Apache Spark 3

Running Apache Spark Applications

Date of Publish: 2018-04-01

P

Hortonworks

http://docs.hortonwor ks.com

http://docs.hortonworks.com

Contents

LNEF OAUCTION.....e ettt be e 3
Running Sample Spark AppliCatioNns..........ccccovevieiieesie e 3
Running Spark in Docker Containers on YARN.....ccooviiiiinnenceee e 5
Submitting Spark Applications Through LiVy.....ccccoeiivieieenencieesee e 14
USING LiVY WIth SPAK.....c.ciuiieiiee bbb bbbt 14

Using Livy with interaCtive NOLENOOKS...........ccoiiirieiiieireesie et st 14

Using the Livy APl to run Spark jODS: OVEIVIEW.........couciiiiiiieicres s 15
Running an Interactive Session With the LiVy APL.......c e 16

Livy Objects fOr INtEraCtivVe SESSIONS........cccoiiirieierieie ettt st 17

Set Path Variables for PYthon...........o.cocii ettt 19

Livy APl Reference for INteractive SESSIONS.........coviieririeiirieireei e 19

Submitting Batch Applications USiNG the LiVY APl.........oeeeereereesiees e 21

LiVY BEECH OBJECL.......cuiiieiiieeeiteeste ettt bbbt b et b e b e bbbt b et nnne 22

Livy APl Reference for BatCh JODS.........ccoiiiriiinneresiereeie sttt 22

Running PySpark in a Virtual Environment..........cccccooovveiin e, 23

Automating Spark Jobs with Oozie Spark ACtion........ccccoveeiveinienieneceeneee, 24

Apache Spark Introduction

| ntroduction

Y ou can run Spark interactively or from aclient program:

« Submit interactive statements through the Scala, Python, or R shell, or through a high-level notebook such as
Zeppelin.
» Use APIsto create a Spark application that runs interactively or in batch mode, using Scala, Python, R, or Java.

To launch Spark applications on a cluster, you can use the spark-submit script in the Spark bin directory. Y ou can
also use the API interactively by launching an interactive shell for Scala (spark-shell), Python (pyspark), or SparkR.
Note that each interactive shell automatically creates SparkContext in a variable called sc. For more informationa
about spark-submit, see the Apache Spark document " Submitting Applications'.

Alternately, you can use Livy to submit and manage Spark applications on acluster. Livy is a Spark service that
allowslocal and remote applications to interact with Apache Spark over an open source REST interface. Livy offers
additional multi-tenancy and security functionality. For more information about using Livy to run Spark Applications,
see "Submitting Spark Applications through Livy" in this guide.

Related Information

Submitting Applications

Running Sample Spark Applications

About thistask

Y ou can use the following sample Spark Pi and Spark WordCount sample programs to validate your Spark
installation and explore how to run Spark jobs from the command line and Spark shell.

Spark Pi

Y ou can test your Spark installation by running the following compute-intensive example, which calculates pi by
“throwing darts’ at acircle. The program generates points in the unit square ((0,0) to (1,1)) and counts how many
points fall within the unit circle within the square. The result approximates pi.

Follow these steps to run the Spark Pi example:

1. Loginasauser with Hadoop Distributed File System (HDFS) access: for example, your spark user, if you defined
one, or hdfs.

When the job runs, the library is uploaded into HDFS, so the user running the job needs permission to write to
HDFS.
2. Navigate to anode with a Spark client and access the spark2-client directory:

cd /usr/hdp/current/spark2-client

su spark
3. Runthe Apache Spark Pi job in yarn-client mode, using code from org.apache.spark:

./ bi n/spark-submt --class org.apache. spark. exanpl es. Spar kPi \
--master yarn-client \
--num executors 1\
--driver-menory 512m\
--executor-nmenory 512m\
--executor-cores 1\
exanpl es/j ar s/ spar k- exanpl es*. jar 10

http://spark.apache.org/docs/2.0.0/submitting-applications.html

Apache Spark

Running Sample Spark Applications

Commonly used options include the following:

--class

--master

--deploy-mode

--conf

<application-jar>

<application-arguments>

The entry point for your application: for example,
org.apache.spark.examples.SparkPi.

The master URL for the cluster: for example,
spark://23.195.26.187:7077.

Whether to deploy your driver on the worker nodes
(cluster) or locally as an external client (default is
client).

Arbitrary Spark configuration property in key=value
format. For values that contain spaces, enclose
“key=value’ in double quotation marks.

Path to abundled jar file that contains your application
and all dependencies. The URL must be globally
visible inside of your cluster: for instance, an hdfs://
path or afile:// path that is present on all nodes.

Arguments passed to the main method of your main
class, if any.

Y our job should produce output similar to the following. Note the value of pi in the output.

17/ 03/ 22 23:21:10 | NFO DAGSchedul er:
Spar kPi . scal a: 38, took 1.302805 s
Pi is roughly 3.1445191445191445

Job O finished: reduce at

Y ou can also view job status in a browser by navigating to the Y ARN ResourceManager Web Ul and viewing job
history server information. (For more information about checking job status and history, see "Tuning Spark” in

this guide.)

WordCount

WordCount is asimple program that counts how often aword occurs in atext file. The code builds a dataset of
(String, Int) pairs called counts, and saves the dataset to afile.

The following example submits WordCount code to the Scala shell:

1. Select aninput file for the Spark WordCount example.

Y ou can use any text file as input.

2. Logon asauser with HDFS access: for example, your spark user (if you defined one) or hdfs.

The following example uses logdj.properties as the input file:

cd /usr/hdp/current/spark2-client/

su spark
3. Upload theinput file to HDFS:

hadoop fs -copyFroniocal /etc/hadoop/conf/l og4j.properties

/tnp/ dat a
4. Run the Spark shell:

./ bin/spark-shell --nmaster yarn-client

menory

--driver-nenmory 512m - -execut or -

Apache Spark Running Spark in Docker Containerson YARN

512m
Y ou should see output similar to the following (with additional status messages):

Spark context Web U available at http://172.26.236. 247: 4041

Spark context available as 'sc' (naster = yarn, app id =
application_ 1490217230866 _0002).

Spark session avail able as 'spark'.

Wl cone to

, /1 1T /\.\ version 2.1.0.2.6.0.0-598

Usi ng Scal a version 2.11.8 (Java Hot Spot(TM 64-Bit Server VM Java
1.8.0_112)

Type in expressions to have them eval uat ed.

Type :help for nore information.

scal a>

5. At the scala> prompt, submit the job by typing the following commands, replacing node names, file name, and file
location with your own values:

val file = sc.textFile("/tnp/data")

val counts = file.flatMap(line => line.split(" ")).mp(wrd => (word,
1)) .reduceByKey(_ +)

count s. saveAsText Fi |l e("/t np/ wordcount ")

6. Useone of the following approaches to view job output:
* View output in the Scala shell:

scal a> counts. count ()

« View the full output from within the Scala shell:

scal a> counts.toArray().foreach(println)
* View the output using HDFS:

a. Exit the Scalashell.
b. View WordCount job status:

hadoop fs -1s /tnp/wordcount
Y ou should see output similar to the following:

[t mp/ wor dcount / _SUCCESS
/ t mp/ wor dcount / par t - 00000
[t mp/ wor dcount / par t - 00001

€. Usethe HDFS cat command to list WordCount outpuit:

hadoop fs -cat /tnp/wordcount/part-00000

Running Spark in Docker Containerson YARN

Apache Spark Running Spark in Docker Containerson YARN

About thistask

Apache Spark applications usually have a complex set of required software dependencies. Spark applications may
reguire specific versions of these dependencies (such as Pyspark and R) on the Spark executor hosts, sometimes with
conflicting versions. Installing these dependencies creates package isolation and organizational challenges, which
have typically been managed by specialized operations teams. Virtualization solutions such as Virtualenv or Conda
can be complex and inefficient due to per-application dependency downloads.

Docker support in Apache Hadoop 3 enables you to containerize dependencies along with an application in a Docker
image, which makes it much easier to deploy and manage Spark applicationson YARN.

Before you begin

To enable Docker support in YARN, refer to the following documentation:

"Configure YARN for running Docker containers' in the HDP Managing Data Operating System guide.
"Launching Applications Using Docker Containers' in the Apache Hadoop 3.1.0 Y ARN documentation.

Links to these documents are available at the bottom of this topic.

Containerized Spark: Bitsand Configuration

The base Spark and Hadoop libraries and related configurations installed on the gateway hosts are distributed
automatically to al of the Spark hosts in the cluster using the Hadoop distributed cache, and are mounted into the
Docker containers automatically by YARN.

In addition, any binaries (—files, Hars, etc.) explicitly included by the user when the application is submitted are also
made available via the distributed cache.

Apache Spark Running Spark in Docker Containerson YARN

PySpark/R libraries

Hadoop/Spark Libraries &

Spark Executor R

Volume Mounts e

Containerized Spark on YARN: Bits & Config

Spark Configuration
YARN Client Mode

In YARN client mode, the driver runsin the submission client’'s JVM on the gateway machine. Spark client modeis
typically used through Spark-shell.

The YARN application is submitted as part of the SparkContext initialization at the driver. In YARN Client mode the
ApplicationMaster is a proxy for forwarding Y ARN allocation requests, container status, etc., from and to the driver.

In this mode, the Spark driver runs on the gateway hosts as ajava process, and not in aY ARN container. Hence,
specifying any driver-specific YARN configuration to use Docker or Docker images will not take effect. Only Spark
executors will run in Docker containers.

Apache Spark

Running Spark in Docker Containerson Y ARN

Hadoop YARN Cluster
,ff-!.- ff;!'-_
Spark Driver Spark AM S Spark Executor jil S Spark

Containerized Spark on YARN: yarn-client mode

During submission, deploy mode is specified as client using —deploy-mode=client with the following executor
container environment variables:;

Settings for Executors

spar k. execut or Env. YARN_CONTAI NER_RUNTI ME_TYPE=docker

spar k. execut or Env. YARN _CONTAI NER_RUNTI ME_DOCKER | MAGE=<spar k executor’s
docker -i nage>

spar k. execut or Env. YARN_CONTAI NER_RUNTI ME_DOCKER MOUNTS=<any vol une nounts
needed by the spark application>

YARN Cluster Mode

In the "classic" distributed application YARN cluster mode, a user submits a Spark job to be executed, which is
scheduled and executed by Y ARN. The ApplicationMaster hosts the Spark driver, which islaunched on the cluster in
aDocker container.

Apache Spark Running Spark in Docker Containerson YARN

Hadoop YARN Cluster

’ -.?:- Y .-"'*t “ .-"'*t
~ Spark Executor)| Spark Executor || Spark E>

Containerized Spark on YARN: yarn-cluster mode

During submission, deploy mode is specified as cluster using —deploy-mode=cluster. Along with the executor’s
Docker container configurations, the driver/app master’s Docker configurations can be set through environment
variables during submission. Note that the driver’s Docker image can be customized with settings that are different
than the executor’ simage.

Additional Settings for Driver

spar k. yarn. appMast er Env. YARN _CONTAI NER_RUNTI ME_TYPE=docker
spar k. yar n. appMast er Env. YARN_CONTAI NER_RUNTI ME_DOCKER_| MAGE=<docker - i rage>

spar k. yarn. appMast er Env. YARN _CONTAI NER_RUNTI ME_DOCKER_MOUNTS=/ et ¢/ passwd: /
etc/ passwd: ro

In the remainder of this topic, we will use YARN client mode.

Spark-R Example

In this example, Spark-R isused (in YARN client mode) with a Docker image that includes the R binary and the
necessary R packages (rather than installing these on the host).

Spark-R Shell
/usr/ hdp/current/spark2-client/bin/sparkR --nmaster yarn
--conf spark. execut or Env. YARN _CONTAI NER_RUNTI ME_TYPE=docker
--conf spark. execut or Env. YARN_CONTAI NER_RUNTI ME_DOCKER_| MAGE=spar k- r - deno

--conf spark. execut or Env. YARN CONTAI NER RUNTI ME_DOCKER MOUNTS=/ et ¢/ passwd: /
etc/ passwd: ro

Apache Spark Running Spark in Docker Containerson YARN

Welcome to
/I //_
NN NS S

fo S NS SN version 2.2.0.3.0.0.0-829
/S

R binaries and Kmeans/algo
available inside the execut

docker container

SparkSession available as 'spark’.
During startup - Warning message:
In SparkR::sparkR.session() :

Version mismatch between Spark J
was 2.2.@
> algorithms <- c("Hartigan-
> train2 <- function(alage
+ set.seed(42)
+ model <- kme@ns(x = iris[1:4], centers = 3, algorithm = alg
+ model$withinss
+}
>
> model.withinss <- spark.lapply(algorithms, train2)
>
> # Print the within-cluster sum of squares for the first model
> print(sort(model .withinss[[1]]))
[1] 15.1510@ 23.87947 39.82097

>

Dockerfile

 package. JWM vers

Lloyd", "MacQueen™)

10

Apache Spark

Running Spark in Docker Containerson YARN

centos

yum install -y epel-release
yum -y install java-1.8.@-openjdk java-1.8.0@-openjdk-devel
yum -y install R R-devel openssl-devel

#setup R configs

r <- getOption('repos'); r['CRAN'] <- 'http://cran.us

org'; options(repos =

r);

~/ .Rprofile

#Install necessary R packages

Rscript -e "install.packages('yhatr')
Rscript -e "install.packages('ggplotl2')
Rscript -e "install.packages('plyr')
Rscript -e "install.packages('reshapel’)
Rscript -e "install.packages('forecast’)
Rscript -e "install.packages('stringr')
Rscript -e "install.packages('lubridate')
Rscript -e "install.packages('randomForest')
Rscript -e "install.packages('rpart')
Rscript -e "install.packages('el@71')
Rscript -e "install.packages('kknn')

PySpark Example

This example shows how to use PySpark (in YARN client mode) with Python3 (which is part of the Docker image
and is not installed on the executor host) to run OL S linear regression for each group using statsmodels with all the
dependencies isolated through the Docker image.

The Python version can be customized using the PY SPARK_DRIVER _PYTHON and PY SPARK_PYTHON
environment variables on the Spark driver and executor respectively.

PYSPARK_DRI VER _PYTHON=pyt hon3. 6 PYSPARK_PYTHON=pyt hon3. 6 pyspark --naster
yarn --conf
spar k. execut or Env. YARN_CONTAI NER_RUNTI ME_TYPE=docker - -conf
spar k. execut or Env.
YARN_ CONTAI NER_RUNTI ME_DOCKER | MAGE=pandas- deno --conf spark. execut or Env.
YARN_CONTAI NER_RUNTI ME_DOCKER_MOUNTS=/ et ¢/ passwd: / et ¢/ passwd: ro

11

Apache Spark

Running Spark in Docker Containerson YARN

Welcome to
| .f-j_ — _.u"'_.i"_

AN N -
LAl NI SN version 2.2.0.3.0.9.9-829 python binaries and nu
. pandas packages are avai
{Using Python version 3.6.4 (defoult, Dec 19 2017 14:48:12) inside the executor's dos

'SparkSession avoilable os "spark’.
|»»» import statsmodels.api as sm;
| fusr/11bB4/python3.6/si te-packoges/stotsmodels/compat/pandas.py:56: Futur
| deprecated and will be removed in a future version. Please use the pe
from pandas.core import datetools
{=»» import numpy as np;
|=»> import pandes as pd;
:-r:-c- pdf = pd,DotoFrome(np.random. randn{ 138, 43, columns=['1d"
== df = spark.creactelataFrame(pdf)
=xx group_column = "id"
wrw y_column = "y'
srx N_columns = ["xl', "x2"]
»»» Schema = df.select{group_column, *x_colusns).
e
s> def ols{pdfl):
group_key = pdf{group_column].iloc[d
wes ¥ = pdfly_column]
v X = pdf[x_columns]
X = sm.odd_constant{X)
. model = sm.OLSCy, X).Fit()
return pd.DotoFrome([[group_key] + [model.porams[i] for 1 in x_colums]], columns-[group_colus
=»> beta = pdf.groupby(group_column),apply{ols)
x> beta.cov(D
id ul ud
id @.055860 @.086739 0.009849
#x1 @.086739 3.16151Y -8.487165
x2 9.0009849 -, 487165 2.728132
»»>]

Dockerfile

12

Apache Spark Running Spark in Docker Containerson Y ARN

n mybosecentos: lotest

FYTHON_VERSTON 36u
yum -y install pythaafPYTHON_VERSION pythoniPYTHON_VERSION-dev pythaniPYTHON_VERSION-pip pythaniPYTHON

PYSPARK_PYTHON pythond, b
FY5PARKE_DRIVER_PYTHON pythoni.b

la -8 Ffusr/biafpythond B fusrs i gy t o
wget https://bootstrap,pype. io/get-pip.py
python get-pip.py

pipd.6 install numpy

pipd.6 install pondas

pip3.6 install wpgrade --no-deps stotsnodaels
pipd.& install potsy

pipd.6 instaoll sciknt-leorn

Running Containerized Spark Jobs Using Zeppelin

To run containerized Spark using Apache Zeppelin, configure the Docker image, the runtime volume mounts, and the
network as shown below in the Zeppelin Interpreter settings (under User (e.g.: admin) > Interpreter) in the Zeppelin
Ul.

Configuring the Livy Interpreter

|Wﬁ el by, Wy e iy pyepark, Wl E Dyparic) Wil egmrier, Welbeys e g

Option
Tha interpester will be Felentsfied Perlser » N scoped » prOGess. +
Connes] 10 esieling process
Hal permigicn
Propariies
naT vy
IS park. drives. msEmony By
iy A AT RSO e Fl
v spark macutcrinstances &
v pa i ExeCUtCr M amany L3

ivpspark. macuterEny, YARN_CONTAMNER_RUNTIME_DOCKER_CONTAIMER_METWORK hodt

ivjLs panc meoutorEny YRRN_CONTMMNEA_RLUNTIME_DOCKER_MAGE « Lk (e rnie] Do | Pl
ivpapark, poscuterbny YARN_CONTANER_RUNTIME DOCKER_MOUNTES It e e fetniebl cord casfm
ivapar mxecutorEny. YARN_CONTAMNER_RLNTIME_TYPE dischae

Y ou can aso configure Docker images, volume, etc. for other Zeppelin interpreters.

13

Apache Spark

Submitting Spark Applications Through Livy

Y ou must restart the interpreter(s) in order for these new settings to take effect. Y ou can then submit Spark
applications as before in Zeppelin to launch them using Docker containers.

Related Information
Configure YARN for running Docker containers
Launching Applications Using Docker Containers

Submitting Spark Applications Through Livy

Livy isa Spark servicethat allows local and remote applications to interact with Apache Spark over an open source
REST interface.

Y ou can use Livy to submit and manage Spark jobs on a cluster. Livy extends Spark capabilities, offering additional
multi-tenancy and security features. Applications can run code inside Spark without needing to maintain alocal Spark
context.

Featuresinclude the following:

* Jobs can be submitted from anywhere, using the REST API.

« Livy supports user impersonation: the Livy server submits jobs on behalf of the user who submits the requests.
Multiple users can share the same server ("user impersonation” support). Thisisimportant for multi-tenant
environments, and it avoids unnecessary permission escalation.

« Livy supports security features such as Kerberos authentication and wire encryption.

¢ REST APIs are backed by SPNEGO authentication, which the requested user should get authenticated by
Kerberos at first.

* RPCsbetween Livy Server and Remote SparkContext are encrypted with SASL.
* TheLivy server uses keytabs to authenticate itself to Kerberos.

Livy supports programmatic and interactive access to Spark with Scala:

* Usean interactive notebook to access Spark through Livy.

« Develop aScala, Java, or Python client that usesthe Livy API. The Livy REST API supports full Spark
functionality including SparkSession, and SparkSession with Hive enabled.

* Run aninteractive session, provided by spark-shell, PySpark, or SparkR REPLSs.
» Submit batch applications to Spark.

Code runsin a Spark context, either locally or in YARN; YARN cluster mode is recommended.

Toinstall Livy on an Ambari-managed cluster, see "Installing Spark Using Ambari" in this guide. For additional
configuration steps, see "Configuring the Livy Server" in this guide.

Using Livy with Spark

Scala Support
Livy supports Scalaversions 2.10 and 2.11.

For default Scala builds, Spark 2.0 with Scala2.11, Livy automatically detects the correct Scala version and
associated jar files.

If you require a different Spark-Scala combination, such as Spark 2.0 with Scala 2.10, set livy.spark.scalaVersion to
the desired version so that Livy usestheright jar files.

Using Livy with inter active notebooks

14

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.0/data-operating-system/content/configure_yarn_for_running_docker_containers.html
https://hadoop.apache.org/docs/r3.1.0/hadoop-yarn/hadoop-yarn-site/DockerContainers.html

Apache Spark Submitting Spark Applications Through Livy

Y ou can submit Spark commands through Livy from an interactive Apache Zeppelin notebook:

loT Data Analysis HW s[4 (0] (@ S0 a
Normal N milos 0 4,300 89 52 40.7 ') ']]
Normal N milos 80 4300 91.05 9.7]] 1
Normai] e 0 £300 0147 N o 0 0
Lana Departurs] mibos 0 £300 91.50 .] 0
Unsafn folowing dstance H miles L]] -BA.TT]] 1 i

gl wsql
select eventType, isfertified, hoursDriven ir
select eventType, count(*) oocurences from enrichedEvents group group by eventType, isCertified, hoursDriven
by eventType

CRETRE R 4 . setsngs~
B e e A - settings~
i W5ucked OSream OEpended [
[Lo e @ ocnrerces 580
1200 on
1,000
N
800
¥
8
] Urasle ltowing datace

When you run code in a Zeppelin notebook using the %livy directive, the notebook offloads code execution to Livy
and Spark:

YARM Cluster

I "
aver | {TPRre | Livy
Notebook Ui
Imér;gmf] HTTF Request SBNBI'

For more information about Zeppelin and Livy, see the HDP Apache Zeppelin guide.

UsingtheLivy API torun Spark jobs. overview
Using the Livy API to run Spark jobsis similar to using the original Spark API.
The following two examples calculate Pi.
Calculate Pi using the Spark API:
def sanpl e(p):
X, y = random(), randon()
return 1 if x*x + y*y < 1 else 0

count = sc.parallelize(xrange(0, NUM SAMPLES)). map(sanple) \
.reduce(l anbda a, b: a + b)

15

Apache Spark

Submitting Spark Applications Through Livy

Calculate Pi using the Livy API:

def f(_):

x = random() * 2 - 1

y = randonm() * 2 - 1

return 1 if x ** 2 +y ** 2 <=1 else 0

def pi_job(context):

count = context.sc.parallelize(range(1l, sanples + 1),
slices). map(f).reduce(add)

return 4.0 * count / sanples

There are two main differences between the two APIs:

« When using the Spark API, the entry point (SparkContext) is created by user who wrote the code. When using the
Livy API, SparkContext is offered by the framework; the user does not need to create it.

« The client submits code to the Livy server through the REST API. The Livy server sends the code to a specific
Spark cluster for execution.

Architecturally, the client creates aremote Spark cluster, initializes it, and submits jobs through REST APIs. The
Livy server unwraps and rewraps the job, and then sends it to the remote SparkContext through RPC. While the job
runs the client waits for the result, using the same path. The following diagram illustrates the process:

YARM Cluster

Executor

C|ient HTTP Response Liw
(Spark Pi Job) | wrrereqes | Server

Executor

Related I nformation
Apache Spark Examples

Running an I nteractive Session With the Livy API

About thistask

Running an interactive session with Livy issimilar to using Spark shell or PySpark, but the shell does not run locally.
Instead, it runsin aremote cluster, transferring data back and forth through a network.

The Livy REST API supports GET, POST, and DELETE calls for interactive sessions.

The following example shows how to create an interactive session, submit a statement, and retrieve the result of the
statement; the return ID could be used for further queries.

16

http://spark.apache.org/examples.html

Apache Spark Submitting Spark Applications Through Livy

Procedure

1. Create an interactive session. The following POST request starts a new Spark cluster with aremote Spark
interpreter; the remote Spark interpreter is used to receive and execute code snippets, and return the result.

PCOST / sessi ons
host = 'http://I|ocal host: 8998’
data = {"kind': 'spark'}
headers = {' Content-Type': 'application/json'}
r = requests. post(host + '/sessions', data=json.dunps(data),
header s=header s)
r.json()

{u'state': u'starting', u'id: 0, u kind: u spark'}

2. Submit a statement. The following POST request submits a code snippet to a remote Spark interpreter, and returns
astatement 1D for querying the result after execution is finished.

POST / sessi ons/{sessionld}/statenments
data = {'code': 'sc.parallelize(l to 10).count()"'}
r = requests. post(statenents_url, data=json. dunps(data),
header s=header s)
r.json()

{u'output': None, u'state': u'running', u'id: 0}

3. Get theresult of astatement. The following GET request returns the result of a statement in JSON format, which
you can parse to extract elements of the resullt.

CET /sessions/{sessionld}/statenents/{statenentl d}
statement _url = host + r.headers['location']
r = requests.get(statenment_url, headers=headers)
pprint.pprint(r.json())
{uid: O,
u output': {u' data': {u'text/plain': u res0: Long = 10'},
u' execution_count': O,
u'status': u'ok'},
u' state': u' available'}

The remainder of this section describes Livy objects and REST API callsfor interactive sessions.

Livy Objectsfor Interactive Sessions

Session Object
A session object represents an interactive shell:
Property Description Type
id A non-negative integer that represents a int
specific session of interest
appld Application ID for this session string
owner Remote user who submitted this session string
proxyUser User ID to impersonate when running string
kind Session kind (see the following "kind" table session kind
for values)
log Log file data list of strings
state Session state (see the following "state” table string
for values)

17

Apache Spark

Submitting Spark Applications Through Livy
Property Description Type
applnfo Detailed application information key=value map

The following values are valid for the kind property in a session object:

Value Description

spark Interactive Scala Spark session
pyspark Interactive Python 2 Spark session
pyspark3 Interactive Python 3 Spark session
sparkr Interactive R Spark session

The following values are valid for the state property in a session object:

Value Description

not_started Session has not started

starting Session is starting

idle Session iswaiting for input

busy Session is executing a statement

shutting_down Session is shutting down

error Session terminated due to an error

dead Session exited

success Session successfully stopped
Statement Object

A statement object represents the result of an execution statement.

Property Description Type

id A non-negative integer that represents a integer
specific statement of interest

state Execution state (see the following "state" table | statement state
for values)

output Execution output (see the following "output" statement output

table for values)

The following values are valid for the state property in a statement object:

value Description

waiting Statement is queued, execution has not started
running Statement is running

available Statement has a response ready

error Statement failed

cancelling Statement is being cancelled

cancelled Statement is cancelled

Thefollowing values are valid for the output property in a statement object:

Property

Description Type

status

Execution status, such as "starting”, "idle", or | string
“available".

18

Apache Spark Submitting Spark Applications Through Livy

Property Description Type

execution_count Execution count integer (monotonically increasing)

data Statement output An object mapping a mime type to the result.
If the mime type is application/json, the value
isaJSON value.

Set Path Variablesfor Python
To change the Python executable used by a Livy session, follow the instructions for your version of Python.
pyspark
Livy reads the path from the PY SPARK _PY THON environment variable (thisis the same as PySpark).

e If Livy isrunning inlocal mode, simply set the environment variable (thisis the same as PySpark).

e |f the Livy session isrunning in yarn-cluster mode, setspark.yarn.appMasterEnv.PY SPARK_PYTHON in the
SparkConf file, so that the environment variable is passed to the driver.

pyspark3
Livy reads the path from environment variable PY SPARK3_PY THON.

e If Livy isrunning in local mode, simply set the environment variable.

» If theLivy session isrunning in yarn-cluster mode, setspark.yarn.appMasterEnv.PY SPARK3_PYTHON in
SparkConf file, so that the environment variable is passed to the driver.

Livy API Referencefor Interactive Sessions

GET

GET /sessionsreturns all active interactive sessions.
Request Parameter Description Type
from Starting index for fetching sessions int
size Number of sessionsto fetch int
Response Description Type
from Starting index of fetched sessions int
total Number of sessions fetched int
sessions Session list list

The following response shows zero active sessions:
{"from':0,"total":0,"sessions":[]}

GET /sessions/{ sessionld} returns information about the specified session.

GET /sessions/{ sessionl d} /state returns the state of the specified session:

Response Description Type

id A non-negative integer that represents a int
specific session

state Current state of the session string

GET /sessions/{ sessionld} /logs retrieves log records for the specified session.

19

Apache Spark

Submitting Spark Applications Through Livy

Request Parameters Description Type
from Offset int
size Maximum number of log recordsto retrieve int
Response Description Type
id A non-negative integer that represents a int
specific session
from Offset from the start of the log file int
size Number of log records retrieved int
log Log records list of strings
GET /sessions/{ sessionl d} /statements returns all the statements in a session.

Response Description Type
statements List of statementsin the specified session list

GET /sessions/{ sessionl d} /statements/{ statementld} returns a specified statement in a session.

Response

Description

Type

statement object (for more information see
"Livy Objectsfor Interactive Sessions")

Statement

statement object

POST

POST /sessions creates a new interactive Scala, Python, or R shell in the cluster.

Request Parameter Description Type
kind Session kind (required) session kind
proxyUser User ID to impersonate when starting the string
session
jars Jar filesto be used in this session list of strings
pyFiles Python files to be used in this session list of strings
files Other filesto be used in this session list of strings
driverMemory Amount of memory to use for the driver string
process
driverCores Number of coresto use for the driver process | int
executorMemory Amount of memory to use for each executor string
process
executorCores Number of coresto use for each executor int
process
numExecutors Number of executors to launch for this session | int
archives Archives to be used in this session list of strings
queue The name of the YARN queue to which the string
job should be submitted
name Name of this session string
conf Spark configuration properties Map of key=value

heartbeat TimeoutInSecond

Timeout in second to which session be
orphaned

int

20

Apache Spark Submitting Spark Applications Through Livy

Response Description Type

session object (for more information see "Livy | The created session session object
Objects for Interactive Sessions")

The following response shows a PySpark session in the process of starting:
{"id":0,"state":"starting","kind":"pyspark","log":[]}

POST /sessiong/{ sessionld} /statements runs a statement in a session.

Request Parameter Description Type
code The code to execute string
Response Description Type
statement object (for more information see Result of an execution statement statement object

"Livy Objects for Interactive Sessions")

POST /sessiong/{ sessionld} /statements/{ statementl d} /cancel cancels the specified statement in the session.

Response Description Type
cancellation message Reports "cancelled” string
DELETE

DELETE /sessions/{ sessionld} terminates the session.

Submitting Batch Applications Using the Livy API

About thistask

Spark provides a spark-submit command for submitting batch applications. Livy provides equivalent functionality
through REST APIs, using job specifications specified in a JSON document.

The following example shows a spark-submit command that submits a SparkPi job, followed by an example that uses
Livy POST requests to submit the job. The remainder of this subsection describes Livy objects and REST API syntax.
For additional examples and information, see the readme.rst file at https://github.com/hortonworks/livy-rel ease/
releases/tag/HDP-2.6.0.3-8-tag.

The following command uses spark-submit to submit a SparkPi job:

. I bi n/ spark-submit \
--class org. apache. spark. exanpl es. Spar kPi \
--master yarn \
--depl oy-node cluster \
--executor-nmenory 20G \
/ pat h/ t o/ exanpl es.jar 1000

To submit the SparkPi job using Livy, complete the following steps. Note: the POST request does not upload local

jarsto the cluster. Y ou should upload required jar filesto HDFS before running the job. Thisis the main difference
between the Livy APl and spark-submit.

Procedure

1. Form aJSON structure with the required job parameters:

{ "classNane": "org.apache. spark. exanpl es. Spar kPi ",

21

Apache Spark

Submitting Spark Applications Through Livy

"execut or Menory": "20g",

"args":
"file":

}

"/ pat h/to/ exanpl es.jar"

2. Specify master and deploy mode in the livy.conf file.

3. To submit the SparkPi application to the Livy server, use the a POST /batches request.
4, ThelLivy server helpslaunch the application in the cluster.

Livy Batch Object

Batch session APIs operate on batch objects, defined as follows:

Property Description Type
id A non-negative integer that represents a int
specific batch session
appld The application ID for this session String
applnfo Detailed application info Map of key=value
log Log records list of strings
state Batch state string
Livy API Referencefor Batch Jobs
GET /batches returns al active batch sessions.
Request Parameters Description Type
from Starting index used to fetch sessions int
size Number of sessionsto fetch int
Response Description Type
from Starting index of fetched sessions int
total Number of sessions fetched int
sessions List of active batch sessions list
GET /batches/{ batchld} returns the batch session information as a batch object.
GET /batches/{ batchld}/state returns the state of batch session:
Response Description Type
id A non-negative integer that represents a int
specific batch session
state The current state of batch session string

GET /batches/{ batchld}/log retrieves log records for the specified batch session.

Request Parameters Description Type

from Offsetinto log file int

size Max number of log lines to return int

Response Description Type

id A non-negative integer that represents a int
specific batch session

22

Apache Spark Running PySpark in aVirtual Environment

Response Description Type

from Offset from start of the log file int

size Number of log records returned int

log Log records list of strings

POST /batches creates a new batch environment and runs a specified application:

Request Body Description Type

file File containing the application to run path
(required)

proxyUser User ID to impersonate when running thejob | string

className Application Java or Spark main class string

args Command line arguments for the application | list of strings

jars Jar filesto be used in this session list of strings

pyFiles Python files to be used in this session list of strings

files Other filesto be used in this session list of strings

driverMemory Amount of memory to use for the driver string
process

driverCores Number of coresto use for the driver process | int

executorMemory Amount of memory to use for each executor string
process

executorCores Number of coresto use for each executor int

numExecutors Number of executorsto launch for thissession | int

archives Archives to be used in this session list of strings

queue The name of the YARN queue to which the string
job should be submitted

name Name of this session string

conf Spark configuration properties Map of key=val

Response Description Type

batch object (for more information see"Livy | The created batch object batch object

Batch Object")

DELETE /batches/{ batchld} terminates the Batch job.

Running PySpark in a Virtual Environment

For many PySpark applications, it is sufficient to use --py-files to specify dependencies. However, there are times
when --py-filesisinconvenient, such as the following scenarios:

« A large PySpark application has many dependencies, including transitive dependencies.
» A large application needs a Python package that requires C code to be compiled before installation.
* Youwant to run different versions of Python for different applications.

For these situations, you can create avirtual environment as an isolated Python runtime environment. HDP supports
Virtual Env for PySpark in both local and distributed environments, easing the transition from alocal environment to a
distributed environment.

23

Apache Spark Automating Spark Jobs with Oozie Spark Action

E Note:
Thisfeatureis currently only supported in Y ARN mode.

Related Information
Using Virtual Env with PySpark

Automating Spark Jobswith Oozie Spark Action

Y ou can use Apache Spark as part of a complex workflow with multiple processing steps, triggers, and
interdependencies. Y ou can automate Apache Spark jobs using Oozie Spark action.

Before you begin
Spark2 must be installed on the node where the Oozie server isinstalled.

About Oozie Spark Action

If you use Apache Spark as part of acomplex workflow with multiple processing steps, triggers, and
interdependencies, consider using Apache Oozie to automate jobs. Oozie is aworkflow engine that executes
sequences of actions structured as directed acyclic graphs (DAGs). Each action is an individual unit of work, such as
a Spark job or Hive query.

The Oozie "Spark action” runs a Spark job as part of an Oozie workflow. The workflow waits until the Spark job
completes before continuing to the next action.

For additional information about Spark action, see the Apache "Oozie Spark Action Extension” documentation. For
general information about Oozie and Workflow Manager, see Workflow Management under Ambari documentation.

E Note:
Support for yarn-client execution mode for Oozie Spark action will be removed in afuture release. Oozie will
continue to support yarn-cluster execution mode for Oozie Spark action.

Configure Oozie Spark Action for Spark
1. Setup .jar file exclusions.

Oozie distributesits own libraries on the ShareLib, which are included on the classpath. These .jar files
may conflict with each other if some components require different versions of alibrary. Y ou can use the
oozie.action.sharelib.for.<action_type>.exclude=<value> property to address these scenarios.

In HDP-3.x, Spark2 uses older jackson-* .jar versions than Oozie, which creates a runtime conflict

in Oozie for Spark and generates a NoClassDefFoundError error. This can be resolved by using the
oozie.action.sharelib.for.<action_type>.exclude=<value> property to exclude the oozie/jackson.* .jar files
from the classpath. Libraries matching the regex pattern provided as the property value will not be added to the
distributed cache.

E Note: spark2 ShareLib directory will not be created. The named spark directory is used for spark2 libs.

Examples

The following examples show how to use a Sharelib exclude on a Java action.

Actual Sharelib content:
* [user/ooziel/share/lib/lib_20180701/ oozie/lib-one-1.5.jar
* [user/ooziel/share/lib/lib_20180701/oozie/lib-two-1.5.jar

* [user/ooziel/share/lib/lib_20180701/javal/lib-one-2.6.jar
* [user/ooziel/share/lib/lib_20180701/javal/lib-two-2.6.jar

24

https://community.hortonworks.com/articles/104949/using-virtualenv-with-pyspark-1.html

Apache Spark Automating Spark Jobs with Oozie Spark Action

* [user/ooziel/share/lib/lib_20180701/j aval/ conponent - connector. jar

Setting the oozie.action.sharelib.for.java.exclude property to oozie/lib-one.* = results in the following distributed
cache content:

* [user/ooziel/share/lib/lib_20180701/oozie/lib-two-1.5.jar

* [user/ooziel/share/lib/lib_20180701/javal/lib-one-2.6.jar

* [user/ooziel/share/lib/lib _20180701/javal/lib-two-2.6.jar

* [user/ooziel/share/lib/lib_20180701/j ava/ conponent - connector.j ar

Setting the oozie.action.sharelib.for.java.exclude property to oozie/lib-one.* |component-connector.jar= resultsin
the following distributed cache content:

* [user/ooziel/share/lib/lib_20180701/ oozie/lib-two-1.5.jar
* [user/ooziel/share/lib/lib_20180701/java/lib-one-2.6.jar
* [user/ooziel/share/lib/lib_20180701/javal/lib-two-2.6.jar

2. Runthe Oozie shareliblist command to verify the configuration. Y ou should see spark in the results.
oozi e adm n —shareliblist spark

The following examples show aworkflow definition XML file, an Oozie job configuration file, and a Python script
for running a Spark2-Pi job.

Sample Workflow.xml file for spark2-Pi:

<wor kf | ow- app xm ns="uri: oozi e: wor kf | ow: 0. 5" nane=" Spar kPyt honPi ' >
<start to='spark-node' />

<action nanme='spar k- node' >
<spark xm ns="uri:oozie: spark-action:0.1">
<j ob-tracker>${j obTracker}</j ob-tracker>
<name- node>${ naneNode} </ nane- node>
<mast er >${ mast er } </ mast er >
<nanme>Pyt hon- Spar k- Pi </ name>
<j ar >pi . py</jar>
</ spar k>
<ok to="end" />
<error to="fail" />
</ acti on>

<ki Il name="fail">
<nessage>Wor kfl ow fail ed, error nessage
[${wf: error Message(w : | ast Error Node())}] </ nessage>
</kill>
<end nanme='end' />
</ wor kf | ow app>

Sample Job.propertiesfile for spark2-Pi:

nameNode=hdf s: / / host : 8020

j obTracker =host : 8050

queueNane=def aul t

exanpl esRoot =exanpl es

00zi e. use. system | i bpat h=true

oozi e. wf . appl i cati on. pat h=${ naneNode}/ user/ ${ user . nane}/ ${ exanpl esRoot }/
apps/ pyspar k

mast er =yar n- cl ust er

oozi e. action.sharelib. for. spark=spark2

25

Apache Spark Automating Spark Jobs with Oozie Spark Action

Sample Python script, lib/pi.py:

i mport sys

fromrandom i nport random

from operator inport add

from pyspark inport SparkCont ext

i f nane == " main

Usage: pi [partitions]

sc = Spar kCont ext (appName=" Pyt hon- Spar k- Pi ")
partitions = int(sys.argv[1l]) if len(sys.argv) > 1 else 2
n = 100000 * partitions

def f(_):

X = random() * 2 - 1

y = randonm() * 2 - 1

return 1 if x ** 2 +y ** 2 <1 else 0

count = sc.parallelize(range(1l, n + 1), partitions). map(f).reduce(add)
print("Pi is roughly %" % (4.0 * count / n))

sc. stop()

Troubleshooting .jar file conflicts with Oozie Spark action

When using Oozie Spark action, Oozie jobs may fail with the following error if there are .jar file conflicts between
the "oozie" Sharelib and the "spark" Sharel ib.

2018- 06- 04 13: 27: 32, 652 WARN Spar kActi onExecut or: 523 - SERVER] XXXX]
USER] XXXX] CGROUP[-] TOKEN[] APP[XXXX] JOB[0000000- <XXXXX>-00zi e- 00zi - W
ACTI ON[0000000- <XXXXXX>- 00zi e- 00zi - W& par k2] Launcher exception: Attenpt
to add (hdfs://XXXX/ user/ oozi el share/lib/lib_ XXXXX/ oozi e/ aws-] ava- sdk-
kms-1.10.6.jar) multiple times to the distributed cache.
java.lang. |11 egal Argunment Exception: Attenpt to add (hdfs://XXXXX/ user/ oozi e/
share/lib/lib_20170727191559/ oozi e/ aws- j ava- sdk- kns-1. 10. 6. jar) multiple
times to the distributed cache.
at org.apache. spark. depl oy. yarn. d i ent $anonf un$pr epar eLocal Resour ces
$13%anonf un$appl y$8. appl y(Cd i ent. scal a: 632)
at org. apache. spark. depl oy. yarn. C i ent $anonf un$pr epar eLocal Resour ces
$13%anonf un$appl y$8. appl y(d i ent. scal a: 623)
at scal a. col l ection. nmutabl e. ArraySeq. f oreach(ArraySeq. scal a: 74)
at org.apache. spark. depl oy. yarn. d i ent $anonf un$pr epar eLocal Resour ces
$13. appl y(Cdient. scal a: 623)
at org. apache. spark. depl oy. yarn. C i ent $anonf un$pr epar eLocal Resour ces
$13. appl y(d i ent. scal a: 622)
at scal a. col l ection.imutabl e. Li st. foreach(List.scal a: 381)
at
or g. apache. spark. depl oy. yarn. d i ent. prepar eLocal Resources(d i ent. scal a: 622)
at
or g. apache. spark. depl oy. yarn. d i ent. cr eat eCont ai ner LaunchCont ext (Cl i ent . scal a: 895)
at org. apache. spark. depl oy. yarn. d i ent.subm t Application(Cient.scala:171)
at org. apache. spark. depl oy.yarn.dient.run(Cient.scal a: 1231)
at org. apache. spark. deploy.yarn.Cient$. main(dient.scal a: 1290)
at org. apache. spark. depl oy.yarn.dient.nmai n(Client.scala)
at sun.refl ect. NativeMet hodAccessor | npl.invokeO(Native Method)
at
sun. refl ect. Nati veMet hodAccessor | npl . i nvoke(Nat i veMet hodAccessor | npl . j ava: 62)
at
sun. refl ect. Del egati ngMet hodAccessor | npl . i nvoke(Del egat i ngMet hodAccessor | npl . j ava: 43)
at java.lang.refl ect. Met hod. i nvoke(Met hod. j ava: 498)

26

Apache Spark Automating Spark Jobs with Oozie Spark Action

at org. apache. spark. depl oy. Spar kSubni t $. or g$apache$spar k$depl oy$Spar kSubni t
$runMai n(Spar kSubmi t . scal a: 750)
at org. apache. spark. depl oy. Spar kSubni t $. doRunMai n$1(Spar kSubmi t . scal a: 187)
at org.apache. spark. depl oy. Spar kSubmi t $. submi t (Spar kSubmi t . scal a: 212)
at org. apache. spark. depl oy. Spar kSubni t $. mai n(Spar kSubmi t . scal a: 126)
at org. apache. spar k. depl oy. Spar kSubmi t . mai n(Spar kSubmi t . scal a)
at org.apache. oozi e. acti on. hadoop. Spar kMai n. runSpar k(Spar kMai n. j ava: 311)
at org.apache. oozi e. acti on. hadoop. Spar kMai n. run(Spar kMai n. j ava: 232)
at org. apache. oozi e. acti on. hadoop. Launcher Mai n. run(Launcher Mai n. j ava: 58)
at org. apache. oozi e. acti on. hadoop. Spar kMai n. nai n(Spar kMai n. j ava: 62)
at sun.refl ect. NativeMet hodAccessor | npl.invokeO(Native Method)
at
sun. refl ect. Nati veMet hodAccessor | npl . i nvoke(Nat i veMet hodAccessor | npl . j ava: 62)
at
sun. refl ect. Del egati ngMet hodAccessor | npl . i nvoke(Del egat i ngMet hodAccessor | npl . j ava: 43)
at java.lang.refl ect. Met hod. i nvoke(Met hod. j ava: 498)
at
or g. apache. oozi e. acti on. hadoop. Launcher Mapper . map(Launcher Mapper . j ava: 237)
at org. apache. hadoop. mapr ed. MapRunner . r un(MapRunner . j ava: 54)
at org. apache. hadoop. mapr ed. MapTask. r unQ dMapper (MapTask. j ava: 453)
at org. apache. hadoop. mapr ed. MapTask. run(MapTask. j ava: 343)
at org. apache. hadoop. mapr ed. Yar nChi | d$2. run(YarnChi | d. j ava: 170)
at java.security. AccessController.doPrivil eged(Native Mt hod)
at javax.security. auth. Subj ect. doAs(Subj ect.java: 422)
at
or g. apache. hadoop. security. User G- oupl nf or mat i on. doAs(User G- oupl nf or mati on. j ava: 1866)
at org. apache. hadoop. mapr ed. Yar nChi | d. mai n(Yar nChi | d. j ava: 164)

Run the following commands to resolve this issue.

B Note:
Y ou may need to perform a backup before running the rm commands.

hadoop fs -rm/user/oozie/share/lib/lib_<ts>/spark/aws*

hadoop fs -rm/user/ooziel/share/lib/lib_<ts>/spark/azure*

hadoop fs -rm/user/oozie/share/lib/lib_<ts>/spark/hadoop-aws*

hadoop fs -rm/user/oozie/share/lib/lib_<ts>/spark/hadoop-azure*

hadoop fs -rm/user/oozie/share/lib/lib_<ts>/spark/ ok*

hadoop fs -nv /user/oozie/share/lib/lib_<ts>/oozieljackson* /user/oozie/
share/lib/lib _<ts>/oozie.old

Next, run the following command to update the Oozie ShareL ib:

00zi e admin -o0o0zie http://<oozie-server-host nane>: 11000/ oozi e -
shar el i bupdat e

Related Information
Oozie Spark Action Extension

27

https://oozie.apache.org/docs/4.2.0/DG_SparkActionExtension.html

	Contents
	Introduction
	Running Sample Spark Applications
	Running Spark in Docker Containers on YARN
	Submitting Spark Applications Through Livy
	Using Livy with Spark
	Using Livy with interactive notebooks
	Using the Livy API to run Spark jobs: overview
	Running an Interactive Session With the Livy API
	Livy Objects for Interactive Sessions
	Set Path Variables for Python
	Livy API Reference for Interactive Sessions

	Submitting Batch Applications Using the Livy API
	Livy Batch Object
	Livy API Reference for Batch Jobs

	Running PySpark in a Virtual Environment
	Automating Spark Jobs with Oozie Spark Action

