
Apache Spark 3

Running Apache Spark Applications
Date of Publish: 2018-04-01

http://docs.hortonworks.com

http://docs.hortonworks.com

Contents

Introduction... 3

Running Sample Spark Applications... 3

Running Spark in Docker Containers on YARN..5

Submitting Spark Applications Through Livy.. 14
Using Livy with Spark... 14
Using Livy with interactive notebooks.. 14
Using the Livy API to run Spark jobs: overview..15
Running an Interactive Session With the Livy API.. 16

Livy Objects for Interactive Sessions.. 17
Set Path Variables for Python..19
Livy API Reference for Interactive Sessions...19

Submitting Batch Applications Using the Livy API... 21
Livy Batch Object...22
Livy API Reference for Batch Jobs...22

Running PySpark in a Virtual Environment...23

Automating Spark Jobs with Oozie Spark Action.. 24

Apache Spark Introduction

Introduction

You can run Spark interactively or from a client program:

• Submit interactive statements through the Scala, Python, or R shell, or through a high-level notebook such as
Zeppelin.

• Use APIs to create a Spark application that runs interactively or in batch mode, using Scala, Python, R, or Java.

To launch Spark applications on a cluster, you can use the spark-submit script in the Spark bin directory. You can
also use the API interactively by launching an interactive shell for Scala (spark-shell), Python (pyspark), or SparkR.
Note that each interactive shell automatically creates SparkContext in a variable called sc. For more informationa
about spark-submit, see the Apache Spark document "Submitting Applications".

Alternately, you can use Livy to submit and manage Spark applications on a cluster. Livy is a Spark service that
allows local and remote applications to interact with Apache Spark over an open source REST interface. Livy offers
additional multi-tenancy and security functionality. For more information about using Livy to run Spark Applications,
see "Submitting Spark Applications through Livy" in this guide.

Related Information
Submitting Applications

Running Sample Spark Applications

About this task

You can use the following sample Spark Pi and Spark WordCount sample programs to validate your Spark
installation and explore how to run Spark jobs from the command line and Spark shell.

Spark Pi

You can test your Spark installation by running the following compute-intensive example, which calculates pi by
“throwing darts” at a circle. The program generates points in the unit square ((0,0) to (1,1)) and counts how many
points fall within the unit circle within the square. The result approximates pi.

Follow these steps to run the Spark Pi example:

1. Log in as a user with Hadoop Distributed File System (HDFS) access: for example, your spark user, if you defined
one, or hdfs.

When the job runs, the library is uploaded into HDFS, so the user running the job needs permission to write to
HDFS.

2. Navigate to a node with a Spark client and access the spark2-client directory:

cd /usr/hdp/current/spark2-client

su spark
3. Run the Apache Spark Pi job in yarn-client mode, using code from org.apache.spark:

./bin/spark-submit --class org.apache.spark.examples.SparkPi \
 --master yarn-client \
 --num-executors 1 \
 --driver-memory 512m \
 --executor-memory 512m \
 --executor-cores 1 \
 examples/jars/spark-examples*.jar 10

3

http://spark.apache.org/docs/2.0.0/submitting-applications.html

Apache Spark Running Sample Spark Applications

Commonly used options include the following:

--class The entry point for your application: for example,
org.apache.spark.examples.SparkPi.

--master The master URL for the cluster: for example,
spark://23.195.26.187:7077.

--deploy-mode Whether to deploy your driver on the worker nodes
(cluster) or locally as an external client (default is
client).

--conf Arbitrary Spark configuration property in key=value
format. For values that contain spaces, enclose
“key=value” in double quotation marks.

<application-jar> Path to a bundled jar file that contains your application
and all dependencies. The URL must be globally
visible inside of your cluster: for instance, an hdfs://
path or a file:// path that is present on all nodes.

<application-arguments> Arguments passed to the main method of your main
class, if any.

Your job should produce output similar to the following. Note the value of pi in the output.

17/03/22 23:21:10 INFO DAGScheduler: Job 0 finished: reduce at
 SparkPi.scala:38, took 1.302805 s
Pi is roughly 3.1445191445191445

You can also view job status in a browser by navigating to the YARN ResourceManager Web UI and viewing job
history server information. (For more information about checking job status and history, see "Tuning Spark" in
this guide.)

WordCount

WordCount is a simple program that counts how often a word occurs in a text file. The code builds a dataset of
(String, Int) pairs called counts, and saves the dataset to a file.

The following example submits WordCount code to the Scala shell:

1. Select an input file for the Spark WordCount example.

You can use any text file as input.
2. Log on as a user with HDFS access: for example, your spark user (if you defined one) or hdfs.

The following example uses log4j.properties as the input file:

cd /usr/hdp/current/spark2-client/

su spark
3. Upload the input file to HDFS:

hadoop fs -copyFromLocal /etc/hadoop/conf/log4j.properties
 /tmp/data

4. Run the Spark shell:

./bin/spark-shell --master yarn-client --driver-memory 512m --executor-
memory

4

Apache Spark Running Spark in Docker Containers on YARN

 512m

You should see output similar to the following (with additional status messages):

Spark context Web UI available at http://172.26.236.247:4041
Spark context available as 'sc' (master = yarn, app id =
 application_1490217230866_0002).
Spark session available as 'spark'.
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /___/ .__/_,_/_/ /_/_\ version 2.1.0.2.6.0.0-598
 /_/

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java
 1.8.0_112)
Type in expressions to have them evaluated.
Type :help for more information.

scala>

5. At the scala> prompt, submit the job by typing the following commands, replacing node names, file name, and file
location with your own values:

val file = sc.textFile("/tmp/data")
val counts = file.flatMap(line => line.split(" ")).map(word => (word,
 1)).reduceByKey(_ + _)
counts.saveAsTextFile("/tmp/wordcount")

6. Use one of the following approaches to view job output:

• View output in the Scala shell:

scala> counts.count()

• View the full output from within the Scala shell:

scala> counts.toArray().foreach(println)

• View the output using HDFS:

a. Exit the Scala shell.
b. View WordCount job status:

hadoop fs -ls /tmp/wordcount

You should see output similar to the following:

/tmp/wordcount/_SUCCESS
/tmp/wordcount/part-00000
/tmp/wordcount/part-00001

c. Use the HDFS cat command to list WordCount output:

hadoop fs -cat /tmp/wordcount/part-00000

Running Spark in Docker Containers on YARN

5

Apache Spark Running Spark in Docker Containers on YARN

About this task

Apache Spark applications usually have a complex set of required software dependencies. Spark applications may
require specific versions of these dependencies (such as Pyspark and R) on the Spark executor hosts, sometimes with
conflicting versions. Installing these dependencies creates package isolation and organizational challenges, which
have typically been managed by specialized operations teams. Virtualization solutions such as Virtualenv or Conda
can be complex and inefficient due to per-application dependency downloads.

Docker support in Apache Hadoop 3 enables you to containerize dependencies along with an application in a Docker
image, which makes it much easier to deploy and manage Spark applications on YARN.

Before you begin

To enable Docker support in YARN, refer to the following documentation:

"Configure YARN for running Docker containers" in the HDP Managing Data Operating System guide.

"Launching Applications Using Docker Containers" in the Apache Hadoop 3.1.0 YARN documentation.

Links to these documents are available at the bottom of this topic.

Containerized Spark: Bits and Configuration

The base Spark and Hadoop libraries and related configurations installed on the gateway hosts are distributed
automatically to all of the Spark hosts in the cluster using the Hadoop distributed cache, and are mounted into the
Docker containers automatically by YARN.

In addition, any binaries (–files, –jars, etc.) explicitly included by the user when the application is submitted are also
made available via the distributed cache.

6

Apache Spark Running Spark in Docker Containers on YARN

Spark Configuration

YARN Client Mode

In YARN client mode, the driver runs in the submission client’s JVM on the gateway machine. Spark client mode is
typically used through Spark-shell.

The YARN application is submitted as part of the SparkContext initialization at the driver. In YARN Client mode the
ApplicationMaster is a proxy for forwarding YARN allocation requests, container status, etc., from and to the driver.

In this mode, the Spark driver runs on the gateway hosts as a java process, and not in a YARN container. Hence,
specifying any driver-specific YARN configuration to use Docker or Docker images will not take effect. Only Spark
executors will run in Docker containers.

7

Apache Spark Running Spark in Docker Containers on YARN

During submission, deploy mode is specified as client using –deploy-mode=client with the following executor
container environment variables:

Settings for Executors

spark.executorEnv.YARN_CONTAINER_RUNTIME_TYPE=docker

spark.executorEnv.YARN_CONTAINER_RUNTIME_DOCKER_IMAGE=<spark executor’s
 docker-image>

spark.executorEnv.YARN_CONTAINER_RUNTIME_DOCKER_MOUNTS=<any volume mounts
 needed by the spark application>

YARN Cluster Mode

In the "classic" distributed application YARN cluster mode, a user submits a Spark job to be executed, which is
scheduled and executed by YARN. The ApplicationMaster hosts the Spark driver, which is launched on the cluster in
a Docker container.

8

Apache Spark Running Spark in Docker Containers on YARN

During submission, deploy mode is specified as cluster using –deploy-mode=cluster. Along with the executor’s
Docker container configurations, the driver/app master’s Docker configurations can be set through environment
variables during submission. Note that the driver’s Docker image can be customized with settings that are different
than the executor’s image.

Additional Settings for Driver

spark.yarn.appMasterEnv.YARN_CONTAINER_RUNTIME_TYPE=docker

spark.yarn.appMasterEnv.YARN_CONTAINER_RUNTIME_DOCKER_IMAGE=<docker-image>

spark.yarn.appMasterEnv.YARN_CONTAINER_RUNTIME_DOCKER_MOUNTS=/etc/passwd:/
etc/passwd:ro

In the remainder of this topic, we will use YARN client mode.

Spark-R Example

In this example, Spark-R is used (in YARN client mode) with a Docker image that includes the R binary and the
necessary R packages (rather than installing these on the host).

Spark-R Shell

/usr/hdp/current/spark2-client/bin/sparkR --master yarn

--conf spark.executorEnv.YARN_CONTAINER_RUNTIME_TYPE=docker

--conf spark.executorEnv.YARN_CONTAINER_RUNTIME_DOCKER_IMAGE=spark-r-demo

--conf spark.executorEnv.YARN_CONTAINER_RUNTIME_DOCKER_MOUNTS=/etc/passwd:/
etc/passwd:ro

9

Apache Spark Running Spark in Docker Containers on YARN

Dockerfile

10

Apache Spark Running Spark in Docker Containers on YARN

PySpark Example

This example shows how to use PySpark (in YARN client mode) with Python3 (which is part of the Docker image
and is not installed on the executor host) to run OLS linear regression for each group using statsmodels with all the
dependencies isolated through the Docker image.

The Python version can be customized using the PYSPARK_DRIVER_PYTHON and PYSPARK_PYTHON
environment variables on the Spark driver and executor respectively.

PYSPARK_DRIVER_PYTHON=python3.6 PYSPARK_PYTHON=python3.6 pyspark --master
 yarn --conf
spark.executorEnv.YARN_CONTAINER_RUNTIME_TYPE=docker --conf
 spark.executorEnv.
YARN_CONTAINER_RUNTIME_DOCKER_IMAGE=pandas-demo --conf spark.executorEnv.
YARN_CONTAINER_RUNTIME_DOCKER_MOUNTS=/etc/passwd:/etc/passwd:ro

11

Apache Spark Running Spark in Docker Containers on YARN

Dockerfile

12

Apache Spark Running Spark in Docker Containers on YARN

Running Containerized Spark Jobs Using Zeppelin

To run containerized Spark using Apache Zeppelin, configure the Docker image, the runtime volume mounts, and the
network as shown below in the Zeppelin Interpreter settings (under User (e.g.: admin) > Interpreter) in the Zeppelin
UI.

Configuring the Livy Interpreter

You can also configure Docker images, volume, etc. for other Zeppelin interpreters.

13

Apache Spark Submitting Spark Applications Through Livy

You must restart the interpreter(s) in order for these new settings to take effect. You can then submit Spark
applications as before in Zeppelin to launch them using Docker containers.

Related Information
Configure YARN for running Docker containers

Launching Applications Using Docker Containers

Submitting Spark Applications Through Livy

Livy is a Spark service that allows local and remote applications to interact with Apache Spark over an open source
REST interface.

You can use Livy to submit and manage Spark jobs on a cluster. Livy extends Spark capabilities, offering additional
multi-tenancy and security features. Applications can run code inside Spark without needing to maintain a local Spark
context.

Features include the following:

• Jobs can be submitted from anywhere, using the REST API.
• Livy supports user impersonation: the Livy server submits jobs on behalf of the user who submits the requests.

Multiple users can share the same server ("user impersonation" support). This is important for multi-tenant
environments, and it avoids unnecessary permission escalation.

• Livy supports security features such as Kerberos authentication and wire encryption.

• REST APIs are backed by SPNEGO authentication, which the requested user should get authenticated by
Kerberos at first.

• RPCs between Livy Server and Remote SparkContext are encrypted with SASL.
• The Livy server uses keytabs to authenticate itself to Kerberos.

Livy supports programmatic and interactive access to Spark with Scala:

• Use an interactive notebook to access Spark through Livy.
• Develop a Scala, Java, or Python client that uses the Livy API. The Livy REST API supports full Spark

functionality including SparkSession, and SparkSession with Hive enabled.
• Run an interactive session, provided by spark-shell, PySpark, or SparkR REPLs.
• Submit batch applications to Spark.

Code runs in a Spark context, either locally or in YARN; YARN cluster mode is recommended.

To install Livy on an Ambari-managed cluster, see "Installing Spark Using Ambari" in this guide. For additional
configuration steps, see "Configuring the Livy Server" in this guide.

Using Livy with Spark

Scala Support

Livy supports Scala versions 2.10 and 2.11.

For default Scala builds, Spark 2.0 with Scala 2.11, Livy automatically detects the correct Scala version and
associated jar files.

If you require a different Spark-Scala combination, such as Spark 2.0 with Scala 2.10, set livy.spark.scalaVersion to
the desired version so that Livy uses the right jar files.

Using Livy with interactive notebooks

14

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/data-operating-system/content/configure_yarn_for_running_docker_containers.html
https://hadoop.apache.org/docs/r3.1.0/hadoop-yarn/hadoop-yarn-site/DockerContainers.html

Apache Spark Submitting Spark Applications Through Livy

You can submit Spark commands through Livy from an interactive Apache Zeppelin notebook:

When you run code in a Zeppelin notebook using the %livy directive, the notebook offloads code execution to Livy
and Spark:

For more information about Zeppelin and Livy, see the HDP Apache Zeppelin guide.

Using the Livy API to run Spark jobs: overview
Using the Livy API to run Spark jobs is similar to using the original Spark API.

The following two examples calculate Pi.

Calculate Pi using the Spark API:

def sample(p):
 x, y = random(), random()
 return 1 if x*x + y*y < 1 else 0
 count = sc.parallelize(xrange(0, NUM_SAMPLES)).map(sample) \
 .reduce(lambda a, b: a + b)

15

Apache Spark Submitting Spark Applications Through Livy

Calculate Pi using the Livy API:

def f(_):
 x = random() * 2 - 1
 y = random() * 2 - 1
 return 1 if x ** 2 + y ** 2 <= 1 else 0
 def pi_job(context):
 count = context.sc.parallelize(range(1, samples + 1),
 slices).map(f).reduce(add)
 return 4.0 * count / samples

There are two main differences between the two APIs:

• When using the Spark API, the entry point (SparkContext) is created by user who wrote the code. When using the
Livy API, SparkContext is offered by the framework; the user does not need to create it.

• The client submits code to the Livy server through the REST API. The Livy server sends the code to a specific
Spark cluster for execution.

Architecturally, the client creates a remote Spark cluster, initializes it, and submits jobs through REST APIs. The
Livy server unwraps and rewraps the job, and then sends it to the remote SparkContext through RPC. While the job
runs the client waits for the result, using the same path. The following diagram illustrates the process:

Related Information
Apache Spark Examples

Running an Interactive Session With the Livy API

About this task

Running an interactive session with Livy is similar to using Spark shell or PySpark, but the shell does not run locally.
Instead, it runs in a remote cluster, transferring data back and forth through a network.

The Livy REST API supports GET, POST, and DELETE calls for interactive sessions.

The following example shows how to create an interactive session, submit a statement, and retrieve the result of the
statement; the return ID could be used for further queries.

16

http://spark.apache.org/examples.html

Apache Spark Submitting Spark Applications Through Livy

Procedure

1. Create an interactive session. The following POST request starts a new Spark cluster with a remote Spark
interpreter; the remote Spark interpreter is used to receive and execute code snippets, and return the result.

POST /sessions
 host = 'http://localhost:8998'
 data = {'kind': 'spark'}
 headers = {'Content-Type': 'application/json'}
 r = requests.post(host + '/sessions', data=json.dumps(data),
 headers=headers)
 r.json()

{u'state': u'starting', u'id': 0, u'kind': u'spark'}

2. Submit a statement. The following POST request submits a code snippet to a remote Spark interpreter, and returns
a statement ID for querying the result after execution is finished.

POST /sessions/{sessionId}/statements
 data = {'code': 'sc.parallelize(1 to 10).count()'}
 r = requests.post(statements_url, data=json.dumps(data),
 headers=headers)
 r.json()

{u'output': None, u'state': u'running', u'id': 0}

3. Get the result of a statement. The following GET request returns the result of a statement in JSON format, which
you can parse to extract elements of the result.

GET /sessions/{sessionId}/statements/{statementId}
 statement_url = host + r.headers['location']
 r = requests.get(statement_url, headers=headers)
 pprint.pprint(r.json())

{u'id': 0,
 u'output': {u'data': {u'text/plain': u'res0: Long = 10'},
 u'execution_count': 0,
 u'status': u'ok'},
 u'state': u'available'}

The remainder of this section describes Livy objects and REST API calls for interactive sessions.

Livy Objects for Interactive Sessions

Session Object

A session object represents an interactive shell:

Property Description Type

id A non-negative integer that represents a
specific session of interest

int

appId Application ID for this session string

owner Remote user who submitted this session string

proxyUser User ID to impersonate when running string

kind Session kind (see the following "kind" table
for values)

session kind

log Log file data list of strings

state Session state (see the following "state" table
for values)

string

17

Apache Spark Submitting Spark Applications Through Livy

Property Description Type

appInfo Detailed application information key=value map

The following values are valid for the kind property in a session object:

Value Description

spark Interactive Scala Spark session

pyspark Interactive Python 2 Spark session

pyspark3 Interactive Python 3 Spark session

sparkr Interactive R Spark session

The following values are valid for the state property in a session object:

Value Description

not_started Session has not started

starting Session is starting

idle Session is waiting for input

busy Session is executing a statement

shutting_down Session is shutting down

error Session terminated due to an error

dead Session exited

success Session successfully stopped

Statement Object

A statement object represents the result of an execution statement.

Property Description Type

id A non-negative integer that represents a
specific statement of interest

integer

state Execution state (see the following "state" table
for values)

statement state

output Execution output (see the following "output"
table for values)

statement output

The following values are valid for the state property in a statement object:

value Description

waiting Statement is queued, execution has not started

running Statement is running

available Statement has a response ready

error Statement failed

cancelling Statement is being cancelled

cancelled Statement is cancelled

The following values are valid for the output property in a statement object:

Property Description Type

status Execution status, such as "starting", "idle", or
"available".

string

18

Apache Spark Submitting Spark Applications Through Livy

Property Description Type

execution_count Execution count integer (monotonically increasing)

data Statement output An object mapping a mime type to the result.
If the mime type is application/json, the value
is a JSON value.

Set Path Variables for Python

To change the Python executable used by a Livy session, follow the instructions for your version of Python.

pyspark

Livy reads the path from the PYSPARK_PYTHON environment variable (this is the same as PySpark).

• If Livy is running in local mode, simply set the environment variable (this is the same as PySpark).
• If the Livy session is running in yarn-cluster mode, setspark.yarn.appMasterEnv.PYSPARK_PYTHON in the

SparkConf file, so that the environment variable is passed to the driver.

pyspark3

Livy reads the path from environment variable PYSPARK3_PYTHON.

• If Livy is running in local mode, simply set the environment variable.
• If the Livy session is running in yarn-cluster mode, setspark.yarn.appMasterEnv.PYSPARK3_PYTHON in

SparkConf file, so that the environment variable is passed to the driver.

Livy API Reference for Interactive Sessions

GET

GET /sessions returns all active interactive sessions.

Request Parameter Description Type

from Starting index for fetching sessions int

size Number of sessions to fetch int

Response Description Type

from Starting index of fetched sessions int

total Number of sessions fetched int

sessions Session list list

The following response shows zero active sessions:

 {"from":0,"total":0,"sessions":[]}

GET /sessions/{sessionId} returns information about the specified session.

GET /sessions/{sessionId}/state returns the state of the specified session:

Response Description Type

id A non-negative integer that represents a
specific session

int

state Current state of the session string

GET /sessions/{sessionId}/logs retrieves log records for the specified session.

19

Apache Spark Submitting Spark Applications Through Livy

Request Parameters Description Type

from Offset int

size Maximum number of log records to retrieve int

Response Description Type

id A non-negative integer that represents a
specific session

int

from Offset from the start of the log file int

size Number of log records retrieved int

log Log records list of strings

GET /sessions/{sessionId}/statements returns all the statements in a session.

Response Description Type

statements List of statements in the specified session list

GET /sessions/{sessionId}/statements/{statementId} returns a specified statement in a session.

Response Description Type

statement object (for more information see
"Livy Objects for Interactive Sessions")

Statement statement object

POST

POST /sessions creates a new interactive Scala, Python, or R shell in the cluster.

Request Parameter Description Type

kind Session kind (required) session kind

proxyUser User ID to impersonate when starting the
session

string

jars Jar files to be used in this session list of strings

pyFiles Python files to be used in this session list of strings

files Other files to be used in this session list of strings

driverMemory Amount of memory to use for the driver
process

string

driverCores Number of cores to use for the driver process int

executorMemory Amount of memory to use for each executor
process

string

executorCores Number of cores to use for each executor
process

int

numExecutors Number of executors to launch for this session int

archives Archives to be used in this session list of strings

queue The name of the YARN queue to which the
job should be submitted

string

name Name of this session string

conf Spark configuration properties Map of key=value

heartbeatTimeoutInSecond Timeout in second to which session be
orphaned

int

20

Apache Spark Submitting Spark Applications Through Livy

Response Description Type

session object (for more information see "Livy
Objects for Interactive Sessions")

The created session session object

The following response shows a PySpark session in the process of starting:

 {"id":0,"state":"starting","kind":"pyspark","log":[]}

POST /sessions/{sessionId}/statements runs a statement in a session.

Request Parameter Description Type

code The code to execute string

Response Description Type

statement object (for more information see
"Livy Objects for Interactive Sessions")

Result of an execution statement statement object

POST /sessions/{sessionId}/statements/{statementId}/cancel cancels the specified statement in the session.

Response Description Type

cancellation message Reports "cancelled" string

DELETE

DELETE /sessions/{sessionId} terminates the session.

Submitting Batch Applications Using the Livy API

About this task

Spark provides a spark-submit command for submitting batch applications. Livy provides equivalent functionality
through REST APIs, using job specifications specified in a JSON document.

The following example shows a spark-submit command that submits a SparkPi job, followed by an example that uses
Livy POST requests to submit the job. The remainder of this subsection describes Livy objects and REST API syntax.
For additional examples and information, see the readme.rst file at https://github.com/hortonworks/livy-release/
releases/tag/HDP-2.6.0.3-8-tag.

The following command uses spark-submit to submit a SparkPi job:

./bin/spark-submit \
 --class org.apache.spark.examples.SparkPi \
 --master yarn \
 --deploy-mode cluster \
 --executor-memory 20G \
 /path/to/examples.jar 1000

To submit the SparkPi job using Livy, complete the following steps. Note: the POST request does not upload local
jars to the cluster. You should upload required jar files to HDFS before running the job. This is the main difference
between the Livy API and spark-submit.

Procedure

1. Form a JSON structure with the required job parameters:

{ "className": "org.apache.spark.examples.SparkPi",

21

Apache Spark Submitting Spark Applications Through Livy

 "executorMemory": "20g",
 "args": [2000],
 "file": "/path/to/examples.jar"
 }

2. Specify master and deploy mode in the livy.conf file.

3. To submit the SparkPi application to the Livy server, use the a POST /batches request.

4. The Livy server helps launch the application in the cluster.

Livy Batch Object

Batch session APIs operate on batch objects, defined as follows:

Property Description Type

id A non-negative integer that represents a
specific batch session

int

appId The application ID for this session String

appInfo Detailed application info Map of key=value

log Log records list of strings

state Batch state string

Livy API Reference for Batch Jobs

GET /batches returns all active batch sessions.

Request Parameters Description Type

from Starting index used to fetch sessions int

size Number of sessions to fetch int

Response Description Type

from Starting index of fetched sessions int

total Number of sessions fetched int

sessions List of active batch sessions list

GET /batches/{batchId} returns the batch session information as a batch object.

GET /batches/{batchId}/state returns the state of batch session:

Response Description Type

id A non-negative integer that represents a
specific batch session

int

state The current state of batch session string

GET /batches/{batchId}/log retrieves log records for the specified batch session.

Request Parameters Description Type

from Offset into log file int

size Max number of log lines to return int

Response Description Type

id A non-negative integer that represents a
specific batch session

int

22

Apache Spark Running PySpark in a Virtual Environment

Response Description Type

from Offset from start of the log file int

size Number of log records returned int

log Log records list of strings

POST /batches creates a new batch environment and runs a specified application:

Request Body Description Type

file File containing the application to run
(required)

path

proxyUser User ID to impersonate when running the job string

className Application Java or Spark main class string

args Command line arguments for the application list of strings

jars Jar files to be used in this session list of strings

pyFiles Python files to be used in this session list of strings

files Other files to be used in this session list of strings

driverMemory Amount of memory to use for the driver
process

string

driverCores Number of cores to use for the driver process int

executorMemory Amount of memory to use for each executor
process

string

executorCores Number of cores to use for each executor int

numExecutors Number of executors to launch for this session int

archives Archives to be used in this session list of strings

queue The name of the YARN queue to which the
job should be submitted

string

name Name of this session string

conf Spark configuration properties Map of key=val

Response Description Type

batch object (for more information see "Livy
Batch Object")

The created batch object batch object

DELETE /batches/{batchId} terminates the Batch job.

Running PySpark in a Virtual Environment

For many PySpark applications, it is sufficient to use --py-files to specify dependencies. However, there are times
when --py-files is inconvenient, such as the following scenarios:

• A large PySpark application has many dependencies, including transitive dependencies.
• A large application needs a Python package that requires C code to be compiled before installation.
• You want to run different versions of Python for different applications.

For these situations, you can create a virtual environment as an isolated Python runtime environment. HDP supports
VirtualEnv for PySpark in both local and distributed environments, easing the transition from a local environment to a
distributed environment.

23

Apache Spark Automating Spark Jobs with Oozie Spark Action

Note:

This feature is currently only supported in YARN mode.

Related Information
Using VirtualEnv with PySpark

Automating Spark Jobs with Oozie Spark Action

You can use Apache Spark as part of a complex workflow with multiple processing steps, triggers, and
interdependencies. You can automate Apache Spark jobs using Oozie Spark action.

Before you begin
Spark2 must be installed on the node where the Oozie server is installed.

About Oozie Spark Action

If you use Apache Spark as part of a complex workflow with multiple processing steps, triggers, and
interdependencies, consider using Apache Oozie to automate jobs. Oozie is a workflow engine that executes
sequences of actions structured as directed acyclic graphs (DAGs). Each action is an individual unit of work, such as
a Spark job or Hive query.

The Oozie "Spark action" runs a Spark job as part of an Oozie workflow. The workflow waits until the Spark job
completes before continuing to the next action.

For additional information about Spark action, see the Apache "Oozie Spark Action Extension" documentation. For
general information about Oozie and Workflow Manager, see Workflow Management under Ambari documentation.

Note:

Support for yarn-client execution mode for Oozie Spark action will be removed in a future release. Oozie will
continue to support yarn-cluster execution mode for Oozie Spark action.

Configure Oozie Spark Action for Spark

1. Set up .jar file exclusions.

Oozie distributes its own libraries on the ShareLib, which are included on the classpath. These .jar files
may conflict with each other if some components require different versions of a library. You can use the
oozie.action.sharelib.for.<action_type>.exclude=<value> property to address these scenarios.

In HDP-3.x, Spark2 uses older jackson-* .jar versions than Oozie, which creates a runtime conflict
in Oozie for Spark and generates a NoClassDefFoundError error. This can be resolved by using the
oozie.action.sharelib.for.<action_type>.exclude=<value> property to exclude the oozie/jackson.* .jar files
from the classpath. Libraries matching the regex pattern provided as the property value will not be added to the
distributed cache.

Note: spark2 ShareLib directory will not be created. The named spark directory is used for spark2 libs.

Examples

The following examples show how to use a ShareLib exclude on a Java action.

Actual ShareLib content:

 * /user/oozie/share/lib/lib_20180701/oozie/lib-one-1.5.jar
 * /user/oozie/share/lib/lib_20180701/oozie/lib-two-1.5.jar
 * /user/oozie/share/lib/lib_20180701/java/lib-one-2.6.jar
 * /user/oozie/share/lib/lib_20180701/java/lib-two-2.6.jar

24

https://community.hortonworks.com/articles/104949/using-virtualenv-with-pyspark-1.html

Apache Spark Automating Spark Jobs with Oozie Spark Action

 * /user/oozie/share/lib/lib_20180701/java/component-connector.jar

Setting the oozie.action.sharelib.for.java.exclude property to oozie/lib-one.*= results in the following distributed
cache content:

 * /user/oozie/share/lib/lib_20180701/oozie/lib-two-1.5.jar
 * /user/oozie/share/lib/lib_20180701/java/lib-one-2.6.jar
 * /user/oozie/share/lib/lib_20180701/java/lib-two-2.6.jar
 * /user/oozie/share/lib/lib_20180701/java/component-connector.jar

Setting the oozie.action.sharelib.for.java.exclude property to oozie/lib-one.*|component-connector.jar= results in
the following distributed cache content:

 * /user/oozie/share/lib/lib_20180701/oozie/lib-two-1.5.jar
 * /user/oozie/share/lib/lib_20180701/java/lib-one-2.6.jar
 * /user/oozie/share/lib/lib_20180701/java/lib-two-2.6.jar

2. Run the Oozie shareliblist command to verify the configuration. You should see spark in the results.

oozie admin –shareliblist spark

The following examples show a workflow definition XML file, an Oozie job configuration file, and a Python script
for running a Spark2-Pi job.

Sample Workflow.xml file for spark2-Pi:

<workflow-app xmlns='uri:oozie:workflow:0.5' name='SparkPythonPi'>
 <start to='spark-node' />

 <action name='spark-node'>
 <spark xmlns="uri:oozie:spark-action:0.1">
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <master>${master}</master>
 <name>Python-Spark-Pi</name>
 <jar>pi.py</jar>
 </spark>
 <ok to="end" />
 <error to="fail" />
 </action>

 <kill name="fail">
 <message>Workflow failed, error message
 [${wf:errorMessage(wf:lastErrorNode())}]</message>
 </kill>
 <end name='end' />
 </workflow-app>

Sample Job.properties file for spark2-Pi:

nameNode=hdfs://host:8020
jobTracker=host:8050
queueName=default
examplesRoot=examples
oozie.use.system.libpath=true
oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/
apps/pyspark
master=yarn-cluster
oozie.action.sharelib.for.spark=spark2

25

Apache Spark Automating Spark Jobs with Oozie Spark Action

Sample Python script, lib/pi.py:

import sys
from random import random
from operator import add
from pyspark import SparkContext

if __name__ == "__main__":
"""
Usage: pi [partitions]
"""
sc = SparkContext(appName="Python-Spark-Pi")
partitions = int(sys.argv[1]) if len(sys.argv) > 1 else 2
n = 100000 * partitions

def f(_):
x = random() * 2 - 1
y = random() * 2 - 1
return 1 if x ** 2 + y ** 2 < 1 else 0

count = sc.parallelize(range(1, n + 1), partitions).map(f).reduce(add)
print("Pi is roughly %f" % (4.0 * count / n))

sc.stop()

Troubleshooting .jar file conflicts with Oozie Spark action

When using Oozie Spark action, Oozie jobs may fail with the following error if there are .jar file conflicts between
the "oozie" ShareLib and the "spark" ShareLib.

2018-06-04 13:27:32,652 WARN SparkActionExecutor:523 - SERVER[XXXX]
 USER[XXXX] GROUP[-] TOKEN[] APP[XXXX] JOB[0000000-<XXXXX>-oozie-oozi-W]
 ACTION[0000000-<XXXXXX>-oozie-oozi-W@spark2] Launcher exception: Attempt
 to add (hdfs://XXXX/user/oozie/share/lib/lib_XXXXX/oozie/aws-java-sdk-
kms-1.10.6.jar) multiple times to the distributed cache.
java.lang.IllegalArgumentException: Attempt to add (hdfs://XXXXX/user/oozie/
share/lib/lib_20170727191559/oozie/aws-java-sdk-kms-1.10.6.jar) multiple
 times to the distributed cache.
at org.apache.spark.deploy.yarn.Client$anonfun$prepareLocalResources
13anonfun$apply$8.apply(Client.scala:632)
at org.apache.spark.deploy.yarn.Client$anonfun$prepareLocalResources
13anonfun$apply$8.apply(Client.scala:623)
at scala.collection.mutable.ArraySeq.foreach(ArraySeq.scala:74)
at org.apache.spark.deploy.yarn.Client$anonfun$prepareLocalResources
$13.apply(Client.scala:623)
at org.apache.spark.deploy.yarn.Client$anonfun$prepareLocalResources
$13.apply(Client.scala:622)
at scala.collection.immutable.List.foreach(List.scala:381)
at
 org.apache.spark.deploy.yarn.Client.prepareLocalResources(Client.scala:622)
at
 org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.scala:895)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:171)
at org.apache.spark.deploy.yarn.Client.run(Client.scala:1231)
at org.apache.spark.deploy.yarn.Client$.main(Client.scala:1290)
at org.apache.spark.deploy.yarn.Client.main(Client.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at
 sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at
 sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)

26

Apache Spark Automating Spark Jobs with Oozie Spark Action

at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit
$runMain(SparkSubmit.scala:750)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
at org.apache.oozie.action.hadoop.SparkMain.runSpark(SparkMain.java:311)
at org.apache.oozie.action.hadoop.SparkMain.run(SparkMain.java:232)
at org.apache.oozie.action.hadoop.LauncherMain.run(LauncherMain.java:58)
at org.apache.oozie.action.hadoop.SparkMain.main(SparkMain.java:62)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at
 sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at
 sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at
 org.apache.oozie.action.hadoop.LauncherMapper.map(LauncherMapper.java:237)
at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:54)
at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:453)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:343)
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:170)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at
 org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1866)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:164)

Run the following commands to resolve this issue.

Note:

You may need to perform a backup before running the rm commands.

hadoop fs -rm /user/oozie/share/lib/lib_<ts>/spark/aws*
hadoop fs -rm /user/oozie/share/lib/lib_<ts>/spark/azure*
hadoop fs -rm /user/oozie/share/lib/lib_<ts>/spark/hadoop-aws*
hadoop fs -rm /user/oozie/share/lib/lib_<ts>/spark/hadoop-azure*
hadoop fs -rm /user/oozie/share/lib/lib_<ts>/spark/ok*
hadoop fs -mv /user/oozie/share/lib/lib_<ts>/oozie/jackson* /user/oozie/
share/lib/lib_<ts>/oozie.old

Next, run the following command to update the Oozie ShareLib:

oozie admin -oozie http://<oozie-server-hostname>:11000/oozie -
sharelibupdate

Related Information
Oozie Spark Action Extension

27

https://oozie.apache.org/docs/4.2.0/DG_SparkActionExtension.html

	Contents
	Introduction
	Running Sample Spark Applications
	Running Spark in Docker Containers on YARN
	Submitting Spark Applications Through Livy
	Using Livy with Spark
	Using Livy with interactive notebooks
	Using the Livy API to run Spark jobs: overview
	Running an Interactive Session With the Livy API
	Livy Objects for Interactive Sessions
	Set Path Variables for Python
	Livy API Reference for Interactive Sessions

	Submitting Batch Applications Using the Livy API
	Livy Batch Object
	Livy API Reference for Batch Jobs

	Running PySpark in a Virtual Environment
	Automating Spark Jobs with Oozie Spark Action

