
Data Access 3

Securing Apache Hive
Date of Publish: 2018-07-12

http://docs.hortonworks.com

http://docs.hortonworks.com

Contents

Authorizing Apache Hive Access.. 3

HDFS ACL permissions model... 5
Configure storage-based authorization...5
Authorization configuration parameters... 6
Storage-based operation permissions... 7

Transactional table access... 7

External table access.. 7

Apache Spark access to Apache Hive.. 8

Remote data access...9
Secure HiveServer using LDAP...9
Secure HiveServer using LDAP over SSL.. 10
Secure LLAP in HiveServer...11
Connections to Apache Hive..12

Data Access Authorizing Apache Hive Access

Authorizing Apache Hive Access

As administrator, you can choose whether or not to set up Apache Ranger authorization use another authorization
model to limit Apache Hive access to approved users.

Authorization is the process that checks user permissions to perform select operations, such as creating, reading,
and writing data, as well as editing table metadata. Apache Ranger provides centralized authorization for all HDP
components and is the recommended for HDP 3.0. It is best to choose an authorization model based on how your
organization uses Hive.

There are two primary use cases for Hive:

• Using Hive as a table storage layer

Many HDP components and underlying technologies, such as Apache Hive, Apache HBase, Apache Pig, Apache
MapReduce, and Apache Tez rely on Hive as a table storage layer.

• Using Hive as a SQL query engine

Hadoop administrators, business analysts, and data scientists use Hive to run SQL queries remotely through a
client connecting to Hive through HiveServer. These users often configure a data analysis tool, such as Tableau, to
connect to Hive through HiveServer.

In addition to Apache Ranger, Hive supports storage-based authorization (SBA) for external tables. Ranger and SBA
can co-exist in HDP 3.0.0. The following table compares authorization models:

Authorization model Secure? Fine-grained
authorization (column,
row level)

Privilege management
using GRANT/REVOKE
statements

Centralized management
GUI

Apache Ranger Secure Yes Yes Yes

Storage-based Secure No authorization at SQL
layer in HiveServer.
Provides Metastore server
authorization for the
Metastore API only.

No. Table privilege based
on HDFS permission

No

3

Data Access Authorizing Apache Hive Access

Authorization model Secure? Fine-grained
authorization (column,
row level)

Privilege management
using GRANT/REVOKE
statements

Centralized management
GUI

Hive default Not secure. No restriction
on which users can run
GRANT statements

Yes Yes No

Apache Ranger policy authorization

Apache Ranger provides centralized policy management for authorization and auditing of all HDP components,
including Hive. All HDP components are installed with a Ranger plugin used to intercept authorization requests for
that component, as shown in the following illustration.

Authorizing Hive through Ranger instead of using SBA is highly recommended.

Storage based authorization

As the name implies, storage-based authorization relies on the authorization provided by the storage layer. In the
case of an HDP cluster, the storage layer is HDFS, which provides both POSIX and ACL permissions. Hive is one of
many HDP components that share storage on HDFS. By enabling this model on the Hive Metastore Server, Hadoop
administrators can provide consistent data and metadata authorization. The model controls access to metadata and
checks permissions on the corresponding directories of the HDFS file system. Traditional POSIX permissions for
the HDFS directories where tables reside determine access to those tables. For example, to alter table metadata for a
table stored in HDFS at /warehouse/tablespace/managed/hive, a user must have WRITE permissions on that directory.
However, this authorization model doesn't support column-level security.

In addition to the traditional POSIX permissions model, HDFS also provides ACLs, or access control lists, as
described in ACLs on HDFS. An ACL consists of a set of ACL entries, and each entry names a specific user or group
and grants or denies read, write, and execute permissions for the specified user or group. These ACLs are also based
on POSIX specifications, and they are compatible with the traditional POSIX permissions model.

HDFS ACL permissions provide administrators with authentication control over databases, tables, and table partitions
on the HDFS file system. For example, an administrator can create a role with a set of grants on specific HDFS tables,
then grant the role to a group of users. Roles allow administrators to easily reuse permission grants. Hortonworks
recommends relying on POSIX permissions and a small number of ACLs to augment the POSIX permissions for
exceptions and edge cases.

A file with an ACL incurs additional memory cost to the NameNode due to the alternate algorithm used for
permission checks on such files.

Related Information
Configure a Resource-based Policy: Hive

Row-level Filtering and Column Masking in Hive

4

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.0/authorization-ranger/content/resource_policy_create_a_hive_policy.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.0/authorization-ranger/content/row_level_filtering_and_column_masking_in_hive.html

Data Access HDFS ACL permissions model

Start Hive as an end user

Start Hive as the hive user

HDFS ACL permissions model

As administrator, you must understand the permissions model supported in HDP 3.0 and later. If you do not use
Ranger for security, you can add users to an HDFS access control list to permit access to the Hive warehouse for
running DML queries.

Hive 3 supports the HDFS access control model instead of the past Hive permission inheritance based on the
hive.warehouse.subdir.inherit.perms parameter setting. In Hive 3, a directory inherits permissions from the Default
ACL.

Managing YARN queues

To manage YARN queues, you configure Hive user impersonation, and another property or not, depending on your
security: Ranger or security-based authorization (SBA). In either case, to manage YARN queues, you need the
following behavior:

• User submits the query through HiveServer (HS2) to the YARN queue
• Tez app starts for the user
• Access to the YARN queue is checked for this user.

As administrator, you can allocate resources to different users.

Configure services for this behavior as described below:

Ranger

When you enable Ranger, you disable user impersonation (doAs=false). This is the Hive default and Ranger is the
recommended security model. With no impersonation, HiveServer authorizes only the hive user to access Hive tables
and YARN queues unless you also configure the following parameter:

hive.server2.tez.queue.access.check=true

SBA

As administrator, if you do not use the recommended Ranger security, you enable the doAs impersonation parameter
to use SBA: (hive.server2.enable.doAs=true)

This action also causes HiveServer to authorize the original user who issued the query to access YARN queues while
running the Tez application as the hive user.

Related Information
Apache Software Foundation HDFS Permissions Guide

HDP 3.0.0 Reference HDFS ACLs

Configure storage-based authorization
You need to set parameters in hive-site.xml to enable storage-based authorization (SBA).

About this task
Hive performs authorization checks on the client, rather than the server when you use SBA. This allows malicious
users to circumvent these checks. Some metadata operations do not check for authorization. See Apache JIRA
HIVE-3009. DDL statements for managing permissions have no effect on storage-based authorization, but they do not
return error messages (HIVE-3010).

5

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.0/starting-hive/content/hive_start_hive_as_authorized_user.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.0/starting-hive/content/hive_start_a_command_line_query_locally.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.0/hdfs-acls/content/acls_on_hdfs.html

Data Access HDFS ACL permissions model

Before you begin

• You obtained admin role privileges.

Procedure

1. Set authorization configuration parameters in the hive-site.xml to enable storage-based authorization.

<property>
 <name>hive.security.authorization.enabled</name>
 <value>false</value>
</property>

<property>
 <name>hive.security.authorization.manager</name>

 <value>org.apache.hadoop.hive.ql.security.authorization.StorageBasedAuthorizationProvider</
value>
</property>

<property>
 <name>hive.server2.enable.doAs</name>
 <value>true</value>
</property>

<property>
 <name>hive.metastore.pre.event.listeners</name>

 <name>org.apache.hadoop.hive.ql.security.authorization.AuthorizationPreEventListener</
name>
</property>

<property>
 <name>hive.security.metastore.authorization.manager</name>

 <value>org.apache.hadoop.hive.ql.security.authorization.StorageBasedAuthorizationProvider</
value>
</property>

2. Determine the required permissions of the tables and databases in your environment.

3. Create a table or database in the Hive, then manually modify the POSIX permissions using the HDFS file system
commands.

Related Information
Storage-based authorization information on the Apache Wiki

Authorization configuration parameters
Understanding key authorization parameter descriptions help you configure storage-based authorization correctly.

Table 1: Authorization Parameters in hive-site.xml

Configuration Property Description

hive.security.authorization.enabled Enables or disables Hive client authorization done as part of query
compilation. This property must be set to false in the hive-site.xml file
for storage-based authorization, as it is already enabled via checks on
metastore API calls.

hive.server2.enable.doAs Allows Hive queries to be run by the user who submits the query rather
than the Hive user. Must be set to true for storage-based access.

6

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Authorization#LanguageManualAuthorization-1StorageBasedAuthorizationintheMetastoreServer

Data Access Transactional table access

Configuration Property Description

hive.metastore.pre.event.listeners Enables Metastore security. Specify the following value:

org.apache.hadoop.hive.ql.security.authorization.

AuthorizationPreEventListener.

hive.security.metastore.authorization.manager The class name of the Hive Metastore authorization manager. Specify
the following value for storage-based authorization:

org.apache.hadoop.hive.ql.security.authorization.

StorageBasedAuthorizationProvider.

Storage-based operation permissions

Table 2: Required Minimum Permissions for Hive Operations

Operation Database READ Access Database WRITE Access Table READ Access Table WRITE Access

LOAD X

EXPORT X

IMPORT X

CREATE TABLE X

CREATE TABLE AS
SELECT

X X (source table)

DROP TABLE X

SELECT X

ALTER TABLE X

SHOW TABLES X

Transactional table access

As administrator, you must set file system permissions or enable the Apache Ranger service for authorization of users
who want to work with transactional tables, which are the default and ACID-compliant tables in Hive 3 and later.

ACID tables reside by default in /warehouse/tablespace/managed/hive. Only the Hive service can own and interact
with files in this directory. Storage-based authorization (SBA) does not work to give users access ACID tables for the
following reasons:

• Limiting users to Hive prevents dirty reads, inconsistencies, and other problems.
• The low-latency analytical processing (LLAP) cache separates data from the storage location, which is

incompatible with SBA.

Ranger is the only available authorization mechanism for ACID tables.

External table access

As administrator, you must set up one of several authorization options to allow users to access external tables.

7

Data Access Apache Spark access to Apache Hive

External tables reside by default in /warehouse/tablespace/external on HDFS. To specify some other location of the
external table, you need to include the specification in the table creation statement as shown in the following example:

CREATE EXTERNAL TABLE my_external_table (a string, b string)
LOCATION '/users/andrena';

Hive assigns a default permission of 777 to the hive user, sets a umask to restrict subdirectories, and provides a
default ACL to give Hive read and write access to all subdirectories. External tables in HDP 3.0 support the following
permissions and authorization models:

• SBA
• SBA and Ranger
• Ranger

You can use the mixed mode, SBA and Ranger, for low-level analytical processing of external tables.

Using the SBA permissions model

You must add Access ACLs to allow groups or users to create databases and tables in the space governed by SBA.
You are authorized to query a table if you have file-level access to the underlying data. You configure impersonation
in HiveServer to run operations on behalf of an end user. You cannot use LLAP.

Using the SBA and Ranger example

Assume that you are an administrator who creates a sales database and gives the sales group read-write permissions to
the sales directory. This includes Default ACLs for the sales group to read from and write to the database. Users in the
sales group set doAs=true, and are authorized under SBA to create external tables. Given the ACLs, both Hive and
sales users can access all files and partitions.

To restrict certain users from accessing all files and partitions, you can use Ranger. Hive enforces access; however,
if you give a sales user fewer options for accessing the tables through SBA, for example by setting a user's HDFS
access to tables to read-only, Ranger cannot control that user's access.

Using the Ranger authorization model

If you disable SBA and use only Ranger to give a specific user, who is not in the sales group, permission to create
external tables in the sales-report database, the user can log in, use LLAP, and create a database. With Default ACLs
in place, sales group users can also access the table.

Related Information
HDFS ACL permissions model

Apache Spark access to Apache Hive

From Apache Spark, you access ACID v2 tables and external tables in Apache Hive 3 using the Hive Warehouse
Connector.

The HiveWarehouseConnector library is a Spark library built on top of Apache Arrow for accessing Hive ACID and
external tables for reading and writing from Spark.

The Hive Warehouse Connector is optimized for fast transmission of data from low-latency analytical processing
(LLAP) to Spark and designed to leverage the LLAP cache. The connector orchestrates a distributed read from LLAP
daemons. The read from cache occurs after applying security rules and ACID transformations.

You need low-latency analytical processing (LLAP) to read ACID, or other Hive-managed tables, from Spark. You
do not need LLAP to write to ACID, or other managed tables, from Spark. You do not need LLAP to access external
tables from Spark. The HWC library internally uses the Hive Streaming API and LOAD DATA Hive commands to
write the data.

8

Data Access Remote data access

Related Information
Hive Warehouse Connector for accessing Apache Spark data

Remote data access

Under certain circumstances can query remote clusters that use a different version of Hive than the version installed
on your cluster.

You can query the data on the remote cluster, including the ability to perform WRITE operations from the local
cluster.

Examples of Supported Queries

CREATE TABLE orders_ctas AS SELECT * FROM orders_ext;

INSERT INTO orders_ctas SELECT * FROM orders_ext;

INSERT OVERWRITE TABLE orders_ctas SELECT * FROM orders_ext;

Secure HiveServer using LDAP
You can secure the remote client connection to Hive by configuring HiveServer to use authentication with LDAP.

Procedure

1. Add the following properties to the hive-site.xml file to set the server authentication mode to LDAP.

<property>
 <name>hive.server2.authentication</name>
 <value>LDAP</value>
</property>

<property>
 <name>hive.server2.authentication.ldap.url</name>
 <value>LDAP_URL</value>
</property>

LDAP_URL is the access URL for your LDAP server. For example, ldap://ldap_host_name@xyz.com:389

2. Add additional properties to the hive-site.xml file, depending on your LDAP service type.

• Active Directory (AD)
• Other LDAP service types, such as OpenLDAP

AD:

<property>
 <name>hive.server2.authentication.ldap.Domain</name>
 <value>AD_Domain</value>
</property>

Where AD_Domain is the domain name of the AD server. For example, corp.domain.com.

Other LDAP service types:

<property>
<name>hive.server2.authentication.ldap.baseDN</name>

9

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.0/integrating-hive/content/hive_hivewarehouseconnector_for_handling_apache_spark_data.html

Data Access Remote data access

 <value>LDAP_BaseDN</value>
</property>

Where LDAP_BaseDN is the base LDAP distinguished name for your LDAP server. For example, ou=dev,
dc=xyz, dc=com.

3. Test the LDAP authentication by using the Beeline client.

• If the HiveServer transport mode is binary (hive.server2.transport.mode=binary), use the following syntax:

beeline>!connect
jdbc:hive2://node1:<port>/default

• If the HiveServer2 transport mode is HTTP (hive.server2.transport.mode=http) and the Thrift path is cliservice
(hive.server2.thrift.http.path=cliservice), use the following syntax:

beeline>!connect
jdbc:hive2://node1:<port>/default;transportMode=http;httpPath=cliservice

Secure HiveServer using LDAP over SSL
You can secure the remote client connection to Hive by configuring HiveServer to use authentication with LDAP
over SSL (LDAPS).

About this task

Two types of certificates can be used for LDAP over SSL with HiveServer2:

• CA Certificates, which are digital certificates that are signed by a Certificate Authority (CA)
• Self-signed certificates

Procedure

1. Add the LDAP authentication property and URL property to the hive-site.xml file to set the server authentication
mode to LDAP:

<property>
 <name>hive.server2.authentication</name>
 <value>LDAP</value>
</property>

<property>
 <name>hive.server2.authentication.ldap.url</name>
 <value>LDAP_URL</value>
</property>

The LDAP_URL is the access URL for your LDAP server. For example, ldap://ldap_host_name@xyz.com:389.

2. Add additional properties to the hive-site.xml file:

• If you use Active Directory (AD):

<property>
 <name>hive.server2.authentication.ldap.Domain</name>
 <value>AD_Domain</value>
</property>

Where AD_Domain is the domain name of the AD server. For example, corp.domain.com.
• If you use other LDAP service types including OpenLDAP:

<property>

10

Data Access Remote data access

 <name>hive.server2.authentication.ldap.baseDN</name>
 <value>LDAP_BaseDN</value>
</property>

Where LDAP_BaseDN is the base LDAP distinguished name for your LDAP server. For example, ou=dev,
dc=xyz, dc=com.

3. Depending on which type of certificate you are using, perform one of the following actions:

• CA certificate: If you are using a certificate that is signed by a CA, the certificate is already included in the
default Java trustStore located at ${JAVA_HOME}/jre/lib/security/cacerts on all of your nodes. If the CA
certificate is not present, you must import the certificate to your Java cacert trustStore using the following
command:

keytool -import -trustcacerts -alias <MyHiveLdaps> -storepass <password>
 -noprompt -file <myCert>.pem -keystore ${JAVA_HOME}/jre/lib/security/
cacerts

If you want to import the CA certificate into another trustStore location, replace ${JAVA_HOME}/jre/lib/
security/cacerts with the cacert location that you want to use.

• Self-signed certificate: If you are using a self-signed digital certificate, you must import it into your Java cacert
trustStore. For example, if you want to import the certificate to a Java cacert location of /etc/pki/java/cacerts,
use the following command to import your self-signed certificate:

keytool -import -trustcacerts -alias <MyHiveLdaps> -storepass <password>
 -noprompt -file <myCert>.pem -keystore /etc/pki/java/cacerts

4. If your trustStore is not ${JAVA_HOME}/jre/lib/security/cacerts, you must set the HADOOP_OPTS environment
variable to point to your CA certificate so that the certificate loads when the HDP platform loads. There is no need
to modify the hadoop-env template if you use the default Java trustStore of ${JAVA_HOME}/jre/lib/security/
cacerts.

a) In Ambari, select Services > HDFS > Configs > Advanced
b) Scroll down, and expand the Advanced hadoop-env section.
c) Add the configuration information to the hadoop-env template text box.

export HADOOP_OPTS="-Djava_net_preferIPv4Stack=true
 -Djavax.net.ssl.trustStore=/etc/pki/java/cacerts
 -Djavax.net.ssl.trustStorePassword=changeit
 ${HADOOP_OPTS}"

d) Click Save.

5. Restart the HDFS and Hive services.

6. Test the LDAPS authentication.

beeline>!connect jdbc:hive2://node1:10000/default

Components such as Apache Knox and Apache Ranger do not use the hadoop-env.sh template. The configuration
files for these components must be set for LDAPS and manually restarted.

The Beeline client prompts for the user ID and password.

Secure LLAP in HiveServer

About this task
Hive LLAP shares and caches data across many users like other MPP or database technologies do. Older file-based
security controls do not work with Hive and impersonation (doAs=true) is not supported by Hive LLAP. You need

11

Data Access Remote data access

to use Apache Ranger, disable impersonation (doAs=false) to secure Hive LLAP, and restrict underlying file access
using Ranger policies, so that Hive can access data but unprivileged users cannot.

Procedure

1. Enable Apache Ranger security policies.

2. Set doAs=false in Ambari by setting the Run as end user instead of Hive user to False:

• In Ambari, select Services > Hive > Configs, and set options as

follows:
• On the command line, set hive.server2.enable.doAs=false.

Connections to Apache Hive
You can use Beeline, a JDBC, or an ODBC connection to HiveServer.

HiveServer modes of operation

HDP 3.0 supports a number of modes for interacting with Hive, including Ranger-based authorization.

Table 3: HiveServer modes of operation

Operating Mode Description

Embedded The Beeline client and the Hive installation reside on the same host
machine. No TCP connectivity is required.

Remote Use remote mode to support multiple, concurrent clients executing
queries against the same remote Hive installation. Remote transport
mode supports authentication with LDAP and Kerberos. It also
supports encryption with SSL. TCP connectivity is required.

Transport Modes

As administrator, you can start HiveServer in one of the following transport modes:

Table 4: HiveServer2 Transport Modes

Transport Mode Description

TCP HiveServer uses TCP transport for sending and receiving Thrift RPC
messages.

HTTP HiveServer uses HTTP transport for sending and receiving Thrift RPC
messages.

12

Data Access Remote data access

Authentication in HiveServer

While running in TCP transport mode, HiveServer supports the following authentication schemes:

Table 5: Authentication Schemes with TCP Transport Mode

Authentication Scheme Description

Kerberos A network authentication protocol which operates that uses the concept
of 'tickets' to allow nodes in a network to securely identify themselves.
Administrators must specify hive.server2.authentication=kerberos in
the hive-site.xml configuration file to use this authentication scheme.

LDAP The Lightweight Directory Access Protocol, an application-
layer protocol that uses the concept of 'directory services' to
share information across a network. Administrators must specify
hive.server2.authentication=ldap in the hive-site.xml configuration file
to use this type of authentication.

PAM Pluggable Authentication Modules, or PAM, allow administrators
to integrate multiple authentication schemes into a single API.
Administrators must specify hive.server2.authentication=pam in the
hive-site.xml configuration file to use this authentication scheme.

Custom Authentication provided by a custom implementation of the
org.apache.hive.service.auth.PasswdAuthenticationProvider
interface. The implementing class must be available in the
classpath for HiveServer and its name provided as the value of the
hive.server2.custom.authentication.class property in the hive-site.xml
configuration property file.

None The Beeline client performs no authentication with HiveServer2.
Administrators must specify hive.server2.authentication=none in the
hive-site.xml configuration file to use this authentication scheme.

13

	Contents
	Authorizing Apache Hive Access
	HDFS ACL permissions model
	Configure storage-based authorization
	Authorization configuration parameters
	Storage-based operation permissions

	Transactional table access
	External table access
	Apache Spark access to Apache Hive
	Remote data access
	Secure HiveServer using LDAP
	Secure HiveServer using LDAP over SSL
	Secure LLAP in HiveServer
	Connections to Apache Hive

