
Data Access 3

Apache Hive overview
Date of Publish: 2018-07-12

http://docs.hortonworks.com

http://docs.hortonworks.com

Contents

What's new in this release: Apache Hive...3

Apache Hive 3 architectural overview... 5

Apache Hive 3 upgrade process..7
Changes after upgrading to Apache Hive 3...8
Convert Hive CLI scripts to Beeline... 10
Hive Semantic and Syntax Changes.. 11

Creating a table...11
Escaping db.table references.. 12
Casting timestamps... 12
Renaming tables..12
Checking compatibility of column changes...13
Dropping partitions... 13

Install the Hive service...13

Apache Hive content roadmap..14

Data Access What's new in this release: Apache Hive

What's new in this release: Apache Hive

HDP 3.x includes many Apache Hive 3 enhancements. HDP 3.x can help you improve query performance and
comply with internet regulations. A few interfaces available in prior releases are unsupported in HDP 3.x.

HDP 3.1 key features

• Kafka-Hive connector reads and writes from Kafka to Hive and vice versa.
• JdbcStorageHandler connects to BI tools.
• Built-in UDF generates surrogate keys for ACID tables.
• Hive Warehouse Connector creates Hive tables based on the existing Spark DataFrames when you save a

DataFrame to Hive.
• Ambari 2.7.3 feature configures Hive high availability.

Add multiple HDP 3.1 HiveServer Interactive instances that run in passive (standby) mode, ready to take over in
the event of a problem.

HDP 3.0.1 key feature

HDP 3.0.1 includes partitioning of materialized views, which can improve query responsiveness, and maintenance
fixes.

HDP 3.0 key features

HDP 3.0 includes many features. The primary features are listed below.

Workload management

Using workload management, you can configure who uses resources, how much can be used, and how quickly Hive
responds to resource requests. Managing resources is critical to Hive LLAP (low-latency analytical processing),
especially in a multitenant environment. Using workload management, you can create resource pools and allocate
resources to match availability needs and prevent contention for those resources. Workload management improves
parallel query execution and cluster sharing for queries running on Hive LLAP, and also improves performance of
non-LLAP queries. Workload management reduces resource starvation in large clusters. You implement workload
management on the command line using Hive.

Transaction processing improvements

Mature versions of ACID (Atomicity, Consistency, Isolation, and Durability) transaction processing and LLAP
evolve in Hive and HDP 3.0. ACID tables are enhanced to serve as the default table type in HDP 3.0, without
performance or operational overload. LLAP processes queries in subseconds. Using ACID table operations
facilitates compliance with the right to be forgotten requirement of the GDPR (General Data Protection Regulation).
Application development and operations are simplified with stronger transactional guarantees and simpler semantics
for SQL commands. You do not need to bucket ACID tables, so maintenance is easier. You no longer need to perform
ACID delete operations in a Hive table.

Materialized views

With improvements in transactional semantics comes advanced optimizations, such as materialized view rewrites
and automatic query cache. With these optimizations, you can deploy new Hive application types. Because multiple
queries frequently need the same intermediate roll up or joined table, you can avoid costly, repetitious query portion
sharing, by precomputing and caching intermediate tables into views. The query optimizer automatically leverages
the precomputed cache, improving performance. Materialized views increase the speed of join and aggregation
queries in business intelligence (BI) and dashboard applications, for example.

Cost-based optimizer enhancements

Hive can push down the filtering, sorting, and joining of columns in a query. For example, MySQL tables joins can be
pushed down to underlying database.

Direct, low latency Hive query of Kafka topics

3

Data Access What's new in this release: Apache Hive

You can ingest Kafka into ACID tables, or query the data in the Kafka message from Hive. With HDP 3.0, you can
create a Druid table within Hive from a Kafka topic in a single command. This feature simplifies queries of Kafka
data by eliminating the data processing step between delivery by Kafka and querying in Druid.

Superset

HDP 3 introduces a technical preview of Apache Superset, the data exploration and visualization UI platform.
Superset is a way to create HDP dashboards. Using Superset, installed by default as a service in Ambari, you can
connect to Hive, create visualizations of Hive data, and create custom dashboards on Hive datasets. Superset is an
alternative to Hive View, which is not available in HDP 3.0.

Spark integration with Hive

You can use Hive 3 to query data from Apache Spark and Apache Kafka applications, without workarounds. The
Hive Warehouse Connector supports reading and writing Hive tables from Spark.

Hive security improvements

Apache Ranger secures Hive data by default. Through the Hive Warehouse Connector (HWC), you can secure
data access at the column or row level from Spark. To meet customer demands for concurrency improvements,
ACID support for GDPR (General Data Protection Regulation), render security, and other features, Hive now
tightly controls the file system and computer memory resources. With the additional control, Hive better optimizes
workloads in shared files and YARN containers. The more Hive controls the file system, the better Hive can secure
data.

Query result cache

Hive filters and caches similar or identical queries. Hive does not recompute the data that has not changed. Caching
repetitive queries can reduce the load substantially when hundreds or thousands of users of BI tools and web services
query Hive.

Information schema database

Hive creates two databases from JDBC data sources when you add the Hive service to a cluster: information_schema
and sys. All Metastore tables are mapped into your tablespace and available in sys. The information_schema data
reveals the state of the system, similar to sys database data. You can query information_schema using SQL standard
queries, which are portable from one DBMS to another.

Deprecated, unavailable, or unsupported interfaces

In HDP 3.0 and later, Hive does not support the following features:

• Apache Hadoop Distributed Copy (DistCp)
• WebHCat
• Hcat CLI
• Hive CLI (replaced by Beeline)
• SQL Standard Authorization
• MapReduce execution engine (replaced by Tez)

Related Information
Generate surrogate keys

Query SQL using the JdbcStorageHandler

Set up multiple HiveServer Interactives for high availability

Workload management

Hive 3 ACID transactions

Using materialized views

Hive-Kafka Connector

Visualizing Apache Hive data using Apache Superset

HiveWarehouseConnector for handling Apache Spark data

Query result cache and metastore cache

4

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/using-hiveql/content/hive_surrogate_keys.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/integrating-hive/content/hive_query_sql_using_jdbcstoragehandler.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/performance-tuning/content/hive_setup_multiple_hsi.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/hive-workload/content/hive_workload_management.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/using-hiveql/content/hive_3_internals.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/using-hiveql/content/hive_using_materialized_views.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/integrating-hive/content/hive-kafka-integration.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/integrating-hive/content/hive_visualizing_hive_data_using_superset.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/integrating-hive/content/hive_hivewarehouseconnector_for_handling_apache_spark_data.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/performance-tuning/content/hive_query_result_cache_ms_cache.html

Data Access Apache Hive 3 architectural overview

Apache Hive 3 architectural overview

Understanding Apache Hive 3 major design changes, such as default ACID transaction processing and support for
only the thin hive client, can help you use new features to address the growing needs of enterprise data warehouse
systems.

Execution engine changes

Apache Tez replaces MapReduce as the default Hive execution engine. MapReduce is no longer supported, and Tez
stability is proven. With expressions of directed acyclic graphs (DAGs) and data transfer primitives, execution of
Hive queries under Tez improves performance. SQL queries you submit to Hive are executed as follows:

• Hive compiles the query.
• Tez executes the query.
• YARN allocates resources for applications across the cluster and enables authorization for Hive jobs in YARN

queues.
• Hive updates the data in HDFS or the Hive warehouse, depending on the table type.
• Hive returns query results over a JDBC connection.

A simplified view of this process is shown in the following figure:

If a legacy script or application specifies MapReduce for execution, an exception occurs. Most user-defined functions
(UDFs) require no change to execute on Tez instead of MapReduce.

Design changes that affect security

The following Hive 3 architectural changes provide improved security:

• Tightly controlled file system and computer memory resources, replacing flexible boundaries: Definitive
boundaries increase predictability. Greater file system control improves security.

• Optimized workloads in shared files and YARN containers

By default, the HDP 3.0 Ambari installation adds Apache Ranger security services. The major authorization model
in Hive is Ranger. This model permits only Hive to access HDFS. Hive enforces access controls specified in Ranger.
This model offers stronger security than other security schemes and more flexibility in managing policies.

If you do not enable the Ranger security service, or other security, by default Hive uses storage-based authorization
(SBA) based on user impersonation.

HDFS permission changes

In HDP 3.0, SBA relies heavily on HDFS access control lists (ACLs). ACLs are an extension to the permissions
system in HDFS. HDP 3.0 turns on ACLs in HDFS by default, providing you with the following advantages:

• Increased flexibility when giving multiple groups and users specific permissions

5

Data Access Apache Hive 3 architectural overview

• Convenient application of permissions to a directory tree rather than by individual files

Transaction processing changes

You can deploy new Hive application types by taking advantage of the following improvements in transaction
processing:

• Mature versions of ACID transaction processing and LLAP:

ACID tables are the default table type in HDP 3.0.

ACID enabled by default causes no performance or operational overload.
• Simplified application development, operations with stronger transactional guarantees, and simpler semantics for

SQL commands

You do not need to bucket ACID tables in HDP 3.0, so maintenance is easier.
• Materialized view rewrites
• Automatic query cache
• Advanced optimizations

Hive client changes

Hive 3 supports only the thin client Beeline for running queries and Hive administrative commands from the
command line. Beeline uses a JDBC connection to HiveServer to execute all commands. Parsing, compiling, and
executing operations occur in HiveServer. Beeline supports the same command-line options as the Hive CLI with one
exception: Hive Metastore configuration changes.

You enter supported Hive CLI commands by invoking Beeline using the hive keyword, command option, and
command. For example, hive -e set. Using Beeline instead of the thick client Hive CLI, which is no longer supported,
has several advantages, including the following:

• Instead of maintaining the entire Hive code base, you now maintain only the JDBC client.
• Startup overhead is lower using Beeline because the entire Hive code base is not involved.

A thin client architecture facilitates securing data in these ways:

• Session state, internal data structures, passwords, and so on reside on the client instead of the server.
• The small number of daemons required to execute queries simplifies monitoring and debugging.

HiveServer enforces whitelist and blacklist settings of Hive configuration properties. Beeline does not support hive -e
set key=value to configure the Hive Metastore. Using the blacklist, you can restrict memory configuration to prevent
HiveServer instability. You can configure multiple HiveServer instances with different whitelists and blacklists to
establish different levels of stability.

The change in Hive client requires you to use the grunt command line to work with Apache Pig.

Apache Hive Metastore changes

Hive now uses a remote metastore instead of a metastore embedded in the same JVM instance as the Hive service;
consequently, Ambari no longer starts the metastore using hive.metastore.uris=' '. The Hive metastore resides on
a node in a cluster managed by Ambari as part of the HDP stack. A standalone server outside the cluster is not
supported. You no longer set key=value commands on the command line to configure Hive Metastore. You configure
properties in hive-site.xml. The Hive catalog resides in Hive Metastore, which is RDBMS-based as it was in earlier
releases. Using this architecture, Hive can take advantage of RDBMS resources in a cloud deployments.

Spark catalog changes

Spark and Hive now use independent catalogs for accessing SparkSQL or Hive tables on the same or different
platforms. A table created by Spark resides in the Spark catalog. A table created by Hive resides in the Hive catalog.
Although independent, these tables interoperate.

You can access ACID and external tables from Spark using the HiveWarehouseConnector.

6

Data Access Apache Hive 3 upgrade process

Query execution of batch and interactive workloads

The following diagram shows the HDP 3.0 query execution architecture for batch and interactive workloads:

You can connect to Hive using a JDBC command-line tool, such as Beeline, or using an JDBC/ODBC driver with a
BI tool, such as Tableau. Clients communicate with an instance of the same HiveServer version. You configure the
settings file for each instance to perform either batch or interactive processing.

Apache Hive 3 upgrade process

Supplemental information about preparing for an upgrade, upgrading, and using Hive tables after upgrading to Hive 3
helps you achieve a successful HDP and Apache Ambari major upgrade.

Some transactional tables require a major compaction before upgrading to 3.0. Running the Hive pre-upgrade tool
identifies the tables that need such a compaction and provides scripts that you run to perform the compaction.
Depending on the number of tables and partitions, and the amount of data involved, compactions might take a
significant amount of time and resources. The script output of the pre-upgrade tool includes some heuristics that
might help estimate the time required. If no script is produced, no compaction is needed.

Compaction cannot occur if the pre-upgrade tool cannot connect to Hive Metastore. During compaction, shutting
down HiveServer2 is recommended to prevent users from executing any update, delete, or merge statements on tables
during compaction and for the duration of the upgrade process.

You should run the pre-upgrade tool command on the command line after upgrading Ambari 2.6.x to 2.7.x. You do
not actually use Ambari to run this command.

The following properties can affect compaction:

• hive.compactor.worker.threads

Specifies limits of concurrent compactions.
• hive.compactor.job.queue

Specifies the Yarn queue of compaction jobs. Each compaction is a MapReduce job.

The pre-upgrade tool looks for files in an ACID table that contains update or delete events, and generates scripts to
compact these tables. You prepare Hive for upgrade to obtain and run the scripts. Assuming you upgraded Ambari at
some point, you can then upgrade HDP components, including Hive. After upgrading, check generated logs for any
errors. Check that the upgrade process correctly converted your tables.

7

Data Access Apache Hive 3 upgrade process

Related Information
Prepare Hive for Upgrade

Prepare Hive for Upgrade: IBM Power Systems

Hive Post-upgrade tasks

Drop an external table along with data

Changes after upgrading to Apache Hive 3
To locate and use your Apache Hive 3 tables after an upgrade, you need to understand the changes that occur during
the upgrade process. Changes to the management and location of tables, permissions to HDFS directories, table types,
and ACID-compliance occur.

Hive Management of Tables

Hive 3 takes more control of tables than Hive 2, and requires managed tables adhere to a strict definition. The level
of control Hive takes over tables is similar to that of a traditional data base. If there's a change to the Hive data, hive
knows about it. This control is a required framework for perfortmance features. For example, if Hive knows that
resolving a query does not require scanning tables for new data, Hive returns results from the hive query result cache.

When the underlying data in a materialized view changes, Hive needs to rebuild the materialized view. ACID
properties reveal exactly which rows changed, and only those need to be processed and added to the materialized
view.

Hive changes to ACID properties

Hive 2.x and 3.x have transactional and non-transactional tables. Transactional tables have atomic, consistent,
isolation, and durable (ACID) properties. In Hive 2.x, the initial version of ACID transaction processing is ACID v1.
In Hive 3.x, the mature version of ACID is ACID v2, which is the default table type in HDP 3.0.

Native and non-native storage formats

Storage formats are a factor in upgrade changes to table types. Hive 2.x and 3.x supports the following Hadoop native
and non-native storage formats:

• Native: Tables with built-in support in Hive, such as those in the following file formats:

• Text
• Sequence File
• RC File
• AVRO File
• ORC File
• Parquet File

• Non-native: Tables that use a storage handler, such as the DruidStorageHandler or HBaseStorageHandler

HDP 3.x upgrade changes to table types

The following table compares Hive table types and ACID operations before an upgrade from HDP 2.x and after an
upgrade to HDP 3.x. The ownership of the Hive table file is a factor in determining table types and ACID operations
after the upgrade.

Table 1: HDP 2.x and 3.x Table Type Comparison

HDP 2.x HDP 3.x

Table Type ACID v1 Format Owner (user) of
Hive Table File

Table Type ACID v2

External No Native or non-native hive or non-hive External No

8

https://docs.hortonworks.com/HDPDocuments/Ambari-2.7.3.0/bk_ambari-upgrade-major/content/prepare_hive_for_upgrade.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.7.3.0/bk_ambari-upgrade-major-ppc/content/prepare_hive_for_upgrade.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.7.3.0/bk_ambari-upgrade-major/content/hive_post_upgrade_tasks.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/using-hiveql/content/hive_drop_external_table_data.html

Data Access Apache Hive 3 upgrade process

HDP 2.x HDP 3.x

Table Type ACID v1 Format Owner (user) of
Hive Table File

Table Type ACID v2

Managed Yes ORC hive or non-hive Managed, updatable Yes

hive Managed, updatable YesManaged No ORC

non-hive External, with data
delete*

No

hive Managed, insert only YesManaged No Native (but non-
ORC)

non-hive External, with data
delete*

No

Managed No Non-native hive or non-hive External, with data
delete*

No

* See Dropping an External Table Along with the Data (link below).

Removal of Hive View and Tez View

HDP 3.1.x does not include Hive View or Tez View. In lieu of these capabilities, users who upgrade from 2.6 to 3.1.x
can install Data Analytics Studio. Download Data Analytics Studio.

Hive Impersonation and Security Changes

Hive impersonation was enabled by default in Hive 2 (doAs=true), and disabled by default in Hive 3. Hive
impersonation runs Hive as end user, or not. Ranger is recommended for use with Hive 3. You can control HDFS
security using Ranger policies, which is simpler than setting up permissions.

Other HDP 3.x upgrade changes

Managed, ACID tables that are not owned by the hive user remain managed tables after the upgrade, but hive
becomes the owner.

After the upgrade, the format of a Hive table is the same as before the upgrade. For example, native or non-native
tables remain native or non-native, respectively.

After the upgrade, the location of managed tables or partitions do not change under any one of the following
conditions:

• The old table or partition directory was not in its default location /apps/hive/warehouse before the upgrade.
• The old table or partition is in a different file system than the new warehouse directory.
• The old table or partition directory is in a different encryption zone than the new warehouse directory.

Otherwise, the location of managed tables or partitions does change: The upgrade process moves managed files to
/warehouse/tablespace/managed/hive. By default, Hive places any new external tables you create in HDP 3.x in /
warehouse/tablespace/external/hive.

The /apps/hive directory, which is the former location of the Hive 2.x warehouse, might or might not exist in HDP
3.x.

For disaster recovery, Hive supports incremental replication of tables from one cluster to another.

ACID table conversion

During the upgrade process, you can override the conversion of ACID v1 tables to ACID v2. For example, you can
choose to first convert everything except ACID v1 tables to external tables, and then later convert them to ACID
tables one by one.

9

https://docs.hortonworks.com/HDPDocuments/DAS/DAS-1.4.4/installation/content/das_installation_roadmap.html

Data Access Apache Hive 3 upgrade process

After upgrading, to convert a non-transactional table to an ACID v2 transactional table, you use the ALTER TABLE
command and set table properties to 'transaction'='true'.For example:

ALTER TABLE T3 SET TBLPROPERTIES ('transactional'='true');

Related Information
Prepare Hive for Upgrade

Convert Hive CLI scripts to Beeline
If you have legacy scripts that execute Hive queries from edge nodes using the Hive CLI, you must solve potential
incompatibilities with variable substitution in these scripts. HDP 3.0 and later supports Beeline instead of Hive CLI.
You can use Beeline to run legacy scripts with a few caveats.

About this task

In this task, you resolve incompatibilities in legacy Hive CLI scripts and Beeline:

• Configuration variables

• Problem: You cannot refer to configuration parameters in scripts using the hiveconf namespace unless
allowed.

• Solution: You include the parameter in the HiveServer whitelist.
• Namespace problems

• Problem: Beeline does not support the system and env namespaces for variables.
• Solution: You remove these namespace references from scripts using a conversion technique described in this

task.

Procedure

1. Create a conversion script named env_to_hivevar.sh that removes env references in your SQL scripts.

#!/usr/bin/env bash

CMD_LINE=""

#Blank conversion of all env scoped values
for I in `env`; do
 CMD_LINE="$CMD_LINE --hivevar env:${I} "
done
echo ${CMD_LINE}

2. On the command line of a node in your cluster, define and export a variable named HIVEVAR, for example, and
set it to execute the conversion script.

export HIVEVAR=`./env_to_hivevar.sh`

3. Define and export variables to hold a few variables for testing the conversion.

export LOC_TIME_ZONE="US/EASTERN"
export MY_TEST_VAR="TODAY"

4. On the command line of a cluster node, test the conversion: Execute a command that references HIVEVAR to
parse a SQL statement, remove the incompatible env namespace, and execute the remaining SQL.

hive ${HIVEVAR} -e 'select "${env:LOC_TIME_ZONE}";'

+-------------+

10

https://docs.hortonworks.com/HDPDocuments/Ambari-2.7.3.0/bk_ambari-upgrade-major/content/prepare_hive_for_upgrade.html

Data Access Apache Hive 3 upgrade process

| _c0 |
+-------------+
| US/EASTERN |
+-------------+

5. Create a text file named init_var.sql to simulate a legacy script that sets two configuration parameters, one in the
problematic env namespace.

set mylocal.test.var=hello;
set mylocal.test.env.var=${env:MY_TEST_VAR};

6. Whitelist these configuration parameters: In Ambari, go to Hive > Configs > Advanced > Custom hiveserver2-
site.

7. Add the property key: hive.security.authorization.sqlstd.confwhitelist.append.

8. Provide the property value, or values, to whitelist, for example: mylocal\..*|junk.

This action appends mylocal.test.var and mylocal.test.env.var parameters to the whitelist.

9. Save configuration changes, and restart any components as required.

10. Execute a command that references HIVEVAR to parse a SQL script, removes the incompatible env namespace,
and executes the remaining SQL, including the whitelisted configuration parameters identified by hiveconf:.

hive -i init_var.sql ${HIVEVAR} -e 'select
 "${hiveconf:mylocal.test.var}","${hiveconf:mylocal.test.env.var}";'

+--------+--------+
| _c0 | _c1 |
+--------+--------+
| hello | TODAY |
+--------+--------+

Related Information
Apache Wiki: Language Manual Variable Substitution

Hive Semantic and Syntax Changes

Creating a table
To improve useability and functionality, Hive 3 significantly changed table creation.

Hive has changed table creation in the following ways:

• Creates ACID-compliant table, which is the default in HDP
• Supports simple writes and inserts
• Writes to multiple partitions
• Inserts multiple data updates in a single SELECT statement
• Eliminates the need for bucketing.

If you have an ETL pipeline that creates tables in Hive, the tables will be created as ACID. Hive now tightly controls
access and performs compaction periodically on the tables. The way you access managed Hive tables from Spark and
other clients changes. In CDP, access to external tables requires you to set up security access permissions.

Before Upgrade

In HDP 2.6.5, by default CREATE TABLE created a non-ACID table.

After Upgrade

By default CREATE TABLE creates a full, ACID transactional table in ORC format.

11

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution

Data Access Apache Hive 3 upgrade process

Action Required

To access Hive ACID tables from Spark, you connect to Hive using the Hive Warehouse Connector (HWC). To write
ACID tables to Hive from Spark, you use the HWC and HWC API. Set up Ranger policies and HDFS ACLs for
tables.

Escaping db.table references
You need to change queries that use db.table references to prevent Hive from interpreting the entire db.table string as
the table name.

About this task
For ANSI SQL compliance, Hive 3.x rejects `db.table` in SQL queries. A dot (.) is not allowed in table names. You
enclose the database name and the table name in backticks.

Procedure

1. Find a table having the problematic table reference.

math.students

appears in a CREATE TABLE statement.

2. Enclose the database name and the table name in backticks.

 CREATE TABLE `math`.`students` (name VARCHAR(64), age INT, gpa
 DECIMAL(3,2));

Casting timestamps
Results of applications that cast numerics to timestamps differ from Hive 2 to Hive 3. Apache Hive changed the
behavior of CAST to comply with the SQL Standard, which does not associate a time zone with the TIMESTAMP
type.

Before Upgrade

Casting a numeric type value into a timestamp could be used to produce a result that reflected the time zone of the
cluster. For example, 1597217764557 is 2020-08-12 00:36:04 PDT. Running the following query casts the numeric to
a timestamp in PDT:

> SELECT CAST(1597217764557 AS TIMESTAMP);
| 2020-08-12 00:36:04 |

After Upgrade

Casting a numeric type value into a timestamp produces a result that reflects the UTC instead of the time zone of the
cluster. Running the following query casts the numeric to a timestamp in UTC.

> SELECT CAST(1597217764557 AS TIMESTAMP);
| 2020-08-12 07:36:04.557 |

Action Required

Change applications. Do not cast from a numeral to obtain a local time zone. Built-in functions from_utc_timestamp
and to_utc_timestamp can be used to mimic behavior before the upgrade.

Renaming tables
To harden the system, Hive data can be stored in HDFS encryption zones. RENAME has been changed to prevent
moving a table outside the same encryption zone or into a no-encryption zone.

12

Data Access Install the Hive service

Before Upgrade

Renaming a managed table moves its HDFS location.

After Upgrade

Renaming a managed table moves its location only if the table is created without a LOCATION clause and is under
its database directory.

Action Required

None

Checking compatibility of column changes
A default configuration change can cause applications that change column types to fail.

Before Upgrade

In HDP 2.x hive.metastore.disallow.incompatible.col.type.changes is false by default to allow changes to
incompatible column types. For example, you can change a STRING column to a column of an incompatible type,
such as MAP<STRING, STRING>. No error occurs.

After Upgrade

The hive.metastore.disallow.incompatible.col.type.changes is true by default. Hive prevents changes to incompatible
column types. Compatible column type changes, such as INT, STRING, BIGINT, are not blocked.

Action Required

Change applications to disallow incompatible column type changes to prevent possible data corruption.

Dropping partitions
The OFFLINE and NO_DROP keywords in the CASCADE clause for dropping partitions causes performance
problems and is no longer supported.

Before Upgrade

You could use OFFLINE and NO_DROP keywords in the CASCADE clause to prevent partitions from being read or
dropped.

After Upgrade

OFFLINE and NO_DROP are not supported in the CASCADE clause.

Action Required

Change applications to remove OFFLINE and NO_DROP from the CASCADE clause. Use an authorization scheme,
such as Ranger, to prevent partitions from being dropped or read.

Install the Hive service

In Ambari, you install the Hive service as you would any other service, and in the process, you configure Hive to use
a database for the Hive Metastore. You can use Oracle, PostgreSQL, or MySQL as the backend database.

About this task

If you use PostgreSQL as the backend database, a supported version later than 9.6 is recommended. Using
PostgreSQL 9.6 or earlier can cause problems. Hive Metastore uses hash indexes for PostgreSQL. Hive also uses
hash indexes for ACID transactions. TC_TXNID_INDEX and HL_TXNID_INDEX can become corrupted. The
workaround is to reindex the corrupted indexes. For example, in PostgreSQL run reindex index tc_txnid_index.

13

Data Access Apache Hive content roadmap

Procedure

1. Configure a database for the Hive Metastore.

• Choose to use an existing database suitable for production work and perform the next step.
• Choose an Ambari installed database, such as MySQL, suitable for development work only, and skip the next

step.

2. If you chose an existing database in the last step, create a hive user and database as described in Ambari
documentation.

3. Obtain the JDBC driver for the database, install, and set up the driver as described in Ambari documentation.

4. In Ambari Services > Hive > Configs, test the connection to the database.

5. Follow prompts from the Ambari wizard to complete the installation.

Apache Hive content roadmap

The content roadmap provides links to the available content resources for Apache Hive.

Table 2: Apache Hive Content roadmap

Task Resources Source Description

Understanding Presentations and Papers about Hive Apache wiki Contains meeting notes, presentations, and
whitepapers from the Apache community.

Getting Started Hive Tutorial Apache wiki Provides a basic overview of Apache Hive and
contains some examples on working with tables,
loading data, and querying and inserting data.

Ambari Install Guide Hortonworks Describes Ambari, an end-to-end management
and monitoring solution for your HDP cluster.
Using the Ambari Web UI and REST APIs,
you can deploy, operate, manage configuration
changes, and monitor services for all nodes in
your cluster from a central point.

Ambari Upgrade Guide Hortonworks Covers how Ambari and the HDP Stack
being managed by Ambari can be upgraded
independently, getting ready to upgrade Ambari
and HDP, upgrading Ambari, and upgrading
HDP.

Installing Hive Apache wiki Describes how to install Apache Hive separate
from the HDP environment.

Installing and
Upgrading

Configuring Hive Apache wiki Describes how to configure Apache Hive separate
from the HDP environment and troubleshoot Hive
in HDP.

Setting Up the Metastore Apache wiki Describes the metastore parameters.Administering

Setting Up Hive Server Apache wiki Describes how to set up the server. How to
use a client with this server is described in the
HiveServer2 Clients document.

Materialized Views Apache wiki Covers accelerating query processing in data
warehouses by pre-computing summaries using
materialized views.

JdbcStorageHandler Apache wiki Describes how to read from a JDBC data source
in Hive.

Hive transactions Apache wiki Describes ACID operations in Hive.

Developing

Hive Streaming API Apache wiki Explains how to use an API for pumping data
continuously into Hive using clients such as NiFi
and Flume.

14

https://cwiki.apache.org/confluence/display/Hive/Presentations
https://cwiki.apache.org/confluence/display/Hive/Tutorial
https://docs.hortonworks.com/HDPDocuments/Ambari-2.7.3.0/bk_ambari-installation/content/ch_Getting_Ready.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.7.3.0/bk_ambari-upgrade-major/content/ambari_upgrade_guide.html
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Installation
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Configuration
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+3.0+Administration
https://cwiki.apache.org/confluence/display/Hive/AdminManual+SettingUpHiveServer
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/Materialized+views
https://cwiki.apache.org/confluence/display/Hive/JdbcStorageHandler
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions
https://cwiki.apache.org/confluence/display/Hive/Streaming+Data+Ingest+V2

Data Access Apache Hive content roadmap

Task Resources Source Description

Hive Operators and Functions Apache wiki Describes the Language Manual UDF.

Beeline: HiveServer2 Client Apache wiki Describes how to use the Beeline client.

Interactive Queries
with Apache Hive
LLAP

Setting up Hive LLAP

Hive LLAP on Your Cluster

YouTube video: Enable Hive LLAP on
HDP 2.6 for Interactive SQL

Hortonworks Apache Hive enables interactive and sub-second
SQL through low-latency analytical processing
(LLAP), which makes Hive faster by using
persistent query infrastructure and optimized data
caching.

Hive-Spark Integration Integrating Apache Hive with Apache
Spark - Hive Warehouse Connector

Hortonworks
Community
Connection

Describes how to read and write data between
Spark and Hive.

Hive-HBase
Integration

HBaseIntegration wiki Apache wiki Describes how to integrate the two data access
components so that Hive queries can access
HBase tables for both read (SELECT) and write
(INSERT) operations.

Javadocs Apache wikiReference

SQL Language Manual Apache wiki

Language reference documentation available in
the Apache wiki.

Hive Developer FAQ Apache wiki

How to Contribute Apache wiki

Hive Developer Guide Apache wiki

Plug-in Developer Kit Apache wiki

Unit Test Parallel Execution Apache wiki

Hive Architecture Overview Apache wiki

Hive Design Docs Apache wiki

Contributing

Project Bylaws Apache wiki

Resources available if you want to contribute to
the Apache community.

Hive Mailing Lists Apache wiki

Hive on Amazon Web Services Apache wiki

Other resources

Hive on Amazon Elastic MapReduce Apache wiki

Additional resources available.

15

https://cwiki.apache.org/confluence/display/Hive/OperatorsAndFunctions
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/performance-tuning/content/hive_setting_up_llap.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/performance-tuning/content/hive_monitor_llap_resources.html
https://www.youtube.com/watch?v=yQWV_wZYNEk
https://www.youtube.com/watch?v=yQWV_wZYNEk
https://community.hortonworks.com/content/kbentry/223626/integrating-apache-hive-with-apache-spark-hive-war.html
https://community.hortonworks.com/content/kbentry/223626/integrating-apache-hive-with-apache-spark-hive-war.html
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
http://hive.apache.org/javadocs/r1.2.2/api/index.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://cwiki.apache.org/confluence/display/Hive/HiveDeveloperFAQ
https://cwiki.apache.org/confluence/display/Hive/HowToContribute
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide
https://cwiki.apache.org/confluence/display/Hive/PluginDeveloperKit
https://cwiki.apache.org/confluence/display/Hive/Unit+Test+Parallel+Execution
https://cwiki.apache.org/confluence/display/Hive/Design
https://cwiki.apache.org/confluence/display/Hive/DesignDocs
https://cwiki.apache.org/confluence/display/Hive/Bylaws
http://hive.apache.org/mailing_lists.html#Users
https://cwiki.apache.org/confluence/display/Hive/HiveAws
https://cwiki.apache.org/confluence/display/Hive/HiveAmazonElasticMapReduce

	Contents
	What's new in this release: Apache Hive
	Apache Hive 3 architectural overview
	Apache Hive 3 upgrade process
	Changes after upgrading to Apache Hive 3
	Convert Hive CLI scripts to Beeline
	Hive Semantic and Syntax Changes
	Creating a table
	Escaping db.table references
	Casting timestamps
	Renaming tables
	Checking compatibility of column changes
	Dropping partitions

	Install the Hive service
	Apache Hive content roadmap

