Using Apache HBase to store and access data 3

Using Apache HBase to store and access data
Date of Publish: 2018-08-30

Py

Hortonworks

http://docs.hortonwor ks.com

http://docs.hortonworks.com

Using Apache HBase to store and access data | Contents | i

Contents

What's New in Apache HBaSe.........cccoveiiiiiie e 4
Overview of Apache HBASE..........ccuviieiee et 4
Apache HBase iINStallation..........coouviiiiiiiiiecieesee e 4
Installing HBase throUgh AMDEI.........c.coiiiiiiiie ettt st st e e et e e st ebe s s s b sbe e e 6
HBase cluster Capacity PlanNiNG...... ..ottt sb e bbb st be e e b e bese e e e e e e e e eneeneenes 6
Configuring HBase cluster for the first timMe..........ccoe i e 6

Node count and JVIM CONFIQUIBLION.coueiueiuirienerie ettt et e e 8

Options to increase HBase Region COUNt @NA SIZE.........couoieiiirieiecerere e 9

Enable multitenanCy With NAMESPACES.........cccoiriririieeterie ettt st bbb e e e e e e et seeseene b 10
Default HBase NAMESPACE BCHIONS..........ooieirerierieiesie et ste e see s e sbesbesaesbesbeseese e be s e e e e eneenes 11

Define and ArOp NAMESPECES......c.ueiuirtertereerteie e reeeee ettt sie s e bt sbe bt sbesbesbeseesbebesee e enee e e e eneenesaeeneabeseas 11

Security features that are @Vaillabl........ ..o b 11
Managing Apache HBase CIUSLErS.......ccoicieiir e 12
Monitoring Apache HBase clusters through Grafana-based dashboard............cccooeveerinincicicce e 12
Optimizing APAChE HBESE 1/0.......cuiiiiiieeieeest ettt bbb enes 12
HBESE /O COMPONENTS.......eeetirietereetereete sttt ettt sttt et se et saeb e seebe s b ese st e st e b et ebe e ebeseebeseebeseebeneas 12

Configuring BIOCKCACKE..........c.oiuiiieiiices et b e s b e eb e 15

Import data into HBase With BUIK 108(............ccoiiiiiice e 20

USING SNAPSNOLS 1N HBESE........ccviieiirictiieeierie ettt bbb bt b e bt e bbbt b se b et nnenes 21
CONFIGUIE 8 SNBPSNOL. ...c.eeeveeetereete sttt et b e et s b bbbt b et b et et e e et e se et e seebeseebeseenens 21

TAKE 8 SNBPSNOL. ...ttt b bt b e bt a et e et b e bt b e Rt b R bbbt bbb e s 22

LISt SNANSNOLS....c.eeeeteeetee ettt bbb b bbb e bbbt b e 22

DEIEIE SNAPSNOLS. ...ttt ettt b et b et b e stk b e e b e bt e Rt b b re e 22

Clone atable from @ SNAPSNOL.......c.coucirieiriee e bbb 22

RESLOrE 8 SNAPSNOL.......ccveeeetieetceet et b et bbb e 22

SNapPshot OPErationS ANA ACLS........coiirierieereie et b e e b e et e e e b e b e b e 23

EXport data t0 aNOtNEr CIUSLES.........coviiciecee e 23

Backing up and restoring Apache HBase datasets...........ccceeeveveeviecvieecieccnene, 23
Planning a backup-and-restore Strategy for your enVIrONMEN...........ccciveeeeiereriene s e e ee e 24
Backup Within @ CIUSLE........ccvieie ittt sttt e e s e e resaesresrenteseesrenee s 24

Backup to the dedicated HDFS archive CIUSLEN..........cociueieieciceee e s 24

Backup to the Cloud Or @ StOrage VENAOT..........ccceiieieieierieseeeeee ettt e e e eneenes 25

Best practices for baCkUP-and-TESLOTE..........c.eiuererierieieieeie e et s et s e et ese e e e e e seeaessesnesrenreseesrenean 25
Running the backup-and-reStore ULHTITY.........ccccieieieerieeieeseees s e s sresresnennens 26

Create and maintain a complete backup IMAagE.........ccveeririerie s 27

Command for creating HBase baCkup iMage........c.ccveeeeeireeecese s se st sre s 27

YKo Tl (o g 7= o (U oI 0] 0 | === 28

LS T T o= ot LU TR 29

RESIOrE @ DACKUP IMBOE.....c.eeeeeeeiieire sttt ettt be s te st e et e e e e ene e e eneenennesnenrents 30
Administering and deleting backup IMAJES.........ccvieieieieeee e enen 31

Incremental baCKUP-aN0-TESIONE.........cveeeececee ettt e e neens 33

Using Apache HBase to store and access data | Contents | iii

Example scenario: Safeguarding application datasets on Amazon S3...........coevevererienieneseeeniesesenees 33
Medium Object (M OB) storage support in Apache HBase.............ccccceecvveennee. 35
Methods to enable MOB storage SUPPOIT.......c.cccveieeeieeiieciee e see e 35

Method 1:Enable MOB Storage support using configure options in the

(o0 001 0 F=T 0T N 11 o = USRS 35
Method 2: Invoke MOB support parametersin aJava APlccoeeeveenenne 36
Test the MOB storage support configuration.........cccceeeceeveeeceesie e esee e, 36
MOB Storage CaChe PropertiES.........cceieeiiieereesieesiee e esee e st nee s 37

Method 1: Enter property Settings USING AMDA........cccririiiiiiine e s e 37
Method 2: Enter property settings directly in the hbase-siteXml file..........ccccooiiiiiiinn s 37
MOB CACNE PIOPEITIES. ...ttt sttt e a et e aeeb e e ae bt sbeebesbese et e bese e s ent e e e e eneenenneane 37
HBase quota ManagemMent....... ..o 38
SELLING UD QUOLBS......eueetieetireeteseet ettt sttt bt b et b e b et b e st b et b e b e e b e e bt s e bt b e bt se e st s e e st b e ne b e ne b e s s s 38
GENENAl QUOLA SYNEBX.....c.veueeeuerteaeeteeetese et st seet sttt se et sb e sb et b e b e e b e s b e s eb e st s b e st seese b e e b e e b e e b e nnenis 39
THFOMIE QUOLBS.......eueeteeet ettt bbb b s bt e b e b bbb et e st b et e et e e b s enn 39
THrottle QUOLA EXBMPIES......ccuiiitieeie ettt st e bbb s bbb 39

SPBCE QUOLBS........eevereieirires ettt s ettt r s b s et s e b s e e e e e e et e s e e b e e R e e R e e R e e Rt e R e e R e R e ne e e e R e e e e e e e e e enenns 41
(@ 8o 1= W= 01 ol o= 02T 0| S 42
QUOLA VIO ON POIICIES.cveeeteeeierieierie sttt ettt e et b s bt b e b e bt e bt b e bt b et b e e b e et e e nn e enis 42
Impact of qUOLA VIOIBEION POIICY......civeirriieterietereete sttt et b e s b e e bt e bt se s bbb e e b e 43
YT L (AN o=\ 43

BUIK WITE ACCESS......oitiiiiiiisiesiesiisie e seeseete e see sttt ssessestesbestestesbesaessentenaeseeneenseneeneeseesesnessesbesseseenseneesenns 43

= o o 01 P 43
MELMCS BN TNSIGNL. ...ttt bbb 43
Examples of overlapping qUOLa POLTICIES........coueiriiiriiiriieiereet et 43

N TU g aloT= ele B = o = @ TN o) PR 44
NUMDEr-0f-REJIONS QUOLES.........cueiteierieirteiete sttt sttt sttt sttt b et b et b et b ettt bese e b e s e e b e se e b e e eae st ne st st 45
Under standing Apache HBase Hive integration...........cccccoeveeiieevee e csen e 45
= (= 0 1S =SS 45
Configuring HBase aNd HIVE..........ccceiiiiie ettt st e st a e se e s neerenrennennens 46
UsSiNg HBASE HIVE INTEOIaLiON.........ccueieeeeieeeeete st e e e s e se s resbesaese e te s tesaeaesae e ennenenneasennens 46
HBase Hive iNtegration EXAMPIE........ccccveieiiiiiciesie s stesesteseeae e e e st aesreste e saestentesee e enaeneeneeneenenneens 47
Using Hive to access an existing HBase table EXample.........ccovvvieciie s snens 48
Understanding BUIK LOBAING........coueiueieeeeicirese st e et e e se e e e e e e sse s snesrestestesaestestesaeaenaenaenseneesensens 49
Understanding HBase SNEPSNOLS........ccuiiiiiiiieiiseseseseeie e e s e et ese e te e ste s e tesaesaes e ae e eseesessessessessessessensessens 49

HBASE BESE PraCliCES.... . oottt ens 49

Using Apache HBase to store and access data What's New in Apache HBase

What's New in Apache HBase

HBase in Hortonworks Data Platform (HDP) 3.0 includes the following new features:

Procedure V2

Y ou can use Procedure V2 or procv2, which is an updated framework for executing multi-step, HBase
administrative operations when there is afailure. The introduction of this capability isto implement all master
operations using procv2 to remove the need for tools like hbck in the future. Use procv2 for creating, modifying
and deleting tables. Other systems like new AssignmentManager isimplemented using proc-v2.

Fully off-heap read/write path

When you write data into HBase through Put operation, the cell objects do not enter VM heap until the datais
flushed to disk in an HFile. This helps to reduce total heap usage of a RegionServer and it copies less data making
it more efficient.

Use of Netty for RPC layer and Async AP

This replaces the old Java NIO RPC server with a Netty RPC server. Netty provides you the ability to easily
provide an Asynchronous Java client API.
In-memory compactions

Periodic reorganization of the datain the Memstore can result in areduction of overal /O, that is data written and
accessed from HDFS. The net performance increases when we keep more data in memory for alonger period of
time.

Better dependency management

HBase now internally shades commonly-incompatible dependencies to prevent issues for downstream users. You
can use shaded client jars that will reduce the burden on the existing applications.

Coprocessor and Observer APl rewrite

There are minor changes made to the API to remove ambiguous, misleading, and dangerous calls.
Backup/restore

Y ou can use the built-in tooling in HBase to create full and incremental backups of the HBase data.

Overview of Apache HBase

Hortonworks Data Platform (HDP) includes the Apache HBase database, which provides random, persistent access
to datain Hadoop. This"NoSQL" database isideal for scenarios that require real-time analysis and tabular data for
end-user applications. Apache HBase can host big data tables because it scales linearly to handle very large (petabyte
scale), column-oriented data sets. The data store is predicated on a key-value model that supports low latency reads,
writes, and updates in a distributed environment.

Asanatively nonrelational database, Apache HBase can combine data sources that use awide variety of structures
and schemas. It is natively integrated with the Apache Hadoop Distributed File System (HDFS) for resilient data
storage and is designed for hosting very large tables with sparse data.

Apache HBase installation

When you install Apache HBase as part of HDP distribution, two components that must coexist are A pache Hadoop
Distbuted File System (HDFS) as a filesystem and and Apache ZooK eeper for maintaining the stability of the
application.

Using Apache HBase to store and access data Apache HBase installation

Apache HBase (often simply referred to as HBase) operates with many other big data components of the Apache
Hadoop environment. Some of these components might or might not be suitable for use with the HBase deployment
in your environment. However, two components that must coexist on your HBase cluster are Apache Hadoop
Distributed File System (HDFS) and Apache ZooK eeper. These components are bundled with all HDP distributions.

Apache Hadoop Distributed File System (HDFS) is the persistent data store that holds data in a state that allows
users and applications to quickly retrieve and write to HBase tables. While technically it is possible to run HBase
on adifferent distributed filesystem, the vast majority of HBase clusters run with HDFS. HDP uses HDFS asiits
filesystem.

Apache ZooK eeper (or simply ZooK eeper) is a centralized service for maintaining configuration information,
naming, providing distributed synchronization, and providing group services in Hadoop ecosystems. ZooK eeper
isessentia for maintaining stability for HBase applications in the event of node failures, aswell asto to store and
mediate updates to important configuration information across the Hadoop cluster.

If you want to use a SQL-like interface to work with the semistructured data of an HBase cluster, a good complement
to the other Hadoop components is Apache Phoenix (or simply Phoenix). Phoenix isa SQL abstraction layer for
interacting with HBase. Phoenix enables you to create and interact with tablesin the form of typical DDL and DML
statements through its standard JIDBC API. HDP supports integration of Phoenix with HBase. See Orchestrating SQL
and APIswith Apache Phoenix.

The following table defines some main HBase concepts:

HBase Concept Description

region A group of contiguous HBase table rows

Tables start with one region, with regions dynamically added as the
table grows. Regions can be spread across multiple hosts to provide
load balancing and quick recovery from failure. There are two types
of regions: primary and secondary. A secondary region is areplicated
primary region located on a different RegionServer.

RegionServer Serves data requests for one or more regions

A singleregionis serviced by only one RegionServer, but a
RegionServer may serve multiple regions.

column family A group of semantically related columns stored together

MemStore In-memory storage for a RegionServer

RegionServers write filesto HDFS after the MemStore

reaches a configurable maximum value specified with the
hbase.hregion.memstore.flush.size property in the hbase-sitexml
configuration file.

Write Ahead Log (WAL) In-memory log in which operations are recorded before they are stored
in the MemStore
compaction storm A short period when the operations stored in the MemStore are flushed

to disk and HBase consolidates and merges many smaller filesinto
fewer largefiles

This consolidation is called compaction, and it isusually very fast.
However, if many RegionServers reach the data limit specified by the
MemStore at the same time, HBase performance might degrade from
the large number of simultaneous major compactions. Y ou can avoid
this by manually splitting tables over time.

Related Information
Orchestrating SQL and APIswith Apache Phoenix

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/phoenix-data-access/content/using-phoenix.html

Using Apache HBase to store and access data Apache HBase installation

Installing HBase through Ambari
Y ou can use Ambari installation wizard to install and configure Apache HBase for your HDP cluster.
e Ambari installation wizard

Thiswizard is part of the Apache Ambari web-based platform that guides HDP installation, including deploying
various Hadoop components, such as HBase, depending on the needs of your cluster. For more information, see
the Ambari Install Guide.

Note:
E Y our HBase installation must be the same version as the one that is packaged with the distribution of the HDP
stack version that is deployed across your cluster.

Note: Starting with HDP 3.0, the default value of the

E "yarn.schedul er.capacity.root.<queue>.acl_submit_applications" property is changed to yarn, indicating
that only the yarn user can submit applications by default. Any other user (or group) will be able to submit
applications to the queue only if the value of the property is explicitly set to that user (or group).

Related Information
Ambari Install Guide

HBase cluster capacity planning

There are several aspectsto consider when planning the capacity of an HBase cluster and the size of its
RegionServers.

Configuring HBase cluster for thefirst time

If you are an administrator, use any of the recommended methods to plan the the capacity of an HBase cluster and the
size of its RegionServers.

plan

* Increasing the request handler thread count

« Configuring the size and number of WAL files

¢ Configuring compactions

» Splitting tables

e Tuning VM garbage collection in RegionServers

Increase therequest handler thread count
If you are an administator and your cluster needs to handle high volume of request patterns, increase the number of
listeners generated by the RegionServers.

Procedure

« Inthe hbase-site. xmlconfiguration file, increase the hbase.regionserver.handler.count property higher than the
default value. The default valueis 30.

Example

<property>

<name>hbase. r egi onser ver. handl er. count </ name>
<val ue>30</ val ue>

</ property>

https://docs.hortonworks.com/HDPDocuments/Ambari-2.7.3.0/bk_ambari-installation/content/ch_Getting_Ready.html

Using Apache HBase to store and access data Apache HBase installation

Configurethe size and number of WAL files
HBase uses the Write Ahead Log, or WAL, to recover MemStore data not yet flushed to disk if a RegionServer
crashes. Administrators should configure these WAL files to be dightly smaller than the HDFS block size.

About thistask

By default, an HDFS block is 64 MB and aWAL is approximately 60 MB. Y ou should ensure that enough WAL files
are adlocated to contain the total capacity of the MemStores. Use the following formulato determine the number of
WAL files needed:

(regionserver_heap size* memstore fraction) / (default. WAL _size)
For example, assume that your environment has the following HBase cluster configuration:

1. 16 GB RegionServer heap
2. 0.4 MemStore fraction
3. 60 MB default WAL size

The formulafor this configuration is as follows:
(16384 MB * 0.4) / 60 MB = approximately 109 WAL files

Use the following properties in the hbase-site.xml configuration file to configure the size and number of WAL files:

Configuration Property Description Default

hbase.regionserver.maxlogs Sets the maximum number of WAL files 32

hbase.regionserver.logroll.multiplier Multiplier of HDFS block size 0.95

hbase.regionserver.hlog.blocksize Optional override of HDFS block size Value assigned to actual HDFS block size

Note:
E If recovery from failure takes longer than expected, try reducing the number of WAL files to improve
performance.

Configure compactions

If you are an administrator and expect the HBase clusters to host large amounts of data, consider the effect that
compactions have on write throughput. For write-intensive data request patterns, you should consider less frequent
compactions and more StoreFiles per region.

Procedure

* Inthe hbase-sitexmlconfiguration file, increase the minimum number of files required in
hbase.hstore.compaction.minproperty to trigger a compaction.

« |f you opt to increase this value, you should also increase the value assigned to the
hbase.hstore.blockingStoreFiles property because more files will accumulate.

Considerationsfor splitting tables
Y ou can split tables during table creation based on the target number of regions per RegionServer to avoid costly
dynamic splitting as the table starts tofill.

Splitting table ensures that the regions in the pre-split table are distributed across many host machines. Pre-splitting a
table avoids the cost of compactions required to rewrite the data into separate physical files during automatic splitting.

If atable is expected to grow very large, you should create at |east one region per RegionServer. However, you should
not immediately split the table into the total number of desired regions. Rather, choose alow to intermediate value.
For multiple tables, you should not create more than one region per RegionServer, especialy if you are uncertain how
large the table will grow. Creating too many regions for atable that will never exceed 100 MB is not useful; asingle
region can adequately service atable of thissize.

Using Apache HBase to store and access data Apache HBase installation

Tune JVM garbage collection in RegionServers

Y ou can tune garbage collection in HBase RegionServers for stability, because a RegionServer cannot utilize a
very large heap due to the cost of garbage collection. Administrators should specify no more than 24 GB for one
RegionServer.

Procedure

1. Specify the following configurations in the HBASE_REGIONSERVER_OPTS configuration option in the /conf/
hbase-env.sh.

- XX: +UseConcMar kSweepGC

- Xm2500m (depends on MAX HEAP SI ZE, but should not be |less than 1g and
nmor e t han 4g)

- XX: PernSi ze=128m

- XX: MaxPer nSi ze=128m

- XX: Survi vor Rat i 0=4

-XX: CMBI ni ti ati ngGccupancyFracti on=50

- XX: +UseCMBI ni ti at i ngCccupancyOnl y

-XX: ErrorFil e=/var/| og/ hbase/ hs_err_pi d%p. | og

- XX: +Print GCDet ai | s

- XX: +Pr i nt GCDat eSt anps

2. Ensurethat the block cache size and the MemStore size combined do not significantly exceed 0.5* MAX_HEAP,
which is defined in the HBASE_HEAP_SIZE configuration option of the /conf/hbase-env.sh file.

Node count and JVM configuration

The number of nodesin an HBase cluster istypically driven by physical size of the data set and read/write
throughpuit.

Physical size of the data
The physical size of dataon disk is affected by factors such as HBase overhead, compression, replication and
RegionServer Write Ahead Log (WAL).

Factor Affecting Size of Physical Data Description

HBase Overhead The default amount of disk space required for asingle HBase table cell.
Smaller table cells require less overhead. The minimum cell sizeis 24
bytes and the default maximum is 10485760 bytes.

Y ou can customize the maximum cell size by using the
hbase.client.keyvalue.maxsize property in the hbase-site.xml
configuration file. HBase table cells are aggregated into blocks; you
can configure the block size for each column family by using the
hbase.mapreduce.hfileoutputformat.blocksize property. The default
valueis 65536 bytes. Y ou can reduce this value for tables with highly
random data access patternsif you want to improve query latency.

Compression Y ou should choose the data compression tool that is most appropriate
to reducing the physical size of your data on disk. Although HBaseis
not shipped with LZO dueto licensing issues, you can install LZO after
installing HBase. GZIP provides better compression than LZO but is
slower. HBase also supports Snappy .

HDFS Replication HBase uses HDFS for storage, so replicating HBase data stored in
HDFS affects the total physical size of data. A typical replication factor
of 3for all HBasetablesin a cluster triples the physica size of the
stored data.

RegionServer Write Ahead Log (WAL) The size of the Write Ahead Log, or WAL, for each RegionServer has
minimal impact on the physical size of data: typicaly fixed at less than
half of the memory for the RegionServer. The data size of WAL is
usually not configured.

Using Apache HBase to store and access data Apache HBase installation

Read-Write Throughput

The number of nodes in an HBase cluster might also be driven by required throughput for disk reads and writes.
The throughput per node greatly depends on table cell size and data request patterns, as well as node and cluster
configuration.

Y ou can use YCSB tools to test the throughput of a single node or a cluster to determine if read/write throughput
should drive the number of nodesin your HBase cluster. A typical throughput for write operations for one
RegionServer is 5 through 15 MB/s. Unfortunately, thereis no good estimate for read throughput, which varies
greatly depending on physical data size, request patterns, and hit rate for the block cache.

Related Information
YCSB

Optionsto increase HBase Region count and size

If you are an administrator, you cannot directly configure the number of regions for a RegionServer, however, you
can indirectly increase the number of regions by increasing the size of the MemStore for a RegionServer and the size
of theregion.

In general, an HBase cluster runs more smoothly with fewer regions. Y ou can also increase the number of regions for
a RegionServer by splitting large regions to spread data and the request load across the cluster. HBase enables you to
configure each HBase table individually, which is useful when tables have different workloads and use cases. Most
region settings can be set on a per-table basis by using HTableDescriptor class, aswell as by using the HBase CLI.
These methods override the properties in the hbase-sitexml configuration file. For further information, see configure
compactions.

Note:
E The HDFS replication factor defined in the previous table affects only disk usage and should not be
considered when planning the size of regions.
Related Tasks
Configure compactions
Related I nformation
HTableDescriptor class

Increasing MemStore size for RegionServer
If you are an administrator, you can adjust the size of the MemStore in hbase-sitexml configuration file depending on
your need.

Use of the RegionServer MemStore largely determines the maximum number of regions for the RegionServer. Each
region has one MemStore for each column family, which grows to a configurable size, usually between 128 and

256 MB. Y ou can specify this size by using the hbase.hregion.memstore.flush.size property in the hbase-site.xml
configuration file. The RegionServer dedicates some fraction of total memory to region MemStores based on the
value of the hbase.regionserver.globa.memstore.size configuration property. If usage exceeds this configurable size,
HBase might become unresponsive or compaction storms might occur.

Y ou can use the following formula to estimate the number of regions for a RegionServer:
(regionserver_memory_size) * (memstore_fraction) / ((memstore_size) * (num_column_families))
For example, assume that your environment uses the following configuration:

* RegionServer with 16 GB RAM (or 16384 MB)
* MemStore fraction of .4

* MemStorewith 128 MB RAM

e Onecolumn family in table

The formulafor this configuration is as follows:

(16384 MB * .4) / ((128 MB * 1) = approximately 51 regions

https://github.com/brianfrankcooper/YCSB/
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HTableDescriptor.html

Using Apache HBase to store and access data Apache HBase installation

Y ou can adjust the memory consumption of the regions for this example RegionServer by increasing the RAM size
of the memstore to 256 MB. The reconfigured RegionServer then has MemStore space for approximately 25 regions,
and the HBase cluster should run more smoothly given a uniform distribution of load.

The formula can be used for multiple tables with the same configuration by using the total number of column families
inall thetables.

Note:
E The formulais based on the assumption that all regions are filled at approximately the same rate. If afraction
of the cluster's regions are written to, divide the result by this fraction.

If the data request pattern is dominated by write operations rather than read operations, you should increase the
MemStore fraction. However, this increase negatively impacts the block cache.

Increasing the size of Region

To indirectly increase the number of regions for a RegionServer, increase the size of the region by using the
hbase.hregion.max.filesize property in the hbase-site xml configuration file. Y ou can increase the number of regions
for a RegionServer by increasing the specified size at which new regions are dynamically allocated.

Maximum region sizeis primarily limited by compactions. Very large compactions can degrade cluster performance.
The recommended maximum region sizeis 10 through 20 GB. For HBase clusters running version 0.90.x, the
maximum recommended region size is 4 GB and the default is 256 MB. If you are unable to estimate the size of your
tables, you should retain the default value. Y ou should increase the region size only if your table cellstend to be 100
KB or larger.

Note:

E HBase 0.98 introduced stripe compactions as an experimental feature that also enables administrators to
increase the size of regions. For more information, see Experimental: Stripe Compactions on the Apache
HBase website.

Related Information
Experimental: Stripe Compactions

Enable multitenancy with namespaces

A namespaceis alogical grouping of tables analogous to a database or a schemain arelationa database system. With
namespaces, a group of users can share accessto a set of tables but the users can be assigned different privileges.
Similarly, one application can run using the tables in a namespace simultaneously with other applications. Each group
of users and each application with access to the instance of the tables defined as a namespace is a tenant.

A namespace can support varying ACL -based security modules that can exist among different tenants. Read/write
permissions based on groups and users with access to one instance of the namespace function independently from the
permissions in another instance.

Unlike relational databases, HBase table names can contain adot (.) Therefore, HBase uses different syntax, a colon
(:), asthe separator between the namespace name and table name. For example, a table with the name storel in a
namespace that is called orders has storel:orders as afully qualified table name. If you do not assign atableto a
namespace, then the table belongs to the special default namespace.

The namespace file, which contains the objects and data for the tables assigned to a namespace, is stored in a
subdirectory of the HBase root directory ($hbase.rootdir) on the HDFS layer of your cluster. If $hbase.rootdir isat the
default location, the path to the namespace file and table is /apps/hbase/data/data/namespace/table_name.

Example of Namespace Usage

A software company devel ops applications with HBase. Developers and quality-assurance (QA) engineers who are
testing the code must have access to the same HBase tables that contain sample data for testing. The HBase tables
with sample data are a subset of all HBase tables on the system. Developers and QA engineers have different goalsin
their interaction with the tables and need to separate their data read/write privileges accordingly.

10

http://hbase.apache.org/book.html#ops.stripe

Using Apache HBase to store and access data Apache HBase installation

By assigning the sample-data tables to a namespace, access privileges can be provisioned appropriately so that QA
engineers do not overwrite developers work and vice versa. As tenants of the sample-data table namespace, when
developers and QA engineers are logged in as users of this namespace domain they do not access other HBase tables
in different domains. This helps ensure that not every user can view all tables on the HBase cluster for the sake of
security and ease-of-use.

Default HBase namespace actions

Note:

IS If you do not require multitenancy or formalized schemas for HBase data, then do not concern yourself with
namespace definitions and assignments. HBase automatically assigns a default namespace when you create a
table and do not associate it with a namespace.

The default namespaces are the following:

hbase A namespace that is used to contain HBase internal
system tables
default A namespace that contains all other tables when you do

not assign a specific user-defined namespace

Define and drop namespaces
Y ou can create and drop namespaces in the HBase shell.

About thistask

Note:

IS Y ou can assign a table to only one namespace, and you should ensure that the table correctly belongs to the
namespace before you make the association in HBase. Y ou cannot change the namespace that is assigned to
the table later.

The HBase shell has a set of straightforward commands for creating and dropping namespaces. Y ou can assign atable
to a namespace when you create the table.

create_namespace 'my_ns Creates a namespace with the name my_ns.

create’'my_nsimy_table', 'faml’ Creates my_table with a column family identified as
faml in the my_ns namespace.

drop_namespace 'my_ns Removes the my_ns namespace from the system. The
command only functions when there are no tables with
data that are assigned to the namespace.

Security featuresthat are available

The following security features are available:

e Cell-level access control lists (cell-level ACLS): These ACL s are supported in tables of HBase 0.98 and later
versions.
e Column family encryption: This featureis supported in HBase 0.98 and later versions.

IS Note:

11

Using Apache HBase to store and access data Managing Apache HBase clusters

Cell-level ACLsand column family encryption are considered under development. Do not use these features
in your production systems. If you have questions about these features, contact Support by logging a case on
the Hortonworks Support Portal.

Related Information

Hortonworks Support Portal

Managing Apache HBase clusters

Y ou will get an understanding on how to manage your HBase clusters.

Monitoring Apache HBase cluster sthrough Grafana-based dashboard

If you have an Ambari-managed HBase cluster, you can monitor the cluster performance with Grafana-based
dashboards.

Grafana dashboards provide graphical visualizations of data distribution and other boilerplate performance metrics.
Y ou can hover over and click graphs to focus on specific metrics or data sets, as well as to redraw visualizations
dynamically.

The interactive capabilities of the dashboards can help you to discover potential bottlenecks in your system. For
example, you can scan the graphs to get an overview of cluster activity and scroll over a particular timeinterval to
enlarge details about the activity in the time frame to uncover when the data load is unbalanced. Another potential use
caseisto help you examine if RegionServers need to be reconfigured.

For information about how to access the dashboards and for details about what cluster metrics are displayed, see using
Grafana Dashboards in Ambari.

Related Information
using Grafana Dashboards in Ambari

Optimizing Apache HBase I /O

Y ou can optimize HBase I/O using several ways. Two HBase key concepts that helps you in the process are
BlockCache and MemStore tuning.

Theinformation in this section is oriented toward basic BlockCache and MemStore tuning. As such, it describes only
asubset of cache configuration options. HDP supports additional BlockCache and MemStore properties, as well as
other configurable performance optimizations such as remote procedure calls (RPCs), HFile block size settings, and
HFile compaction. For a complete list of configurable properties, see the hbase-default.xml source file in GitHub.
Related Information

hbase-default.xml sourcefile

HBase I/O components
The concepts related to HBase file operations and memory (RAM) caching are HFile, Block, BlockCache, MemStore

and Write Ahead Log (WAL).
HBase Component Description
HFile An HFile contains table data, indexes over that data, and metadata
about the data.

12

https://hortonworks.secure.force.com/CustomerPortalLoginPage?startURL=home/home.jsp
https://docs.hortonworks.com/HDPDocuments/Ambari-2.7.3.0/using-ambari-core-services/content/amb_grafana_dashboards_reference.html
https://github.com/hortonworks/hbase-release/blob/HDP-2.2.0.0/hbase-common/src/main/resources/hbase-default.xml

Using Apache HBase to store and access data Managing Apache HBase clusters

HBase Component Description

Block An HBase block isthe smallest unit of datathat can be read from an
HFile. Each HFile consists of a series of blocks. (Note: an HBase
block is different from an HDFS block or other underlying file system
blocks.)

BlockCache BlockCache is the main HBase mechanism for low-latency random
read operations. BlockCache is one of two memory cache structures
maintained by HBase. When ablock isread from HDFS, it is cached in
BlockCache. Frequent access to rows in ablock cause the block to be
kept in cache, improving read performance.

MemStore MemStore ("memory store") isin-memory storage for a RegionServer.
MemStore is the second of two cache structures maintained by HBase.
MemStore improves write performance. It accumulates data until it
isfull, and then writes ("flushes") the data to a new HFile on disk.
MemStore serves two purposes: it increases the total amount of data
written to disk in asingle operation, and it retains recently written data
in memory for subsequent low-latency reads.

Write Ahead Log (WAL) The WAL isalogfilethat records al changes to data until the data

is successfully written to disk (MemStore is flushed). This protects
against data loss in the event of afailure before MemStore contents are
written to disk.

HBase Read/Write Operations

BlockCache and MemStore reside in random-access memory (RAM). HFiles and the Write Ahead L og are persisted
to HDFS.

The following figure shows these simplified write and read paths:

« During write operations, HBase writes to WAL and MemStore. Datais flushed from MemStore to disk according
to sizelimitsand flush interval .

« During read operations, HBase reads the block from BlockCache or MemStore if it is available in those caches.
Otherwise, it reads from disk and stores a copy in BlockCache.

13

Using Apache HBase to store and access data Managing Apache HBase clusters

Write path Read path
A A
RA
BlockCache]
r)
| Mematore]
\

\

HFilas

Disk

WAL data
black

N\ /

By default, BlockCache residesin an area of RAM that is managed by the Java Virtual Machine (JVM) garbage
collector; this area of memory is known as on-heap memory or the VM heap. The BlockCache implementation that
manages the on-heap cache is called LruBlockCache.

If you have stringent read latency requirements and you have more than 20 GB of RAM available on your servers
for use by HBase RegionServers, consider configuring BlockCache to use both on-heap and off-heap memory.
BucketCache is the off-heap memory equivalent to LruBlockCache in on-heap memory. Read latencies for
BucketCache tend to be less erratic than LruBlockCache for large cache loads because BucketCache (not VM
garbage collection) manages block cache allocation. The MemStore always resides in the on-heap memory.

Figure 1: Relationship among Different BlockCache | mplementations and MemStore

14

Using Apache HBase to store and access data Managing Apache HBase clusters

LruBlockCache]
memory
(VM heap) [Memstore,
-
BucketCache,
off-heap _|
(“direct”)
memary

» Additional notes:

« BlockCacheisenabled by default for all HBase tables.

* BlockCacheis beneficial for both random and sequential read operations although it is of primary consideration
for random reads.

» All regions hosted by a RegionServer share the same BlockCache.

* You can turn BlockCache caching on or off per column family.

Configuring BlockCache

Y ou can configure BlockCache in two different ways in HBase: the default on-heap LruBlockCache and the
BucketCache, which is usually off-heap.

If you have less than 20 GB of RAM available for use by HBase, consider tailoring the default on-heap BlockCache
implementation (LruBlockCache) for your cluster.

If you have more than 20 GB of RAM available, consider adding off-heap BlockCache (BucketCache).

Configure On-Heap BlockCache
On-Heap BlockCache is the default implementation.

About thistask

To configure either On-Heap BlockCache (LruBlockCache) or BucketCache, start by specifying the maximum
amount of on-heap RAM to allocate to the HBase RegionServers on each node. The default is 1 GB, which istoo
small for production. Y ou can alter the default allocation either with Ambari or in a manual installation:

15

Using Apache HBase to store and access data

Procedure

1. Ambari: Set avalue for the RegionServer maximum Java heap size.

2. Manual Installation: Set the HBASE HEAPSIZE environment variable in the hbase-env.sh file. Specify the value
in megabytes. For example, HBASE_HEAPS|IZE=20480 sets the maximum on-heap memory alocation to 20 GB
in hbase-env.sh. The HBase startup script uses $SHBASE HEAPSIZE to override the default maximum JVM heap
size (-Xmx).

Results
If you want to configure off-heap BlockCache (BucketCache) only, you are done with configuration.
Guidelinesfor configuring On-Heap BlockCache (LruBlockCache)

Y ou need to determine the proportions of READ and WRITE operations in your workload, and use these proportions
to specify on-heap memory allocation for BlockCache and MemStore.

The sum of the on-heap memory allocations for BlockCache and MemStore properties must be less than or equal to
0.8. The following table describes these two properties:

Property Default Value Description

hfile.block.cache.size 04 Proportion of maximum JVM heap size (Java -
XmXx setting) to allocate to BlockCache. A value of
0.4 alocates 40% of the maximum heap size.

hbase.regionserver.global.memstore.upperLimit 04 Proportion of maximum JVM heap size (Java -
XmXx setting) to allocate to MemStore. A value of
0.4 alocates 40% of the maximum heap size.

Use the following guidelines to determine the two proportions:

« Thedefault configuration for each property is 0.4, which configures BlockCache for a mixed workload with
roughly equal proportions of random reads and writes.

« |If the amount of avaiable RAM in the off-heap cache is less than 20 GB, your workload is probably read-heavy.
In this case, do not plan to configure off-heap cache, your amount of available RAM islessthan 20 GB. In this
case, increase the hfile.block.cache.size property and decrease the hbase.regionserver.global .memstore.upperLimit
property so that the values reflect your workload proportions. These adjustments optimize read performance.

« |If your workload is write-heavy, decrease the hfile.block.cache.size property and increase the
hbase.regionserver.global.memstore.upperLimit property proportionaly.

« Asnoted earlier, the sum of hfile.block.cache.size and hbase.regionserver.global.memstore.upperLimit must be
less than or equal to 0.8 (80%) of the maximum Java heap size specified by HBASE HEAPSIZE (-XmXx).

If you allocate more than 0.8 across both caches, the HBase RegionServer process returns an error and does not
Start.
» Do not set hfile.block.cache.size to zero.

At aminimum, specify a proportion that allocates enough space for HFile index blocks. To review index block
sizes, use the RegionServer Web GUI for each server.

Edit the corresponding values in your hbase-site.xml files.

Here are the default definitions:

<property>
<name>hfil e. bl ock. cache. si ze</ name>
<val ue>0. 4</ val ue>
<descri pti on>Per cent age of naxi mum heap (-Xnx setting) to allocate to
bl ock
cache used by HFile/StoreFile. Default of 0.4 allocates 40%
</ descri pti on>
</ property>

16

Managing Apache HBase clusters

Using Apache HBase to store and access data

Managing Apache HBase clusters

<property>

<nane>hbase. r egi onserver. gl obal . menst or e. upper Li ni t </ name>

<val ue>0. 4</ val ue>

<descri pti on>Maxi num si ze of all nenstores in a region server before

new

updat es are bl ocked and flushes are forced. Defaults to 40% of heap.

</ descri ption>
</ property>

If you have less than 20 GB of RAM for use by HBase, you are done with the configuration process. Y ou should
restart (or perform arolling restart on) your cluster and check log files for error messages. If you have more than 20
GB of RAM for use by HBase, consider configuring the variables and properties described next.

Prerequisitesto configure Off-Heap Memory (BucketCache)

Note:
IE Before configuring off-heap memory, complete the tasks in the previous "Configuring BlockCache" section.

To prepare for BucketCache configuration, compare the figure and table below before proceeding to the "Configuring

BucketCache" steps.

Figure 2: Diagram of Configuring BucketCache

®
on-heap
MEMOrY -
(WM heap)

e
@
Regi nnSer-.rer_
MEemory @
off-heap
[“direct”)—
memary

@' LruBlockCache]

:-*;:] hemStore

":':'::' BucketCache

(F) Other RS use (DF5Client)

In the following table:

* Thefirst column refersto the elementsin the figure.

17

Using Apache HBase to store and access data

Managing Apache HBase clusters

» The second column describes each element and, if applicable, its associated variable or property name.
* Thethird column contains values and formulas.
e Thefourth column computes values based on the following sample configuration parameters:

K

Most of the following values are specified in megabytes; three are proportions.

128 GB for the RegionServer process (there is additional memory available for other HDP processes)
A workload of 75% reads, 25% writes
HBASE_HEAPSIZE = 20 GB (20480 MB)

Item

Description

Vaue or Formula

Example

Total physical memory for
RegionServer operations. on-heap
plus off-heap ("direct") memory
(MB)

(hardware dependent)

131072

The HBASE_HEAPSIZE (-XmXx)
property: Maximum size of VM
heap (MB)

This value was set when the
BlockCache was configured.

Recommendation: 20480

20480

The -XX: MaxDirectMemorySize
option: Amount of off-heap
("direct") memory to alocate to
HBase (MB)

A-B

131072 - 20480 = 110592

Dp

The hfile.block.cache.size
property: Proportion of
maximum JVM heap size
(HBASE_HEAPSIZE, -Xmx)
to allocate to BlockCache.
The sum of thisvalue plus

the hbase.regionserver.
global.memstore.size must not
exceed 0.8.

This value was set when the
BlockCache was configured.

(proportion of reads) * 0.8

0.75* 0.8=0.6

Dm

Maximum amount of VM heap to
allocate to BlockCache (MB)

B* Dp

20480 * 0.6 = 12288

Ep

The hbase.regionserver.
global.memstore.size property:
Proportion of maximum JVvM
heap size (HBASE_HEAPSIZE,
-Xmx) to allocate to MemStore.
The sum of thisvalue plus
hfile.block.cache.size must be less
than or equal to 0.8.

0.8-Dp

0.8-06=0.2

Amount of off-heap memory to
reserve for other uses (DFSClient;
MB)

Recommendation: 1024 to 2048

2048

Amount of off-heap memory to
allocate to BucketCache (MB)

C-F

110592 - 2048 = 108544

The hbase.bucketcache.size
property: Total amount of

memory to allocate to the off-heap
BucketCache (MB)

108544

18

Using Apache HBase to store and access data Managing Apache HBase clusters

Configure BucketCache
To configure BucketCache, you have to specify values for certain parameters in the hbase-env.sh and hbase-site.xml
files.

Procedure

1. Inthe hbase-env.sh file for each RegionServer, or in the hbase-env.sh file supplied to Ambari, set the -
XX:MaxDirectMemorySize argument for HBASE_REGIONSERVER_OPTS to the amount of direct memory you
want to allocate to HBase.

In the sample configuration, the value would be 110592m (-XX:MaxDirectM emorySize accepts a number
followed by a unit indicator; m indicates megabytes);

HBASE_OPTS="$HBASE_OPTS -XX:MaxDirectMemorySize=110592m"
2. Inthe hbase-site.xml file, specify the BucketCache size.

For the sample configuration, the values would be 120832 and 0.89830508474576, respectively. Y ou can round
up the proportion. This allocates space related to the rounding error to the (larger) off-heap memory area.

<property>
<nane>hbase. bucket cache. si ze</ nane>
<val ue>108544</ val ue>

</ property>

3. Inthe hbase-sitexml file, set hbase.bucketcache.ioengine to offheap to enable BucketCache:

<property>
<name>hbase. bucket cache. i oengi ne</ name>
<val ue>of f heap</ val ue>

</ property>

4, Restart (or perform arolling restart on) the cluster. It can take a minute or more to alocate BucketCache,
depending on how much memory you are allocating. Check logs for error messages.

BlockCache compression

Y ou can use BlockCache compression, when you have more data than RAM allocated to BlockCache, but your
compressed data can fit into BlockCache. The savings must be worth the increased garbage collection overhead and
overall CPU load.

BlockCache compression caches data and encoded data blocks in their on-disk formats, rather than decompressing
and decrypting them before caching. When compression is enabled on a column family, more data can fit into the
amount of memory dedicated to BlockCache. Decompression is repeated every time a block is accessed, but the
increase in available cache space can have a positive impact on throughput and mean latency.

If your data can fit into block cache without compression, or if your workload is sensitive to extra CPU or garbage
collection overhead, we recommend against enabling BlockCache compression.

Block cache compression is disabled by default.

B Note:
Before you can use BlockCache compression on an HBase table, compression must be enabled for the table.
For more information, see Enable Compression on a ColumnFamily on the Apache website.

Enable BlockCache compression
Y ou can enable BlockCache compression by setting an appropriate value for the cachecompressed property in the
hbase-site configuration file.

19

Using Apache HBase to store and access data Managing Apache HBase clusters

Procedure

1. Set the hbase.block.data.cachecompressed to true in the hbase-site.xml file on each RegionServer.
2. Restart or perform arolling restart of your cluster.
3. Check logs for error messages.

Related Information
Enable Compression on a ColumnFamily

Block Cache-and-M emStor e-Properties
Y ou can edit the hfile.block.cache.size and hbase.regionserver.global.memstore.upperLimit properties in the hbase-
site.xml configuration file.

Property Default Value Description

hfile.block.cache.size 0.4 Proportion of maximum JVM heap size (Java
-Xmx setting) to allocate to BlockCache. A
vaue of 0.4 alocates 40% of the maximum
heap size.

hbase.regionserver.global.memstore.upperLimit{ 0.4 Proportion of maximum JVM heap size (Java-
Xmx setting) to alocate to MemStore. A value
of 0.4 allocates 40% of the maximum heap
size.

| mport data into HBase with Bulk load

Y ou can importa data with a bulk load operation to bypass the HBase APl and writes content, properly formatted as
HBase datafiles (HFiles), directly to the file system. It uses fewer CPU and network resources than using the HBase
API for similar work.

About thistask
The following recommended bulk load procedure uses Apache HCatalog and Apache Pig.

Procedure

1. Preparetheinput file, as shown in the following data.tsv example input file:

rowl cl c2
row2 cl c2
rowd cl c2
rowd cl c2
rows cl c2
rowe cl c2
row/ cl c2
row8 cl c2
rowd cl c2
rowlO cl1 c2

2. Make the data available on the cluster, as shown in this continuation of the example:

hadoop fs -put data.tsv /tnp/

3. Define the HBase schemafor the data, shown here as creating a script file called simple.ddl, which contains the
HBase schemafor data.tsv:

20

http://hbase.apache.org/book.html#changing.compression

Using Apache HBase to store and access data Managing Apache HBase clusters

CREATE TABLE sinple_hcat load table (id STRING c1 STRING c2 STRI NG
STORED BY ' org. apache. hadoop. hi ve. hbase. HBaseSt or ageHand! er'

W TH SERDEPROPERTI ES (' hbase. col ums. mapping' = 'd:cl,d:c2')
TBLPROPERTI ES (' hbase.tabl e. nanme' = 'sinple_hcat | oad table'
)

4. Create and register the HBase table in HCatal og:

hcat -f sinple. ddl

5. Create the import file.

The following example instructs Pig to load data from data.tsv and store it in simple_hcat_load_table. For the
purposes of this example, assume that you have saved the following statement in afile named simple.bulkload.pig.

A = LOAD 'hdfs:///tnp/data.tsv' USING PigStorage('\t') AS (id:chararray,
cl: chararray,

c2: chararray);

-- DUWP A

STORE A I NTO 'sinple_hcat | oad_table'" USING
or g. apache. hi ve. hcat al og. pi g. HCat St orer () ;

Ij Note:
Modify the filenames and table schema for your environment.

6. Execute the following command on your HBase server machine. The command directs Pig to popul ate the HBase
table by using HCatal og bulkload.

pi g -useHCat al og si npl e. bul kl oad. pi g

Using Snapshotsin HBase

HBase snapshot support enables you to take a snapshot of atable without much impact on RegionServers, because
snapshot, clone, and restore operations do not involve data copying. In addition, exporting a snapshot to another
cluster has no impact on RegionServers.

Prior to HBase 0.94.6, the only way to back up or clone atable was to use the CopyTable or ExportTable utility, or
to copy al of the HFiles in HDFS after disabling the table. The disadvantage of these methods s that using the first
might degrade RegionServer performance, and using the second requires you to disabl e the table, which means no
reads or writes can occur.

Configure a Snapshot

Y ou can configure Snapshot by setting the hbase.snapshot.enabled property in HBase 0.94.6 up to HBase 0.95.
Snapshots are enabled by default starting with HBase 0.95 and above versions.

Procedure

« Set the hbase.snapshot.enabled property to true

<property>
<nanme>hbase. snapshot . enabl ed</ nanme>
<val ue>t rue</val ue>

</ property>

21

Using Apache HBase to store and access data Managing Apache HBase clusters

Take a Snapshot
Y ou can take a Snapshot of the specified table in the HBase shell.

Procedure

» Start the HBase shell and clone the required table.

$ hbase shell
hbase> snapshot 'nyTable', 'nyTabl eSnapshot-122112'

List Snapshots
You can list and describe al Snapshots using list_snapshots command.

Procedure

* Inthe hbase shell, enter list_snapshots command.

$ hbase shell
hbase> | i st _snapshots

Delete Snapshots
Y ou can remove Snapshots using delete_snapshot command.

About thistask
When you remove the Snapshot, the files associated with it will be removed if they are no longer needed.

Procedure

* Inthe hbase shell, enter delete_snapshot command and the name of the Snapshot.

$ hbase shel |
hbase> del et e_snapshot ' nmyTabl eSnapshot - 122112'

Clone atable from a Snapshot
Clone operation enables you to create a new table with the same data as the original from the specified Snapshot.

About thistask
The clone operation does not involve data copies. A change to the cloned table does not impact the snapshot or the
original table.

Procedure

¢ Inthe HBase shell, enterclone_snapshot command and specify the name of the Snapshot.

$ hbase shell
hbase> cl one_snapshot 'nyTabl eSnapshot-122112', ' nyNewTest Tabl e’

Restore a Snapshot

The restore operation brings back the table to its original state when the snapshot was taken, changing both data and
schema, if required.

22

Using Apache HBase to store and access data Backing up and restoring Apache HBase datasets

About thistask
The restore operation requires the table to be disabled.

Note:

E Because replication works at the log level and snapshots work at the file system level, after arestore, the
replicas will bein adifferent state than the master. If you want to use restore, you need to stop replication and
redo the bootstrap.

In case of partial dataloss due to client issues, you can clone the table from the snapshot and use a
MapReduce job to copy the data that you need from the clone to the main one (instead of performing afull
restore, which requires the table to be disabled).

Procedure

e Inthe HBase shell, first disable the table.
« Enterrestore_snapshot command and specify the name of the table.

$ hbase shel |
hbase> di sabl e ' nmyTabl €'
hbase> restore_snapshot 'nyTabl eSnapshot-122112'

Snapshot Operationsand ACLs

If you are only aglobal administrator, you can take, clone, or restore a snapshot when using security with the
AccessController coprocessor.

When you take, clone, or restore a snapshot, ACL rights are not captured. Restoring the Snapshot of a table preserves
the ACL rights of the existing table, while cloning atable creates a new table that has no ACL rights until you add
them.

Export data to another cluster
The ExportSnapshot tool copies al the datarelated to a snapshot (HFiles, logs, and snapshot metadata) to another
cluster. The tool executes a MapReduce job, similar to distcp, to copy files between the two clusters. Because it works
at the file system level, the HBase cluster does not have to be online.

The HBase ExportSnapshot tool must be run as user hbase. The HBase ExportSnapshot tool uses the temp directory
specified by hbase.tmp.dir (for example, /grid/O/var/log/hbase), created on HDFS with user hbase as the owner.

For example, to copy a snapshot called MySnapshot to an HBase cluster srv2 (hdfs://srv2:8020/hbase) using 16
mappers, input the following:

$ hbase org. apache. hadoop. hbase. snapshot . Export Snapshot -snapshot MySnapshot
-copy-to
hdf s: // your server: 8020/ hbase_root _dir -mappers 16

Backing up and restoring Apache HBase datasets

Backup-and-restore is a standard set of operations for many databases. An effective backup-and-restore strategy helps
ensure that you can recover datain case of dataloss or failures. The HBase backup-and-restore utility helps ensure
that enterprises using HBase as a data repository can recover from these types of incidents. Another important feature
of the backup-and-restore utility is the ability to restore the database to a particular point-in-time, commonly referred
to as a snapshot.

The HBase backup-and-restore utility features both full backups and incremental backups. A full backup is required
at least once. The full backup is the foundation on which incremental backups are applied to build iterative snapshots.
Incremental backups can be run on a schedule to capture changes over time, for example by using a Cron job.

23

Using Apache HBase to store and access data Backing up and restoring Apache HBase datasets

Incremental backup is more cost effective because it only captures the changes. It also enables you to restore the
database to any incremental backup version. Furthermore,the utilities also enable table-level data backup-and-
recovery if you do not want to restore the entire dataset of the backup.

Related Information
Hortonworks Support Portal

Planning a backup-and-restor e Strategy for your environment

There are afew strategies that you can use to implement backup-and-restore in your environment. They are Backup
within a cluster, Backup to the dedicated HDFS archive cluster and Backup to the cloud or a storage vendor.

There are afew strategies you can use to implement backup-and-restore in your environment. The following sections
show how they are implemented and identify potential tradeoffs.

Note:
E HBase backup-and restore tools are currently not supported on Transparent Data Encryption (TDE)-enabled
HDFS clusters. Thisisrelated to the Apache HBASE-16178 known issue.

Related I nformation
Apache HBASE-16178

Backup within a Cluster
Backup-and-restore within the same cluster is only appropriate for testing.

This strategy is not suitable for production unless the underlying HDFS layer is backed up and is reliably recoverable.

Figure 3: Intracluster Backup

Intra-Cluster

HBase Database

J/apps/hbase

Backups and
Incremental Backups

Local HDFS
/backup .

Backup to the dedicated HDFS ar chive cluster
This strategy provides greater fault tolerance and provides a path towards disaster recovery.

In this setting, you will store the backup on a separate HDFS cluster by supplying the backup destination cluster’s
HDFS URL to the backup utility. Y ou should consider backing up to adifferent physical location, such as adifferent
data center.

Typically, a backup-dedicated HDFS cluster uses a more economical hardware profile.
Figure 4. Backup-Dedicated HDFS Cluster

24

https://hortonworks.secure.force.com/CustomerPortalLoginPage?startURL=home/home.jsp
https://issues.apache.org/jira/browse/HBASE-16178

Using Apache HBase to store and access data Backing up and restoring Apache HBase datasets

HDFS Archive Cluster
HBase Online Cluster Archive Cluster

HBase Database
Japps/hbase

Backups and
Incremental Backups
hdfs:Narchive:8020/backup

e . ., e . e, . e i i

R EEEE TSN EREESEEEET RSN
N 0 0 0 0 0 O O e

TSR EYS

Backup to the Cloud or a Storage vendor

This approach enables you to safeguard the HBase incremental backups by storing the data on provisioned, secure
servers that belong to third-party vendors, which are located off-site.

The vendor can be a public cloud provider or a storage vendor who uses a Hadoop-compatible file system, such as S3
and other HDFS-compeatibl e destinations.

Figure 5: Backup to Vendor Storage Solutions

S3 or HDFS-Compatible
HBase Online Cluster S3 or Appliance

HBase Database

Long-Term Storage

Japps/hbase

Note:
E The HBase backup utility does not support backup to multiple destinations. A workaround isto manually
create copies of the backed up filesfrom HDFS or S3.

Best practicesfor backup-and-restore

To perform a successful backup-and-restore operation, you need to formulate a restore strategy and test it, store
backup data from a production cluster on a different cluster or a server, secure afull backup image first, define and
use backup sets for groups of tables and finally document the backup-and-restore strategy.

25

Using Apache HBase to store and access data Backing up and restoring Apache HBase datasets

Procedure

Formulate arestore strategy and test it. Before you rely on a backup-and-restore strategy for your production
environment, identify how backups must be performed, and more importantly, how restores must be performed.
Test the plan to ensure that it is workable.

At aminimum, store backup data from a production cluster on adifferent cluster or server. To further safeguard
the data, use a backup location that is at a different site. If you have a unrecoverable loss of data on your primary
production cluster as aresult of computer system issues, you may be able to restore the data from a different
cluster or server at the same site. However, a disaster that destroys the whole site renders locally stored backups
useless. Consider storing the backup data and necessary resources (both computing capacity and operator
expertise) to restore the data at a site sufficiently remote from the production site. In the case of a catastrophe at
the whole primary site (fire, earthquake, etc.), the remote backup site can be very valuable.

Secure afull backup imagefirst. As abaseline, you must complete a full backup of HBase data at |east once
before you can rely on incremental backups. The full backup should be stored outside of the source cluster. To
ensure complete dataset recovery, you must run the restore utility with the option to restore baseline full backup.
The full backup is the foundation of your dataset. Incremental backup datais applied on top of the full backup
during the restore operation to return you to the point in time when backup was last taken.

Define and use backup sets for groups of tablesthat are logical subsets of the entire dataset. Y ou can group tables
into an object called a backup set. A backup set can save time when you have a particular group of tables that
you expect to repeatedly back up or restore. When you create a backup set, you type table namesto includein
the group. The backup set includes not only groups of related tables, but also retains the HBase backup metadata.
Afterwards, you can invoke the backup set name to indicate what tables apply to the command execution instead
of entering all the table names individually.

Document the backup-and-restore strategy, and ideally log information about each backup. Document the whole
process so that the knowledge base can transfer to new administrators after employee turnover. As an extra
safety precaution, also log the calendar date, time, and other relevant details about the data of each backup. This
metadata can potentially help locate a particular dataset in case of source cluster failure or primary site disaster.
Maintain duplicate copies of all documentation: one copy at the production cluster site and another at the backup
location or wherever it can be accessed by an administrator remotely from the production cluster.

Running the backup-and-restor e utility

To run the backup-and-restore-utility tool, you can use the commands and the arguments of the operations such as
create and maintain a complete backup image, monitor backup progress and restore a backup image.

Note:
IE For Non-Ambari (Manual) Installations of HDP and HBase: Y ou must modify the container-executor.cfg

configuration file to include the allowed.system.users=hbase property setting. No spaces are alowed in
entries of the container-executor.cfg file. Ambari-assisted installations of HDP automatically set the property
in the configuration file.

Example of a valid configuration file for backup-and-restore:

yar n. nodemanager . | og-di rs=/var/| og/ hadoop/ mapr ed

yar n. nodemanager . | i nux- cont ai ner - execut or. gr oup=yarn
banned. user s=hdf s, yar n, mapr ed, bi n

al | oned. syst em user s=hbase

nmi n. user.i d=500

Note:
Ij Enter hbase backup help command in your HBase command-line interface to access the online help that

provides basic information about a command and its options.

26

Using Apache HBase to store and access data Backing up and restoring Apache HBase datasets

Create and maintain a complete backup image

Thefirst step in running the backup-and-restore utilities is to perform a full backup and to store the data in a separate
image from the source. At a minimum, you must do this to get a baseline before you can rely on incremental backups.

About thistask

Note:

IE For sites using Apache Phoenix: Include the SQL system catalog tables in the backup. In the event that
you heed to restore the HBase backup, access to the system catal og tables enable you to resume Phoenix
interoperability with the restored data.

Procedure
* Run hbase backup create command as hbase superuser to create a compl ete backup image.
hbase backup create full hdfs://host5:8020/data/backup -t SALES2,SALES3 -w 3

This command creates afull backup image of two tables, SALES2 and SALESS, in the HDFS instance, whose
NameNode is //host5:8020/ in the path data/backup. The -w option specifies that no more than three parallel
workers complete the operation.

After the command finishes running, the console prints a SUCCESS or FAILURE status message. The SUCCESS
message includes a backup ID. The backup ID isthe Unix time (also known as Epoch time) that the HBase master
received the backup request from the client.

Note:

Ij Record the backup ID that appears at the end of a successful backup. In case the source cluster fails and
you need to recover the dataset with a restore operation, having the backup 1D readily available can save
time.

Command for creating HBase backup image
Use hbase backup create command as hbase superuser to create a complete backup image.

Ensure that backup is enabled on the cluster. To enable backup, add the following properties to hbase-site.xml and
restart the HBase cluster.

<property>

<name>hbase. backup. enabl e</ name>

<val ue>t rue</val ue>

</ property>

<property>

<nanme>hbase. mast er. | ogcl eaner. pl ugi ns</ name>

<val ue>YOUR_PLUG NS, or g. apache. hadoop. hbase. backup. nast er . BackupLogCl eaner
</ val ue>

</ property>

<property>

<nanme>hbase. pr ocedur e. nast er . cl asses</ nane>

<val ue>YOUR_CLASSES, or g. apache. hadoop. hbase. backup. nast er .
LogRol | Mast er Pr ocedur eManager </ val ue>

</ property>

<property>

<nanme>hbase. pr ocedur e. r egi onser ver. cl asses</ nane>

<val ue>YOUR_CLASSES, or g. apache. hadoop. hbase. backup. r egi onser ver
LogRol | Regi onSer ver Pr ocedur eManager </ val ue>

</ property>

<property>

<nanme>hbase. coprocessor. r egi on. cl asses</ nane>

<val ue>YOUR_CLASSES, or g. apache. hadoop. hbase. backup. BackupQbser ver </ val ue>
</ property>

27

Using Apache HBase to store and access data Backing up and restoring Apache HBase datasets

Following is the usage of the hbase backup create command with its arguments:
hbase backup create <type> <backup_path> [options]
Reguired command-line arguments

type It specifies the type of backup to execute, which can be
full or incremental.

Using the full argument creates a full backup image.
Using the incrementalargument creates an incremental
backup image. It requires afull backup to already exist.

backup_path The backup_path argument specifies the full root path
of where to store the backup image. Valid prefixes are
hdfs:, webhdfs:, gpfs:, and s3fs..

Optional command-line arguments

-b <arg>bandwidth_per_task Specifies the bandwidth of each MapReduce task in MB
per second.
-d <arg> Enables DEBUG mode, which prints additional logging

about the backup creation.

-q <arg> It allows you to specify the Y arn queue name to run the
backup create command on.

-S<arg> Identify the tables to backup based on a backup set.
Refer "Using Backup Sets' for the purpose and usage
of backup sets. It is mutually exclusive with the -t (table
list) option.

-t<arg> A comma-separated list of tables to back up. If no tables
are specified, al tables are backed up. No regular-
expression or wildcard support is present; all table names
must be explicitly listed. It is mutually exclusive with the
-s option. One of these named options are required.

-W <arg> Specifies the number of parallel MapReduce tasks to
execute.

Monitor backup progress

Y ou can monitor a running backup by running the hbase backup progress command and specifying the backup ID as
an argument.

Procedure

* Run hbase backup progress command as hbase superuser to view the progress of a backup.
Specify the backup id that you want to monitor by viewing the progress information.

hbase backup progress backupl d_1467823988425

28

Using Apache HBase to store and access data Backing up and restoring Apache HBase datasets

Example
Command for monitoring running backup progress

Use hbase backup progresscommand as hbase superuser to view the progress of a backup.

hbase backup progress
backupl d

Reguired command-line arguments

backupld Specifies the backup that you want to monitor by seeing
the progress information. The backup ID argument is
case-sensitive.

Using backup sets

Backup sets can ease the administration of HBase data backups and restores by reducing the amount of repetitive
input of table names.

Y ou can group tablesinto a named backup set with the hbase backup set add command. Y ou can then use the -
set option to invoke the name of a backup set in the hbase backup create or hbase backup restore rather than list
individually every tablein the group. Y ou can have multiple backup sets.

Note:

B Note the differentiation between the hbase backup set add command and the -set option. The hbase backup set
add command must be run before using the -set option in a different command because backup sets must be
named and defined before using backup sets as shortcuts.

If you run the hbase backup set add command and specify a backup set name that does not yet exist on your system,
anew set is created. If you run the command with the name of an existing backup set name, then the tables that you
specify are added to the set.

In the command, the backup set name is case-sensitive.

Note:
B The metadata of backup sets are stored within HBase. If you do not have access to the original HBase cluster
with the backup set metadata, then you must specify individual table namesto restore the data.

Backup set subcommands

To create a backup set, run the following command as hbase superuser.

hbase backup set COVWAND [nane] [t abl es]

COMMAND isone of the following:

add
renove
i st
descri be
del et e

backup_set name
tabl es

29

Using Apache HBase to store and access data Backing up and restoring Apache HBase datasets

Following list details subcommands of the hbase backup set command.

E Note:
Y ou must enter one (and no more than one) of the following subcommands after hbase backup set to complete
an operation. Also, the backup set name is case-sensitive in the command-line utility.

add Use this subcommand to add tables to a backup set.
Specify abackup_set name value after this argument to
create a backup set.

Example of backup set addExample

hbase backup set add Q1Data TEAM_3,TEAM_4 Depending on the environment, this command resultsin
one of the following actions:

« |If the Q1Data backup set does not exist, a backup set
containing tables TEAM_3 and TEAM_4 is created.

e |If the Q1Data backup set exists aready, the tables
TEAM_3 and TEAM_4 are added to the Q1Data
backup set.

remove Use this subcommand to remove tables from a set.
Specify the tables to remove in the tables argument.

list Use this subcommand to list all backup sets.

describe Use this subcommand to display on the screen a
description of abackup set. The information includes
whether the set has full or incremental backups, start and
end times of the backups, and alist of the tablesin the
set. This subcommand must precede avalid value for the
backup_set_name value.

delete Use this subcommand to delete a backup set. Enter the
value for the backup_set_name option directly after the
hbase backup set delete command.

Optional command-line arguments

backup_set_name Use this argument to assign or invoke a backup set
name. The backup set name must contain only printable
characters and cannot have any spaces.

tables List of tables (or asingle table) to include in the backup
set. Enter the table names as a comma-separated list. If
no tables are specified, al tables are included in the set.

Ij Note:
Maintain alog or other record of the case-sensitive backup set names and the corresponding tables in each
set on a separate or remote cluster, mirroring your backup strategy. This information can help you in case of
failure on the primary cluster.

Restore a backup image

Y ou can perform restore operation to restore a backup image. Y ou can only restore on alive HBase cluster because
the data must be redistributed to the RegionServers to compl ete the restore operation successfully.

30

Using Apache HBase to store and access data Backing up and restoring Apache HBase datasets

* Run the hbase restore command as hbase superuser to restore a backup image.
hbase restore /tmp/backup_incremental backupld_ 1467823988425 -t mytablel,mytable?
This command restores two tables of an incremental backup image. In this example:

» /tmp/backup_incremental is the path to the directory containing the backup image.
» backupld_1467823988425 is the backup ID.
» mytablel and mytable2 are the names of the tables in the backup image to be restored.

Command for restoring backup image
Use hbase restore command as hbase superuser to restore a backup image.

hbase restore <backup_pat h> <backup_i d> [opti ons]
Reguired command-line arguments
backup_path It specifies the path to a backup destination root, which

isthe full filesystem URI of where to store the backup
image. Valid prefixes are hdfs:, webhdfs:, gpfs:, and

s3fs.

backupld The backup ID that uniquely identifies the backup image
to be restored.

Optional command-line arguments

-C It checks the restore sequence and dependencies only,
however it is not executed. It performs a dry-run of the
restore.

-d It enables debug loggings.

-m <arg> A comma-separated list of target tablesto restore into.

-0 Overwrite the data, if any of the restore target tables
exists.

-q <arg> It allows you to specify the Y arn queue name to run the

backup restore command on.

-t <arg> A comma-separated list of tablesto restore. The values
for this argument must be entered directly after the
backupld argument.

-S<arg> It specifies Backup set to restore. It is mutually exclusive
with the -t (table list) option.

-h,--help It shows the usage of the restore command.

Administering and deleting backup images
The hbase backup command has several subcommands that help you to administer backup images as they accumul ate.

31

Using Apache HBase to store and access data Backing up and restoring Apache HBase datasets

Most production environments require recurring backups, so it is hecessary to have utilities to help manage the data
of the backup repository. Some subcommands enable you to find information that can help identify backups that are
relevant in a search for particular data. Y ou can also delete backup images.

HBase backup commands
Y ou can use an appropriate hbase backup COMMAND to administer the hbase backups.

Thefollowing list details each hbase backup COMMAND [command-specific arguments]. Run the full command line
as hbase superuser.

hbase backup create [<type><backup_path> Creates anew backup image.
[optiong]]

hbase backup delete [<backup_id>] Deletes the specified existing backup image from the
system. The backup_id option is required.

hbase backup describe [<backup_id>] Shows the detailed information of a backup image. The
backup_id option is required.

hbase backup history [options] Options:

-n Number of records of backup history. Default is 10.
-p Backup destination root directory path.
-s Backup set name

-t Table name. If specified, only backup images, which
contain this table will be listed.

Shows the history of all successful backups.

hbase backup progress [<backup_id>] Shows the progress of the |atest backup request. Backup
imageid is (optional). If no ID ia specified, the command
will show the progress of the currently running backup
session.

hbase backup set COMMAND [[name] [tables]] Manages the backup sets. Y ou can add, remove, delete,
describe, and delete a backup set using this command.

hbase backup progress [<backup_id>] Shows the progress of the |atest backup request. Backup
imageid is (optional). If no ID ia specified, the command
will show the progress of the currently running backup
session.

hbase backup repair It repairs the backup system table.

It repairs the backup system table. This command
attempts to correct any inconsistencies in persisted
backup metadata, which exists as aresult of software
errors or unhandled failure scenarios. While the backup
implementation tries to correct al errorson its own, this
tool may be necessary in the cases where the system
cannot automatically recover onits own.

hbase backup merge [<backup_id>] Merges the backup images. Run merge command
to merge incremental backup imagesinto asingle
incremental backup image. The most recent backup

32

Using Apache HBase to store and access data Backing up and restoring Apache HBase datasets

image will be overwritten by resulting merged image, all
other images will be deleted.

Incremental backup-and-restore

HBase incremental backups enable more efficient capture of HBase table images than previous attempts at serial
backup-and-restore solutions, such as those that only used HBase Export and Import APIs. Incremental backups use
Write Ahead Logs (WALS) to capture the data changes since the previous backup was created. A roll log is executed
across al RegionServersto track the WAL that need to be in the backup.

After the incremental backup image is created, the source backup files usually are on same node as the data source. A
process similar to the DistCp (distributed copy) tool is used to move the source backup files to the target filesystems.
When atable restore operation starts, atwo-step processisinitiated. First, the full backup is restored from the full
backup image. Second, all WAL files from incremental backups between the last full backup and the incremental
backup being restored are converted to HFiles, which the HBase Bulk Load utility automatically imports as restored
datain the table.

Y ou can only restore on alive HBase cluster because the data must be redistributed to compl ete the restore operation
successfully.

Example scenario: Safeguarding application datasets on Amazon S3

This scenario describes how a hypothetical retail business uses backups to safeguard application data and then restore
the dataset after failure.

About thistask

The HBase administration team uses backup sets to store data from a group of tables that have interrelated
information for an application called green. In this example, one table contains transaction records and the other
contains customer details. The two tables need to be backed up and be recoverable as a group.

The admin team also wants to ensure daily backups occur automatically.

Figure 6: Tables Composing the Backup Set

Customer
Details i

Transaction {custumer]

Records

(transactions)

33

Using Apache HBase to store and access data Backing up and restoring Apache HBase datasets

The following is an outline of the steps and examples of commands that are used to backup the data for the green
application and to recover the data later. All commands are run when logged in as hbase superuser.

Procedure

1

A backup set called green_set is created as an alias for both the transactions table and the customer table. The
backup set can be used for all operations to avoid typing each table name. The backup set name is case-sensitive
and should be formed with only printable characters and without spaces.

$ hbase backup set add green_set transactions
$ hbase backup set add green_set custoner

. Thefirst backup of green_set data must be a full backup. The following command example shows how credentials

are passed to Amazon S3 and specifies the file system with the s3a: prefix.

hbase -D hadoop. security.credential.provider. path=jceks://
hdf s@r odhbasebackups/ hbase/ hbase/ s3. j ceks backup create full
s3a: // green- hbase- backups/ -set green_set

Incremental backups should be run according to a schedule that ensures essential data recovery in the event of a
catastrophe. At this retail company, the HBase admin team decides that automated daily backups secures the data
sufficiently. The team decides that they can implement this by modifying an existing Cron job that is defined in /
etc/crontab. Consequently, IT modifies the Cron job by adding the following line:

hbase -D hadoop. security.credential.provider. path=jceks://
hdf s@r odhbasebackups/ hbase/ dai | y/ s3. j ceks backup create increnental
s3a: // green- hbase- backups/ -set green_set

A catastrophic IT incident disables the production cluster that the green application uses. An HBase system
administrator of the backup cluster must restore the green_set dataset to the point in time closest to the recovery
objective.

Note:

E If the administrator of the backup HBase cluster has the backup 1D with relevant detailsin accessible
records, the following search with the hdfs dfs -Is command and manually scanning the backup 1D list can
be bypassed. Consider continuously maintaining and protecting a detailed log of backup 1Ds outside the
production cluster in your environment.

The HBase administrator runs the following command on the directory where backups are stored to print alist of
successful backup 1Ds on the console:

hdfs dfs -Is -t s3a://green-hbase-backups/

The admin scans the list to see which backup was created at a date and time closest to the recovery objective. To
do this, the admin converts the calendar timestamp of the recovery point in time to Unix time because backup

IDs are uniquely identified with Unix time. The backup IDs are listed in reverse chronological order, meaning the
most recent successful backup appears first.

The admin notices that the following line in the command output corresponds with the green_set backup that
needs to be restored:

s3a: // green- hbase- backups//backupl d_1467823988425

Using Apache HBase to store and access data Medium Object (MOB) storage support in Apache HBase

6. The admin restores green_set invoking the backup ID and the -overwrite option. The -overwrite option truncates
all existing data in the destination and populates the tables with data from the backup dataset. Without this flag,
the backup datais appended to the existing data in the destination. In this case, the admin decides to overwrite the
data because it is corrupted.

hbase restore -D hadoop. security.credential.provider. path=jceks://
hdf s@r odhbasebackups/ hbase/ dail y/s3.jceks restore -set green_set s3a://
gr een- hbase- backups/ backupl d_1467823988425 -overwite

Medium Object (MOB) storage support in Apache HBase

An HBase table becomes less efficient once any cell in the table exceeds 100 KB of data. Objects exceeding 100 KB
are common when you store images and large documents, such as email attachments, in HBase tables. But, you can
configure Hortonworks Data Platform (HDP) HBase to support tables with cells that have medium-size objects, also
known as medium objects or more commonly as MOBs, to minimize the performance impact that objects over 100
KB can cause.

MOB support operates by storing areference of the object data within the main table. The reference in the table points
toward external HFiles that contain the actual data, which can be on disk or in HDFS.

To enable MOB storage support for atable column family, you can choose one of two methods. One way isto run the
table create command or the table alter command with MOB optionsin the HBase shell. Alternatively, you can set
MOB parametersin aJavaAPI.

Methodsto enable M OB stor age support

Y ou can enable MOB storage support and configure the MOB threshold by using one of two different methods such
as. configure options in the command line and invoke support parametersin a Java API.

If you do not specify aMOB size threshold, the default value of 100 KB is used.

B Note:

While HBase enforces no maximum-size limit for aMOB column, generally the best practice for optimal
performanceisto limit the data size of each cell to 10 MB.

Prerequisites:

» hbase superuser privileges
+ HFileversion 3, which isthe default format of HBase 0.98+.

Method 1:Enable MOB Storage support using configur e options
In the command line

Y ou can enable MOB storage support using configure options in the HBase shell.

Procedure

* Run the table create command or the table alter command and do the following.

e SetthelS MOB optionto true.

e Setthe MOB_THRESHOLD option to the number of bytesfor the threshold size above which an object is
treated as a medium-size object.

35

Using Apache HBase to store and access data Method 2: Invoke MOB support parametersin a Java API

Following are a couple of HBase shell command examples:

hbase> create '"t1', {NAVE => '| MAGE DATA', IS MB => true, MOB_THRESHOLD
=> 102400}

hbase> alter '"t1', {NAME => '| MAGE DATA', IS MOB => true, MOB THRESHOLD =>
102400}

Method 2: Invoke M OB support parametersin a Java API

Y ou can use the MOB support parameters in a Java API to enable and configure MOB storage support.

About thistask

If you invoke the MOB threshold parameter, substitute bytes with the value for the number of bytes for the threshold
size at which an object is treated as a medium-size object. If you omit the parameter when you enable MOB storage,
the threshold val ue defaults to 102400 (100 KB).

Procedure

» Usethe hed.setM obEnabled(true); parameter to enable and configure MOB storage support. The parameter
hcd.setMobThreshold(bytes); is optional .

Following isa Java APl example;

HCol umDescri pt or hcd = new HCol umDescriptor(“f”);
hcd. set MobEnabl ed(t rue);
hcd. set MobThr eshol d(102400L) ;

Test the MOB storage support configuration

Y ou can use the java utility org.apache.hadoop.hbase.IntegrationTestIngestWithM OBto help with testing the MOB
feature.

Procedure

* Run the org.apache.hadoop.hbase.I ntegrationTestl ngestWithM OB utility to the test the MOB storage
configuration. Vaues in the command options are expressed in bytes.

Following is an example that uses default values (in bytes):

$ sudo -u hbase hbase org. apache. hadoop. hbase. | nt egrati onTest | ngest Wt hMOB
\

-threshol d 1024 \

-m nMobDat aSi ze 512 \

- maxMobDat aSi ze threshold * 5\

36

Using Apache HBase to store and access data MOB storage cache properties

M OB storage cache properties

Opening a M OB file places corresponding HFile-formatted data in active memory. Too many open MOB files can
cause a RegionServer to exceed the memory capacity and cause performance degradation. To minimize the possibility
of thisissue arising on a RegionServer, you might need to tune the MOB file reader cache to an appropriate size so
that HBase scales appropriately.

The MOB file reader cacheis aleast recently used (LRU) cache that keeps only the most recently used MOB files
open. Refer to the MOB Cache Properties table for variables that can be tuned in the cache. MOB file reader cache
configuration is specific to each RegionServer, so assess and change, if needed, each RegionServer individually. You
can use either one of the two following methods.

Related reference
MOB cache properties

Method 1. Enter property settings using Ambari
Using Ambari, you can specify the MOB property settings.

Procedure

1
2.
3.

In Ambari select Advanced tab > Custom HBase-Site > Add Property.
Enter aM OB cache property in the Typefield.
Complete the Value field with your configuration setting.

Method 2: Enter property settingsdirectly in the hbase-site.xml file
Y ou can specify the MOB property settings directly in hbase-sitexml file.

Procedure

1
2. Add the MOB cache properties to the RegionServer’s hbase-site.xml file.

3.

4. Initiate arestart or rolling restart of the RegionServer. For more information about rolling restarts, see the Rolling

Open the RegionServer’s hbase-site.xml file. The fileis usually located under /etc/hbase/conf .

Adjust the parameters or use the default settings.

Restart section of the online Apache HBase Reference Guide.

Related Information
Rolling Restart

M OB cache properties

The MOB cache properties are hbase.mob.file.cache.size, hbase.mob.cache.evict.period, and
hbase.mob.cache.evict.remain.ratio.

Table 1: MOB Cache Properties

Property and Default Value Description

hbase.mob.file.cache.size Number of opened file handlersto cache. A larger value enhances read
Default Value: 1000

operations by providing more file handlers per MOB file cache and
reduce frequent file opening and closing. However, if the valueis set
too high, a"too many opened file handers' condition can occur.

37

https://hbase.apache.org/book.html#rolling

Using Apache HBase to store and access data HBase quota management

Property and Default Value Description
hbase.mob.cache.evict.period The amount of time (in seconds) after which an unused file is evicted
from the MOB cache.

Default Value: 3600

hbase.maob.cache.evict.remain.ratio A multiplier (between 0.0 and 1.0) that determines how many files

remain cached after the hbase.mob.file.cache.size property threshold
Default Value: 0.5f i reached. The default value s 0.5f, which indicates that half the files
(the least-recently used ones) are evicted.

HBase quota management

Two types of HBase quotas are well established: throttle quota and number-of tables-quota. These two quotas can
regulate users and tables.

Asof version 2.6, HDP has an additional quotatype: afilesystem space quota. Y ou can use file-system quotas to
regulate the usage of filesystem space on namespaces or at the table level.

In amultitenant HBase environment, ensuring that each tenant can use only its allotted portion of the system iskey in
meeting SLAS.

Table 2: Quota Support Matrix

Quota Type Resource Type Purpose Namespace Table applicable? User applicable?
applicable?

Throttle Network Limit overall network | Yes Yes Yes
throughput and
number of RPC
requests

New space Storage Limit amount of Yes Yes No
storage used for table
or namespaces

Number of tables Metadata Limit number of Yes No Yes
tablesfor each
namespace or user

Numbr of regions Metadata Limit number of Yes No No
regions for each
namespace

Setting up quotas
HBase quotas are disabled by default. To enable quotas, the relevant hbase-site.xml property must be set to true and
the limit of each quota specified on the command line.
Before you begin

hbase superuser privileges

Procedure

1. Set the hbase.quota.enabled property in the hbase-site.xml file to true.

2. Enter the command to set the set the limit of the quota, type of quota, and to which entity to apply the quota. The
command and its syntax are:

$hbase_shel | > set _quota TYPE =>

38

Using Apache HBase to store and access data HBase quota management

quot a_t ype,
ar gunent s

General Quota Syntax

The genera quota syntax are THROTTLE_TY PE, Request sizes and space limit, Number of requests, Time limits
and Number of tables or regions.

THROTTLE_TYPE Can be expressed as READ-only, WRITE-only, or the
default type (both READ and WRITE permissions)

Timeframes Can be expressed in the following units of time:

e sec (second)
min (minute)
hour

day

Request sizes and space limit Can be expressed in the following units:
e B:bytes
K: kilobytes
M: megabytes
G: gigabytes
P: petabytes

When no size unitsisincluded, the default value is bytes.

Number of requests Expressed as integer followed by the string request

Time limits Expressed as requests per unit-of-time or size per unit-of-
time
Examples: 10reg/day or 100P/hour

Number of tables or regions Expressed as integers

Throttle quotas

The throttle quota, also known as RPC limit quota, is commonly used to manage length of RPC queue as well as
network bandwidth utilization.

It is best used to prioritize time-sensitive applications to ensure latency SLAS are met.

Throttle quota examples

Following examples details the usage of adding throttle quotas commands, listing throttle quotas commands, and
updating and deleting throttle quotas commands.

Examples of Adding Throttle Quotas Commands

39

Using Apache HBase to store and access data HBase quota management

Limit user ul to 10 requests per second globally:

hbase> set _quota => TYPE => THROITLE, USER => 'ul', LIMT => '10req/sec'
Limit user ul to up to 10MB of traffic per second globally:

hbase> set _quota => TYPE => THROITLE, USER => 'ul', LIMT => '10M sec'
Limit user ul to 10 reguests/second globally for read operations. User ul can still issue unlimited writes:

hbase> set _quota TYPE => THROTTLE, THROTTLE TYPE => READ, USER => 'ul',
LIMT => '10req/ sec'

Limit user ul to 10 requests/second globally for read operations. User ul can still issue unlimited reads:

hbase> set_quota TYPE => THROITLE, THROITLE_TYPE => WRI TE, USER => 'ul',
LIMT => "'10M sec'

Limit user ul to 5 KB/second for al operations on table t2. User ul can still issue unlimited requests for other tables,
regardless of type of operation:

hbase> set _quota TYPE => THROTTLE, USER => 'ul', TABLE => 't2', LIMT =>
'5K/ min'

Limit request to namespaces:

hbase> set _quota TYPE => THROTTLE, NAMESPACE => 'nsl', LIMT => '10req/sec'
Limit request to tables:

hbase> set _quota TYPE => THROTTLE, TABLE => 't1', LIMT => '10M sec'
Limit requests based on type, regardless of users, namespaces, or tables:

hbase> set_quota TYPE => THROITLE, THROTTLE_TYPE => WRITE, TABLE => "t1',
LIMT => '10M sec'

Examples of Listing Throttle Quotas Commands

Show all quotas:
hbase> |i st _quot as
Show all quotas applied to user bob:
hbase> |ist_quotas USER => 'bob. *'
Show all quotas applied to user bob and filter by table or namespace:

hbase> |ist_quotas USER => 'bob.*', TABLE => 't1'
hbase> |ist_quotas USER => 'bob.*', NAMESPACE => 'ns.*'

Show all quotas and filter by table or namespace:

hbase> |ist_quotas TABLE => ' nyTabl €'
hbase> | i st _quotas NAMESPACE => 'ns. *'

Examples of Updating and Deleting Throttle Quotas Commands

40

Using Apache HBase to store and access data HBase quota management

To update a quota, simply issue anew set_quota command. To remove a quota, you can set LIMIT to NONE. The
actual quota entry will not be removed, but the policy will be disabled.

hbase> set _quota TYPE => THROTTLE, USER => 'ul', LIMT => NONE

hbase> set _quota TYPE => THROTTLE, USER => 'ul', NAMESPACE => 'ns2', LIMT
=> NONE

hbase> set _quota TYPE => THROTTLE, THROTTLE TYPE => WRI TE, USER => 'ul',
LIMT => NONE

hbase> set _quota USER => 'ul', GLOBAL_BYPASS => true

Space quotas

Space quotas, also known as filesystem space quotas, limit the amount of stored data. It can be applied at atable or
namespace level where table-level quotas take priority over namespace-level quotas.

Space quotas are specia in that they can trigger different policies when storage goes above thresholds. The following
list describes the policies, and they are listed in order of least strict to most strict:

NO_INSERTS Prohibits new data from being ingested (for example,
datafrom Put, Increment, and Append operations are not
ingested).

NO_WRITES Performs the same function as NO_INSERTS but Delete
operations are a so prohibited.

NO_WRITES COMPACTIONS Performs the same function as NO_INSERTS but
compactions are also prohibited.

DISABLE Diables tables.

Examples of Adding Space Quotas
Add quota with the condition that Insert operations are rejected when table t1 reaches 1 GB of data:

hbase> set _quota TYPE => SPACE, TABLE => 't1', LIMT => '1G, POLICY =>
NO_| NSERTS

Add quota with the condition that table t2 is disabled when 50 GB of data is exceeded:

hbase> set _quota TYPE => SPACE, TABLE => 't2', LIMT => '50G, POLICY =>
Dl SABLE

Add quota with the condition that Insert and Delete operations cannot be applied to namespace nsl when it reaches 50
terabytes of data:

hbase> set quota TYPE => SPACE, NAMESPACE => 'nsl1', LIMT => '50T", PCLICY
=> NO_WRI TES

Listing Space Quotas
See "Examples of Listing Throttle Quotas Commands* above for the supported syntax.
Examples of Updating and Deleting Space Quotas

41

Using Apache HBase to store and access data HBase quota management

A quota can be removed by setting LIMIT to NONE.

hbase> set _quota TYPE => SPACE, TABLE => 't1', LIMT => NONE

hbase> set _quota TYPE => SPACE, NAMESPACE => 'nsl', LIMT => NONE

Quota enfor cement

When a quota limit is exceeded, the Master server instructs RegionServers to enable an enforcement policy for the
namespace or table that violated the quota

It isimportant to note the storage quotais not reported in real-time. Thereis awindow when threshold is reached on
RegionServers but the threshold accounted for on the Master server is not updated.

B Note:
Set a storage limit lower than the amount of available disk space to provide extra buffer.

Quota violation policies

If quotas are set for the amount of space each HBase tenant can fill on HDFS, then a coherent quota violation policy
should be planned and implemented on the system.

When a quotaviolation policy is enabled, the table owner should not be allowed to remove the policy. The
expectation is that the Master automatically removes the policy. However, the HBase superuser should till have
permission.

Automatic removal of the quota violation policy after the violation is resolved can be accomplished via the same
mechanisms that it was originally enforced. But the system should not immediately disable the violation policy when
theviolation is resolved.

The following describes quota violation policies that you might consider.
Disabling Tables

Thisisthe “brute-force” policy, disabling any tables that violated the quota. This policy removes the risk that tables
over quota affect your system. For most users, thisislikely not a good choice as most sites want READ operations to
still succeed.

One hypothetical situation when a disabling tables policy might be advisable is when there are multiple active clusters
hosting the same data and, because of a quota violation, it is discovered that one copy of the data does not have al of
the data it should have. By disabling tables, you can prevent further discrepancies until the administrator can correct
the problem.

Rejecting All WRITE Operations, Bulk Imports, and Compactions

This palicy rgjects all WRITES and bulk imports to the region which the quota applies. Compactions for this
region are also disabled to prevent the system from using more space because of the temporary space demand of a
compaction. The only resolution in this case is administrator intervention to increase the quota that is being exceeded.

Rejecting All WRITE Operations and Bulk Imports

Thisisthe same as the previous policy, except that compactions are still allowed. This allows usersto set or ater a
TTL on table and then perform a compaction to reduce the total used space. Inherently, using this violation policy
means that you let used space to slightly rise beforeit is ultimately reduced.

Allowing DELETE Operations But Rejecting WRITE Operations and Bulk Imports

Thisis another variation of the two previously listed palicies. This policy allows users to run processes to delete data
in the system. Like the previous policy, using this violation policy means that you let used space dightly rises before

42

Using Apache HBase to store and access data HBase quota management

it is ultimately reduced. In this case, the deletions are propagated to disk and a compaction actually removes data
previously stored on disk. TTL configuration and compactions can also be used to remove data.

| mpact of quota violation policy

Live Write Access

As one would expect, every violation policy outlined disables the ability to write new datainto the system. This
means that any M utation implementation other than DEL ETE operations could be rejected by the system. Depending
on the violation policy, DELETE operations still might be accepted.

Bulk Write Access

Bulk loading HFiles can be an extremely effective way to increase the overall throughput of ingest into HBase. Quota
management is very relevant because large HFiles have the potentia to quickly violate a quota.

Clients group HFiles by region boundaries and send the file for each column family to the RegionServer presently
hosting that region. The RegionServer ultimately inspects each file, ensuring that it should be loaded into this region,
and then, sequentialy, load each file into the correct column family.

Asapart of the precondition-check of the file's boundaries before loading it, the quota state should be inspected to
determine if loading the next file will violate the quota. If the RegionServer determines that it will violate the quota, it
should not load the file and inform the client that the file was not loaded because it would violate the quota.

Read Access

In most cases, quota violation policies can affect the ability to read the data stored in HBase. A goal of applying
these HBase quotas is to ensure that HDFS remains healthy and sustains a higher level of availability to HBase users.
Guaranteeing that there is always free space in HDFS can yield a higher level of health of the physical machines and
the DataNodes. This leaves the HDFS-reserved space percentage as afail-safe mechanism.

Metricsand I nsight

Quotas should ideally be listed on the HBase Master Ul. Thelist of defined quotas should be present as well as those
guotas whose violation policy is being enforced. Thelist of tables/namespaces with enforced violation policies should
also be presented viathe IMX metrics exposed by the Master.

Examples of overlapping quota policies

With the ability to define a quota policy on namespaces and tables, you have to define how the policies are applied. A
table quota should take precedence over a namespace quota.

Scenario 1

For example, consider Scenario 1, which is outlined in the following table. Namespace n has the following collection
of tables: n1.t1, n1.t2, and n1.t3. The namespace quotais 100 GB. Because the total storage required for all tablesis
less than 100 GB, each table can accept new WRITEs.

Table 3: Scenario 1: Overlapping Quota Policies

Object Quota Storage Utilization
Namespace n1 100 GB 80 GB

Tablenl.tl 10GB 5GB

Tablenl.t2 (not set) 50 GB

Tablenl.t3 (not set) 25GB

43

Using Apache HBase to store and access data HBase quota management

Scenario 2

In Scenario 2, as shown in the following table, WRITES to table n1.t1 are denied because the table quotais violated,
but WRITESs to tablenl.t2 and table n1.t3 are still allowed because they are within the namespace quota. The violation
policy for the table quota on table n1.t1 is enacted.

Table 4: Scenario 2: Overlapping Quota Policies

Object Quota Storage Utilization
Namespace n1 100 GB 60 GB
Tablenl.tl 10GB 15GB
Tablenl.t2 (not set) 30GB
Tablenl.t3 (not set) 15GB
Scenario 3

In the Scenario 3 table below, WRITEs to all tables are not allowed because the storage utilization of al tables
exceeds the namespace quota limit. The namespace quota violation policy is applied to all tables in the namespace.

Table5: Scenario 3: Overlapping Quota Policies

Object Quota Storage Utilization
Namespace nl1 100 GB 108 GB
Tablenl.tl 10GB 8GB
Tablenl.t2 (not set) 50 GB
Tablenl.t3 (not set) 50 GB

Scenario 4

In the Scenario 4 table below, table n1.t1 violates the quota set at the table level. The table quota violation policy
isenforced. In addition, the disk utilization of table n1t1 plus the sum of disk utilization for table n1t2 and table
nlt3exceeds the 100 GB namespace quota. Therefore, the namespace quota violation policy is also applied.

Table 6: Scenario 4. Overlapping Quota Policies

Object Quota Storage Utilization
Namespace nl1 100 GB 115 GB
Tablenl.tl 10GB 15GB

Tablenl.t2 (not set) 50 GB

Tablenl.t3 (not set) 50 GB

Number-of-Tables Quotas

The number-of-tables quotais set as part of the namespace metadata and does not involve the set_quota command.
Examples of Commands Relevant to Setting and Administering Number-of-Tables Quotas

Create namespace nsl with a maximum of 5 tables

hbase> create nanespace 'nsl', {'hbase.nanespace. quota. maxtabl es' =>'5"}

Using Apache HBase to store and access data Understanding Apache HBase Hive integration

Alter an existing namespace nsl to set a maximum of 8 tables

hbase> al ter_nanespace 'nsl', {METHOD => 'set',
' hbase. nanespace. quot a. maxt abl es' =>' 8' }

Show quota information for namespace nsl
hbase> descri be _nanmespace ' ns1'
Alter existing namespace nsl to remove a quota

hbase> al ter _nanespace 'nsl', {METHOD => 'unset',
NAME=>' hbase. nanespace. quot a. maxt abl es’ }

Number-of-Regions Quotas

The number-of-regions quotais similar to the number-of-tables quota. The number-of-regions quotais set as part of
the namespace metadata and does not involve the set_quota command.

Examples of Commands Relevant to Setting and Administering Number-of-Regions Quotas

Create namespace nsl with a maximum of 5 tables
hbase> create_namespace 'nsl', {' hbase.nanespace. quota. maxregi ons' =>'5"}
Alter an existing namespace nsl to set amaximum of 8 regions

hbase> al ter _nanespace 'nsl', {METHOD => 'set',
' hbase. nanespace. quot a. maxr egi ons' =>' 8' }

Show quota information for namespace nsl
hbase> descri be_nanmespace 'ns1'
Alter existing namespace nsl to remove a quota

hbase> al ter _nanespace 'nsl', {METHOD => 'unset',
NAME=>' hbase. nanespace. quot a. maxr egi ons' }

Under standing Apache HBase Hive integration

With Hortonworks Data Platform (HDP), you can use Hive HBase integration to perform READ and WRITE
operations on the HBase tables. HBase is integrated with Hive using the StorageHandler. Y ou can access the data
through both Hive and HBase.

Prerequisites

Y ou must complete the following steps before configuring the Hive and HBase.

Procedure

» Install ZooK eeper, HBase, and Hive through Ambari.
» Install the required version of Hadoop.
e Addadll therequired jars:

45

Using Apache HBase to store and access data

Understanding Apache HBase Hive integration

ZooK eeper jar
Hbase server jar
Hbase client jar

Hive-hbase-handler.jar is available on the Hive client auxpath

Configuring HBase and Hive

Follow this step to complete the configuration:

Procedure

Modify the hive-site.xml configuration file. Add the required path to the jars. The jars will be used by Hiveto

write datainto the HBase. The full list of JARsto add can be seen by running the commandhbase mapredcp on the

command-line.

Note: Each JAR name contains the HDP version -- the list of JARs will not work across different HDP rel eases, but it

can be easily recreated.

<property>

<name>hi ve. aux. j ar s. pat h</ nanme>

<val ue>

file:///usr/hdp/3.0.1.0-61/ hbase/li b/ comobns-|ang3-3.6.jar,
file:///usr/hdp/3.0.1.0-61/ hbase/li b/ hbase-zookeeper-2.0.0.3.0.1.0-61.jar,
file:///usr/hdp/3.0.1.0-61/ hbase/li b/ hbase- mapreduce-2.0.0.3.0.1.0-61.jar,
file:///usr/hdp/3.0.1.0-61/ hbase/lib/jackson-annotations-2.9.5.jar,
file:///lusr/hdp/3.0.1.0-61/ hbase/li b/ hbase-shaded-m scel | aneous-2.1.0.j ar,
file:///lusr/hdp/3.0.1.0-61/ hbase/lib/jackson-databind-2.9.5.jar,
file:///usr/hdp/3.0.1.0-61/ hbase/li b/ hbase-hadoop-
conpat-2.0.0.3.0.1.0-61.j ar,

file:///usr/hdp/3.0.1.0-61/ hbase/li b/ hbase-netrics-2.0.0.3.0.1.0-61.j ar,
file:///usr/hdp/3.0.1.0-61/ hbase/li b/ hbase-client-2.0.0.3.0.1.0-61.jar,
file:///usr/hdp/3.0.1.0-61/ hbase/lib/hbase-protocol -
shaded-2.0.0.3.0.1.0-61.j ar,
file:///usr/hdp/3.0.1.0-61/hbase/lib/jackson-core-2.9.5.jar,
file:///usr/hdp/3.0.1.0-61/ hbase/li b/ protobuf-java-2.5.0.jar,
file:///usr/hdp/3.0.1.0-61/ hbase/li b/ hbase-shaded-netty-2.1.0.]jar,
file:///usr/hdp/3.0.1.0-61/ hbase/lib/netrics-core-3.2.1.jar,
file:///usr/hdp/3.0.1.0-61/ hbase/lib/hbase-server-2.0.0.3.0.1.0-61.jar,
file:///usr/hdp/3.0.1.0-61/ hbase/li b/ hbase-hadoop2-
conmpat-2.0.0.3.0.1.0-61.j ar,

file:///usr/hdp/3.0.1.0-61/ hbase/lib/hbase-nmetrics-api-2.0.0.3.0.1.0-61.jar,
file:///usr/hdp/3.0.1.0-61/ hbase/li b/ hbase-conmon-2.0.0.3.0.1.0-61.jar,
file:///usr/hdp/3.0.1.0-61/ hbase/li b/ hbase-protocol-2.0.0.3.0.1.0-61.jar,
file:///usr/hdp/3.0.1.0-61/ hbase/li b/ hbase-shaded- protobuf-2.1.0.jar,
file:///usr/hdp/3.0.1.0-61/ hbase/lib/htrace-core4-4.2.0-incubating.jar,
file:///usr/hdp/3.0.1.0-61/zookeeper/zookeeper-3.4.6.3.0.1.0-61.jar

</ val ue>
</ property>

Note: Modify the file paths and file names to the path that appears on your machine.

Using HBase Hiveintegration
Before you begin to use the Hive HBase integration, complete the following steps:

46

Using Apache HBase to store and access data Understanding Apache HBase Hive integration

Procedure

» Usethe HBaseStorageHandler to register the HBase tables with the Hive metastore. Y ou can also register the
Hbase tables directly in Hive using the HiveHBaseT ablel nputFormat and HiveHBaseT ableOutputFormat classes.

» Aspart of the registration process, specify a column mapping. There are two SERDEPROPERTIES that controls
the HBase column mapping to Hive:

» Hbase.columns.mapping
« Hbase.table.default.storage.type

HBase Hive integration example

A changeto Hivein HDP 3.0 isthat all StorageHandlers must be marked as “externa” . Thereis no such thing as
an non-external table created by a StorageHandler. If the corresponding HBase table exists when the Hive table is
created, it will mimic the HDP 2.x semantics of an “externa” table. If the corresponding HBase table does not exist
when the Hive tableis created, it will mimic the HDP 2.x semantics of a non-external table (e.g. the HBase table is
dropped when the Hive table is dropped).

Procedure

1. From the Hive shell, create a HBase table:

CREATE EXTERNAL TABLE hbase_hi ve_table (key int, value string)
STORED BY ' org. apache. hadoop. hi ve. hbase. HBaseSt or ageHand! er'

W TH SERDEPROPERTI ES (" hbase. col uims. nmappi ng" = ": key, cf1:val")
TBLPROPERTI ES ("hbase. t abl e. nane" = "hbase_hi ve_t abl e",
"hbase. mapr ed. out put . out puttabl e" = "hbase_hive_table");

The hbase.columns.mapping property is mandatory. The hbase.table.name property is optional.The
hbase.mapred.output.outputtable property isoptional; It is needed, if you plan to insert data to the table

2. From the HBase shell, access the hbase hive table:

$ hbase shel |
HBase Shell; enter 'hel p<RETURN>' for |ist of supported commands.
Version: 0.20.3, r902334, Mn Jan 25 13:13:08 PST 2010

hbase(mai n): 001: 0> |i st hbase_hive_table

1 rowms) in 0.0530 seconds

hbase(mai n) : 002: 0> descri be hbase_hive_table

Tabl e hbase _hive table is ENABLED

hbase_hive_table COLUW FAM LI ES DESCRI PTI ON{ NAME => ' cf',
DATA BLOCK_ENCODI NG => ' NONE', BLOOWFI LTER => ' ROW, REPLI CATI ON_SCOPE =>
"0', VERSIONS => "1', COWPRESSION => "NONE', M N_VERSIONS => '0', TTL =>
' FOREVER , KEEP_DELETED CELLS => ' FALSE', BLOCKSI ZE => ' 65536', | N_MEMORY
=> 'fal se', BLOCKCACHE => "true'} 1 rowm(s) in 0.2860 seconds

hbase(mai n): 003: 0> scan "hbase_hive_table "

ROW COLUMNHCELL

0O row(s) in 0.0060 seconds

3. Insert the datainto the HBase table through Hive:

| NSERT OVERWRI TE TABLE HBASE_Hl VE_TABLE SELECT * FROM pokes WHERE f 00=98;

47

Using Apache HBase to store and access data Understanding Apache HBase Hive integration

4. From the HBase shell, verify that the data got loaded:

hbase(rmai n): 009: 0> scan "hbase_hi ve_t abl e"
ROW COLUMN+CEL L

98 col umm=cf 1:val, tinestanp=1267737987733,

val ue=val 98
1 roms) in 0.0110 seconds

5. From Hive, query the HBase data to view the data that isinserted in the hbase_hive_table:

hi ve> sel ect * from HBASE Hl VE TABLE;
Total MapReduce jobs =1
Launchi ng Job 1 out of 1

98 val 98
Ti me taken: 4.582 seconds

Using Hive to access an existing HBase table example
Use the following steps to access the existing HBase table through Hive.

Procedure
* You can access the existing HBase table through Hive using the CREATE EXTERNAL TABLE:

CREATE EXTERNAL TABLE hbase_t abl e_2(key int, value string)
STORED BY ' org. apache. hadoop. hi ve. hbase. HBaseSt or ageHand! er'

W TH SERDEPROPERTI ES (" hbase. col unms. mappi ng" = ": key

,cfl:val™)

TBLPROPERTI ES(" hbase. t abl e. nane" = "some_exi sting_tabl e",
"hbase. mapr ed. out put . out puttabl e" = "some_exi sting_table");

* You can use different type of column mapping to map the HBase columns to Hive:
e Multiple Columns and Families

To define four columns, the first being the rowkey: “:key,cf:a,cf:b,cf:c”
e Hive MAP to HBase Column Family

When the Hive datatype is a Map, a column family with no qualifier might be used. Thiswill use the keys of
the Map as the column qualifier in HBase: “cf:”
e Hive MAP to HBase Column Prefix

When the Hive datatype is a Map, a prefix for the column qualifier can be provided which will be prepended to
the Map keys: “cf:prefix_.*"
Note: The prefix is removed from the column qualifier as compared to the key in the Hive Map. For example,
for the above column mapping, a column of “cf:prefix_a” would result in akey in the Map of “&".
* You can aso define composite row keys. Composite row keys use multiple Hive columns to generate the HBase
row key.

« Simple Composite Row Keys

A Hive column with a datatype of Struct will automatically concatenate all elementsin the struct with the
termination character specified in the DDL.
e Complex Composite Row Keys and HBaseK eyFactory

48

Using Apache HBase to store and access data HBase Best Practices

Custom logic can be implemented by writing Java code to implement a KeyFactory and provide it to the DDL
using the table property key “hbase.composite.key.factory”.

Under standing Bulk Loading

A common pattern in HBase to obtain high rates of data throughput on the write path is to use “bulk loading”.
This generates HBase files (HFiles) that have a specific format instead of shipping edits to HBase RegionServers.
The Hive integration has the ability to generate HFiles, which can be enabled by setting the property
“hive.hbase.generatehfiles’ to true, for example, “set hive.hbase.generatehfiles=true’. Additionally, the path to a
directory which to write the HFiles must also be provided, for example, set hfile.family.path=/tmp/hfiles’.

After the Hive query finishes, you must execute the “ completebulkload” action in HBase to bring the files “online” in
your HBase table. For example, to finish the bulk load for filesin “/tmp/hfiles’ for the table “hive_data’, you might
run on the command-line:

$ hbase conpl et ebul kl oad /tnp/hfiles hive_data

Under standing HBase Snapshots

When an HBase snapshot exists for an HBase table which a Hive table references, you can choose to execute queries
over the “offline” snapshot for that table instead of the table itself.

First, set the property to the name of the HBase snapshot in your Hive script: “set
hive.hbase.snapshot.name=my_snapshot’. A temporary directory is required to run the query over the snapshot.
By default, adirectory is chosen inside of “/tmp” in HDFS, but this can be overridden by using the property
“hive.hbase.snapshot.restoredir”.

HBase Best Practices

HBase RowKey length value best practice provides limitation information that you can apply to avoid error while
indexing the table.

HBase RowK ey length value

Y ou should limit the value of each HBase RowKey length to 32767 bytes. Exceeding this value causes an exceptional
error while indexing the table. Thisrestriction is applicable in addition to the maximum allowed size of an individual
cell, inclusive of value and all key components as defined by the hbase.server.keyvalue.maxsize value. The default
value for RowKey length is 1 MB, which avoids server memory errors.

49

	Contents
	What's New in Apache HBase
	Overview of Apache HBase
	Apache HBase installation
	Installing HBase through Ambari
	HBase cluster capacity planning
	Configuring HBase cluster for the first time
	Increase the request handler thread count
	Configure the size and number of WAL files
	Configure compactions
	Considerations for splitting tables
	Tune JVM garbage collection in RegionServers

	Node count and JVM configuration
	Physical size of the data
	Read-Write Throughput

	Options to increase HBase Region count and size
	Increasing MemStore size for RegionServer
	Increasing the size of Region

	Enable multitenancy with namespaces
	Default HBase namespace actions
	Define and drop namespaces

	Security features that are available

	Managing Apache HBase clusters
	Monitoring Apache HBase clusters through Grafana-based dashboard
	Optimizing Apache HBase I/O
	HBase I/O components
	Configuring BlockCache
	Configure On-Heap BlockCache
	Guidelines for configuring On-Heap BlockCache (LruBlockCache)
	Prerequisites to configure Off-Heap Memory (BucketCache)
	Configure BucketCache
	BlockCache compression
	Enable BlockCache compression
	BlockCache-and-MemStore-Properties

	Import data into HBase with Bulk load
	Using Snapshots in HBase
	Configure a Snapshot
	Take a Snapshot
	List Snapshots
	Delete Snapshots
	Clone a table from a Snapshot
	Restore a Snapshot
	Snapshot Operations and ACLs
	Export data to another cluster

	Backing up and restoring Apache HBase datasets
	Planning a backup-and-restore Strategy for your environment
	Backup within a Cluster
	Backup to the dedicated HDFS archive cluster
	Backup to the Cloud or a Storage vendor

	Best practices for backup-and-restore
	Running the backup-and-restore utility
	Create and maintain a complete backup image
	Command for creating HBase backup image
	Monitor backup progress
	Using backup sets
	Restore a backup image
	Administering and deleting backup images
	HBase backup commands

	Incremental backup-and-restore
	Example scenario: Safeguarding application datasets on Amazon S3

	Medium Object (MOB) storage support in Apache HBase
	Methods to enable MOB storage support
	Method 1:Enable MOB Storage support using configure options in the command line
	Method 2: Invoke MOB support parameters in a Java API
	Test the MOB storage support configuration
	MOB storage cache properties
	Method 1: Enter property settings using Ambari
	Method 2: Enter property settings directly in the hbase-site.xml file
	MOB cache properties

	HBase quota management
	Setting up quotas
	General Quota Syntax

	Throttle quotas
	Throttle quota examples

	Space quotas
	Quota enforcement
	Quota violation policies
	Impact of quota violation policy
	Live Write Access
	Bulk Write Access
	Read Access
	Metrics and Insight
	Examples of overlapping quota policies

	Number-of-Tables Quotas
	Number-of-Regions Quotas

	Understanding Apache HBase Hive integration
	Prerequisites
	Configuring HBase and Hive
	Using HBase Hive integration
	HBase Hive integration example
	Using Hive to access an existing HBase table example
	Understanding Bulk Loading
	Understanding HBase Snapshots

	HBase Best Practices

