer <ID> Enables a previously-disabled replication relationship.
disable_peer <ID> Disables areplication relationship. After disabling, HBase no longer

sends edits to that peer cluster, but continues to track the new WALSs
that are required for replication to commence again if it is re-enabled.

remove_peer <ID> Disables and removes a replication relationship. After removal, HBase
no longer sends edits to that peer cluster nor doesit track WALSs.

enable_table replication <TABLE_NAME> Enables the table replication switch for all of the column families
associated with that table. If the table is not found in the destination
cluster, oneis created with the same name and column families.

disable_table replication <TABLE_NAME> Disables the table replication switch for all of the column families
associated with that table.

Verifying Replicated HBase Data
The VerifyReplication MapReduce job, which isincluded in HBase, performs a systematic comparison of replicated
data between two different clusters.

Run the VerifyReplication job on the master cluster, supplying it with the peer ID and table name to use for
validation. Y ou can limit the verification further by specifying atime range or specific column families. The job short
name is verifyrep. To run the job, use a command like the following:

$ HADOOP_CLASSPATH=" ${ HBASE HQOVE}/ bi n/ hbase cl asspath’

" ${ HADOOP_HOQOVE} / bi n/ hadoop" jar "${HBASE HOVE}/ hbase- server-VERSI ON. jar"

verifyrep --starttine=<ti nmestanp> --stoptine=<ti nestanp> --fanilies=<nyFane
<I D> <t abl eNane>

The VerifyReplication command prints out GOODROWS and BADROWS counters to indicate rows that did and did
not replicate correctly.

HBase Cluster Replication Details
A Write Ahead L og edit goes through a series of steps to complete the replication process.

25

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Mastor Cluslor
Synchronous Cal
i B OE0E0DE0BEO0EO00 Shvan Clusior
HiRegionSanor 4
- @ A
ral
F .y
Synchronous Cal
HRegionSenvor oo oEODEO® é Slave Clusior
o
. ey
a-
HRpgionSavor Synchronous Cal
. ODOooooDooooo é Slavn Clushor

P
" L Zookpeper - -
— i, A
= HlLig Hiog B/

r

Mbasa oplcaton

b e 3 oG-, 881 <= aittsd
Hlsg . .{‘I hiog-...is2
Liss ! hiogr....-ks3
A) Ty . -R8d

k-, -85

WAL (Write Ahead Log) Edit Process

A single WAL edit goes through the following steps when it is replicated to a dave cluster:

1
2.

3.

7.
8.
9.

An HBase client uses a Put or Delete operation to manipulate datain HBase.

The RegionServer writes the request to the WAL in such away that it can be replayed if the write operation is not
successful.

If the changed cell corresponds to a column family that is scoped for replication, the edit is added to the queue for
replication.

In a separate thread, the edit is read from the log as part of a batch process. Only the KeyValues that are eligible
for replication are kept. KeyValuesthat are eligible for replication are those KeyValuesthat are:

* Part of acolumn family whose schemais scoped GLOBAL.

* Not part of acatalog such as hbase:meta.

« Have not originated from the target slave cluster.

* Have not already been consumed by the target slave cluster.

The WAL edit is tagged with the master’s UUID and added to a buffer. When the buffer isfull or the reader
reaches the end of thefile, the buffer is sent to arandom RegionServer on the slave cluster.

The RegionServer reads the edits sequentially and separates them into buffers, one buffer per table. After al edits
areread, each buffer is flushed using Table, the HBase client. The UUID of the master RegionServer and the
UUIDs of the slaves, which have already consumed the data, are preserved in the edits when they are applied. This
prevents replication loops.

The offset for the WAL that is currently being replicated in the master is registered in ZooK eeper.

The edit isinserted as described in Steps 1, 2, and 3.

In a separate thread, the RegionServer reads, filters, and edits the log edits as described in Step 4. The slave
RegionServer does not answer the RPC call.

10. The master RegionServer slegps and tries again. The number of attempts can be configured.
11. If the dave RegionServer is still not available, the master selects a new subset of RegionServers to replicate to,

and tries again to send the buffer of edits.

26

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

12. Meanwhile, the WAL s are rolled and stored in a queue in ZooK eeper. Logs that are archived by their
RegionServer (by moving them from the RegionServer log directory to a central log directory) update their paths
in the in-memory queue of the replicating thread.

13. When the slave cluster is finally available, the buffer is applied in the same way as during normal processing. The
master RegionServer then replicates the backlog of logs that accumulated during the outage.

Related Information
Table HBase Client

Spreading Queue Failover Load
Set configuration parameters to maintain an even distribution of replication activity over the serversin the cluster.

When replication is active, a subset of RegionServersin the source cluster is responsible for shipping edits to the

sink. This responsibility must be failed over like all other RegionServer functionsif a process or node crashes. The
following configuration settings are recommended for maintaining an even distribution of replication activity over the
remaining live serversin the source cluster:

» Set replication.source.maxretriesmultiplier to 300.

» Set replication.source.sleepforretries to 1 (1 second). This value, combined with the value of
replication.source.maxretriesmultiplier, causes the retry cycle to last about 5 minutes.

e Set replication.sleep.before.failover to 30000 (30 seconds) in the source cluster site configuration.

Preserving Tags During Replication
Configure the codecs to prevent stripping of the tags during replication.

By default, the codec used for replication between clusters strips tags, such as cell-level ACLs, from cdlls.

To prevent the tags from being stripped, you can use a different codec which does not strip them. Configure
hbase.replication.rpc.codec to use org.apache.hadoop.hbase.codec.K eyV alueCodecWithTags, on both the source and
the sink RegionServers which are involved in the replication.

HBase Replication Internals
The state of HBase replication is contained in the base node /hbase/replication. The peers znode contains alist of all
peer replication clusters with their respective statuses. The rs znode contains a list of WAL logs to be replicated.

Replication State in ZooK eeper

HBase replication maintains its state in ZooK eeper. By defaullt, the state is contained in the base node /hbase/
replication. This node contains two child nodes, the Peers znode and the RS znode.

The Peers Znode

The peers znode is stored in /hbase/replication/peers by default. It consists of alist of all peer replication clusters
along with the status of each of them. The value of each peer isits cluster key, which is provided in the HBase shell.
The cluster key contains alist of ZooKeeper nodes in the cluster quorum, the client port for the ZooK eeper quorum,
and the base znode for HBase in HDFS on that cluster.

The RS Znode

Thers znode contains a list of WAL logs which need to be replicated. Thislist is divided into a set of queues
organized by Region Server and the peer cluster that the RegionServer is shipping the logs to. The rs znode has one
child znode for each RegionServer in the cluster. The child znode name is the RegionServer hostname, client port,
and start code. Thislist includes both live and dead RegionServers.

Choosing RegionServersto Replicateto
The master cluster RegionServers chooses potential recipients for replication and the Zookeeper watcher monitors
changes in the composition of the slave clusters.

When amaster cluster RegionServer initiates a replication source to asave cluster, it first connects to the ZooK eeper
ensemble of the slave using the provided cluster key. Then it scans the rs/ directory to discover all the available
'sinks' (RegionServers that are accepting incoming streams of edits to replicate) and randomly chooses a subset

of them using a configured ratio which has a default value of 10 per cent. For example, if aslave cluster has 150
servers, 15 are chosen as potential recipients for edits sent by the master cluster RegionServer. Because this selection
is performed by each master RegionServer, the probability that all slave RegionServers are used is very high. This

27

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Table.html

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

method works for clusters of any size. For example, amaster cluster of 10 serversreplicating to aslave cluster of 5
servers with aratio of 10 per cent causes the master cluster RegionServers to choose one server each at random.

A ZooK eeper watcher is placed on the ${ zookeeper.znode.parent} /rs node of the slave cluster by each of the master
cluster RegionServers. Thiswatcher monitors changes in the composition of the slave cluster. When nodes are
removed from the slave cluster, or if nodes go down or come back up, the master cluster RegionServers respond by
selecting anew pool of slave Region Serversto which to replicate.

Keeping Track of Logs
Replication of logs is done atomically and does not generate an exception when the reader is currently reading alog.

Each master cluster RegionServer hasits own znode in the replication znodes hierarchy. It contains one znode per
peer cluster. For example, if there are 5 slave clusters, 5 znodes are created, and each of these contain a queue of
WALSsto process. Each of these queues tracks the WAL s created by that RegionServer, but they can differ in size. For
example, if one slave cluster becomes unavailable for some time, the WAL s should not be deleted. They need to stay
in the queue while the others are processed.

When a source isinstantiated, it contains the current WAL that the RegionServer iswriting to. During log rolling,

the new file is added to the queue of each slave cluster znode just before it is made available. This ensuresthat all

the sources are aware that a new log exists before the RegionServer is able to append edits into it. However, this
operation is now more expensive. The queue items are discarded when the replication thread cannot read more entries
from afile because it reached the end of the last block and there are other filesin the queue. This means that if a
sourceis up to date and replicates from the log that the RegionServer writes to, reading up to the end of the current
file does not delete the item in the queue.

A log can be archived if it isno longer used or if the number of logs exceeds the hbase.regionserver.maxlogs setting
because the insertion rate is faster than the rate at which the regions are flushed. When alog is archived, the source
threads are notified that the path for that log changed. If a particular source has already finished with an archived

log, it ignores the message. If the log isin the queue, the path is updated in memory. If thelog is currently being
replicated, the change is done atomically so that the reader does not attempt to open the file when it has aready been
moved. Because moving afileis a NameNode operation, if the reader is currently reading the log, it does not generate
an exception.

Related Concepts
RegionServer Failover

Reading, Filtering, and Sending Edits
The rate at which the source attempts to read the data depends on the filtering of log entries and and the total size of
the list editsto replicate per slave.

By default, a source attempts to read from a WAL and ships log entriesto asink as quickly as possible. Speed is
limited by the filtering of log entries. Only Key-Values that are scoped GLOBAL and that do not belong to catalog
tables are retained. Speed is limited by total size of the list of edits to replicate per slave, which islimited to 64 MB
by default. With this configuration, a master cluster Region Server with three slaves would use at most 192 MB to
store data to replicate. This does not account for the data which was filtered but not garbage collected.

Once the maximum size of edits has been buffered or the reader reaches the end of the WAL, the source thread stops
reading and chooses at random a sink to replicate to from the list that was generated by keeping only a subset of
slave Region Servers. It directly issues an RPC to the chosen RegionServer and waits for the method to return. If the
RPC is successful, the source determines whether the current file has been emptied or whether it contains more data
that needs to be read. If the file has been emptied, the source deletes the znode in the queue. Otherwise, it registers
the new offset in the log znode. If the RPC throws an exception, the source retries 10 times before trying to find a
different sink.

Cleaning Logs
If replication is not enabled, the log-cleaning thread of the master deletes old logs using a configured TTL (Time To
Live).

This TTL-based method does not work well with replication because archived logs that have exceeded their TTL may
till bein aqueue. The default behavior is augmented so that if alogis past its TTL, the cleaning thread looks up

28

Configuring Fault Tolerance

High Availability on Non-Ambari Clusters

every queue until it finds the log. During this process, queues that are found are cached. If the log is not found in any
queues, the log is deleted. The next time the cleaning process needs to look for alog, it starts by using its cached list.

RegionServer Failover
When no RegionServers are failing, keeping track of the logsin ZooK eeper adds no value. Unfortunately,

RegionServers do fail, and since ZooK eeper is highly available, it is useful for managing the transfer of the queuesin
the event of afailure.

Each of the master cluster RegionServers keeps awatcher on every other RegionServer, in order to be notified when
one becomes unavailable just as the master does. When afailure happens, they all race to create a znode called lock
inside the unavail able RegionServer znode that contains its queues. The RegionServer that creates it successfully then
transfers al the queuesto its own znode, one at a time since ZooK eeper does not support renaming queues. After all
gueues are transferred, they are deleted from the old location. The recovered znodes are then renamed with the dave
cluster 1D appended to the name of the server that failed.

Next, the master cluster RegionServer creates one new source thread per copied queue. Each of the source threads
follows the 'read/filter/ship pattern.’ Those queues never receive new data because they do not belong to their

new RegionServer. When the reader hits the end of the last log, the queue znode is deleted and the master cluster
RegionServer closes that replication source.

For example, the following hierarchy represents what the znodes layout might be for a master cluster with 3
RegionServers that are replicating to a single slave with the ID of 2. The RegionServer znodes contain a peers znode
that contains a single queue. The znode names in the queues represent the actual file names on HDFS in the form

address,port.t

/ hbase/r
1.1.1.
2/

N
=
ol ol

s

1.1
2/
1.

imestamp:

eplication/rs/
1, 60020, 123456780/

1.1.1,60020. 1234
1.1.1,60020. 1265
2,60020, 123456790/

(Cont ai ns

1.1.2,60020.1214 (Contains
1.1.2,60020. 1248
.1.1.2,60020. 1312
. 3, 60020, 123456630/
1.1.3,60020.1280 (Contains

a position)

a position)

a position)

Assumethat 1.1.1.2 loses its ZooK eeper session. The survivorsrace to create alock, and, arbitrarily, 1.1.1.3 wins. It
then starts transferring al the queues to the znode of its local peers by appending the name of the server that failed.
Right before 1.1.1.3 is able to clean up the old znodes, the layout 10oks like the following:

/ hbase/r
1.1.1.

1.1.
I

eplication/rs/
1, 60020, 123456780/

1.1.1,60020. 1234
1.1.1,60020. 1265
2, 60020, 123456790/

(Cont ai ns

1.1.2,60020. 1214
1.1.2,60020. 1248
1.1.2,60020. 1312
3, 60020, 123456630/

(Cont ai ns

1.1.3,60020.1280 (Contains
1.1.2,60020, 123456790/
1.1.2,60020.1214 (Contains
1.1.2,60020. 1248

a position)

a position)

a position)

a position)

29

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

1.1.1.2,60020. 1312

Some time later, but before 1.1.1.3 is able to finish replicating the last WAL from 1.1.1.2, it also becomes
unavailable. Some new logs were also created in the normal queues. The last RegionServer then triesto lock 1.1.1.3's
znode and begins transferring all the queues. Then the new layout is:

/ hbase/replication/rs/
1.1.1.1,60020, 123456780/

2/
1.1.1.1,60020.1378 (Contains a position)
2-1.1.1.3,60020, 123456630/
1.1.1.3,60020.1325 (Contains a position)
1.1.1.3,60020. 1401
2-1.1.1.2,60020, 123456790-1. 1. 1. 3, 60020, 123456630/
1.1.1.2,60020.1312 (Contains a position)
1.1.1.3,60020, 123456630/
| ock
2/
1.1.1.3,60020.1325 (Contains a position)
1.1.1.3,60020. 1401

2-1.1.1.2,60020, 123456790/
1.1.1.2,60020.1312 (Contains a position)

Related Concepts
Keeping Track of Logs

HBase Replication Metrics
Replication metrics are exposed at the global RegionServer level and at the peer level (since HBase 0.95).

Metric Description

source.sizeOfL ogQueue Number of WAL s to process (excludes the one which is being
processed) at the replication source.

source.shippedOps Number of of mutations shipped.

source.logEditsRead Number of mutations read from WALSs at the replication source.

source.ageOfL astShippedOp Age of last batch shipped by the replication source.

Replication Configuration Options
Y ou can configure replication using the various available options.

Option Description Default Setting
zookeeper.znode.parent Name of the base ZooK eeper znode that is /hbase

used for HBase.
zookeeper.znode.replication Name of the base znode used for replication. replication
zookeeper.znode.replication. peers Name of the peer znode. peers
zookeeper.znode.replication. peers.state Name of the peer-state znode. peer-state
zookeeper.znode.replication. rx Name of the rs znode. rs
hbase.replication Whether replication is enabled or disabled on | false

the cluster.

30

Configuring Fault Tolerance

High Availability on Non-Ambari Clusters

Option Description Default Setting
replication.sleep.before. failover Number of milliseconds aworker should sleep

before attempting to replicate the WAL queues

for a dead RegionServer.
replication.executor.workers Number of RegionServers a RegionServer 1

should attempt to failover simultaneously.

Monitoring Replication Status

Y ou can use the HBase shell command status 'replication’ to monitor the replication status on your cluster.

The command has three variations:

Command

Description

* status 'replication’

Prints the status of each source and its sinks, sorted by hostname.

* status 'replication’, 'source'

Prints the status for each replication source, sorted by hostname.

* status 'replication’, 'sink’

Prints the status for each replication sink, sorted by hostname.

Setting Up HBase Replication Among Kerberos Secured Clusters
HBase replication supports Kerberos, if you want to ensure secure communication between two clusters.

Before you begin
Prerequisite

Y ou have configured HBase replication in two separate clusters.

Prior to configuring secure HBase, you must configure cross realm authentication for Kerberos, ZooK eeper, and

Apache Hadoop.

Procedure

1. Create krbtgt principals for the two reams.

For example, if you have two realms called HDP1.COM and HDP2.COM, the realms must share akey. In this
case, you add the following principles in both the realms:

krbtgt/HDP1.COM @HDP2.COM and krbtgt/HDP2.COM @HDP1.COM

There must be at least one common encryption mode between these two realms:

HDP1 d uster
kadm n. | ocal
kadm n. | ocal

HDP2 Cl ust er
kadni n. | ocal
kadm n. | ocal

:addprinc krbtgt/HDP1. COM@HDP2. COM
:addprinc krbtgt/HDP2. COM@GHDP1. COM

:addprinc krbtgt/HDP1. COM@GHDP2. COM
:addprinc krbtgt/HDP2. COM@HDP1. COM

Note:

E To ensure, there is at least one common encryption mode between the realms, you can use the -e option in
addprinc to specify thelist of encryption types. Refer to the “ Supported Encryption Types’ in mit kerberos
manual in your deployment to view all possible options.

kadmin.local :addprinc -e "<enc_type list >" krbtgt/HDP1.COM @HDP2.COM
2. Addrulesinthe slave ZooK eeper to create short names based on the incoming principal.

To do this, add a system level property in java.env, as defined in the conf directory.

31

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

a) Onthe HDP1 cluster, add support for the realm called HDP2.COM, and have two membersin the principal
(such as service/instance@HDP2.com):

- Dzookeeper. security.auth_to | ocal =RULE: [2:\$1@ $0] (. *@\ QHDP2. COM \ E
$) s/ @\ QHDP2. COM \ E$/ / DEFAULT

b) Onthe HDP2 cluster, add support for the realm called HDP1.COM, and have two members in the principal
(such as service/instance@HDP1.com):

- Dzookeeper. security.auth _to | ocal =RULE: [2:\$1@ $0] (. *@ \ QHDP1. COM\ E
$)s/ @\ QHDP1. COM \ E$/ / DEFAULT

The DEFAULT vaue defines the default rule.

3. Add rulesfor creating short names in the Hadoop processes. To do this, add the hadoop.security.auth to local
property in the core-site.xml filein the replica cluster.

a) On the HDPL1 cluster, add the following:

<property>
<name>hadoop. security. auth_to_| ocal </ name>
<val ue>
RULE: [2:\$1@ $0] (. *@\ QHDP2. COM \ E$) s/ @\ QHDP2. COM \ E$/ / DEFAULT
</ val ue>

b) Onthe HDP2 cluster, add the following:

<property>
<nanme>hadoop. security. auth_to_| ocal </ nanme>
<val ue>
RULE: [2:\$1@ $0] (. *@\ QHDP1. COM \ E$) s/ @\ QHDP1. COM \ E$/ / DEFAULT
</ val ue>

4. Manage and configure HBase cluster replication to complete the replication process.

Ij Note: HBase replication from non-Kerberized cluster to Kerberized cluster is currently not supported.

Related Tasks
Managing and Configuring HBase Cluster Replication

Configuring NameNode High Availability

The HDFS NameNode High Availability feature enables you to run redundant NameNodes in the same cluster in an
Active/Passive configuration with a hot standby. This eliminates the NameNode as a potential single point of failure
(SPOF) in an HDFS cluster. As of Hadoop 3.0, you can configure more than one backup NameNode.

Prior to Hadoop 2.0, the NameNode represented a single point of failure (SPOF) in an HDFS cluster. Each cluster had
asingle NameNode, and if that machine or process became unavailable, the cluster as awhole would be unavailable
until the NameNode was either restarted or brought up on a separate machine. This situation impacted the total
availability of the HDFS cluster in two major ways:

* Inthe case of an unplanned event such as a machine crash, the cluster would be unavailable until an operator
restarted the NameNode.

« Planned maintenance events such as software or hardware upgrades on the NameNode machine would result in
periods of cluster downtime.

HDFS NameNode HA avoids this by facilitating either afast failover to one or more backup NameNodes during
machine crash, or a graceful administrator-initiated failover during planned maintenance.

32

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

This guide provides an overview of the HDFS NameNode High Availability (HA) feature, instructions on how to
deploy Hue with an HA cluster, and instructions on how to enable HA on top of an existing HDP cluster using the
Quorum Journal Manager (QIM) and ZooK eeper Failover Controller for configuration and management. Using
the QIM and ZooK eeper Failover Controller enables the sharing of edit logs between the Active and Standby
NameNodes.

Note:

E This guide assumes that an existing HDP cluster has been manually installed and deployed. If your existing
HDP cluster was installed using Ambari, configure NameNode HA using the Ambari wizard, as described in
the Ambari documentation.

NameNode Ar chitecture

Inatypical HA cluster, two or more separate machines are configured as NameNodes. In aworking cluster, one of
the NameNode machineisin the Active state, and the others are in the Standby state.

The Active NameNode is responsible for al client operations in the cluster, while the Standby NameNode actsas a
backup. The Standby machine maintains enough state to provide afast failover (if required).

In order for the Standby node to keep its state synchronized with the Active node, both nodes communicate with a
group of separate daemons called Journal Nodes (INs). When the Active node performs any namespace modification,
the Active node durably logs a modification record to a majority of these JNs. The Standby node reads the edits from
the INs and continuously watches the JNs for changes to the edit log. Once the Standby Node observes the edits,

it applies these edits to its own namespace. When using QIM, JournalNodes act as the shared editlog storage. In a
failover event, the Standby ensures that it has read all of the edits from the JounalNodes before promoting itself to the
Active state. (This mechanism ensures that the namespace state is fully synchronized before afailover completes.)

Note:
IE Secondary NameNode is not required in HA configuration because the Standby node also performs the tasks
of the Secondary NameNode.

To provide afast failover, it is also necessary that the Standby node have up-to-date information on the location of
blocksin your cluster. To get accurate information about the block locations, DataNodes are configured with the
location of all the NameNodes, and send block location information and heartbeats to all the NameNode machines.

SHARED EDITS

JournalNode | | JournalNode JournalNode

. # !-Iaqehlude . ; Namer-.!udﬂ

3 £ v

DataNode | | DataNode ..

)
Block Reports to Active & Standby Ai‘

It isvital for the correct operation of an HA cluster that only one of the NameNodes should be Active at atime.
Failure to do so would cause the namespace state to quickly diverge between the NameNode machines, thus causing
potential dataloss. (This situation is referred to as a split-brain scenario.)

To prevent the split-brain scenario, the JournalNodes allow only one NameNode to be awriter at atime. During
failover, the NameNode, that is chosen to become active, takes over the role of writing to the JournalNodes. This

33

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

process prevents the other NameNode from continuing in the Active state and thus lets the new Active node proceed
with the failover safely.

Preparing the Har dwar e Resour ces for NameNode High Availability
Make sure that you prepare the required hardware resources for High Availability.

« NameNode machines: The machines where you run Active and Standby NameNodes, should have exactly the
same hardware. .

 JournalNode machines: The machines where you run the JournalNodes. The JournalNode daemon is relatively
lightweight, so these daemons may reasonably be co- |ocated on machines with other Hadoop daemons, for
example the NameNodes or the Y ARN ResourceManager.

Note:

E There must be at least three Journal Node daemons, because edit |og modifications must be written to a
majority of JNs. Thislets the system tolerate failure of asingle machine. Y ou may also run more than
three JournalNodes, but in order to increase the number of failures that the system can tolerate, you must
run an odd number of INs (3, 5, 7, and so on).

Note that when running with N Journal Nodes, the system can tolerate at most (N - 1) / 2 failures and
continue to function normally.
» ZooKeeper machines: For automated failover functionality, there must be an existing ZooK eeper cluster available.
The ZooK egper service nodes can be co-located with other Hadoop daemons.

In an HA cluster, the Standby NameNode also performs checkpoints of the namespace state. Therefore, do not deploy
a Secondary NameNode, CheckpointNode, or BackupNode in an HA cluster.

Deploying the NameNode HA Cluster
HA configuration is backward compatible and works with your existing single NameNode configuration.

The following instructions describe how to set up NameName HA on amanually-installed cluster. If you installed
with Ambari and manage HDP on Ambari 2.0.0 or later, instead of the manual instructions use the Ambari
documentation for the NameNode HA wizard.

Note:
E HA cannot accept HDFS cluster names that include an underscore ().
To deploy aNameNode HA cluster, use the steps in the following subsections.
Related Tasks
Configure and Deploy Automatic Failover

Configuring the NameNode HA Cluster

First, add High Availability configurations to your HDFS configuration files. Start by taking the HDFS configuration
files from the original NameNode in your HDP cluster, and use that as the base, adding various properties to those
files.

About thistask

After you have added the configurations below, ensure that the same set of HDFS configuration files are propagated
to al nodesin the HDP cluster. This ensuresthat all the nodes and services are able to interact with the highly
available NameNode.

Add the following configuration options to your hdfs-site.xml file:

Procedure

e dfs.nameservices

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Choose an arbitrary but logical name (for example, mycluster) as the value for dfs.nameservices option. This
name will be used for both configuration and authority component of absolute HDFS paths in the cluster.

<property>

<nanme>df s. naneser vi ces</ nane>

<val ue>mycl ust er </ val ue>

<descri ption>Logi cal nane for this new nameservi ce</description>
</ property>

If you are al'so using HDFS Federation, this configuration setting should aso include the list of other
nameservices, HA or otherwise, as acomma-separated list.

+ dfs.ha.namenodes.[$nameservice ID]

Provide alist of comma-separated NameNode IDs. DataNodes use this this property to determine al the
NameNodesin the cluster.

For example, for the nameservice ID mycluster and individual NameNode IDs nnl, nn2, and nn3, the value of this
property is:

<property>
<nane>df s. ha. nanmenodes. mycl ust er </ nane>
<val ue>nnl, nn2, nn3</ val ue>
<descri ption>Uni que identifiers for each NaneNode in the
naneser vi ce</ descri pti on>
</ property>

B Note:

The minimum number of NameNodes for HA is two, but you can configure more. Y ou should not exceed
five NameNodes due to communication overhead. Three NameNodes are recommended.

 dfs.namenode.rpc-address.[$nameservice | D].[$name node I D]
Use this property to specify the fully-qualified RPC address for each NameNode to listen on.

Continuing with the previous example, set the full address and IPC port of the NameNode process for the
NameNode | Ds above -- nn1, nn2, and nn3.

Note that there will be three separate configuration options.

<property>
<nanme>df s. nanenode. r pc- addr ess. nycl ust er. nnl</ nane>
<val ue>machi nel. exanpl e. com 8020</ val ue>

</ property>

<property>
<nanme>df s. nanenode. r pc- addr ess. mycl ust er. nn2</ nane>
<val ue>nmachi ne2. exanpl e. com 8020</ val ue>

</ property>

<property>
<nanme>df s. namenode. r pc- addr ess. nycl ust er. nn3</ name>
<val ue>nmachi ne3. exanpl e. com 9820</ val ue>

</ property>

+ dfs.namenode.http-address.[$nameservice | D].[$name node I D]
Use this property to specify the fully-qualified HTTP address for each NameNode to listen on.
Set the addresses for the NameNodes HTTP serversto listen on. For example:
<property>

<nanme>df s. nanenode. ht t p- addr ess. nycl ust er. nn1</ name>
<val ue>machi nel. exanpl e. com 9870</ val ue>

35

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

</ property>

<property>
<nane>df s. nanenode. ht t p- addr ess. nycl ust er. nn2</ nanme>
<val ue>machi ne2. exanpl e. com 9870</ val ue>

</ property>

<property>
<nanme>df s. nanenode. ht t p- addr ess. nycl ust er. nn3</ nane>
<val ue>nmachi ne3. exanpl e. com 9870</ val ue>

</ property>

Note:
IE If you have Hadoop security features enabled, set the https-address for each NameNode.
dfs.namenode.shared.edits.dir

Use this property to specify the URI that identifies a group of JournalNodes (JNs) where the NameNode will
write/read edits.

Configure the addresses of the JNs that provide the shared edits storage. The Active nameNode writesto this
shared storage and the Standby NameNode reads from this location to stay up-to-date with all the file system
changes.

Although you must specify several JournalNode addresses, you must configure only one of these URIs for your
cluster.

The URI should be of the form:
gj ournal : // host 1: port 1; host 2: port 2; host 3: port 3/j ournal I d

The Journa ID isaunique identifier for this nameservice, which allows a single set of JournalNodes to provide
storage for multiple federated namesystems. Y ou can reuse the nameservice ID for the journal identifier.

For example, if the JournalNodes for a cluster were running on nodel.example.com, node2.example.com, and
node3.example.com, and the nameservice ID were mycluster, you would use the following value for this setting:

<property>
<nanme>df s. nanenode. shar ed. edi t s. di r </ name>
<val ue>qgj our nal : // nodel. exanpl e. com 8485; node2. exanpl e. com
8485; node3. exanpl e. com 8485/ mycl ust er </ val ue>
</ property>

E Note:
Note that the default port for the JournalNode is 8485.
dfs.client.failover.proxy.provider.[$nameservice | D]

This property specifies the Java class that HDFS clients use to contact the Active NameNode. DFS Client uses
this Java class to determine which NameNode is the current Active and therefore which NameNode is currently
serving client requests.

Use the ConfiguredFailoverProxyProvider implementation if you are not using a custom implementation.
For example:
<property>
<name>dfs. client.fail over. proxy. provider. mycl uster</name>
<val ue>or g. apache. hadoop. hdf s. server. nanenode. ha.

Conf i gur edFai | over ProxyPr ovi der </ val ue>
</ property>

dfs.ha.fencing.methods

36

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

This property specifiesalist of scripts or Java classes that will be used to fence the Active NameNode during a
failover.

For maintaining system correctness, it isimportant to have only one NameNode in the Active state at any

given time. When using the Quorum Journal Manager, only one NameNode will ever be allowed to writeto

the JournalNodes, so there is no potential for corrupting the file system metadata from a split-brain scenario.
However, when afailover occurs, it is still possible that the previous Active NameNode could serve read requests
to clients, which may be out of date until that NameNode shuts down when trying to write to the JournalNodes.

For this reason, it is still recommended to configure some fencing methods even when using the Quorum Journal
Manager. To improve the availability of the system in the event the fencing mechanisms fail, it is advisable to
configure a fencing method which is guaranteed to return success as the last fencing method in the list. Note that
if you choose to use no actual fencing methods, you must set some value for this setting, for example shell(/bin/
true).

The fencing methods used during a failover are configured as a carriage-return-separated list, which will

be attempted in order until one indicates that fencing has succeeded. The following two methods are
packaged with Hadoop: shell and sshfence. For information on implementing custom fencing method, see the
org.apache.hadoop.ha.NodeFencer class.

sshfence: SSH to the Active NameNode and kill the process.

The sshfence option SSHes to the target node and uses fuser to kill the process listening on the service's TCP port.
In order for this fencing option to work, it must be able to SSH to the target node without providing a passphrase.
Ensure that you configure the dfs.ha.fencing.ssh.private-key-files option, which is a comma-separated list of SSH
private key files.

For example:

<property>
<nane>df s. ha. f enci ng. net hods</ nanme>
<val ue>sshf ence</ val ue>

</ property>

<property>
<name>df s. ha. f enci ng. ssh. pri vat e- key-fil es</ nane>
<val ue>/ honme/ exanpl euser/.ssh/i d_rsa</val ue>

</ property>

Optionally, you can also configure a non-standard username or port to perform the SSH. Y ou can also configure
atimeout, in milliseconds, for the SSH, after which this fencing method will be considered to have failed. To
configure non-standard username or port and timeout, see the properties given below:

<property>

<nane>df s. ha. f enci ng. et hods</ nanme>

<val ue>sshf ence([[usernane] [: port]]) </val ue>
</ property>

<property>

<nanme>df s. ha. f enci ng. ssh. connect -t i neout </ nane>
<val ue>30000</ val ue>

</ property>

shell: Run an arbitrary shell command to fence the Active NameNode.
The shell fencing method runs an arbitrary shell command:
<property>
<nane>df s. ha. f enci ng. net hods</ nanme>

<val ue>shel | (/ path/to/ ny/script.sh argl arg2 ...)</val ue>
</ property>

37

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

The string between '(' and *)' is passed directly to a bash shell and may not include any closing parentheses.

The shell command will be run with an environment set up to contain all of the current Hadoop configuration
variables, with the' ' character replacing any '.' characters in the configuration keys. The configuration

used has already had any namenode-specific configurations promoted to their generic forms -- for example
dfs_namenode_rpc-address will contain the RPC address of the target node, even though the configuration may
specify that variable as dfs.namenode.rpc-address.nsl.nnl.

Additionally, the following variables (referring to the target node to be fenced) are also available:

» S$target_host: Hostname of the node to be fenced.

» $target_port: IPC port of the node to be fenced

o $target_address: The combination of $target_host and $target_port as host:port
o $target_nameserviceid: The nameservice ID of the NN to be fenced

» S$target_namenodeid: The namenode ID of the NN to be fenced

These environment variables may also be used as substitutions in the shell command. For example:

<property>
<nane>df s. ha. f enci ng. net hods</ nanme>
<val ue>shel | (/ path/to/ ny/script.sh --naneservi ce=$t arget naneservi cei d
$target _host: $target _port)</val ue>

</ property>

If the shell command returns an exit code of 0, the fencing is successful.

Note:

IE This fencing method does not implement any timeout. If timeouts are necessary, they should be
implemented in the shell script itself (for example, by forking a subshell to kill its parent in some number
of seconds).

» fs.defaultFS The default path prefix used by the Hadoop FS client. Optionally, you may now configure the default
path for Hadoop clients to use the new HA-enabled logical URI. For example, for mycluster nameservice 1D, this
will be the value of the authority portion of all of your HDFS paths. Configure this property in the core-site.xml
file:

<property>

<nanme>f s. def aul t FS</ nane>

<val ue>hdf s: // nycl ust er </ val ue>
</ property>

» dfsjournalnode.edits.dir Thisis the absolute path on the JournalNode machines where the edits and other local
state (used by the JNs) will be stored. Y ou may only use a single path for this configuration. Redundancy for this
datais provided by either running multiple separate JournalNodes or by configuring this directory on alocally-
attached RAID array. For example:

<property>

<name>df s. j our nal node. edi t s. di r </ name>

<val ue>/ pat h/to/j ournal / node/ | ocal / dat a</ val ue>
</ property>

Note:

E NameNode and NameNode HA failure may occur if the hadoop.security.authorization property in the
core-site.xml fileis set to true without Kerberos enabled on a NameNode HA cluster. Therefore you
should only set this property to true when configuring HDP for Kerberos.

Deploying a NameNode HA Cluster
To deploy aNameNode HA cluster, you must initialize JournalNodes, run the required configurations for HA on the
NameNodes, and validate the HA configuration.

38

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

About thistask

In this task, we convert anon-HA cluster to HA. We use NN1 to denote the original NameNode in the non-HA setup,
and NN2 to denote the other NameNode that is to be added in the HA setup. If you are using more than one standby
NameNode, repeat the steps for NN2 on NN3.

Note:
E HA clusters reuse the NameService ID to identify a single HDFS instance (that may consist of multiple HA
NameNodes).

A new abstraction called NameNode ID is added with HA. Each NameNode in the cluster has a distinct
NameNaode ID to distinguish it.

To support asingle configuration file for al of the NameNodes, the relevant configuration parameters are
suffixed with both the NameService ID and the NameNode ID.

Procedure
1. Start the JournalNode daemons on those set of machines where the JNs are deployed. On each machine, execute
the following command:

su —| hdfs —c "/usr/hdp/ current/hadoop- hdfs-j ournal node/. ./ hadoop/ shi n/
hdf s- daenon. sh start journal node”

2. Wait for the daemon to start on each of the JN machines.
3. Initialize JournalNodes.

¢ At the NN1 host machine, execute the following command:
su —|I hdfs —c "hdfs nanenode -initializeSharedEdits -force"

This command formats all the JournalNodes. This by default happens in an interactive way: the command
prompts users for “Y/N” input to confirm the format. Y ou can skip the prompt by using option -force or -
nonlnteractive.

It also copies all the edits data after the most recent checkpoint from the edits directories of the local
NameNode (NN1) to JournalNodes.

* Initialize HA state in ZooK eeper. Execute the following command on NN1:
hdfs zkfc -formatZK -force

This command creates a znode in ZooK eeper. The failover system stores uses this znode for data storage.
e Check to see if ZooKeeper isrunning. If not, start ZooK eeper by executing the following command on the
ZooK eeper host machine(s).

Su - zookeeper -c "export ZOOCFGDI R=/usr/hdp/current/zookeeper-server/
conf ; export ZOOCFG=zoo.cfg; source /usr/hdp/current/zookeeper-
server/conf/zookeeper-env.sh ; /usr/hdp/current/zookeeper-server/bin/
zkServer.sh start"

« At the standby namenode host, execute the following command:

su -1 hdfs -c "hdfs nanenode -bootstrapStandby -force"

4. Start NN1. At the NN1 host machine, execute the following command:

su -1 hdfs -c "/usr/hdp/current/hadoop- hdf s- nanenode/ . ./ hadoop/ sbi n/ hdf s-
daenon. sh start nanenode"

Make sure that NN1 is running correctly.

39

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

5. Format NN2 and copy the latest checkpoint (FSImage) from NN1 to NN2 by executing the following command:
su -1 hdfs -c "hdfs nanenode -bootstrapStandby -force"

This command connects with HH1 to get the namespace metadata and the checkpointed fsimage. This command
also ensures that NN2 receives sufficient editlogs from the Journal Nodes (corresponding to the fsimage). This
command fails if JournalNodes are not correctly initialized and cannot provide the required editlogs.

6. Start NN2. Execute the following command on the NN2 host machine:

su -1 hdfs -c "/usr/hdp/current/hadoop- hdf s- nanenode/ . ./ hadoop/ sbi n/
hadoop- daenon. sh start nanmenode"

Ensure that NN2 is running correctly.
If you are deploying an additional NameNode NN3, repeat steps 5 and 6 for NN3.
Start DataNodes. Execute the following command on all the DataNodes:

© N

su -1 hdfs -c "/usr/hdp/current/hadoop- hdf s-dat anode/ . ./ hadoop/ sbi n/
hadoop- daenon. sh start datanode"

9. Validate the HA configuration.

Go to the NameNodes web pages separately by browsing to their configured HTTP addresses. Under the
configured address label, you should see that HA state of the NameNode. The NameNode can be either in
"standby” or "active" state.

NameNode 'example.com:8020' (standby)

| Started: |[Thu Aug 15 02:16:35 UTC 2013 |
Version: [3.0.0-SNAPSHOT, 5c35d30ce6f27a7d452e308be48be310a403286 |
| Compiled: || 2013-08-14T19:42Z by hdfs from trunk]
Cluster ID: CID-9165ed44-7149-4598-a4a5-625915¢12689 |

|

| Block PoolID: || BP-2092817692-68.142.245.166-1375143516059

NameMode Logs

Note:

E The HA NameNodeisinitially in the Standby state after it is bootstrapped. Y ou can also use either IMX
(tag.HA State) to query the HA state of a NameNode. The following command can also be used to query
the HA state of a NameNode:
hdfs haadmin -getServiceState

10. Transition one of the HA NameNodes to the Active state.
Initially, al the NameNodes arein the Standby state. Therefore you must transition one of the NameNodes to the

Active state. This transition can be performed using one of the following options (ZooK eeper is not required for

Option I).

e Option|I: Using CLI — Use the command lineinterface (CLI) to transition one of the NameNode to the Active
State. Execute the following command on that NameNode host machine:

hdfs haadm n -failover --forcefence --forceactive <servicel d>
<nanenodel d>

e Option I1: Deploying Automatic Failover — Y ou can configure and deploy automatic failover.

Deploying Hue with an HA Cluster
If you are going to use Hue with an HA Cluster, make changes to /etc/hue/conf/hue.ini file.

40

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Procedure
1. Install the Hadoop HttpFS component on the Hue server.
For RHEL/CentOS/Oracle Linux:

yum install hadoop-httpfs
For SLES:

zypper install hadoop-httpfs

2. Modify /etc/hadoop-httpfs/conf/httpfs-env.sh to add the JDK path. In the file, ensure that JAVA_HOME is set:
export JAVA_HOME=/usr/jdk64/jdk1.7.0_67
3. Configure the HttpFS service script by setting up the symlink in /etc/init.d:

> |n -s /usr/hdp/{HDP2. 4. x version nunber}
/ hadoop-httpfs/etc/rc.d/init.d/ hadoop-httpfs /etc/init.d/ hadoop-httpfs

4. Modify /etc/hadoop-httpfs/conf/httpfs-site.xml to configure HttpFS to talk to the cluster, by confirming that the
following properties are correct:

<property>
<nanme>ht t pf s. pr oxyuser . hue. host s</ nanme>
<val ue>*</ val ue>

</ property>

<property>
<name>ht t pf s. pr oxyuser . hue. gr oups</ name>
<val ue>*</val ue>

</ property>

5. Start the HttpFS service.

servi ce hadoop-httpfs start

6. Modify the core-site.xml file. On the NameNodes and all the DataNodes, add the following properties to the
$HADOOP_CONF_DIR /core-sitexml file, where SHADOOP_CONF_DIR isthe directory for storing the
Hadoop configuration files. For example, /etc/hadoop/conf.

<property>
<name>hadoop. pr oxyuser. htt pfs. gr oups</ nanme>
<val ue>*</val ue>

</ property>

<property>
<nanme>hadoop. pr oxyuser. htt pf s. host s</ nane>
<val ue>*</val ue>

</ property>

7. Inthe hue.ini file, under the [hadoop][[hdfs_clusters]][[[default]]] subsection, use the following variablesto
configure the cluster:

Property Description Example

fs defaultfs NameNode URL using the logical namefor | hdfs:.//mycluster
the new name service. For reference, this
is the dfs.nameservices property in hdfs-
sitexml in your Hadoop configuration.

webhdfs_url URL to the HttpFS server. http://c6401.apache.org: 14000/ webhdfs/vl/

41

Configuring Fault Tolerance

8. Restart Hue for the changes to take effect.

service hue restart

Deploying Oozie with an HA Cluster
Y ou can configure multiple Oozie servers against the same database to provide High Availability (HA) for the Oozie
service.

About thistask

Y ou need the following prerequisites:

Procedure

« A database that supports multiple concurrent connections. In order to have full HA, the database should also have
HA support, or it becomes a single point of failure.

E Note:
The default derby database does not support this.

« A ZooKeeper ensemble. Apache ZooK eeper is a distributed, open-source coordination service for distributed
applications; the Oozie servers useit for coordinating access to the database and communicating with each other.
In order to have full HA, there should be at least 3 ZooK eeper servers.

e Multiple Oozie servers.

f Important:

While not strictly required, you should configure all ZooK eeper serversto have identical properties.
e A Loadbaancer, Virtual IP, or Round-Raobin DNS. Thisis used to provide a single entry-point for users and for
callbacks from the JobTracker.

The load balancer should be configured for round-robin between the Oozie servers to distribute the requests. Users
(using either the Oozie client, aweb browser, or the REST API) should connect through the load balancer. In
order to have full HA, the load balancer should also have HA support, or it becomes asingle point of failure.

Related Tasks

Configure Oozie Failover

Related Information

Apache ZooK eeper

Operating a NameNode HA cluster
The dfsadmin command can be run on both active and standby NameNodes to operate the HA cluster.

« While operating an HA cluster, the Active NameNode cannot commit a transaction if it cannot write successfully
to aquorum of the JournalNodes.

* When restarting an HA cluster, the steps for initializing JournalNodes and NN2 can be skipped.
o Start the servicesin the following order:

1. JournalNodes
2. NameNodes

Note:
E Verify that the ZKFailoverController (ZKFC) process on each node is running so that one of the
NameNodes can be converted to active state.

3. DataNodes
* InaNameNode HA cluster, the following dfsadmin command options will run only on the active NameNode:

-rollEdits
-set Quot a

42

High Availability on Non-Ambari Clusters

http://zookeeper.apache.org/

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

-clrQuota

- set SpaceQuot a

-cl r SpaceQuot a

-set St or agePol i cy

- get St or agePol i cy
-finalizeUpgrade

-rol i ngUpgr ade

- pri nt Topol ogy

-al | owSnapshot <snapshot Di r >

- di sal | owSnapshot <snapshotDir>

The following dfsadmin command options will run on both the active and standby NameNodes:

-saf enode enter

- saveNanmespace

-restoreFail edSt or age

-refreshNodes

-refreshServi ceAcl

-refreshUser ToG oupsMappi ngs
-refreshSuper User G oupsConfi gurati on
-refreshCal | Queue

- met asave

- set Bal ancer Bandwi dt h

The -refresh <host:ipc_port> <key> argl..argn command will be sent to the corresponding host according to its
command arguments.

The -fetchimage <local directory> command attempts to identify the active NameNode through a RPC call, and
then fetch the fsimage from that NameNode. This means that usually the fsimage is retrieved from the active
NameNode, but it is not guaranteed because a failover can happen between the two operations.

The following df sadmin command options are sent to the DataNodes:

- ref reshNanmenodes

- del et eBl ockPool

- shut downDat anode <dat anode_host : i pc_port> upgrade
- get Dat anodel nf o <dat anode_host : i pc_port >

Configuring and Deploying NameNode Automatic Failover
Automatic Failover adds Zookeper Quorum and ZK FailoverController process components to an HDFS deployment.

The preceding sections describe how to configure manual failover. In that mode, the system will not automatically
trigger afailover from the active to the standby NameNode, even if the active node has failed. This section describes
how to configure and deploy automatic failover.

Automatic failover adds following components to an HDFS deployment

* ZooKeeper quorum
e ZKFailoverController process (abbreviated as ZKFC).

The ZKFailoverController (ZKFC) is aZooKeeper client that monitors and manages the state of the NameNode. Each
of the machines which run NameNode service also runs a ZKFC. ZKFC isresponsible for:

« Heath monitoring: ZKFC periodically pingsitslocal NameNode with a health-check command.

e ZooKeeper session management: When the local NameNode is healthy, the ZKFC holds a session open in
ZooKeeper. If thelocal NameNode is active, it aso holds a specia "lock™ znode. This lock uses ZooK eeper's
support for "ephemeral™ nodes; if the session expires, the lock node will be automatically deleted.

» ZooKeeper-based election: If the local NameNode is healthy and no other node currently holds the lock znode,
ZKFC will try to acquire the lock. If ZKFC succeeds, then it has "won the election™" and will be responsible for
running afailover to makeitslocal NameNode active. The failover processis similar to the manual failover

43

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

described above: first, the previous active is fenced if necessary and then the local NameNode transitions to active

State.
Zookeeper Service
Monitor and
maintain active Iookeeper Zookeeper Monitor and try

to take active

lock c
B lock
Iookeeper

P - S— ..
ZookeeperFC ZoakesperFC
SHARED EDITS
Monitor liveness Monitor liveness
and health. JournalNade JournalNade and health.
Manage HA Manage HA

state

state ﬁ . JournalNode L
o) Wi T 3 | stasoey |
NameNode NameNode

=3 1 i 1

Dat akode | s s f Datakode |

&

Datadode

Prerequisitesfor Configuring NameNode Automatic Failover
Make sure you have aworking Zookeeper service and you shut down your HA cluster before you try to configure and
deploy automatic failover.

Complete the following prerequisites:

« Make sure that you have aworking ZooK eeper service. If you have an Ambari-deployed HDP cluster with
ZooK eeper, you can use that.

Note:

E In atypical deployment, ZooK eeper daemons are configured to run on three or five nodes. It is however
acceptable to co-locate the ZooK eeper nodes on the same hardware as the HDFS NameNode and Standby
Node. Many operators choose to deploy the third ZooK eeper process on the same node asthe YARN
ResourceManager. To achieve performance and improve isolation, Hortonworks recommends configuring
the ZooK eeper nodes such that the ZooK eeper data and HDFS metadata is stored on separate disk drives.

e Shut down your HA cluster (configured for manual failover).
Currently, you cannot transition from a manual failover setup to an automatic failover setup while the cluster is
running.

Configure and Deploy Automatic Failover
Configure automatic failover, initialize HA state in Zookeeper, and start the nodes in the cluster.

Procedure
1. Configure automatic failover.

» Set up your cluster for automatic failover. Add the following property to the hdfs-site.xml file for al of the
NameNode machines:

<property>
<nane>dfs. ha. autonmati c-f ai | over. enabl ed</ nane>
<val ue>t rue</ val ue>

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

</ property>

» List the host-port pairs running the ZooK eeper service. Add the following property to the core-sitexml file for
all of the NameNode machines:

<property>
<nanme>ha. zookeeper . quor unx/ nane>
<val ue>zkl. exanpl e. com 2181, zk2. exanpl e. com 2181,
zk3. exanpl e. com 2181</ val ue>
</ property>

Note:

E Suffix the configuration key with the nameservice ID to configure the above settings on a per-
nameservice basis. For example, in a cluster with federation enabled, you can explicitly enable
automatic failover for only one of the nameservices by setting dfs.ha.automatic-failover.enabled.$my-
nameservice-id.

2. Initialize HA state in ZooK eeper.

Execute the following command on NN1:
hdf s zkfc -formatZK -force

This command creates a znode in ZooK eeper. The automatic failover system stores uses this znode for data
storage.

3. Check to seeif ZooKeeper isrunning. If not, start ZooK eeper by executing the following command on the
ZooK eeper host machines.

su - zookeeper -c "export ZOOCFGDI R=/usr/hdp/ current/zookeeper-server/

conf ; export ZOOCFG=zoo.cfg; source /usr/hdp/current/zookeeper-server/

conf/ zookeeper-env.sh ; /usr/hdp/current/zookeeper-server/bin/zkServer.sh
start”

4, Start the JournalNodes, NameNodes, and DataNodes using the instructions provided in the Controlling HDP
Services Manually chapter of the HDP Administration Guide.

5. Start the ZooKeeper Failover Controller (ZKFC) by executing the following command:

su -1 hdfs -c "/usr/hdp/current/hadoop- hdf s- nanmenode/ . ./ hadoop/ sbi n/
hadoop- daenon. sh start zkfc"

The sequence of starting ZKFC determines which NameNode will become Active. For example, if ZKFC is
started on NN first, it will cause NN1 to become Active.

B Note:
To convert anon-HA cluster to an HA cluster, Hortonworks recommends that you run the
bootstrapStandby command (this command is used to initialize NN2) before you start ZKFC on any of the
NameNode machines.

6. Verify automatic failover.
a. Locate the Active NameNode.

Use the NameNode web Ul to check the status for each NameNode host machine.
b. Cause afailure on the Active NameNode host machine.

For example, you can use the following command to simulate a VM crash:
kill -9 $PID of Active_ NaneNode

Or, you could power cycle the machine or unplug its network interface to simulate outage.
c. The Standby NameNode should now automatically become Active within several seconds.

45

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Note:
E The amount of time required to detect afailure and trigger a failover depends on the configuration of
ha.zookeeper.session-timeout.ms property (default valueis 5 seconds).
d. If thetest fails, your HA settings might be incorrectly configured.

Check the logs for the zkfc daemons and the NameNode daemons to diagnose the issue.

Related Concepts
Deploying the NameNode HA Cluster

Configure Oozie Failover
Set up the database and configure Oozie on two or more servers and start the Oozie servers.

Procedure

1. Set up your database for High Availahility. (For details, see the documentation for your Oozie database.)
Oozie database configuration properties may need specia configuration. (For details, see the JDBC driver
documentation for your database.)

Configure Oozie identically on two or more servers.

Set the OOZIE_HTTP_HOSTNAME variable in oozie-env.sh to the Load Balancer or Virtual |P address.
Start all Oozie servers.

Use either aVirtual 1P Address or Load Balancer to direct traffic to Oozie servers.

Access Oozie viathe Virtual |P or Load Balancer address.

Related Tasks

Deploying Oozie with an HA Cluster
Related Information

Apache ZooK eeper

o 0k WD

Administrative Commands
The subcommands of hdfs haadmin are extensively used for administering an HA cluster.

Running the hdfs haadmin command without any additional arguments will display the following usage information:

Usage: HAAdni n [-ns <naneservicel d>]
[-transitionToActive <servicel d>]
[-transitionToSt andby <servicel d>]
[-failover [--forcefence] [--forceactive] <serviceld> <servicel d>]
[-get ServiceState <servicel d>]
[-checkHeal th <servi cel d>]
[-hel p <conmand>

This section provides high-level uses of each of these subcommands.
e transitionToActive and transitionToStandby: Transition the state of the given NameNode to Active or Standby.

These subcommands cause a given NameNode to transition to the Active or Standby state, respectively. These
commands do not attempt to perform any fencing, and thus should be used rarely. Instead, Hortonworks
recommends using the following subcommand:

hdf s haadm n -fail over
« failover: Initiate afailover between two NameNodes.
This subcommand causes afailover from the first provided NameNode to the second.

» If thefirst NameNode isin the Standby state, this command transitions the second to the Active state without
error.

46

http://zookeeper.apache.org/

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

« If thefirst NameNodeisin the Active state, an attempt will be made to gracefully transition it to the Standby
state. If thisfails, the fencing methods (as configured by dfs.ha.fencing.methods) will be attempted in order
until one succeeds. Only after this process will the second NameNode be transitioned to the Active state. If the
fencing methods fail, the second NameNode is not transitioned to Active state and an error is returned.

e getServiceState: Determine whether the given NameNode is Active or Standby.

This subcommand connects to the provided NameNode, determinesits current state, and prints either "standby" or
"active" to STDOUT appropriately. This subcommand might be used by cron jobs or monitoring scripts.
« checkHealth: Check the health of the given NameNode.

This subcommand connects to the NameNode to check its health. The NameNode is capable of performing some
diagnostics that include checking if internal services are running as expected. This command will return O if the
NameNode is healthy elseit will return a non-zero code.

E Note:
This subcommand is in implementation phase and currently always returns success unless the given
NameNode is down.

Configuring ResourceM anager High Availability
Y ou can configure ResourceM anager High Availability to avoid windows of cluster downtime.

This guide provides instructions on setting up the ResourceManager (RM) High Availability (HA) featurein aHDFS
cluster. The Active and Standby ResourceM anagers embed the ZooK eeper-based ActiveStandbyElector to determine
which ResourceM anager should be active.

Note:
E This guide assumes that an existing HDP cluster has been manually installed and deployed. It provides
instructions on how to manually enable ResourceManager HA on top of the existing cluster.

The ResourceManager is asingle point of failure (SPOF) in an HDFS cluster. Each cluster hasasingle
ResourceManager, and if that machine or process become unavailable, the entire cluster will be unavailable until the
ResourceManager is either restarted or started on a separate machine. This situation impacts the total availability of
the HDFS cluster in two major ways:

* Inthe case of an unplanned event such as a machine crash, the cluster will be unavailable until an operator restarts
the ResourceM anager.

« Planned maintenance events such as software or hardware upgrades on the ResourceManager machine result in
windows of cluster downtime.

The ResourceManager HA feature addresses these problems. This feature enables you to run redundant
ResourceManagers in the same cluster in an Active/Passive configuration with a hot standby. This mechanism thus
facilitates either afast failover to the standby ResourceManager during machine crash, or a graceful administrator-
initiated failover during planned maintenance.

Preparing the Har dwar e Resour ces
Make sure that you prepare the hardware resources before configuring the Resource Manager for High Availability.

* ResourceManager machines: The machines where you run Active and Standby ResourceManagers should have
exactly the same hardware. For recommended hardware for ResourceM anagers, see Hardware for Master Nodes
in the Cluster Planning Guide.

» ZooKeeper machines: For automated failover functionality, there must be an existing ZooK eeper cluster available.
The ZooK eeper service nodes can be co-located with other Hadoop daemons.

Deploying ResourceM anager HA Cluster

Y ou must first configure manual or automatic ResourceManager failover and then deploy the ResourceManager HA
cluster.

47

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

HA configuration is backward-compatible and works with your existing single ResourceManager configuration.

Configuring Manual or Automatic Resour ceM anager Failover
Set common ResourceManager HA properties and other propertiesin yarn-site.xml file.

Complete the following prerequisites:

e Make sure that you have aworking ZooK eeper service. If you have an Ambari-deployed HDP cluster with
ZooK eeper, you can use that ZooK eeper service.

Note:

E In atypical deployment, ZooK eeper daemons are configured to run on three or five nodes. It is, however,
acceptable to co-locate the ZooK eeper nodes on the same hardware as the HDFS NameNode and Standby
Node. Many operators choose to deploy the third ZooK eeper process on the same node asthe YARN
ResourceManager. To achieve performance and improve isolation, Hortonworks recommends configuring
the ZooK eeper nodes such that the ZooK eeper data and HDFS metadata is stored on separate disk drives.

o Shut down the cluster.
Set Common ResourceManager HA Properties

The following properties are required for both manual and automatic ResourceManager HA. Add these properties to
the etc/hadoop/conf/yarn-site.xml file:

Property Name Recommended Value Description
yarn.resourcemanager. ha.enabled true Enable RM HA
yarn.resourcemanager. harm-ids Cluster-specific, e.g., rm1,rm2 A commarseparated list of ResourceManager

IDsin the cluster.

yarn.resourcemanager. hostname.<rm-id> Cluster-specific The host name of the ResourceManager. Must
be set for al RMs.

yarn.resourcemanager. recovery.enabled true Enable job recovery on RM restart or failover.

yarn.resourcemanager. store.class org.apache.hadoop.yarn. The RM StateStore implementation to use
Sserver.resourcemanager. to store the ResourceM anager's internal
recovery.ZKRM StateStore state. The ZooK eeper- based store supports

fencing implicitly, i.e., alowsasingle
ResourceManager to make multiple changes at
atime, and hence is recommended.

yarn.resourcemanager .zk-address Cluster-specific The ZooK eeper quorum to use to store the
ResourceManager's internal state. For multiple
ZK servers, use commas to separate multiple

ZK servers.
yarn.client.failover-proxy-provider org.apache.hadoop.yarn. client. When HA is enabled, the class to be used
ConfiguredRM Failover ProxyProvider by Clients, AMs and NMsto failover to the

Active RM. It should extend

org.apache.hadoop.yarn.
client.RMFailoverProxyProvider

Thisisan optional configuration. The default
vaueis “org.apache.hadoop.yarn.client.
ConfiguredRM FailoverProxyProvider”

E Note:
Y ou can aso set values for each of the following propertiesin yarn-site.xml:

yarn. resour cemanager . addr ess. <r m#i d>

yarn. resour cemanager . schedul er. addr ess. <r m#i d>

yar n. resour cemanager . adm n. addr ess. <r n#i d>

yar n. resour cenmanager . r esour ce#tracker . addr ess. <r m¢i d>

48

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

yar n. resour cemanager . webapp. addr ess. <r m#i d>

If these addresses are not explicitly set, each of these properties will use

yarn. r esour cemanager . host nane. <rm
i d>: default port

such as DEFAULT_RM_PORT, DEFAULT_RM_SCHEDULER_PORT, €tc.

Thefollowing is a sample yarn-site.xml file with these common ResourceManager HA properties configured:

<l-- RM HA Configurations-->

<property>

<nane>yar n. r esour cemanager . ha. enabl ed</ name>
<val ue>t rue</val ue>

</ property>

<property>

<nanme>yar n. r esour cemanager . ha. r mi ds</ name>
<val ue>rmi, r n2</ val ue>

</ property>

<property>

<name>yar n. r esour cenmanager . host nane. r mL.</ nane>
<val ue>${rnll address}</val ue>

</ property>

<property>

<nane>yar n. r esour cemanager . host nane. r n2</ nane>
<val ue>${rn2 address}</val ue>

</ property>

<property>

<name>yar n. r esour cenanager . webapp. addr ess. r nil</ nanme>

<val ue>rml_web_addr ess: port _nunx/val ue>

<descri pti on>We can set rnl_web_address separately.
If not, it will use
${yarn. resour cemanager . host nane. r mL} : DEFAULT_RM WEBAPP_PORT
</ descri pti on>

</ property>

<property>

<name>yar n. r esour cenmanager . webapp. addr ess. r n2</ nanme>
<val ue>rn2_web_addr ess: port _nunx/val ue>

</ property>

<property>

<name>yar n. r esour cenmanager . r ecovery. enabl ed</ name>
<val ue>t rue</ val ue>

</ property>

<property>

<name>yar n. r esour cemanager . st or e. cl ass</ name>

<val ue>or g. apache. hadoop. yarn. server . resour cenmanager.recovery.
ZKRMSt at eSt or e</ val ue>

</ property>

<property>

<nane>yar n. r esour cermanager . zk- addr ess</ nane>
<val ue>${ zk1. addr ess, zk2. addr ess} </ val ue>

</ property>

49

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

<property>
<name>yarn. client.fail over-proxy-provider</nanme>
<val ue>or g. apache. hadoop. yarn. cl i ent.
Conf i gur edRMFai | over Pr oxyPr ovi der </ val ue>
</ property>

Configure Manual ResourceManager Failover
Automatic ResourceM anager failover is enabled by default, so it must be disabled for manual failover.
To configure manual failover for ResourceManager HA, add the yarn.resourcemanager.ha.automatic-failover.enabled

configuration property to the etc/hadoop/conf/yarn-sitexml file, and set its value to "false":

<property>
<nane>yar n. r esour cemanager . ha. aut omati c-f ai | over. enabl ed</ name>
<val ue>f al se</val ue>

</ property>

Configure Automatic ResourceManager Failover

The preceding section described how to configure manual failover. In that mode, the system will not automatically
trigger afailover from the active to the standby ResourceManager, even if the active node has failed. This section
describes how to configure automatic failover.

1. Add thefollowing configuration options to the yarn-sitexml file:

Property Name Recommended Value Description
yarn.resourcemanager.ha. automatic- lyarn-leader-election The base znode path to use for storing
failover.zk-base-path leader information, when using ZooK eeper-

based leader election. Thisisan optional
configuration. The default valueis

lyarn-leader-election

yarn.resourcemanager. cluster-id yarn-cluster The name of the cluster. In aHA setting,
thisis used to ensure the RM participatesin
leader election for this cluster, and ensures
that it does not affect other clusters.

Example:

<property>
<name>yar n. r esour cemanager . ha. aut omati c-f ai | over. zk- base- pat h</ name>
<val ue>/ yarn-| eader - el ecti on</ val ue>
<description>Optional setting. The default value is
/yarn-| eader-el ection</description>
</ property>

<property>
<name>yar n. r esour cemanager . cl ust er-i d</ name>
<val ue>yarn- cl ust er </ val ue>

</ property>

2. Automatic ResourceManager failover is enabled by default.

If you previously configured manual ResourceManager failover by setting the value of
yarn.resourcemanager.ha.automatic-failover.enabled to "false”, you must delete this property to return automatic
failover to its default enabled state.

Deploying the ResourceM anager HA Cluster
Update the yarn-site.xml file and configuration files and start Zookeeper, HDFS, and YARN in that order.

50

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Procedure

1

ol

7.

Copy the etc/hadoop/conf/yarn-site.xml file from the primary ResourceManager host to the standby
ResourceManager host.

Make sure that the clientPort value set in etc/zookeeper/conf/zoo.cfg matches the port set in the following yarn-
sitexml property:

<pr operty>

<name>yar n. r esour cemanager . zk- st at e- st or e. addr ess</ nane>
<val ue>| ocal host: 2181</ val ue>

</ property>

Start ZooK eeper. Execute this command on the ZooK eeper host machines:

Su - zookeeper -c "export ZOOCFGDI R=/usr/hdp/current/zookeeper-server/
conf ; export ZOOCFG=zoo.cfg; source /usr/hdp/current/zookeeper-server/
conf/ zookeeper-env.sh ; /usr/hdp/current/zookeeper-server/bin/zkServer.sh
start”

Start HDFS.

Start YARN.

Set the active ResourceM anager:

MANUAL FAILOVER ONLY: : If you configured manual ResourceM anager failover, you must transition one

of the ResourceM anagers to Active mode. Execute the following CLI command to transition ResourceM anager
"rm1" to Active:

yarn rmadnin -transitionToActive rml
Y ou can use the following CLI command to transition ResourceManager "rm1" to Standby mode:
yarn rmadm n -transitionToSt andby rml

AUTOMATIC FAILOVER: If you configured automatic ResourceManager failover, no action is required -- the
Active ResourceManager will be chosen automatically.

Start al remaining unstarted cluster services.

Minimum Settingsfor Automatic ResourceManager HA Configuration
Consider the minimum yarn-sitexml configuration settings for ResourceManager HA with automatic failover.

The minimum yarn-site.xml configuration settings for ResourceManager HA with automatic failover are as follows:

<pr operty>

<name>yar n. r esour cemanager . ha. enabl ed</ nanme>
<val ue>t rue</val ue>

</ property>

<property>

<name>yar n. r esour cemanager . ha. r mi ds</ name>
<val ue>rmi, r n2</ val ue>

</ property>

<property>

<nane>yar n. r esour cemanager . host nane. r niL</ name>
<val ue>192. 168. 1. 9</ val ue>

</ property>

<property>

<nane>yar n. r esour cemanager . host nane. r n2</ name>
<val ue>192. 168. 1. 10</ val ue>

</ property>

51

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

<property>
<name>yar n. r esour cenanager . recovery. enabl ed</ name>
<val ue>t rue</ val ue>

</ property>

<property>

<name>yar n. r esour cemanager . st or e. cl ass</ name>

<val ue>or g. apache. hadoop. yarn. server. resour cemanager . recovery. ZKRVSt at eSt or e</
val ue>

</ property>

<property>

<nane>yar n. r esour cemanager . zk- addr ess</ name>

<val ue>192. 168. 1. 9: 2181, 192. 168. 1. 10: 2181</ val ue>
<description>For nultiple zk services, separate themw th conmma</
description>

</ property>

<property>
<name>yar n. r esour cenmanager . cl ust er - i d</ nanme>
<val ue>yarn-cl ust er </ val ue>

</ property>

Testing ResourceM anager HA on a Single Node
Enable ResourceManagers to launch and explicitly set values specific to each ResourceManager separately yarn-
sitexml file.

Test ResourceM anager High Availability on a single node

To test ResourceManager HA on a single node (launch more than one ResourceManager on a single node), you need
to add the following settings in yarn-sitexml.

To enable ResourceManager "rm1" to launch:

<property>
<nane>yar n. r esour cenanager . ha. i d</ name>
<val ue>r mi</ val ue>
<description>f we want to | aunch nore than one RMin single node, we need
this configuration</description>
</ property>

To enable ResourceManager rm2 to launch:

<property>
<nane>yar n. r esour cenanager . ha. i d</ name>
<val ue>r n2</ val ue>
<description>f we want to | aunch nore than one RMin single node, we need
this configuration</description>
</ property>

Y ou should also explicitly set values specific to each ResourceM anager for the following properties separately in
yarn-site.xml:

e yarn.resourcemanager.address.<rm-id>

e yarn.resourcemanager.scheduler.address.<rm-id>

e yarn.resourcemanager.admin.address.<rm-id>

e yarn.resourcemanager.resourcettracker.address.<rm-id>
e yarn.resourcemanager.webapp.address.<rm-id>

52

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

For example:

<l-- RML Configs -->

<property>

<name>yar n. r esour cenmanager . addr ess. r m.</ nanme>
<val ue>l ocal host: 23140</ val ue>

</ property>

<property>

<name>yar n. r esour cemanager . schedul er. addr ess. r nil</ nane>
<val ue>l ocal host: 23130</ val ue>

</ property>

<property>

<name>yar n. r esour cenmanager . webapp. addr ess. r nil</ nanme>
<val ue>l ocal host: 23188</ val ue>

</ property>

<property>

<nanme>yar n. r esour cemanager . r esour ce-tracker. addr ess. r niL</ nanme>
<val ue>l ocal host: 23125</ val ue>

</ property>

<property>

<name>yar n. r esour cemanager . adm n. addr ess. r mL</ nane>
<val ue>l ocal host: 23141</ val ue>

</ property>

<l-- RMR configs -->

<property>

<name>yar n. r esour cenmanager . addr ess. r n2</ name>
<val ue>l ocal host : 33140</ val ue>

</ property>

<property>

<nanme>yar n. r esour cemanager . schedul er. addr ess. r n2</ name>
<val ue>| ocal host: 33130</ val ue>

</ property>

<property>

<name>yar n. r esour cenanager . webapp. addr ess. r n2</ nanme>
<val ue>l ocal host : 33188</ val ue>

</ property>

<property>

<name>yar n. r esour cenmanager . resour ce-tracker. addr ess. r n2</ nane>
<val ue>l ocal host: 33125</ val ue>

</ property>

<property>

<nane>yar n. r esour cemanager . admi n. addr ess. r n2</ name>
<val ue>| ocal host : 33141</ val ue>

</ property>

Deploying Hue with a ResourceM anager HA Cluster
Add the HA configuration sub-section at the end of the yarn_clusters section of the hue_ini configuration file.
Add the HA sub-section

If it does not exist, you can add a[[[ha]]] configuration sub-section to end of the [[yarn_clusters]] section of the
hue.ini configuration file.

53

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

To do this, specify the following:
e resourcemanager_api_url

Host on which you are running the failover Resource Manager.
* logica_name

Logical name of the Resource Manager.
e submit_to

Specify if Hue should use the cluster. Specify true to use the cluster, or false to not use the cluster.

If you ensure that the cluster section hames are unique, you can add more than one Resource Manager failover
configuration, for example, [[[ha2]]]. By doing so, if the standby Resource Manager also fails over, the next available
RM instanceistried.

Example:

[[yarn_cl usters]]

[[[defaul t]]]
Whether to submit jobs to this cluster
submit _to=true

security_enabl ed=f al se

Resource Manager |ogical nane (required for HA)
| ogi cal _nane=r nil

URL of the ResourceManager webapp address
(yarn. resour cemanager . webapp. addr ess)
resour cemanager _api _url =http://cl 2-node02. | ocal : 8088

URL of Yarn RPC adress (yarn.resourcenanager. address)
resour cemanager _rpc_url =http://cl 2-node02. | ocal : 8050

URL of the ProxyServer API
proxy_api _url =http://cl 2-node02. 1 ocal : 8088

URL of the HistoryServer API
hi story _server_api _url=http://cl2-node02.| ocal : 19888

URL of the NodeManager API
node_manager _api _url =http://I| ocal host: 8042

HA support by specifying nultiple clusters
e.d.

[[[ha]]l

Enter the host on which you are running the fail over Resource
Manager

resour cemanager _api _url =http://cl 2- node01. | ocal : 8088

hi story server_api _url=http://cl2-node02.| ocal : 19888

proxy_api _url=http://cl 2-node01. | ocal : 8088

resour cemanager _rpc_url =http://cl 2- node01. | ocal : 8050

| ogi cal _nane=rnP

subnit _t o=True
Note only one ha section is necessary, since Hue still uses the default
secti on.

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Configuring Apache Ranger High Availability
Y ou must consider the specified prerequisites and then configure High Availability (HA) for Apache Ranger.

Configuring Ranger Admin HA
Y ou can configure Ranger Admin HA with or without SSL on an Ambari-managed cluster.

The configuration settings used in this section are sample values. Y ou should adjust these settings to reflect your
environment (folder locations, passwords, file names, and so on).

Prerequisitesfor Configuring Apache Ranger for High Availability
Consider truststore and security prerequisites before configuring Apache Ranger for HA.

Copy the keystore/truststore files into a different location (e.g. /etc/security/serverK eys) than the /etc/
<component>/conf folder.

Make sure that the JKS file names are unique.
Make sure that the correct permissions are applied.
Make sure that passwords are secured.

Configuring Ranger Admin HA Without SSL
Set up the load-balancer and enable Ranger Admin on an Ambari-managed cluster.

Procedure

1

Use SSH to connect to the cluster node where you will set up the load-balancer. In this procedure, we use the IP
address 172.22.71.37.

Use the following command to switch to the /usr/local directory:

cd /usr/| ocal

Download the httpd file and its dependencies (apr and apr-util):

wget https://archive. apache. org/dist/httpd/ httpd-2.4.16.tar.gz
wget https://archive. apache.org/dist/apr/apr-1.5.2.tar.gz
wget https://archive. apache.org/dist/apr/apr-util-1.5.4.tar.gz

Extract the contents of thesefiles:

tar -xvf httpd-2.4.16.tar.gz
tar -xvf apr-1.5.2.tar.gz
tar -xvf apr-util-1.5.4.tar.gz

Run the following commands to move apr and apr-util to the srclib directory under httpd:

nv apr-1.5.2/ apr

nmv apr httpd-2.4.16/srclib/

m/ apr-util-1.5.4/ apr-util

mvy apr-util httpd-2.4.16/srclib/

Install PCRE (Perl-Compatible Regular Expressions Library):

yuminstall pcre pcre-devel

Note:
IS Herewe are using yum install, but you can also download the latest bits from http://www.pcre.org/

55

http://www.pcre.org/

Configuring Fault Tolerance

High Availability on Non-Ambari Clusters

7. Install gcc (ANSI-C Compiler and Build System):

yuminstall gcc

8. Run the following commands to configure the source tree:

cd /usr/local/httpd-2.4.16

./ configure

9. Run the following command to make the build:

make

10. Run the install:

make install

11. Run the following commands to confirm the preceding configuration steps:

cd /usr/ | ocal / apache2/ bi n
.l apachect| start
curl 1 ocal host

This should return:

<ht m ><body><h1>It works! </ h1></body></htmnl >

12. Run the following commands to create a backup conf file.

cd /usr/local / apache2/ conf

cp httpd. conf

~/ ht t pd. conf . backup

13. Edit the httpd.conf file:

vi /usr/|ocal /apache2/ conf/httpd. conf

Make the following updates:

« |If you are not running the load-balancer on the default port 80, change the default listening port in line Listen
80 to match the port setting.

* Un-comment the following module entries (remove the # symbol at the beginning of each line):

LoadMbdul e
LoadMbdul e
LoadMbdul e
LoadMbdul e
LoadMbdul e
LoadMbdul e
LoadMbdul e
LoadMbdul e

proxy_nodul e nodul es/ nod_pr oxy. so

proxy_http_nodul e nodul es/ nod_proxy_http. so

proxy_aj p_nodul e nodul es/ nod_proxy_aj p. so

pr oxy_bal ancer _nodul e nodul es/ nod_pr oxy_bal ancer. so

sl ot mem _shm nodul e nodul es/ nod_sl ot nem shm so

| bnet hod_byr equest s_nodul e nodul es/ nod_| bnet hod_byr equest s. so
| bnet hod_bytraffic_nodul e nodul es/ nod_| bret hod_bytraffic. so

| bnet hod_bybusyness _nodul e nodul es/ nod_| bnet hod_bybusyness. so

¢ Update the ServerAdmin email address, or comment out that line.

#Ser ver Adm n you@xanpl e. com

» Attheend of the httpd.conf file, add the following line to read the custom configuration file:

I ncl ude conf/ranger-cl uster. conf

56

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

14. Create a custom conf file:
vi ranger-cluster.conf

Make the following updates:

» Add the following lines, then change the <VirtualHost *:88> port to match the default port you set in the
httpd.conf file in the previous step.

#

This is the Apache server configuration file providing SSL support.

It contains the configuration directives to instruct the server how to
serve pages over an https connection. For detailing information about

t hese
directives see <URL: http://httpd. apache. org/ docs/ 2. 2/ nod/ nod_ssl . ht m >
#
Do NOT sinply read the instructions in here w thout understanding
what they do. They're here only as hints or renminders. |If you are
unsur e

consult the online docs. You have been war ned.

#Li sten 80

<Virtual Host *:88>
Pr oxyRequest s of f
ProxyPr eser veHost on

Header add Set - Cooki e "ROUTElI D=. % BALANCER WORKER ROUTE} €;
pat h=/" env=BALANCER ROUTE_CHANGED

<Pr oxy bal ancer://rangercl uster>
Bal ancer Menber http://172.22.71. 38: 6080 | oadf act or=1
route=1
Bal ancer Menber http://172.22.71.39: 6080 | oadf act or=1
rout e=2

Order Deny, Al | ow
Deny from none
Al'l ow from al |

ProxySet | bmet hod=byrequests scol onpat hdel i m=On
sti ckysessi on=ROUTEI D naxattenpts=1 fail onst at us=500, 501, 502, 503
nof ai | over = f
</ Pr oxy>

bal ancer - manager
This tool is built into the nod_proxy_bal ancer
nodule and will allow you to do sone sinple
nodi fications to the balanced group via a gui
web interface.
<Locati on /bal ancer - manager >
Set Handl er bal ancer - manager
O der deny, al |l ow
Al ow from al |
</ Locati on>

Pr oxyPass [/ bal ancer - manager !
ProxyPass / bal ancer://rangercluster/
Pr oxyPassReverse / bal ancer://rangercl uster/

</ Vi r t ual Host >

57

High Availability on Non-Ambari Clusters

Configuring Fault Tolerance

E Note:
example, the Ranger Admin host addresses are:

http://172.22.71. 38: 6080
http://172.22.71. 39: 6080

The URLs listed in the BalancerMember entries are the | P addresses of the Ranger Admin hosts. In this

15. Run the following commands to restart the httpd server:

cd /usr/ | ocal / apache2/ bi n
.l apachect| restart
If you use a browser to check the load-balancer host (with port) as specified in the BalanceMember entriesin the

ranger-cluster.conf file, you should see the Ranger Admin page.
16. Enable Ranger Admin HA using Ambari. On the Ambari dashboard of the first Ranger host, select Services >

Ranger, then select Service Actions > Enable Ranger Admin HA to launch the Enable Ranger Admin HA Wizard.

@ Asplicat
® [Dal_india) msue v = ¥ Q) Commits - apache/i =
L C [Dmenis

1 Apps [Hortomwork) Ambari (] Oracie] MySOL

[2

uuuuuuuuuuuuuu

17. On the Get Started page, enter the load-balancer URL and port number (in this example, 172.22.71.37:88), then

L)

[Dal_india) isswe Na = T £) Commits . apache/is = hacluster = £ x Faders 1=
L C [Dmenis W=
1 Apps [Hortonwork () Ambari (] Orade 1 MySQL LDAP) TDE = 3 Other boskmarks

Enable Ranger Admin HA Wizard

Get Started

18. On the Select Hosts page, confirm the host assignments, then click Next

58

Configuring Fault Tolerance

High Availability on Non-Ambari Clusters

_india] ssue ba = ¥ €) Commits - apacheic x | L lnuxjenkins.qehor = | #% Amzan -hacluster
L C [Dmenis
1 Apps [Hortomwork (3 Ambari (] Oracie) MySOL (] Java) Python () Shell (] Linex 0 SQLServer £ GR [Maven ©) LDAP 5 TDE () g = £ Gther boskmarks

Enable Ranger Admin HA Wizard

Select Hosts

% Temperil._ toment % Temper.T._toment * Temper(2...toment ® ATPOCSES.._tomest MANCERS1._patch & show il dewnieads..

& [Dal_indu] swe s = ¥ C) Commits - apache/ic x 1 L linusenking.qe.ho: x 1 #% Amtar - hacluster
L C [Dmenis
1 Apps [Hortomwork (3 Ambari (] Oracie) MySOL (] Java) Python () Shell (] Linex 0 SQLServer £ GR [Maven ©) LDAP 5 TDE () g = £ Gther boskmarks

Enable Ranger Admin HA Wizard

Review

FSe—————
I e i

Additional ftarges Admin. i ia

Rview Confguraton Changes

% Temperil._ toment % Temper.T._toment * Temper(2...toment ® ATPOCSES.._tomest MANCERS1._patch & show il dewnieads..

& [Dal India] ase Mo = 1) Commits - apache
L C [Dmenis
1 Apps [Hortomwork (3 Ambari (] Oracie) MySOL (] Java) Python () Shell (] Linex 0 SQLServer £ GR [Maven ©) LDAP 5 TDE () g = 3 Gther bockmarks

= ¥ L) inunjenkins.qeho: = ¥ 0 Amban - hacluster

Enable Ranger Admin HA Wizard

Install, Start and Test

% Temperil._ toment % Temper.T._toment * Temper(2...toment ® ATPOCSES.._tomest MANCERS1._patch & show il dewnieads..

21. When the installation is complete, the Ranger Admin instances are listed on the Ranger Summary page. Select

Actions > Restart All Required to restart all servicesthat require arestart.

59

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

s Mo = ! G Commits - apachels = 1 L) busjenking.geho: =) £ Ambari-hackiter + 1) Untitied document = 1 Ranger - Sign n G
L C [Dmenis W=
1 Apps [Hortomwork 3 Ambari (] Oracie) MySOL (] Java) Python () Shell (] Linex 0 SQLServer £ GR [Maven ©) LDAP 5 TDE () G = £ Gther boskmarks

% Temperil._ toment % Temper.T._toment Temgeer[2... besrent ® ATPOCSES.._tomest MANCERS1._patch & show il dewnieads..

Note:
E For Oracle, clear the Setup DB and DB user check box under "Advanced ranger-env" to avoid DB setup.

22.To test the load-balancer and Ranger HA configuration, select Ranger > Service Actions > Stop on one of the
Ranger hosts.

[Cal_india) e e = T C) Commits - apacheyi = 7 L bnujenkins.geho = ¥ amba - hackater - | O Untitied document x 2
L C [Dmenis W=
1 Apps [Hortomwork 3 Ambari (] Oracie) MySOL (] Java) Python () Shell (] Linex 0 SQLServer £ GR [Maven ©) LDAP 5 TDE () G = £ Gther boskmarks

% Temperil._ toment % Temper.T._toment Temgeer[2... besrent ® ATPOCSES.._tomest MANCERS1._patch & show il dewnieads..

& [Dal_indua] mswe s = ¥ C) Commits - apache/ic = ¥ & z
L © [rezznan W=

1 Apps [Hortorwork () Ambari (] Orade] MySQL wa 1 Python () Shell SQLServer 3 GR [Maven I LDAP T3 TDE) g = 3 Other bockmarks

Configuring Ranger Admin HA With SSL
Set up aload-balancer with SSL and enable Ranger Admin HA on an Ambari-managed cluster.

60

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

Procedure

1. Use SSH to connect to the cluster node where you will set up the load-balancer. In this procedure, we use the IP
address 172.22.71.37.

2. Usethe following command to switch to the /usr/local directory:

cd /usr/| ocal

3. Download the httpd file and its dependencies (apr and apr-util):

wget https://archive. apache.org/dist/httpd/httpd-2.4.16.tar.gz
wget https://archive. apache.org/dist/apr/apr-1.5.2.tar.gz
wget https://archive. apache.org/dist/apr/apr-util-1.5.4.tar.gz

4, Extract the contents of thesefiles:

tar -xvf httpd-2.4.16.tar.gz
tar -xvf apr-1.5.2.tar.gz
tar -xvf apr-util-1.5.4.tar.gz

5. Run the following commands to move apr and apr-util to the srclib directory under httpd:

nmv apr-1.5.2/ apr

mv apr httpd-2.4.16/srclib/

mv apr-util-21.5.4/ apr-util

mvy apr-util httpd-2.4.16/srclib/

6. Install the required packages:

yum groupi nstall "Devel opnent Tool s"
yuminstall openssl-devel
yuminstall pcre-devel

7. Run the following commands to configure the source tree:

cd /usr/local/httpd-2.4.16
./ configure --enabl e-so --enabl e-ssl --with-npneprefork --wth-included-
apr
8. Run the following command to make the build:
make

9. Runtheinstal:

make install

10. Run the following commands to confirm the preceding configuration steps:

cd /usr/ | ocal / apache2/ bi n
./ apachect| start
curl | ocal host

This should return:

<ht M ><body><h1>lt works! </ hl></body></htm >

11. Run the following commands to create a backup conf file.

cd /usr/local / apache2/ conf
cp httpd. conf ~/httpd.conf.backup

61

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

12. Edit the httpd.conf file:
vi /usr/|ocal /apache2/ conf/httpd. conf

Make the following updates:

« |If you are not running the load-balancer on the default port 80, change the default listening port in line Listen
80 to match the port setting.
* Un-comment the following module entries (remove the # symbol at the beginning of each line):

LoadModul e proxy_nodul e nodul es/ nod_proxy. so

LoadModul e proxy_http_nodul e nodul es/ nod_proxy_http. so

LoadMbdul e proxy_aj p_nodul e nodul es/ nod_proxy_aj p. So

LoadMbdul e proxy_bal ancer _nodul e nmodul es/ nod_pr oxy_bal ancer. so
LoadModul e sl ot mem shm nodul e nodul es/ nod_sl ot mem shm so

LoadModul e | bnet hod_byr equest s _nodul e nodul es/ nod_| bnet hod_byr equests. so
LoadModul e | bnet hod_bytraffi c_nodul e nodul es/ nod_| bnet hod_bytraffic. so
LoadModul e | bnet hod_bybusyness _nodul e nodul es/ nod_| bnet hod_bybusyness. so
LoadModul e ssl _nodul e nodul es/ nmod_ssl . so

Note:

E If LoadModule ss_module modules/mod_ssl.so is not available in the httpd.conf file, check to make
sure that you performed all of the previous installation steps. The load balancer will not work properly
without the SSL module.

» Update the ServerAdmin email address, or comment out that line.

#Server Adm n you@xanpl e. com

13. Run the following command to restart the httpd server:
/usr/ | ocal / apache2/ bi n/ apachect| restart

Y ou should now be able to use Curl or a browser to access the load-balancer server I1P address (with the port
configured in the httpd.conf file) using the HTTPS protocol.
14. Enable Ranger Admin HA using Ambari. On the Ambari dashboard of the first Ranger host, select Services >
Ranger, then select Service Actions > Enable Ranger Admin HA to launch the Enable Ranger Admin HA Wizard.

Java

ATFOCBES.._torment MANCERS1.._pateh & Show l downikeads..

15. On the Get Started page, enter the load-balancer URL and port number (in this example, 172.22.71.37:88), then
click Next.

62

Configuring Fault Tolerance

High Availability on Non-Ambari Clusters

 [Dal_indu e e = ¥ C) Commits - apache/ic x | L s jenking.qe.ho: x | # Amoan - hacluster
L C [Dmenis =
1 Apps [Hortomwork (3 Ambari (] Oracie) MySOL (] Java) Python () Shell (] Linex 0 SQLServer £ GR [Maven ©) LDAP 5 TDE () g = £ Gther boskmarks

Enable Ranger Admin HA Wizard

Get Started

Yo should plan & chivier mainsenance window and prepans or cluster dowetime whes smabling Ranper

% Temperil_toment % TemperT. toment * Temper(2...toment ® ATPOCSES.._tomest MANCERS1._patch & show il dewnieads..

16. On the Select Hosts page, confirm the host assignments, then click Next.
Imuln. = ¥) Commits - apache/. = | L inunjenking.geho: x T @ amzar hacuster - | O] Untitied docement = | e Wacees _ r:

L C [Dmenis W=
1 Apps [Hortomwork (3 Ambari (] Oracie) MySOL (] Java) Python () Shell (] Linex 0 SQLServer £ GR [Maven ©) LDAP 5 TDE () g = £ Gther boskmarks

Enable Ranger Admin HA Wizard

Select Hosts

% Temperil_toment % TemperT. toment * Temper(2...toment ® ATPOCSES.._tomest MANCERS1._patch & show il dewnieads..

 [Dal_indu e e = ¥ C) Commits - apache/ic x | L s jenking.qe.ho: x | # Amoan - hacluster
L C [Dmenis
1 Apps [Hortomwork (3 Ambari (] Oracie) MySOL (] Java) Python () Shell (] Linex 0 SQLServer £ GR [Maven ©) LDAP 5 TDE () g = £ Gther boskmarks

Enable Ranger Admin HA Wizard

Review
P ———
oo | e i

Additional Rarsger Adein. (2

% Temperil_toment % TemperT. toment * Temper(2...toment ® ATPOCSES.._tomest MANCERS1._patch & show il dewnieads..

18. Click Complete on the Install, Start, and Test page to complete the installation.

63

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

& [Dal_india] ssue Na = 7) Commits - apache/ir = 1 L inundenking.qehor = ' £ amtan - hacuster =
L C [Dmenis
1 Apps [Hortomwork (3 Ambari (] Oracie) MySOL (] Java) Python () Shell (] Linex 0 SQLServer £ GR [Maven ©) LDAP 5 TDE () g = £ Gther boskmarks

Enable Ranger Admin HA Wizard

Install, Start and Test

% Temperil_toment % TemperT. toment * Temper(2...toment ® ATPOCHES.._tomest MANCERS1._patch & show il dewnieads..

19. When the installation is complete, the Ranger Admin instances are listed on the Ranger Summary page. Select
Actions > Restart All Required to restart all servicesthat require arestart.

& [Dal_india] ssue Na = T) Commits - apache/ = 7 L] bnusjenkins.gehor x| M Ambarihachater Untithed document = Ranger - Sign In e 3
L C [Dmenis Ab ¥ W=
1 Apps [Hortomwork 3 Ambari (] Oracie) MySOL (] Java) Python () Shell (] Linex 0 SQLServer £ GR [Maven ©) LDAP 5 TDE () G = £ Gther boskmarks

% Temperil_toment % TemperT. toment * Temper(2...toment ® ATPOCHES.._tomest MANCERS1._patch & show il dewnieads..

Note:
E For Oracle, clear the Setup DB and DB user check box under "Advanced ranger-env" to avoid DB setup.

20. To test the load-balancer and Ranger HA configuration, select Ranger > Service Actions > Stop on one of the
Ranger hosts.

® [Dal_india] ssue Mo = 7€) Commits - apache = | L] bnuxjenkins.geho x| @ ambai hackater - | O] Untitied document = Ranager - Sign in
L C [Dmenis A ¥
1 Apps [Hortomwork () Ambari (1 Oracle) MySOL [Java () Python) Shell) Lisex ©) SQUServer () GR [Maven ©) LDAP 3 TDE

L]
o
® zoomes
g =
a
e
Temper(l toment & TemperT. toment * Temgper. (2. tedrent # ATFOCSSS.. _tofrest PANCERST. _patch & show ol dewnicads. n
® o - rr— [Pradee Agrows- € ® I3

21. Use a browser to check the load-balancer host URL (with port). Y ou should see the Ranger Admin page.

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

22. Use the following steps to generate the self-signed certificate:
a) Switch to the directory that will contain the self-signed certificate:
cd /tnp
b) Generate the private key:

openssl genrsa -out server.key 2048

¢) Generate the CSR:

openssl req -new -key server.key -out server.csr

d) Generate the self-signed key:

openssl x509 -req -days 365 -in server.csr -signkey server.key -out
server.crt

€) Generate the keystorein PEM format:

openssl pkcsl2 -export -passout pass:ranger -in server.crt -inkey
server. key -out | bkeystore.pl2 -nane httpd.|b.server.alias

f) Usethekeytool to convert the PEM format keystore to JKS format:

keyt ool -inportkeystore -deststorepass ranger -destkeypass ranger
-dest keystore httpd | b_keystore.jks -srckeystore | bkeystore.pl2 -
srcstoretype PKCS12 -srcstorepass ranger -alias httpd.|b.server.alias

g) Create atruststore of the load-balancer self-signed keystore:

keyt ool -export -keystore httpd |b_keystore.jks -alias
httpd.lb.server.alias -file httpd-Ib-trust.cer

23. Copy the generated key and certificate into the /usr/local/apache2/conf/ directory.

cp server.crt /usr/local /apache2/ conf/
cp server.key /usr/local /apache2/ conf/

24. Add the following entry at the end of the /usr/local/apache2/conf/httpd.conf file to read the custom configuration
file:

I ncl ude /usr/local /apache2/ conf/ranger-| b-ssl. conf

65

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

25. Create a custom conf file for the load-balancer SSL configuration:
vi /usr/local /apache2/ conf/ranger-Ib-ssl.conf

Make the following updates:

Add the following lines, then change the <VirtualHost *:8443> port to match the default port you set previously in
the httpd.conf file.

<Virtual Host *:8443>

SSLEngi ne On

SSLPr oxyEngi ne On

SSLCertificateFile /usr/local/apache2/conf/server.crt
SSLCertificateKeyFile /usr/local/apache2/conf/server. key

#SSLCACertificateFile /usr/local/apache2/conf/ranger | b _crt.pem

#SSLProxyCACertificateFile /usr/local/apache2/conf/
ranger_|b_crt.pem

SSLVerifydient optional

SSLOpti ons +Export Cert Dat a

SSLProxyVerify none

SSLPr oxyCheckPeer CN of f

SSLPr oxyCheckPeer Nane of f

SSLPr oxyCheckPeer Expi re of f

Pr oxyRequest s of f

Pr oxyPr eserveHost off

Header add Set - Cooki e "ROUTEI D=. % BALANCER WORKER ROUTE} e; pat h=/"
env=BALANCER_ROUTE_CHANGED

<Pr oxy bal ancer://rangercl uster>
Bal ancer Menber http://172.22.71.39: 6080 | oadf act or=1
rout e=1
Bal ancer Menber http://172.22.71. 38: 6080 | oadf act or=1
rout e=2

O der Deny, Al |l ow
Deny from none
Al ow from all

ProxySet | bmet hod=byrequests scol onpat hdel i m=On
sti ckysessi on=ROUTEI D naxattenpts=1 fail onstat us=500, 501, 502, 503
nof ai | over =Cf f
</ Proxy>

bal ancer - nanager
This tool is built into the nod_proxy_bal ancer
nmodule and will allow you to do sone sinple
nodi fications to the balanced group via a gui
web interface.
<Locati on /bal ancer - mranager >
Set Handl er bal ancer - mranager
Order deny, al | ow
Al'l ow from al |
</ Locati on>

Pr oxyPass [/ bal ancer - manager !
ProxyPass / bal ancer://rangercl uster/
ProxyPassReverse / bal ancer://rangercl uster/

66

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

</ Vi r t ual Host >

Note:
IE The URLs listed in the BalancerMember entries are the | P addresses of the Ranger Admin hosts. In this
example, the Ranger Admin host adresses are:

http://172.22.71. 38: 6080
http://172.22.71. 39: 6080

26. Run the following command to restart the httpd server:
/usr/ 1 ocal / apache2/ bi n/ apachect| restart

If you use a browser to check the load-balancer host (with port), you should see the Ranger Admin page.

27. Run the following command to enable Usersync to communicate with Ranger via the load-balancer. This
command copies the previously generated truststore file from the /tmp directory imports the certificate into the
Usersync truststore.

keytool -inport -file /tnp/httpd-lb-trust.cer -alias httpd.|b.server.alias
-keystore /etc/ranger/usersync/conf/mytruststore.jks -storepass changeit
28. Restart Ranger Usersync.

29. Run the following command to enable the HDFS plug-in to communicate with Ranger via the load-balancer. This
command copies the previously generated truststore file from the /tmp directory imports the certificate into the
HDFS truststore.

keytool -inmport -file /tnp/httpd-1b-trust.cer -alias httpd.Ib.server.alias
-keyst ore /etc/hadoop/ conf/ranger-plugin-truststore.jks -storepass
changei t
30. Restart HDFS.

31. In the Ranger Admin Ul, select Audit > Plugins. Y ou should see an entry for your repo name with HTTP
Response Code 200.

32. Use SSH to connect to the KDC server host. Use the kadmin.local command to access the Kerberos CLI, then
check the list of principals for each domain where Ranger Admin and the load-balancer are installed.

kadmi n. | ocal
kadm n.local : list_principals

For example, if Ranger Admin isinstalled on <host1> and <host2>, and the load-balancer isinstalled on <host3>,
the list returned should include the following entries:

HTTP/ <host 3>@XAMPLE. COM
HTTP/ <host 2>@EXAMPLE. COM
HTTP/ <host 1>@EXAMPLE. COM

If the HTTP principal for any of these hostsis not listed, use the following command to add the principal:

kadm n. | ocal : addprinc -randkey HTTP/ <host 3>@XAMPLE. COM

Note:
E This step will need to be performed each time the Spnego keytab is regenerated.
33. Use the following kadmin.local commands to add the HTTP Principal of each of the Ranger Admin and load-
balancer nodes to the Spnego keytab file:

kadmi n. | ocal : ktadd -norandkey -kt /etc/security/keytabs/
spnego. servi ce. keytab HTTP/ <host 3>@XAMPLE. COM

67

Configuring Fault Tolerance High Availability on Non-Ambari Clusters

kadmi n. | ocal : ktadd -norandkey -kt /etc/security/keytabs/
spnego. servi ce. keytab HTTP/ <host 2>@XAMPLE. COM
kadnmi n. | ocal : ktadd -norandkey -kt /etc/security/keytabs/
spnego. servi ce. keytab HTTP/ <host 1>@XAMPLE. COM

Use the exit command to exit ktadmin.local.
34. Run the following command to check the Spnego keytab file:

klist -kt /etc/security/keytabs/spnego. service. keytab

The output should include the principals of al of the nodes on which Ranger Admin and the load-balancer are
installed. For example:

Keytab nane: FILE:/etc/security/keytabs/spnego. service. keytab
KVNO Ti nest anp Pri nci pal

07/ 22/ 16 06:27:31 HTTP/ <host 3>@XAMPLE. COM
07/ 22/ 16 06:27:31 HTTP/ <host 3>@XAMPLE. COM
07/ 22/ 16 06:27:31 HTTP/ <host 3>@XAVMPLE. COM
07/ 22/ 16 06:27:31 HTTP/ <host 3>@XAVMPLE. COM
07/ 22/ 16 06: 27:31 HITP/ <host 3>@XAMPLE. COM
07/ 22/ 16 08:37:23 HITP/ <host 2>@:XAMPLE. COM
07/ 22/ 16 08:37:23 HITP/ <host 2>@:XAVMPLE. COM
07/ 22/ 16 08:37:23 HITP/ <host 2>@XAMPLE. COM
07/ 22/ 16 08:37:23 HITP/ <host 2>@XAMPLE. COM
07/ 22/ 16 08:37:23 HITP/ <host 2>@EXAVMPLE. COM
07/ 22/ 16 08:37:23 HITP/ <host 2>@EXAMPLE. COM
07/ 22/ 16 08:37:35 HITP/ <host 1>@XAMPLE. COM
07/ 22/ 16 08:37:36 HITP/ <host 1>@XAMPLE. COM
07/ 22/ 16 08:37:36 HTTP/ <host 1>@XAMPLE. COM
07/ 22/ 16 08:37:36 HTTP/ <host 1>@XAMPLE. COM
07/ 22/ 16 08:37:36 HITP/ <host 1>@XAMPLE. COM
07/ 22/ 16 08:37:36 HITP/ <host 1>@EXAMPLE. COM

RPRRPRRPRRRPRRRRPRPRRRERRRRERR

35. Use scp to copy the Spnego keytab file to every node in the cluster on which Ranger Admin and the load-bal ancer
areinstalled. Verify that the /etc/security/keytabs/spnego.service. keytab file is present on all Ranger Admin and
load-balancer hosts.

36. Configure the Ranger HA Keytab file.

When setting up Ranger in HA where Kerberos is enabled, the Ambari-managed SPNEGO keytab fileis altered.
Since Ambari expects the file to contain certain data, the file is now overwritten with the Ambari-cached data
during some Kerberos operations. This breaks Ranger in HA.

In HDP 3.0+, you must duplicate the SPNEGO keytab file for Ranger HA, make various changes, and add the
custom property "ranger.ha.spnego.kerberos.keytab”. This enables Ambari to use the relevant SPNEGO properties
differently depending on whether the Ambari server or the Ambari agent is acting.

a) Login totheload balancer node.

b) Enter: cp /etc/security/keytabs/spnego.service.keytab /etc/security/keytabs/ranger.ha.keytab.

¢) Runkadmin.local.

d) Addthe SPNEGO principal entry of the node where the first ranger_admin isinstalled: ktadd -norandkey -kt /
etc/security/keytabs/ranger.ha.keytab HT TP/as-amb-21-1.openstacklocal @EXAMPLE.COM.

€) Add the SPNEGO principal entry of the node where the second ranger_admin isinstalled: ktadd -norandkey -
kt /etc/security/keytabs/ranger.ha.keytab HT TP/as-amb-21-1.openstacklocal @EXAMPLE.COM.

f) Verify /etc/security/keytabs/ranger.ha.keytab contains an entry of all the required SPNEGO principals: klist -
kt /etc/security/keytabs/ranger.ha.keytab.

g) Copy the Ranger keytab file to other nodes where ranger_admin isinstalled: scp /etc/security/keytabs/
ranger.ha.keytab.

68

Configuring Fault Tolerance Data Protection

h) Update permission: chmod 440 /etc/security/keytabs/ranger.ha.keytab.

i) Update ownership: chown root:hadoop /etc/security/keytabs/ranger.ha.keytab.

j) Add config from Ambari > Ranger > Configs > Advanced > Custom ranger -admin-site:
ranger.ha.spnego.kerberos.keytab=/etc/security/keytabs/ranger.ha.keytab.

k) Restart the Ranger service.

Data Protection

Y ou can ensure data protection by preventing accidental deletion of files and backing up HDFS metadata.

Preventing Accidental Deletion of Files
Y ou can prevent accidental deletion of files by enabling the Trash feature for HDFS.
For additional information regarding HDFS trash configuration, see HDFS Architecture.

You might still causeirrecoverable datalossif the -skipTrash and -R options are accidentally used on directories with
alarge number of files. Y ou can obtain an additional layer of protection by using the -safely option to the fs shell -
rm command. The fs shell -rm command checks the hadoop.shell.safely.delete.limit.num.files property from core-
sitexml file, even if you specify -skipTrash. By specifying the -safely option, the -rm command requires that you
confirm if the number of files to be deleted is greater than the limit specified by the assigned value. The default limit
for value is 100, referring to 100 files.

This confirmation warning is disabled if valueis set at O or the -safely is not specified to the -rm command.
To enable the hadoop.shell.safely.del ete.limit.num.files property, add the following lines to core-site.xml:

<property>

<nanme>hadoop. shel | . safely.delete.lint.num fil es</ name>

<val ue>100</ val ue>

<descri ption>Used by -safely option of hadoop fs shell -rmcommand to avoid
accidental deletion of |arge directories.</description>

</ property>

In the following example, the hadoop.shell.safely.delete.limit.num.files property with an associated value of 10 has

been added to core-sitexml with -skipTrash . In this example, fs shell -r prompts deletion of a directory with only 10
files. It does not prompt if trash is enabled and -skipTrash is not.

[ambari-qa@6405 current]$ hdfs dfs -Is -R /tnp/testl

STW-r--T1-- 3 anbari-qga hdfs 2413 2016-10-20 20:57 /tnp/testl/
capaci ty- schedul er. xm

STWr--F-- 3 anbari-qa hdfs 4435 2016-10-20 20:57 /tnp/testl/ core-
site. xm

SPWF--T-- 3 anbari-qa hdfs 1308 2016-10-20 20:57 /tnp/testl/ hadoop-
policy. xm

STW-r--T1-- 3 anbari-qga hdfs 8071 2016-10-20 20:57 /tnp/testl/ hdfs-
site. xm

STWTr--F-- 3 anbari-qa hdfs 3518 2016-10-20 20:57 /tnp/testl/ kns-
acl s. xni

SPWr--T-- 3 anbari-qa hdfs 5511 2016-10-20 20:57 /tnp/testl/ kmns-
site.xm

SFWF--F-- 3 anbari-qa hdfs 7339 2016-10-20 20:57 /tnp/testl/ mapred-
site. xm

STWTr--F-- 3 anbari-qa hdfs 884 2016-10-20 20:57 /tnp/testl/ssl-
client.xm

69

Configuring Fault Tolerance

Data Protection

“FTWeFP--T--
server. xm
STWF--T--
site.xm

3 anbari-qa
3 anbari-qa

hdf s
hdf s

1000 2016-10-20 20:57 /tnp/testl/ssl-

20349 2016-10-20 20:57 /tnp/testl/yarn-

[ambari - qa@6405 current]$ hdfs dfs -rm-R /tnp/testl

16/ 10/ 20 20:58: 37 INFO fs. TrashPol i cyDef aul t:

c6403. anbari . apache. org: 8020/ t np/ t est 1'
c6403. anbari . apache. or g: 8020/ user/ anbari -qa/. Trash/ Current/tnp/testl

The following example del etes files without prompting or moving to the trash:

Moved:
to trash at:

"hdfs://
hdfs://

[anmbari-ga@6405 current]$ hdfs dfs -1s -R /tnp/test2

STWTr--r-- 3 anbari-qa
capaci ty-schedul er. xm
SFWr--T-- 3 anbari-qa
site.xm

STWr--T-- 3 anbari-ga
policy. xm

STWTr--r-- 3 anbari-qa
site.xm

SFWr--T-- 3 anbari-qa
acl s. xni

STWr--T-- 3 anbari-qga
site. xm

STWTr--r-- 3 anbari-qa
site.xm

SFWr--T-- 3 anbari-qa
client.xm

STWr--T-- 3 anbari-qga
server. xm

STWTr--7-- 3 anbari-qa
site.xm

hdf s
hdf s
hdf s
hdf s
hdf s
hdf s
hdf s
hdf s
hdf s
hdf s

2413
4435
1308
8071
3518
5511
7339
884
1000
20349

2016-10- 20
2016-10- 20
2016-10- 20
2016-10- 20
2016-10- 20
2016-10- 20
2016-10- 20
2016-10- 20
2016-10- 20
2016-10- 20

20:
20:
20:
20:
20:
20:
20:
20:
20:
20:

59
59
59
59
59
59
59
59
59
59

/tnp/test2/
/tnp/test2/core-
[t np/ t est 2/ hadoop-
/tnp/test 2/ hdfs-
/tnp/test2/ kmns-
/tnp/test2/ kmns-
/tnp/ t est 2/ mapr ed-
/tnp/test2/ssl-
[tnp/test2/ssl-

/tnp/test2/yarn-

[ambari-qa@6405 current]$ hdfs dfs -rm-R -ski pTrash /tnp/test2
Deleted /tnp/test2

The following example prompts for you to confirm file deletion if the number of files to be deleted is greater than the
value specified to hadoop.shell.safely.delete.limit.num.files:

[anmbari-ga@6405 current]$ hdfs dfs -Is -R /tnp/test3

STWr--T--

3 anbari-qa

capaci ty-schedul er. xm

SFTWF--7--
site. xm
“FWeFP--T--
policy. xm
STWF--T--
site.xm
SFTWF--7--
acl s. xm
“FWeFP--T--
site. xm
STWF--T--
site.xm
SFTWF--7--
client.xn
“FTWeP--T--
server. xml
STWr--7--
site.xm

3 anbari-qa
anbari - ga
anbari - ga
anbari - ga

3
3
3
3 anbari-qa
3 anbari-qa
3 anbari-qa
3 anbari-qa
3 anbari-qa

hdf s
hdf s
hdf s
hdf s
hdf s
hdf s
hdf s
hdf s
hdf s
hdf s

2413
4435
1308
8071
3518
5511
7339
884
1000
20349

2016-10- 20
2016-10- 20
2016-10- 20
2016-10- 20
2016-10- 20
2016-10- 20
2016-10- 20
2016-10- 20
2016-10- 20
2016-10- 20

21:
21:
21:
21:
21:
21:
21:
21:
21:
21:

00
00
00
00
00
00
00
00
00
00

/tnp/test3/
/tnp/test3/core-

/ t mp/ t est 3/ hadoop-
[t np/ t est 3/ hdf s-
/tnp/test3/ kns-
/tnp/ t est 3/ kis-

[t np/ t est 3/ mapr ed-
/tnp/test3/ssl-
/tnp/ test3/ssl-
/tnp/test3/yarn-

[ambari - qa@6405 current]$ hdfs dfs -rm-R -skipTrash -safely /tnp/test3

Proceed deleting 10 files? (Y or
Del ete aborted at user

request .

N) N

70

Configuring Fault Tolerance Data Protection

f Attention:

Using the -skipTrash option without the -safely option is not recommended, as files will be deleted
immediately and without warning.

Related Information
HDFS Architecture

Backing Up HDFS M etadata

HDFS metadata represents the structure and attributes of HDFS directories and filesin atree. Y ou can back up the
metadata without affecting NameNode availability.

I ntroduction to HDFS M etadata Files and Directories

HDFS metadata represents the structure of HDFS directories and filesin atree. It aso includes the various attributes
of directories and files, such as ownership, permissions, quotas, and replication factor.

Filesand Directories
Persistence of HDFS metadata is implemented using fsimage file and edits files.

f Attention:

Do not attempt to modify metadata directories or files. Unexpected modifications can cause HDFS downtime,
or even permanent data loss. Thisinformation is provided for educational purposes only.

Persistence of HDFS metadata broadly consist of two categories of files:

fsimage Contains the complete state of the file system at a point
intime. Every file system modification is assigned a
unigue, monotonically increasing transaction ID. An
fsimage file represents the file system state after all
modifications up to a specific transaction ID.

editsfile Contains alog that lists each file system change (file

creation, deletion or modification) that was made after

the most recent fsimage.

Checkpointing is the process of merging the content of the most recent fsimage, with all edits applied after that
fsimage is merged, to create a new fsimage. Checkpointing is triggered automatically by configuration policies or
manually by HDFS administration commands.

NameNodes
Understand the HDFS metadata directory details taken from a NameNode.

The following example shows an HDFS metadata directory taken from a NameNode. This shows the output of
running the tree command on the metadata directory, which is configured by setting dfs.namenode.name.dir in hdfs-
sitexml.

dat a/ df s/ nane

#H#H# current #

VERS| ON#

edits_0000000000000000001- 0000000000000000007
edits_0000000000000000008- 0000000000000000015
edits_0000000000000000016- 0000000000000000022
edi ts_0000000000000000023- 0000000000000000029
edits_0000000000000000030- 0000000000000000030
edits_0000000000000000031- 0000000000000000031
edi ts_i nprogress_0000000000000000032

fsi mage_0000000000000000030

fsi mage_0000000000000000030. nd5

HHFEHEFEHHFR

71

https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

Configuring Fault Tolerance Data Protection

fsi nage_0000000000000000031

fsi nage_0000000000000000031. nd5
seen_txid

in_use. |l ock

In this example, the same directory has been used for both fsimage and edits. Alternative configuration options are
available that allow separating fsimage and edits into different directories. Each file within this directory serves a
specific purpose in the overall scheme of metadata persistence:

VERSION Text file that contains the following elements:
layoutVersion Version of the HDFS
metadata format. When
you add new features

that require a change to
the metadata format, you
change this number. An
HDFS upgradeis required
when the current HDFS
software uses alayout
version that is newer than
the current one.

namespacel D/cluster D/ ynique identifiers of an

blockpooll D HDFS cluster. These
identifiers are used to
prevent DataNodes from
registering accidentally
with an incorrect
NameNode that is part
of adifferent cluster.
Theseidentifiersalso are
particularly important in
afederated deployment.
Within afederated
deployment, there are
multiple NameNodes
working independently.
Each NameNode serves
aunique portion of the
namespace (namespacel D)
and manages a unique set
of blocks (blockpool D).
The clusterID tiesthe
whole cluster together
asasinglelogical unit.
This structure is the same
across al nodesin the
cluster.

storageType Always NAME_NODE
for the NameNode, and
never JOURNAL_NODE.

cTime Cresation time of file
system state. Thisfield

72

Configuring Fault Tolerance Data Protection

is updated during HDFS
upgrades.

edits_start transaction ID-end transaction ID Finalized and unmodifiable edit log segments. Each of
these files contains all of the edit log transactions in the
range defined by the file name. In an High Availability
deployment, the standby can only read up through the
finalized log segments. The standby NameNode is not
up-to-date with the current edit log in progress. When an
HA failover happens, the failover finalizes the current
log segment so that it is completely caught up before
switching to active.

fsimage_end transaction ID Contains the complete metadata image up through .
Each fsimage file also has a corresponding .md5 file
containing aM D5 checksum, which HDFS uses to guard
against disk corruption.

seen_txid Contains the |ast transaction 1D of the last checkpoint
(merge of editsinto an fsimage) or edit log roll
(finalization of current edits_inprogress and creation of
anew one). Thisis not the last transaction ID accepted
by the NameNode. Thefile is not updated on every
transaction, only on a checkpoint or an edit log roll. The
purpose of thisfileisto try to identify if edits are missing
during startup. It is possible to configure the NameNode
to use separate directories for fsimage and editsfiles.
If the edits directory accidentally gets deleted, then all
transactions since the last checkpoint would go away,
and the NameNode starts up using just fsimage at an
old state. To guard against this, NameNode startup also
checks seen_txid to verify that it can load transactions at
least up through that number. It aborts startup if it cannot
verify the load transactions.

in_use.lock Lock file held by the NameNode process, used to prevent
multiple NameNode processes from starting up and
concurrently modifying the directory.

JournalNodes
Understand the components of the Journal Node metadata directory.

In an HA deployment, edits are logged to a separate set of daemons called JournalNodes. A JournalNode' s metadata
directory is configured by setting dfs.journalnode.edits.dir. The JournalNode contains a VERSION file, multiple
edits _ filesand an edits_inprogress , just like the NameNode. The JournalNode does not have fsimage files or
seen_txid. In addition, it contains several other files relevant to the HA implementation. These files help prevent a
split-brain scenario, in which multiple NameNodes could think they are active and all try to write edits.

committed-txid Tracks last transaction ID committed by a NameNode.

|ast-promised-epoch Contains the “ epoch,” which is amonotonically
increasing number. When a new NameNode, starts as
active, it increments the epoch and presentsit in callsto
the JournalNode. This scheme is the NameNode' s way
of claiming that it is active and requests from another
NameNode, presenting alower epoch, must be ignored.

73

Configuring Fault Tolerance

Data Protection

last-writer-epoch

paxos

DataNodes

Contains the epoch number associated with the writer
who last actually wrote a transaction.

Specifies the directory that temporary files used in the
implementation of the Paxos distributed consensus
protocol. This directory often appears as empty.

Although DataNodes do not contain metadata about the directories and files stored in an HDFS cluster, they do
contain asmall amount of metadata about the DataNode itself and its relationship to a cluster.

This shows the output of running the tree command on the DataNode' s directory, configured by setting

dfs.datanode.data.dir in hdfs-site.xml.

dat a/ df s/ dat a/
current

BP-1079595417-192. 168. 2. 45- 1412613236271
current

VERS|I ON

finalized

subdirO# # # # ### subdirl

bl k_1073741825

bl k_1073741825_1001. net a

| azyPersi st

rbw

dncp_bl ock_verification.log.curr
dncp_bl ock_verification.| og. prev
#H#E L

VERSI ON

i n_use. |l ock

The purpose of these files are as follows:

BP-random integer-NameNode-1 P addr ess-creation

time

VERSION

Top level directory for datanodes. The naming
convention for this directory is significant and constitutes
aform of cluster metadata. The nameisablock pool

ID. “BP” standsfor “block pool,” the abstraction that
collects a set of blocks belonging to a single namespace.
In the case of afederated deployment, there are multiple
“BP” sub-directories, one for each block pool. The
remaining components form a unique ID: arandom
integer, followed by the |P address of the NameNode that
created the block pool, followed by creation time.

Text file containing multiple properties, such as
layoutVersion, clusterld and cTime, which is much like
the NameNode and JournalNode. Thereisa VERSION
file tracked for the entire DataNode as well as a separate
VERSION filein each block pool sub-directory.

In addition to the properties already discussed earlier, the
DataNode's VERSION files also contain:

storageType storageType field is set to
DATA_NODE.

74

Configuring Fault Tolerance Data Protection

blockpooll D Repeats the block pool 1D
information encoded into
the sub-directory name.

finalized/rbw Both finalized and rbw contain a directory structure for
block storage. This holds numerous block files, which
contain HDFS file data and the corresponding .metafiles,
which contain checksum information. rbw stands for
“replicabeing written”. This area contains blocks that are
till being written to by an HDFS client. The finalized
sub-directory contains blocks that are not being written
to by aclient and have been completed.

lazyPer sist HDFS isincorporating a new feature to support writing
transient data to memory, followed by lazy persistence
to disk in the background. If thisfeatureisin use, then
alazyPersist sub-directory is present and used for lazy
persistence of in-memory blocksto disk. We'll cover
this exciting new feature in greater detail in afuture blog
post.

scanner .cur sor File to which the "cursor state" is saved.

The DataNode runs a block scanner which periodically
does checksum verification of each block file on disk.
This scanner maintains a "cursor," representing the

last block to be scanned in each block pool dlice on the
volume, and called the "cursor state.”

in_use.lock Lock file held by the DataNode process, used to prevent
multiple DataNode processes from starting up and
concurrently modifying the directory.

HDFS Commands
Y ou can use HDFS commands to manipul ate metadata files and directories.

hdfs namenode Automatically saves anew checkpoint at NameNode
startup. As stated earlier, checkpointing is the process
of merging any outstanding edit logs with the latest
fsimage, saving the full state to a new fsimagefile, and
rolling edits. Rolling edits means finalizing the current
edits_inprogress and starting a new one.

hdfs dfsadmin -safemode enter Saves anew checkpoint (similar to restarting

hdfs dfsadmin -saveNamespace NameNode) while the NameNode process remains
running. The NameNode must be in safe mode, and all
attempted write activity fails while this command runs.

hdfs dfsadmin -rollEdits Manually rolls edits. Safe mode is not required.

This can be useful if a standby NameNode islagging
behind the active NameNode and you want it to get
caught up more quickly. The standby NameNode can
only read finalized edit log segments, not the current in
progress editsfile.

75

Configuring Fault Tolerance Data Protection

hdfs dfsadmin -fetchi mage Downloads the | atest fsimage from the NameNode. This
can be helpful for aremote backup type of scenario.

Configuration Properties
Use the NameNode and data node properties to configure the NameNode and data nodes.

dfs.namenode.name.dir Specifies where on the local filesystem the DFS name
node stores the name table (fsimage). If thisis acomma-
delimited list of directories then the name tableis
replicated in all of the directories, for redundancy.

dfs.namenode.edits.dir Specifies where on the local filesystem the DFS
name node stores the transaction (edits) file. If
thisis a comma-delimited list of directories, the
transaction file is replicated in all of the directories, for
redundancy. The default value is set to the same value as
dfs.namenode.name.dir.

dfs.namenode.checkpoint.period Specifies the number of seconds between two periodic
checkpoints.
dfs.namenode.checkpoint.txns The standby creates a checkpoint of the namespace every

dfs.namenode.checkpoint.txns transactions, regardless of
whether dfs.namenode.checkpoint.period has expired.

dfs.namenode.checkpoint.check.period Specifies how frequently to query for the number of un-
checkpointed transactions.

dfs.namenode.num.checkpoints.retained Specifies the number of image checkpoint files to be
retained in storage directories. All edit logs necessary to
recover an up-to-date namespace from the ol dest retained
checkpoint are also retained.

dfs.namenode.num.extra.editsretained Specifies the number of extra transactions which are
retained beyond what is minimally necessary for aNN
restart. This can be useful for audit purposes or for an
HA setup where aremote Standby Node might have been
offline and need to have alonger backlog of retained
editsto start again.

own edit log. The actual threshold (in number of

edits) is determined by multiplying this value by
dfs.namenode.checkpoint.txns. This prevents extremely
large edit files from accumulating on the active
namenode, which can cause timeouts during namenode
start-up and pose an administrative hassle. This behavior
isintended as afail-safe for when the standby failsto roll
the edit log by the normal checkpoint threshold.

namenode checksif it needsto roll its edit log.

dfs.datanode.data.dir Determines where on the local filesystem an DFS
data node should store its blocks. If thisis acomma-
delimited list of directories, then datais stored in

76

Configuring Fault Tolerance Data Protection

al named directories, typically on different devices.
Directories that do not exist are ignored. Heterogeneous
storage allows specifying that each directory resides on
adifferent type of storage: DISK, SSD, ARCHIVE or
RAM_DISK.

Back Up HDFS M etadata
Y ou can back up HDFS metadata without taking down either HDFS or the NameNodes.

Prepareto Back Up the HDFS M etadata

Regardless of the solution, afull, up-to-date continuous backup of the namespace is not possible. Some of the most
recent datais awayslost. HDFS is not an Online Transaction Processing (OLTP) system. Most data can be easily
recreated if you re-run Extract, Transform, Load (ETL) or processing jobs.

* Normal NameNode failures are handled by the Standby NameNode. Doing so creates a safety-net for the very
unlikely case where both master NameNodes fail.

* Inthe case of both NameNode failures, you can start the NameNode service with the most recent image of the
namespace.

» Name Nodes maintain the namespace as follows:
« Standby NameNodes keep a namespace image in memory based on edits available in a storage ensemblein

Journal Nodes.

« Standby NameNodes make a namespace checkpoint and saves an fsimage * to disk.
« Standby NameNodes transfer the fsimage to the primary NameNodes using HTTP.

Both NameNodes write fsimages to disk in the following sequence:

* NameNodes write the namespace to afile fsimage.ckpt_* on disk.
* NameNodes creates an fsimage *.md5 file.
» NameNodes movesthe file fsimage.ckpt_* to fsimage_.*.

The process by which both NameNodes write fsimages to disk ensures that:

« The most recent namespace image on disk in an fsimage * fileis on the standby NameNode.
« Anyfsimage * fileon disk isfinalized and does not receive updates.

Perform a Backup of the HDFS M etadata
Y ou can back up HDFS metadata without affecting the availability of NameNode.

Procedure

1. Make sure the Standby NameNode checkpoints the namespace to fsimage _ once per hour.
2. Deploy monitoring on both NameNodes to confirm that checkpoints are triggering regularly.

This helps reduce the amount of missing transactions in the event that you need to restore from a backup
containing only fsimage files without subsequent edit logs. It is good practice to monitor this because edit 1ogs
that are large in size and without checkpoints can cause long delays after a NameNode restart while it replays
those transactions.

3. Back up the most recent “fsimage *” and “fsimage *.md5” from the standby NameNode periodically.
Try to keep the latest version of the file on another machine in the cluster.
4. Back up the VERSION file from the standby NameNode.

Using HDFS snapshots for data protection

HDFS snapshots enable you to capture point-in-time copies of the file system and protect your important data against
user or application errors. Y ou can take snapshots of the entire file system or specified subtrees on the file system.

77

Configuring Fault Tolerance Data Protection

Using snapshotsto protect data is efficient because of the following reasons:

* Snapshot creation isinstantaneous regardless of the size and depth of the directory subtree.

» Snapshots capture the block list and file size for a specified subtree. Snapshots do not create extra copies of blocks
on thefile system.

Related Information
Protecting your enterprise data with HDFS snapshots

Considerations for working with HDFS snapshots

Y ou can create snapshots only for directories that allow the creation of snapshots. If adirectory already contains
snapshots, you cannot delete or rename the directory unless you remove all the snapshots.

Y ou must consider the following when working with HDFS snapshots:

* You must enable snapshot creation on a particular directory before creating snapshots on that directory. However,
you cannot create snapshots on a directory if its corresponding child or parent directory is already enabled for
snapshot creation.

e Thereisno limit on the number of directories on which you can enable snapshot creation. However, you can
create a maximum of 65,536 snapshots for a directory.

* You cannot delete or rename a directory that contains snapshots. Y ou must first remove al the snapshots before
attempting the del ete or rename operation.

« For adirectory that has snapshot creation enabled, its path component .snapshot can be used to access the
snapshots.
For example, consider the directory /foo that is enabled for snapshot creation. For the directory /foo with a
snapshot snapl, the path /foo/.snapshot/snapl refers to the snapshot of /foo.

* You can enable or disable snapshot creation on a particular directory only if you have the superuser privilege.

« On adirectory that has snapshot creation enabled; you can create, delete, or rename snapshots. These operations
require either the superuser privilege or the owner access to the directory. In addition, you can list directories that
have snapshot creation enabled or view differences between contents of snapshots.

Enable snapshot creation on a directory

Y ou must enable snapshot creation on a directory before creating snapshots on that directory. If the snapshot creation
is enabled, the directory becomes snapshottable.

About thistask

* You can perform this task only if you have the superuser privilege.
* You cannot enable snapshot creation on any directory if its parent or child directory is already enabled for
snapshot creation.

Procedure
Run the hdfs dfsadmin command with the -allowSnapshot option and specify the directory on which you want to
enable snapshot creation.
The following example shows how you can enable snapshot creation for the directory /data/dirl:
hdf s df sadmi n -al | owSnapshot /data/dirl
If snapshot creation is successfully enabled on the specified directory, a confirmation message appears.

Al l owi ng snapshot on /data/dirl succeeded

Related Information
HDFS Snapshots - Administrator Operations
HDFS Snapshots - User Operations

78

https://hortonworks.com/blog/protecting-your-enterprise-data-with-hdfs-snapshots/
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html#Administrator_Operations
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html#User_Operations

Configuring Fault Tolerance Data Protection

Create snapshotson a directory
Y ou can create snapshots on a specified directory and protect your important data.

Before you begin
Y ou must have enabled snapshot creation.

About thistask
Only a user with either of the following privileges can perform this task:

* Theowner privilege to the directory on which to create the snapshots
e The superuser privilege

Procedure

Run the hdfs dfs command with the -createSnapshot option and specify the path to the directory on which you want to
create snapshots.
The following example shows how you can create a snapshot snapl on the directory /data/dir1:

hdf s dfs -createSnapshot /data/dirl snapl
If snapshot creation is successfully enabled on the specified directory, a confirmation message appears.
Creat ed snapshot /data/dirl/.snapshot/snap2

Note: You can aso run the command without mentioning the snapshot name. In such a situation, the new
snapshot has the time stamp of creation asits name. See the following example:

Creat ed snapshot /data/dirl/.snapshot/s20180412-065533. 159

Related Information
HDFS Snapshots - User Operations

Recover data from a snapshot

If datais erroneously removed from adirectory for which snapshots are available, you can recover the lost data using
snapshots. The snapshot ensures that the file blocks corresponding to the deleted files or directories are not removed
from the file system. Only the metadata is modified to reflect the deletion.

About thistask
Y ou must have read access to the files or directories that you want to restore.

Procedure

Run the hdfs dfs command with the cp option to copy the deleted data from the snapshot to the destination directory.
The following example shows how you can recover afileimp_details.xls from a snapshot of the directory (/data/dirl)
that contained the file:

hdfs dfs -cp /data/dirl/.snapshot/s20180412-065533. 159/i np_details.xls /
dat a/ dir1/

Optionsto deter mine differences between contents of snapshots

Run the hdfs snapshotDiff command for areport that lists the difference between the contents of two snapshots. Run
the distcp diff command to determine the difference between contents of specified source and target snapshots, and
use the command with the -update option to move the difference to a specified target directory.

79

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html#User_Operations

Configuring Fault Tolerance Data Protection

Generating areport listing the difference between contents of two snapshots

Using the hdfs snapshotDiff between two snapshots on a specified directory path providesthe list of changesto the
directory. Consider the following example:

hdf s snapshotDi ff /data/dirl snapl snap2

M .

- ./filel.csv

R ./file2.txt -> ./fileold.txt
+ . /filenew. txt

This example shows the following changes to the directory /data/dir1 after the creation of snapl and before the
creation of snap2:

Statement Explanation

M. The directory /data/dirl is modified.

- [filel.csv Thefilefilel.csv is deleted.

R Jfile2.txt -> .ffileold.txt Thefilefile2.txt is renamed to fileold.txt.

+ [filenew.txt Thefilefilenew.txt is added to the directory /data/dirl.

Moving the differ ences between the contents of two snapshotsto a specified directory

Using the distcp diff command with the -update option on snapshots enables you to determine the difference between
the contents of two snapshots and move the difference to a specified target directory. Consider the following example:

hadoop distcp -diff snap_old snap_new -update /data/source_dir /data/target_dir

The command in this example determines the changes between the snapshots snap_old and snap_new present in the
source_dir directory, and updates the target_dirdirectory with the changes.

The following conditions must be satisfied for the content changes to be moved to /dataltarget_dir:

« Both /data/source_dir and /dataltarget_dir are distributed file system paths.

* The snapshots snap_old and snap_new are created for /data/source_dir such that snap_old is older than snap_new.

e The/dataltarget_dir path also contains snap_old. In addition, no changes are made to /dataltarget_dir after the
creation of snap_old.

Related Information

HDFS Snapshots - User Operations

Managing Hadoop DR with 'distcp' and 'snapshots

Snapshot operations

As an administrator, you can enable or disable snapshot creation on a directory. These operations require the
superuser privilege. Asauser; you can create, delete, or rename snapshots on a directory that has snapshot creation
enabled. These operations require either the superuser privilege or the owner privilege on the directory.

Administrator Operations
The following table lists the snapshot-related administrator operations that you can on specified directories:

Operation Command
Enable snapshot creation on a directory hdfs dfsadmin -allowSnapshot <path>
Disable snapshot creation on a directory hdfs df sadmin -disallowSnapshot <path>

User Operations
The following table lists the user operations that you can perform on snapshots:

80

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html#User_Operations
https://community.hortonworks.com/articles/71775/managing-hadoop-dr-with-distcp-and-snapshots.html

Configuring Fault Tolerance

Data Protection

Operation Command

Create snapshots hdfs dfs -createSnapshot <path> [<snapshotName>]
Delete snapshots hdfs dfs -del eteSnapshot <path> <snapshotName>
Rename snapshots hdfs dfs -renameSnapshot <path> <oldName>

<newName>

List directories on which snapshot creation is enabled
(snapshottable directories)

hdfs IsSnapshottableDir

List differences between contents of snapshots

hdfs snapshotDiff <path> <fromSnapshot>
<toSnapshot>

81

	Contents
	Configuring Fault Tolerance
	High Availability on Non-Ambari Clusters
	Configuring High Availability for the Hive Metastore
	Use Cases and Failover Scenarios
	Software Configuration
	Install Hortonworks Data Platform
	Update the Hive Metastore
	Validate configuration

	Deploying Multiple HiveServer2 Instances for High Availability
	Adding an Additional HiveServer2 to Your Cluster Manually
	Adding an Additional HiveServer2 to a Cluster with Ambari

	Configuring HiveServer2 High Availability Using ZooKeeper
	How ZooKeeper Manages HiveServer2 Requests
	Dynamic Service Discovery Through ZooKeeper
	Rolling Upgrade for HiveServer2 Through ZooKeeper
	Set Configuration Parameters for HiveServer2 Rolling Upgrade
	Perform Rolling Upgrade for HiveServer2
	Perform Rollback of HiveServer2

	Configuring High Availability for HBase
	Introduction to HBase High Availability
	Propagating Writes to Region Replicas
	Timeline Consistency
	Configuring HA Reads for HBase
	Creating Highly Available HBase Tables with the HBase Java API
	Creating Highly Available HBase Tables with the HBase Shell
	Querying Secondary Regions
	Monitoring Secondary Region Replicas
	HBase Cluster Replication for Geographic Data Distribution
	HBase Cluster Replication Overview
	HBase Cluster Topologies

	Managing and Configuring HBase Cluster Replication
	Manually Enable HBase Replication
	Pause and Stop HBase Replication
	HBase Cluster Management Commands

	Verifying Replicated HBase Data
	HBase Cluster Replication Details
	Spreading Queue Failover Load
	Preserving Tags During Replication
	HBase Replication Internals
	Choosing RegionServers to Replicate to
	Keeping Track of Logs
	Reading, Filtering, and Sending Edits
	Cleaning Logs
	RegionServer Failover

	HBase Replication Metrics
	Replication Configuration Options
	Monitoring Replication Status
	Setting Up HBase Replication Among Kerberos Secured Clusters

	Configuring NameNode High Availability
	NameNode Architecture
	Preparing the Hardware Resources for NameNode High Availability
	Deploying the NameNode HA Cluster
	Configuring the NameNode HA Cluster
	Deploying a NameNode HA Cluster
	Deploying Hue with an HA Cluster
	Deploying Oozie with an HA Cluster

	Operating a NameNode HA cluster
	Configuring and Deploying NameNode Automatic Failover
	Prerequisites for Configuring NameNode Automatic Failover
	Configure and Deploy Automatic Failover
	Configure Oozie Failover

	Administrative Commands

	Configuring ResourceManager High Availability
	Preparing the Hardware Resources
	Deploying ResourceManager HA Cluster
	Configuring Manual or Automatic ResourceManager Failover
	Deploying the ResourceManager HA Cluster
	Minimum Settings for Automatic ResourceManager HA Configuration
	Testing ResourceManager HA on a Single Node
	Deploying Hue with a ResourceManager HA Cluster

	Configuring Apache Ranger High Availability
	Configuring Ranger Admin HA
	Prerequisites for Configuring Apache Ranger for High Availability
	Configuring Ranger Admin HA Without SSL
	Configuring Ranger Admin HA With SSL

	Data Protection
	Preventing Accidental Deletion of Files
	Backing Up HDFS Metadata
	Introduction to HDFS Metadata Files and Directories
	Files and Directories
	NameNodes
	JournalNodes
	DataNodes

	HDFS Commands
	Configuration Properties

	Back Up HDFS Metadata
	Prepare to Back Up the HDFS Metadata
	Perform a Backup of the HDFS Metadata

	Using HDFS snapshots for data protection
	Considerations for working with HDFS snapshots
	Enable snapshot creation on a directory
	Create snapshots on a directory
	Recover data from a snapshot
	Options to determine differences between contents of snapshots
	Snapshot operations

