
Data Access 3

Using Apache Hive
Date of Publish: 2018-07-12

http://docs.hortonworks.com

http://docs.hortonworks.com

Data Access | Contents | ii

Contents

Apache Hive 3 tables..4
Create a CRUD transactional table.. 6
Create an insert-only transactional table..7
Create, use, and drop an external table..7
Drop an external table along with data..9
Using constraints...10
Determine the table type.. 12
Altering tables from flat to transactional... 12

Alter a table from flat to transactional...13

Hive 3 ACID transactions..13

Using materialized views..16
Create and use a materialized view... 17
Use a materialized view in a subquery..18
Drop a materialized view... 19
Show materialized views..19
Describe a materialized view... 20
Manage rewriting of a query..22
Create a materialized view and store it in Druid...23
Create and use a partitioned materialized view... 23

Apache Hive queries...25
Query the information_schema database... 26
Insert data into an ACID table...27
Update data in a table.. 27
Merge data in tables... 28
Delete data from a table...28
Create a temporary table.. 28

Configure temporary table storage...29
Use a subquery... 29

Subquery restrictions.. 30
Aggregate and group data.. 30
Query correlated data... 30
Using common table expressions...31

Use a CTE in a query.. 31
Escape an illegal identifier... 32
CHAR data type support.. 32

Create partitions dynamically... 33
Repair partitions using MSCK repair.. 34

Manage partitions automatically.. 35
Automate partition discovery and repair..36

Data Access | Contents | iii

Manage partition retention time... 36

Generate surrogate keys.. 37

Query a SQL data source using the JdbcStorageHandler................................. 38

Creating a user-defined function.. 39
Set up the development environment...40
Create the UDF class..41
Build the project and upload the JAR... 42
Register the UDF..43
Call the UDF in a query.. 44

Data Access Apache Hive 3 tables

Apache Hive 3 tables

You can create ACID (atomic, consistent, isolated, and durable) tables for unlimited transactions or for insert-
only transactions. These tables are Hive managed tables. Alternatively, you can create an external table for non-
transactional use. Because Hive control of the external table is weak, the table is not ACID compliant.

The following diagram depicts the Hive table types.

The following matrix includes the same information: types of tables you can create using Hive, whether or not ACID
properties are supported, required storage format, and key SQL operations.

Table Type ACID File Format INSERT UPDATE/DELETE

Managed: CRUD
transactional

Yes ORC Yes Yes

Managed: Insert-only
transactional

Yes Any Yes No

Managed: Temporary No Any Yes No

External No Any Yes No

Although you cannot use the SQL UPDATE or DELETE statements to delete data in some types of tables, you can
use DROP PARTITION on any table type to delete the data.

Table storage formats

The data in CRUD tables must be in ORC format. Implementing a storage handler that supports AcidInputFormat and
AcidOutputFormat is equivalent to specifying ORC storage.

Insert-only tables support all file formats.

The managed table storage type is Optimized Row Column (ORC) by default. If you accept the default by not
specifying any storage during table creation, or if you specify ORC storage, you get an ACID table with insert,
update, and delete (CRUD) capabilities. If you specify any other storage type, such as text, CSV, AVRO, or JSON,
you get an insert-only ACID table. You cannot update or delete columns in the insert-only table.

4

Data Access Apache Hive 3 tables

Transactional tables

Transactional tables are ACID tables that reside in the Hive warehouse. To achieve ACID compliance, Hive has
to manage the table, including access to the table data. Only through Hive can you access and change the data in
managed tables. Because Hive has full control of managed tables, Hive can optimize these tables extensively.

Hive is designed to support a relatively low rate of transactions, as opposed to serving as an online analytical
processing (OLAP) system. You can use the SHOW TRANSACTIONS command to list open and aborted
transactions.

Transactional tables in Hive 3 are on a par with non-ACID tables. No bucketing or sorting is required in Hive 3
transactional tables. Bucketing does not affect performance. These tables are compatible with native cloud storage.

Hive supports one statement per transaction, which can include any number of rows, partitions, or tables.

External tables

External table data is not owned or controlled by Hive. You typically use an external table when you want to access
data directly at the file level, using a tool other than Hive. You can also use a storage handler, such as Druid or
HBase, to create a table that resides outside the Hive metastore.

Hive 3 does not support the following capabilities for external tables:

• Query cache
• Materialized views, except in a limited way
• Automatic runtime filtering
• File merging after insert

When you run DROP TABLE on an external table, by default Hive drops only the metadata (schema). If you want the
DROP TABLE command to also remove the actual data in the external table, as DROP TABLE does on a managed
table, you need to set the external.table.purge property to true as described later.

Security and Spark access

The following table and subsequent sections cover other differences between managed, transactional and external
tables:

Table type Security Spark access Optimizations

Managed (transactional) Ranger authorization only, no
SBA

Yes, using Hive Warehouse
Connector

Statistics and others

External Ranger or SBA, which requires an
ACL in HDFS

Yes, direct file access Limited

Location of tables in HDP 3.x

Managed tables reside in the managed tablespace, which only Hive can access. By default, Hive assumes external
tables reside in the external tablespace. The warehouse tablespaces are shown in the Files view in Ambari:

5

Data Access Apache Hive 3 tables

To determine the managed or external table type, you can run the DESCRIBE EXTENDED table_name command.

Hive limitations and prerequisites

Hive is not designed to replace systems such as MySQL or HBase. If upgrading from an earlier version to Hive 3, you
must run a major compaction to use your transactional tables.

Create a CRUD transactional table
You create a CRUD transactional table having ACID (atomic, consistent, isolated, and durable) properties when you
need a managed table that you can update, delete, and merge. Table data is stored in the Optimized Row Columnar
(ORC) file format by default.

About this task

In this task, you create a CRUD transactional table. You cannot sort this type of table. To create a CRUD
transactional table, you must accept the default ORC format by not specifying any storage during table creation, or by
specifying ORC storage explicitly.

Procedure

1. Launch Beeline to start Hive.
For example:

beeline -u jdbc:hive2://myhiveserver.com:10000 -n hive -p

2. Enter your user name and password.
The Hive 3 connection message, followed by the Hive prompt for entering queries on the command line, appears.

3. Create a CRUD transactional table named T having two integer columns, a and b.

CREATE TABLE T(a int, b int);

4. Confirm that you created a managed, ACID table.

DESCRIBE FORMATTED T;

The table type says MANAGED_TABLE and transactional = true.

6

Data Access Apache Hive 3 tables

Create an insert-only transactional table
You can create a transactional table using any storage format if you do not require update and delete capability.

About this task

In this task, you create an insert-only transactional table for storing text.

Procedure

1. Start the Hive shell:
[vagrant@c7401]# hive

2. Enter your user name and password.
The Hive 3 connection message appears, followed by the Hive prompt for entering queries on the command line.

3. Create a insert-only transactional table named T2 having two integer columns, a and b:

CREATE TABLE T2(a int, b int)
 TBLPROPERTIES ('transactional_properties'='insert_only');

Create, use, and drop an external table
You use an external table, which is a table that Hive does not manage, to import data from a file on a file system,
into Hive. In contrast to the Hive managed table, an external table keeps its data outside the Hive metastore. Hive
metastore stores only the schema metadata of the external table. Hive does not manage, or restrict access, to the actual
external data.

Before you begin

In this task, you need access to HDFS to put a comma-separated values (CSV) file on HDFS. If you do not use
Ranger and an ACL is not in place that allows you to access HDFS, you need to log in to a node on your cluster as the
hdfs user. Alternatively, when using Ranger, you need to be authorized by a policy, such as the default HDFS all-path
policy (shown below) to access HDFS.

About this task

In this task, you create an external table from CSV (comma-separated values) data stored on the file system, depicted
in the diagram below. Next, you want Hive to manage and store the actual data in the metastore. You create a
managed table.

7

Data Access Apache Hive 3 tables

You insert the external table data into the managed table.

This task demonstrates the following Hive principles:

• Specifying a database location in the CREATE DATABASE command, for example CREATE DATABASE
<managed table db name> LOCATION '<path>' works for managed tables only. To specify the location of an
external table, you need to include the specification in the table creation statement as follows:

CREATE EXTERNAL TABLE my_external_table (a string, b string)
 ROW FORMAT SERDE 'com.mytables.MySerDe'
 WITH SERDEPROPERTIES ("input.regex" = "*.csv")
 LOCATION '/user/data';

• The LOCATION clause in the CREATE TABLE specifies the location of external (not managed) table data.
• A major difference between an external and a managed (internal) table: the persistence of table data on the files

system after a DROP TABLE statement.

• External table drop: Hive drops only the metadata, consisting mainly of the schema.
• Managed table drop: Hive deletes the data and the metadata stored in the Hive warehouse.

After dropping an external table, the data is not gone. To retrieve it, you issue another CREATE EXTERNAL
TABLE statement to load the data from the file system.

Procedure

1. Create a text file named students.csv that contains the following lines.

1,jane,doe,senior,mathematics
2,john,smith,junior,engineering

2. As root, move the file to /home/hdfs on a node in your cluster. As hdfs, create a directory on HDFS in the user
directory called andrena that allows access by all, and put students.csv in the directory.

• On the command-line of a node on your cluster, enter the following commands:

sudo su -
mv students.csv /home/hdfs
sudo su - hdfs
hdfs dfs -mkdir /user/andrena
hdfs dfs -chmod 777 /user/andrena
hdfs dfs -put /home/hdfs/students.csv /user/andrena
hdfs dfs -chmod 777 /user/andrena/students.csv

8

Data Access Apache Hive 3 tables

• Having authorization to HDFS through a Ranger policy, use the command line or Ambari to create the
directory and put the students.csv file in the directory.

3. Start the Hive shell as user max.
For example, substitute the URI of your HiveServer: beeline -u jdbc:hive2://myhiveserver.com:10000 -n max

4. Create an external table schema definition that specifies the text format, loads data from students.csv located in /
user/andrena.

CREATE EXTERNAL TABLE IF NOT EXISTS names_text(
 student_ID INT, FirstName STRING, LastName STRING,
 year STRING, Major STRING)
 COMMENT 'Student Names'
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY ','
 STORED AS TEXTFILE
 LOCATION '/user/andrena';

5. Verify that the Hive warehouse stores the student names in the external table.
SELECT * FROM names_text;

6. Create the schema for the managed table to store the data in Hive metastore.

CREATE TABLE IF NOT EXISTS Names(
 student_ID INT, FirstName STRING, LastName STRING,
 year STRING, Major STRING)
 COMMENT 'Student Names';

7. Move the external table data to the managed table.
INSERT OVERWRITE TABLE Names SELECT * FROM names_text;

8. Verify that the data now resides in the managed table also, drop the external table metadata, and verify that the
data still resides in the managed table.

SELECT * from Names;
DROP TABLE names_text;
SELECT * from Names;

The results from the managed table Names appears.

9. Verify that the external table schema definition is lost.
SELECT * from names_text;

Selecting all from names_text returns no results because the external table schema is lost.

10. Check that the students.csv file on HDFS remains intact.

Drop an external table along with data
When you run DROP TABLE on an external table, by default Hive drops only the metadata (schema). If you want the
DROP TABLE command to also remove the actual data in the external table, as DROP TABLE does on a managed
table, you need to configure the table properties accordingly.

Procedure

1. Create a CSV file of data you want to query in Hive.

2. Launch Beeline to start Hive.
For example:

beeline -u jdbc:hive2://myhiveserver.com:10000 -n hive -p

9

Data Access Apache Hive 3 tables

3. Create an external table to store the CSV data, configuring the table so you can drop it along with the data.

CREATE EXTERNAL TABLE IF NOT EXISTS names_text(
 a INT, b STRING)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY ','
 STORED AS TEXTFILE
 LOCATION '/user/andrena'
 TBLPROPERTIES ('external.table.purge'='true');

4. Run DROP TABLE on the external table.

DROP TABLE names_text;

The table is removed from Hive Metastore and the data stored externally. For example, names_text is removed
from the Hive Metastore and the CSV file that stored the data is also deleted from HDFS.

5. Prevent data in external table from being deleted by a DROP TABLE statement.

ALTER TABLE addresses_text SET TBLPROPERTIES
 ('external.table.purge'='false');

Using constraints
You can use SQL constraints to enforce data integrity and improve performance. Using constraints, the optimizer can
simplify queries. Constraints can make data predictable and easy to locate.

Hive enforces constraints as follows:

CHECK Limits the range of values you can place in a column.

DEFAULT Ensures a value exists, which is useful in offloading data
from a data warehouse.

PRIMARY KEY Identifies each row in a table using a unique identifier.

FOREIGN KEY Identifies a row in another table using a unique identifier.

UNIQUE KEY Checks that values stored in a column are different.

NOT NULL Ensures that a column cannot be set to NULL.

Supported modifiers

You can use the following optional modifiers:

ENABLE Ensures that all incoming data conforms to the
constraint.

DISABLE Does not ensure that all incoming data conforms to the
constraint.

VALIDATE Checks that all existing data in the table conforms to the
constraint.

NOVALIDATE Does not check that all existing data in the table
conforms to the constraint.

10

Data Access Apache Hive 3 tables

ENFORCED Maps to ENABLE NOVALIDATE.

NOT ENFORCED Maps to DISABLE NOVALIDATE.

RELY Specifies abiding by a constraint; used by the optimizer
to apply further optimizations.

NORELY Specifies not abiding by a constraint.

You use modifiers as shown in the following syntax:

((((ENABLE | DISABLE) (VALIDATE | NOVALIDATE)) | (ENFORCED | NOT
 ENFORCED)) (RELY | NORELY))

Defaults modfiers

The following default modifiers are in place:

• The default modifier for ENABLE is NOVALIDATE RELY.
• The default modifier for DISABLE is NOVALIDATE NORELY.
• If you do not specify a modifier when you declare a constraint, the default is ENABLE NOVALIDATE RELY.

The following constraints do not support ENABLE:

• PRIMARY KEY
• FOREIGN KEY
• UNIQUE KEY

To prevent an error, specify a modifier when using these constraints to override the default.

Constraints examples

The optimizer uses the constraint information to make smart decisions. The following examples show the use of
constraints.

The following example shows how to create a table that declares the NOT NULL in-line constraint to constrain a
column.

CREATE TABLE t(a TINYINT, b SMALLINT NOT NULL ENABLE, c INT);

The constrained column b accepts a SMALLINT value as shown in the first INSERT statement.

INSERT INTO t values(2,45,5667);
 ...
 --
 1 row affected ...

The constrained column b will not accept a NULL value.

INSERT INTO t values(2,NULL,5667);
 Error: Error running query:
 org.apache.hadoop.hive.ql.exec.errors.DataConstraintViolationError: /
 Either CHECK or NOT NULL constraint violated! (state=,code=0)

The following examples shows how to declare the FOREIGN KEY constraint out of line. You can specify a
constraint name, in this case fk, in an out-of-line constraint

CREATE TABLE Persons (
 ID INT NOT NULL,
 Name STRING NOT NULL,
 Age INT,

11

Data Access Apache Hive 3 tables

 Creator STRING DEFAULT CURRENT_USER(),
 CreateDate DATE DEFAULT CURRENT_DATE(),
 PRIMARY KEY (ID) DISABLE NOVALIDATE);

 CREATE TABLE BusinessUnit (
 ID INT NOT NULL,
 Head INT NOT NULL,
 Creator STRING DEFAULT CURRENT_USER(),
 CreateDate DATE DEFAULT CURRENT_DATE(),
 PRIMARY KEY (ID) DISABLE NOVALIDATE,
 CONSTRAINT fk FOREIGN KEY (Head) REFERENCES Persons(ID) DISABLE
 NOVALIDATE
);

Determine the table type
You can determine the type of a Hive table, whether it has ACID properties, the storage format, such as ORC, and
other information. Knowing the table type is important for a number of reasons, such as understanding how to store
data in the table or to completely remove data from the cluster.

Procedure

1. In the Hive shell, get an extended description of the table.
For example: DESCRIBE EXTENDED mydatabase.mytable;

2. Scroll to the bottom of the command output to see the table type.
The following output includes that the table type is managed and transaction=true indicates that the table has
ACID properties:

...
| Detailed Table Information | Table(tableName:t2, dbName:mydatabase,
 owner:hdfs, createTime:1538152187, lastAccessTime:0, retention:0,
 sd:StorageDescriptor(cols:[FieldSchema(name:a, type:int, comment:null),
 FieldSchema(name:b, type:int, comment:null)], ...

Altering tables from flat to transactional
Knowing how Hive converts tables from flat to transactional, and being aware of the operations that are supported by
the conversion, helps you transition pre-existing tables to Hive 3.

If you have a flat table (a managed, non-transactional table) that you created in release earlier than HDP 3.0, you can
convert the table to transactional using an ALTER TABLE statement. Hive changes only metadata, so this operation
executes very quickly. Compaction eventually rewrites the table to convert it to ACID format, but it occurs in the
background, so you can run update and delete operations on the table immediately after altering it.

Wide feature parity exists between flat and transactional tables as shown in the following list of features supported in
transactional tables:

• Add Partition...
• Alter Table
• Alter Table T Concatenate
• Alter Table T Rename To...
• Create Table As...
• Export/Import Table
• Fully Vectorized
• Insert Overwrite
• Into Table...

12

Data Access Hive 3 ACID transactions

• LLAP Cache
• Load Data...
• Non-bucketed tables
• Predicate Push Down

Alter a table from flat to transactional
You might have a flat table, which is a non-transactional table in the Hive warehouse, present from earlier releases.
You can use an ALTER TABLE statement to change a table from flat to transactional.

About this task

Upon completion of the task, you can immediately run update and delete operations on the table.

Procedure

1. Start the Hive shell:
From the command line:hive

2. Enter your user name and password.
The Hive 3 connection message appears, followed by the Hive prompt for entering queries on the command line:

Connected to: Apache Hive (version 3.0.0.3.0.0.0-1361)
Driver: Hive JDBC (version 3.0.0.3.0.0.0-1361)
Transaction isolation: TRANSACTION_REPEATABLE_READ
Beeline version 3.0.0.3.0.0.0-1361 by Apache Hive

0: jdbc:hive2://c7402.ambari.apache.org:2181,>

3. Alter the flat table to make it transactional.

ALTER TABLE T3 SET TBLPROPERTIES ('transactional'='true');

Hive 3 ACID transactions

Hive 3 achieves atomicity and isolation of operations on transactional tables by using techniques in write, read, insert,
create, delete, and update operations that involve delta files, which can provide query status information and help you
troubleshoot query problems.

Write and read operations

Hive 3 write and read operations improve the ACID properties and performance of transactional tables. Transactional
tables perform as well as other tables. Hive supports all TPC Benchmark DS (TPC-DS) queries.

Hive 3 and later extends atomic operations from simple writes and inserts to support the following operations:

• Writing to multiple partitions
• Using multiple insert clauses in a single SELECT statement

A single statement can write to multiple partitions or multiple tables. If the operation fails, partial writes or inserts are
not visible to users. Operations remain performant even if data changes often, such as one percent per hour. Hive 3
and later does not overwrite the entire partition to perform update or delete operations.

Read semantics consist of snapshot isolation. Hive logically locks in the state of the warehouse when a read operation
starts. A read operation is not affected by changes that occur during the operation.

13

Data Access Hive 3 ACID transactions

Atomicity and isolation in insert-only tables

When an insert-only transaction begins, the transaction manager gets a transaction ID. For every write, the transaction
manager allocates a write ID. This ID determines a path to which data is actually written. The following code shows
an example of a statement that creates insert-only transactional table:

CREATE TABLE tm (a int, b int) TBLPROPERTIES
('transactional'='true', 'transactional_properties'='insert_only')

Assume that three insert operations occur, and the second one fails:

INSERT INTO tm VALUES(1,1);
INSERT INTO tm VALUES(2,2); // Fails
INSERT INTO tm VALUES(3,3);

For every write operation, Hive creates a delta directory to which the transaction manager writes data files. Hive
writes all data to delta files, designated by write IDs, and mapped to a transaction ID that represents an atomic
operation. If a failure occurs, the transaction is marked aborted, but it is atomic:

tm
___ delta_0000001_0000001_0000
000000_0
___ delta_0000002_0000002_0000 //Fails
000000_0
___ delta_0000003_0000003_0000
000000_0

During the read process, the transaction manager maintains the state of every transaction. When the reader starts, it
asks for the snapshot information, represented by a high watermark. The watermark identifies the highest transaction
ID in the system followed by a list of exceptions that represent transactions that are still running or are aborted.

The reader looks at deltas and filters out, or skips, any IDs of transactions that are aborted or still running. The reader
uses this technique with any number of partitions or tables that participate in the transaction to achieve atomicity and
isolation of operations on transactional tables.

Atomicity and isolation in CRUD tables

You can create a full CRUD (create, retrieve, update, delete) transactional table using the following SQL statement:

CREATE TABLE acidtbl (a INT, b STRING);

Running SHOW CREATE TABLE acidtbl provides information about the defaults: transactional (ACID) and the
ORC data storage format:

 +--+
 | createtab_stmt |
 +--+
 | CREATE TABLE `acidtbl`(|
 | `a` int, |
 | `b` string) |
 | ROW FORMAT SERDE |
 | 'org.apache.hadoop.hive.ql.io.orc.OrcSerde' |
 | STORED AS INPUTFORMAT |
 | 'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat' |
 | OUTPUTFORMAT |
 | 'org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat' |
 | LOCATION |
 | 'hdfs://myserver.com:8020/warehouse/tablespace/managed/hive/
acidtbl' |
 | TBLPROPERTIES (|

14

Data Access Hive 3 ACID transactions

 | 'bucketing_version'='2', |
 | 'transactional'='true', |
 | 'transactional_properties'='default', |
 | 'transient_lastDdlTime'='1555090610') |
 +--+

Tables that support updates and deletions require a slightly different technique to achieve atomicity and isolation.
Hive runs on top of an append-only file system, which means Hive does not perform in-place updates or deletions.
Isolation of readers and writers cannot occur in the presence of in-place updates or deletions. In this situation, a lock
manager or some other mechanism, is required for isolation. These mechanisms create a problem for long-running
queries.

Instead of in-place updates, Hive decorates every row with a row ID. The row ID is a struct that consists of the
following information:

• The write ID that maps to the transaction that created the row
• The bucket ID, a bit-backed integer with several bits of information, of the physical writer that created the row
• The row ID, which numbers rows as they were written to a data file

Instead of in-place deletions, Hive appends changes to the table when a deletion occurs. The deleted data becomes
unavailable and the compaction process takes care of the garbage collection later.

Create operation

The following example inserts several rows of data into a full CRUD transactional table, creates a delta file, and adds
row IDs to a data file.

INSERT INTO acidtbl (a,b) VALUES (100, "oranges"), (200, "apples"), (300,
 "bananas");

This operation generates a directory and file, delta_00001_00001/bucket_0000, that have the following data:

ROW_ID a b

{1,0,0} 100 "oranges"

{1,0.1} 200 "apples"

{1,0,2} 300 "bananas"

Delete operation

A delete statement that matches a single row also creates a delta file, called the delete-delta. The file stores a set of
row IDs for the rows that match your query. At read time, the reader looks at this information. When it finds a delete

15

Data Access Using materialized views

event that matches a row, it skips the row and that row is not included in the operator pipeline. The following example
deletes data from a transactional table:

DELETE FROM acidTbl where a = 200;

This operation generates a directory and file, delete_delta_00002_00002/bucket_0000 that have the following data:

ROW_ID a b

{1,0,1} null null

Update operation

An update combines the deletion and insertion of new data. The following example updates a transactional table:

UPDATE acidTbl SET b = "pears" where a = 300;

One delta file contains the delete event, and the other, the insert event:

The reader, which requires the AcidInputFormat, applies all the insert events and encapsulates all the logic to handle
delete events. A read operation first gets snapshot information from the transaction manager based on which it selects
files that are relevant to that read operation. Next, the process splits each data file into the number of pieces that each
process has to work on. Relevant delete events are localized to each processing task. Delete events are stored in a
sorted ORC file. The compressed, stored data is minimal, which is a significant advantage of Hive 3. You no longer
need to worry about saturating the network with insert events in delta files.

Using materialized views

Apache Hive works with Apache Calcite to optimize your queries automatically using materialized views you create.

Using a materialized view, the optimizer can compare old and new tables, rewrite queries to accelerate processing,
and manage maintenance of the materialized view when data updates occur. The optimizer can use a materialized
view to fully or partially rewrite projections, filters, joins, and aggregations. Hive stores materialized views in the
Hive warehouse or Druid. You can perform the following operations related to materialized views:

• Create a materialized view of queries or subqueries
• Drop a materialized view
• Show materialized views
• Describe a materialized view
• Enable or disable query rewriting based on a materialized view
• Globally enable or disable rewriting based on any materialized view
• Use partitioning to improve the performance of materialized views.

Related Information
Materialized view commands

16

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/materialized-view/content/hive_alter_materialized_view_rebuild.html

Data Access Using materialized views

Create and use a materialized view
You can create a materialized view of a query to calculate and store results of an expensive operation, such as join.

About this task

In this task, you create and populate example tables. You create a materialized view of a join of the tables.
Subsequently, when you run a query to join the tables, the query plan takes advantage of the precomputed join to
accelerate processing. This task is over-simplified and is intended to show the syntax and output of a materialized
view, not to demonstrate accelerated processing that results in a real-world task, which would process a large amount
of data.

Procedure

1. In the Hive shell or other Hive UI, create two tables:

CREATE TABLE emps (
 empid INT,
 deptno INT,
 name VARCHAR(256),
 salary FLOAT,
 hire_date TIMESTAMP);

CREATE TABLE depts (
 deptno INT,
 deptname VARCHAR(256),
 locationid INT);

2. Insert some data into the tables for example purposes:

INSERT INTO TABLE emps VALUES (10001,101,'jane doe',250000,'2018-01-10');
INSERT INTO TABLE emps VALUES (10002,100,'somporn
 klailee',210000,'2017-12-25');
INSERT INTO TABLE emps VALUES (10003,200,'jeiranan
 thongnopneua',175000,'2018-05-05');

INSERT INTO TABLE depts VALUES (100,'HR',10);
INSERT INTO TABLE depts VALUES (101,'Eng',11);
INSERT INTO TABLE depts VALUES (200,'Sup',20);

3. Create a materialized view to join the tables:

CREATE MATERIALIZED VIEW mv1
 AS SELECT empid, deptname, hire_date
 FROM emps JOIN depts
 ON (emps.deptno = depts.deptno)
 WHERE hire_date >= '2017-01-01';

4. Execute a query that takes advantage of the precomputation performed by the materialized view:

SELECT empid, deptname
 FROM emps
 JOIN depts
 ON (emps.deptno = depts.deptno)
 WHERE hire_date >= '2017-01-01'
 AND hire_date <= '2019-01-01';

Output is:

+--------+-----------+

17

Data Access Using materialized views

| empid | deptname |
+--------+-----------+
10003	Sup
10002	HR
10001	Eng
+--------+-----------+

5. Verify that the query rewrite used the materialized view by running an extended EXPLAIN statement:

EXPLAIN EXTENDED SELECT empid, deptname
 FROM emps
 JOIN depts
 ON (emps.deptno = depts.deptno)
 WHERE hire_date >= '2017-01-01'
 AND hire_date <= '2019-01-01';

The output shows the alias default.mv1 for the materialized view in the TableScan section of the plan.

OPTIMIZED SQL: SELECT `empid`, `deptname`
FROM `default`.`mv1`
WHERE TIMESTAMP '2019-01-01 00:00:00.000000000' >= `hire_date`
STAGE DEPENDENCIES:
 Stage-0 is a root stage

STAGE PLANS:
 Stage: Stage-0
 Fetch Operator
 limit: -1
 Processor Tree:
 TableScan
 alias: default.mv1
 filterExpr: (hire_date <= TIMESTAMP'2019-01-01
 00:00:00') (type: boolean) |
 GatherStats: false
 Filter Operator
 isSamplingPred: false
 predicate: (hire_date <= TIMESTAMP'2019-01-01
 00:00:00') (type: boolean)
 Select Operator
 expressions: empid (type: int), deptname (type:
 varchar(256))
 outputColumnNames: _col0, _col1
 ListSink

Related Information
Materialized view commands

Use a materialized view in a subquery
You can create a materialized view for optimizing a subquery.

About this task

In this task, you create a materialized view and use it in a subquery to return the number of destination-origin pairs.
Suppose the data resides in a table named flights_hdfs that has the following data:

c_id dest origin

1 Chicago Hyderabad

18

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/materialized-view/content/hive_alter_materialized_view_rebuild.html

Data Access Using materialized views

c_id dest origin

2 London Moscow

...

Procedure

1. Create a table schema definition named flights_hdfs for destination and origin data.

CREATE TABLE flights_hdfs(
 c_id INT,
 dest VARCHAR(256),
 origin VARCHAR(256));

2. Create a materialized view that counts destinations and origins.

CREATE MATERIALIZED VIEW mv1
AS
 SELECT dest, origin, count(*)
 FROM flights_hdfs
 GROUP BY dest, origin;

3. Use the materialized view in a subquery to return the number of destination-origin pairs.

SELECT count(*)/2
FROM(
 SELECT dest, origin, count(*)
 FROM flights_hdfs
 GROUP BY dest, origin
) AS t;

Related Information
Materialized view commands

Drop a materialized view
You must understand when to drop a materialized view to successfully drop related tables.

About this task

Drop a materialized view before performing a DROP TABLE operation on a related table. Hive does not support
dropping a table that has a relationship with a materialized view.

In this task, you drop a materialized view named mv1 from the my_database database.

Procedure

Drop a materialized view in my_database named mv1 .
DROP MATERIALIZED VIEW my_database.mv1;

Related Information
Materialized view commands

Show materialized views
You can list all materialized views in the current database or in another database. You can filter a list of materialized
views in a specified database using regular expression wildcards.

19

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/materialized-view/content/hive_alter_materialized_view_rebuild.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/materialized-view/content/hive_alter_materialized_view_rebuild.html

Data Access Using materialized views

About this task

You can use regular expression wildcards to filter the list of materialized views you want to see. The following
wildcards are supported:

• Asterisk (*)

Represents one or more characters.
• Pipe symbol (|)

Represents a choice.

For example, mv_q* and *mv|q1* match the materialized view mv_q1. Finding no match does not cause an error.

Procedure

1. List materialized views in the current database.
SHOW MATERIALIZED VIEWS;

2. List materialized views in a particular database.
SHOW MATERIALIZED VIEWS IN my_database;

3. Show materialized views having names that begin with mv.
SHOW MATERIALIZED VIEWS mv*;

Related Information
Materialized view commands

Describe a materialized view
You can get summary, detailed, and formatted information about a materialized view.

About this task

This task builds on the task that creates a materialized view named mv1.

Procedure

1. Get summary information about the materialized view named mv1.

DESCRIBE mv1;

+------------+---------------+----------+
| col_name | data_type | comment |
+------------+---------------+----------+
empid	int	
deptname	varchar(256)	
hire_date	timestamp	
+------------+---------------+----------+

2. Get detailed information about the materialized view named mv1.

DESCRIBE EXTENDED mv1;

+-----------------------------+---------------------------------...
| col_name | data_type ...
+-----------------------------+---------------------------------...
| empid | int ...
| deptname | varchar(256) ...
| hire_date | timestamp ...
| | NULL ...

20

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/materialized-view/content/hive_alter_materialized_view_rebuild.html

Data Access Using materialized views

| Detailed Table Information |Table(tableName:mv1, dbName:default,
 owner:hive, createTime:1532466307, lastAccessTime:0,
 retention:0, sd:StorageDescriptor(cols:[FieldSchema(name:empid,
 type:int, comment:null), FieldSchema(name:deptname,
 type:varchar(256), comment:null), FieldSchema(name:hire_date,
 type:timestamp, comment:null)], location:hdfs://
myserver.com:8020/warehouse/tablespace/managed/hive/mv1,
 inputFormat:org.apache.hadoop.hive.ql.io.orc.OrcInputFormat,
 outputFormat:org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat,
 compressed:false, numBuckets:-1, serdeInfo:SerDeInfo(name:null,
 serializationLib:org.apache.hadoop.hive.ql.io.orc.OrcSerde,
 parameters:{}), bucketCols:[], sortCols:[], parameters:{},
 skewedInfo:SkewedInfo(skewedColNames:[], skewedColValues:[],
 skewedColValueLocationMaps:{}), storedAsSubDirectories:false),
 partitionKeys:[], parameters:{totalSize=488, numRows=4,
 rawDataSize=520, COLUMN_STATS_ACCURATE={\"BASIC_STATS\":\"true\"},
 numFiles=1, transient_lastDdlTime=1532466307, bucketing_version=2},
 viewOriginalText:SELECT empid, deptname, hire_date\nFROM emps2
 JOIN depts\nON (emps2.deptno = depts.deptno)\nWHERE hire_date
 >= '2017-01-17', viewExpandedText:SELECT `emps2`.`empid`,
 `depts`.`deptname`, `emps2`.`hire_date`\nFROM `default`.`emps2` JOIN
 `default`.`depts`\nON (`emps2`.`deptno` = `depts`.`deptno`)\nWHERE
 `emps2`.`hire_date` >= '2017-01-17', tableType:MATERIALIZED_VIEW,
 rewriteEnabled:true, creationMetadata:CreationMetadata(catName:hive,
 dbName:default, tblName:mv1, tablesUsed:[default.depts,
 default.emps2], validTxnList:53$default.depts:2:9223372036854775807::
$default.emps2:4:9223372036854775807::,
 materializationTime:1532466307861), catName:hive, ownerType:USER)

3. Get formatting details about the materialized view named mv1.

DESCRIBE FORMATTED mv1;

+-------------------------------+--------------------------------...
| col_name | data_type ...
+-------------------------------+--------------------------------...
| # col_name | data_type ...
| empid | int ...
| deptname | varchar(256) ...
| hire_date | timestamp ...
| | NULL ...
| # Detailed Table Information | NULL ...
| Database: | default ...
| OwnerType: | USER ...
| Owner: | hive ...
| CreateTime: | Tue Jul 24 21:05:07 UTC 2018 ...
| LastAccessTime: | UNKNOWN ...
| Retention: | 0 ...
| Location: | hdfs://mycluster-hdp3-1.field. ...
| Table Type: | MATERIALIZED_VIEW ...
| Table Parameters: | NULL ...

| | COLUMN_STATS_ACCURATE ...

| | bucketing_version ...

| | numFiles ...

| | numRows ...

| | rawDataSize ...

21

Data Access Using materialized views

| | totalSize ...

| | transient_lastDdlTime ...
| | NULL ...

| # Storage Information | NULL ...

| SerDe Library: | org.apache.hadoop.hive.ql.io.or...

| InputFormat: | org.apache.hadoop.hive.ql.io.or...
| OutputFormat: | org.apache.hadoop.hive.ql.io.or...
| Compressed: | No ...

| Num Buckets: | -1 ...

| Bucket Columns: | [] ...

| Sort Columns: | [] ...
| # View Information | NULL ...

| View Original Text: | SELECT empid, deptname, hire_da...

| View Expanded Text: | SELECT `emps2`.`empid`, `depts`...
| View Rewrite Enabled: | Yes ...

Related Information
Materialized view commands

Manage rewriting of a query
You can use a Hive query to stop or start the optimizer from rewriting a query based on a materialized view, and as
administrator, you can globally enable or disable rewriting of all queries based on materialized views.

About this task

By default, the optimizer can rewrite a query based on a materialized view. If you want a query executed without
regard to a materialized view, for example to measure the execution time difference, you can disable rewriting and
then enable it again.

Procedure

1. Disable rewriting of a query based on a materialized view named mv1 in the default database.

ALTER MATERIALIZED VIEW default.mv1 DISABLE REWRITE;

2. Enable rewriting of a query based on materialized view mv1.

ALTER MATERIALIZED VIEW default.mv1 ENABLE REWRITE;

3. Globally disable rewriting of queries based on materialized views by setting a global property.

SET hive.materializedview.rewriting=true;

Related Information
Materialized view commands

22

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/materialized-view/content/hive_alter_materialized_view_rebuild.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/materialized-view/content/hive_alter_materialized_view_rebuild.html

Data Access Using materialized views

Create a materialized view and store it in Druid
You can create a materialized view and store it in an external system, such as Druid, which supports JSON queries,
very efficient timeseries queries, and groupBy queries.

Before you begin

• Hive is running as a service in the cluster.
• Druid is running as a service in the cluster.
• You created a transactional table named src that has timestamp, dimension, and metric columns: __time

TIMESTAMP, page STRING, user STRING, c_added INT, and c_removed INT columns.

About this task

In this task, you include the STORED BY clause followed by the Druid storage handler. The storage handler
integrates Hive and Druid for saving the materialized view in Druid.

Procedure

1. Execute a Hive query to set the location of the Druid broker using a DNS name or IP address and port 8082, the
default broker text listening port.

SET hive.druid.broker.address.default=10.10.20.30:8082;

2. Create a materialized view store the view in Druid.

CREATE MATERIALIZED VIEW druid_mv
STORED BY 'org.apache.hadoop.hive.druid.DruidStorageHandler'
AS SELECT __time, page, user, c_added, c_removed
FROM src;

Related Information
Materialized view commands

Create and use a partitioned materialized view
When creating a materialized view, you can partition selected columns to improve performance. Partitioning
separates the view of a table into parts, which often improves query rewrites of partition-wise joins of materialized
views with tables or other materialized views.

About this task

This task assumes you created a materialized view of the emps and depts tables and assumes you created these tables.
The emps table contains the following data:

empid deptno name salary hire_date

10001 101 jane doe 250000 2018-01-10

10005 100 somporn klailee 210000 2017-12-25

10006 200 jeiranan thongnopneua 175000 2018-05-05

The depts table contains the following data:

deptno deptname locationid

100 HR 10

23

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/materialized-view/content/hive_alter_materialized_view_rebuild.html

Data Access Using materialized views

deptno deptname locationid

101 Eng 11

200 Sup 20

In this task, you create two materialized views: one partitions data on department; the another partitions data on hire
date. You select data, filtered by department,from the original table, not from either one of the materialized views.
The explain plan shows that Hive rewrites your query for efficiency to select data from the materialized view that
partitions data by department. In this task, you also see the effects of rebuilding a materialized view.

Procedure

1. Create a materialized view of the emps table that partitions data into departments.

CREATE MATERIALIZED VIEW partition_mv_1 PARTITIONED ON (deptno)
AS SELECT hire_date, deptno FROM emps WHERE deptno > 100 AND deptno < 200;

2. Create a second materialized view that partitions the data on the hire date instead of the department number.

CREATE MATERIALIZED VIEW partition_mv_2 PARTITIONED ON (hire_date)
 AS SELECT deptno, hire_date FROM emps where deptno > 100 AND deptno <
 200;

3. Generate an extended explain plan by selecting data for department 101 directly from the emps table without
using the materialized view.

EXPLAIN EXTENDED SELECT deptno, hire_date FROM emps_a where deptno = 101;

The explain plan shows that Hive rewrites your query for efficiency, using the better of the two materialized views
for the job: partition_mv_1.

+--+
| Explain |
+--+
| OPTIMIZED SQL: SELECT CAST(101 AS INTEGER) AS `deptno`, `hire_date` |
| FROM `default`.`partition_mv_1` |
| WHERE 101 = `deptno` |
| STAGE DEPENDENCIES: |
| Stage-0 is a root stage
...

4. Correct Jane Doe's hire date to February 12, 2018, rebuild one of the materialized views, but not the other, and
compare contents of both materialized views.

INSERT INTO emps VALUES (10001,101,'jane doe',250000,'2018-02-12');
ALTER MATERIALIZED VIEW partition_mv_1 REBUILD;
SELECT * FROM partition_mv_1 where deptno = 101;
SELECT * FROM partition_mv_2 where deptno = 101;

The output of selecting the rebuilt partition_mv_1 includes the original row and newly inserted row because
INSERT does not perform in-place updates (overwrites).

+---------------------------+------------------------+
| partition_mv_1.hire_date | partition_mv_1.deptno |
+---------------------------+------------------------+
| 2018-01-10 00:00:00.0 | 101 |
| 2018-02-12 00:00:00.0 | 101 |
+---------------------------+------------------------+

24

Data Access Apache Hive queries

The output from the other partition is stale because you did not rebuild it:

+------------------------+---------------------------+
| partition_mv_2.deptno | partition_mv_2.hire_date |
+------------------------+---------------------------+
| 101 | 2018-01-10 00:00:00.0 |
+------------------------+---------------------------+

5. Create a second employees table and a materialized view of the tables joined on the department number.

CREATE TABLE emps2 TBLPROPERTIES AS SELECT * FROM emps;

CREATE MATERIALIZED VIEW partition_mv_3 PARTITIONED ON (deptno) AS
 SELECT emps.hire_date, emps.deptno FROM emps, emps2
 WHERE emps.deptno = emps2.deptno
 AND emps.deptno > 100 AND emps.deptno < 200;

6. Generate an explain plan that joins tables emps and emps2 on department number using a query that omits the
partitioned materialized view.

EXPLAIN EXTENDED SELECT emps.hire_date, emps.deptno FROM emps, emps2
 WHERE emps.deptno = emps2.deptno
 AND emps.deptno > 100 AND emps.deptno < 200;

The output shows that Hive rewrites the query to use the partitioned materialized view partition_mv_3 even
though your query omitted the materialized view.

7. Verify that the partition_mv_3 sets up the partition for deptno=101 for partition_mv_3.

SHOW PARTITIONS partition_mv_3;

Output is:

+-------------+
| partition |
+-------------+
| deptno=101 |
+-------------+

Related Information
Create and use a materialized view

Materialized view commands

Apache Hive queries

Using Apache Hive you can query distributed data storage including Hadoop data.

Hive supports ANSI SQL and atomic, consistent, isolated, and durable (ACID) transactions. For updating data, you
can use the MERGE statement, which now also meets ACID standards. Materialized views optimize queries based on
access patterns. Hive supports tables up to 300PB in Optimized Row Columnar (ORC) format. Other file formats are
also supported. You can create tables that resemble those in a traditional relational database. You use familiar insert,
update, delete, and merge SQL statements to query table data. The insert statement writes data to tables. Update and
delete statements modify and delete values already written to Hive. The merge statement streamlines updates, deletes,
and changes data capture operations by drawing on co-existing tables. These statements support auto-commit that
treats each statement as a separate transaction and commits it after the SQL statement is executed.

Related Information
ORC Language Manual on the Apache wiki

25

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/materialized-view/content/hive_alter_materialized_view_rebuild.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC/

Data Access Apache Hive queries

Query the information_schema database
Hive supports the ANSI-standard information_schema database, which you can query for information about tables,
views, columns, and your Hive privileges. The information_schema data reveals the state of the system, similar to
sys database data, but in a user-friendly, read-only way. You can use joins, aggregates, filters, and projections in
information_schema queries.

Before you begin

• You used Ambari to install HDP 3.0 or later.
• In Ambari, you added, configured, and started the Ranger service, which makes the information_schema database

accessible and sets up an access policy for the Hive user.

About this task

One of the steps in this task involves changing the time interval for synchronization between HiveServer and the
policy. HiveServer responds to any policy changes within this time interval. You can query the information_schema
database for only your own privilege information.

Procedure

1. In Ambari, open the Ranger Access Manager at <node URI>:6080, and check that access policies exist for the
hive user.

2. Navigate to Services > Hive > Configs > Advanced > Custom hive-site.

3. Add the hive.privilege.synchronizer.interval key and set the value to 1.

This setting changes the synchronization from the default one-half hour to one minute.

4. From the Beeline shell, start Hive, and check that Ambari installed the information_schema database:

SHOW DATABASES;
...
+---------------------+
| database_name |
+---------------------+
| default |
| information_schema |
| sys |
+---------------------+

5. Use the information_schema database to list tables in the database.

USE information_schema;
...
SHOW TABLES;
...
+--------------------+
| tab_name |
+--------------------+
| column_privileges |
| columns |
| schemata |

26

Data Access Apache Hive queries

| table_privileges |
| tables |
| views |
+--------------------+

6. Query the information_schema database to see, for example, information about tables into which you can insert
values.

SELECT * FROM information_schema.tables WHERE is_insertable_into='YES'
 limit 2;
...
+--------------------+-------------------+-----------------
|tables.table_catalog|tables.table_schema|tables.table_name
+--------------------+-------------------+-----------------
|default |default |students2
|default |default |t3

Insert data into an ACID table
You can insert data into an Optimized Row Columnar (ORC) table that resides in the Hive warehouse.

About this task
You assign null values to columns you do not want to assign a value. You can specify partitioning as shown in the
following syntax:

INSERT INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)] VALUES values_row [,
values_row...]

where

values_row is (value [, value]) :

Procedure

1. Create a table to contain student information.
CREATE TABLE students (name VARCHAR(64), age INT, gpa DECIMAL(3,2));

2. Insert name, age, and gpa values for a few students into the table.
INSERT INTO TABLE students VALUES ('fred flintstone', 35, 1.28), ('barney rubble', 32, 2.32);

3. Create a table called pageviews and assign null values to columns you do not want to assign a value.

CREATE TABLE pageviews (userid VARCHAR(64), link STRING, from STRING)
 PARTITIONED BY (datestamp STRING) CLUSTERED BY (userid) INTO 256 BUCKETS;
INSERT INTO TABLE pageviews PARTITION (datestamp = '2014-09-23') VALUES
 ('jsmith', 'mail.com', 'sports.com'), ('jdoe', 'mail.com', null);
INSERT INTO TABLE pageviews PARTITION (datestamp) VALUES ('tjohnson',
 'sports.com', 'finance.com', '2014-09-23'), ('tlee', 'finance.com', null,
 '2014-09-21');

Update data in a table
You use the UPDATE statement to modify data already stored in an Apache Hive table.

About this task
You construct an UPDATE statement using the following syntax:

UPDATE tablename SET column = value [, column = value ...] [WHERE expression];

27

Data Access Apache Hive queries

Depending on the condition specified in the optional WHERE clause, an UPDATE statement might affect every
row in a table. The expression in the WHERE clause must be an expression supported by a Hive SELECT clause.
Subqueries are not allowed on the right side of the SET statement. Partition and bucket columns cannot be updated.

Before you begin
You must have SELECT and UPDATE privileges to use the UPDATE statement.

Procedure

Create a statement that changes the values in the name column of all rows where the gpa column has the value of 1.0.
UPDATE students SET name = null WHERE gpa <= 1.0;

Merge data in tables
You can conditionally insert, update, or delete existing data in Hive tables using the ACID MERGE statement.

About this task
The MERGE statement is based on ANSI-standard SQL.

Procedure

1. Construct a query to update the customers' names and states in customer table to match the names and states of
customers having the same IDs in the new_customer_stage table.

2. Enhance the query to insert data from new_customer_stage table into the customer table if none already exists.

MERGE INTO customer USING (SELECT * FROM new_customer_stage) sub ON sub.id
 = customer.id
WHEN MATCHED THEN UPDATE SET name = sub.name, state = sub.new_state
WHEN NOT MATCHED THEN INSERT VALUES (sub.id, sub.name, sub.state);

Related Information
Merge documentation on the Apache wiki

Delete data from a table
You use the DELETE statement to delete data already written to table, which must be an ACID table.

About this task
Use the following syntax to delete data from a Hive table. DELETE FROM tablename [WHERE expression];

Procedure

Delete any rows of data from the students table if the gpa column has a value of 1 or 0.
DELETE FROM students WHERE gpa <= 1,0;

Create a temporary table
Create a temporary table to improve performance by storing data outside HDFS for intermediate use, or reuse, by a
complex query.

About this task
Temporary table data persists only during the current Apache Hive session. Hive drops the table at the end of the
session. If you use the name of a permanent table to create the temporary table, the permanent table is inaccessible

28

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML#LanguageManualDML-Merge

Data Access Apache Hive queries

during the session unless you drop or rename the temporary table. You can create a temporary table having the same
name as another user's temporary table because user sessions are independent. Temporary tables do not support
partitioned columns and indexes.

Procedure

1. Create a temporary table having one string column.
CREATE TEMPORARY TABLE tmp1 (tname varchar(64));

2. Create a temporary table using the CREATE TABLE AS SELECT (CTAS) statement.

CREATE TEMPORARY TABLE tmp2 AS SELECT c2, c3, c4 FROM mytable;

3. Create a temporary table using the CREATE TEMPORARY TABLE LIKE statement.

CREATE TEMPORARY TABLE tmp3 LIKE tmp1;

Related Information
Create/Drop/Truncate Table on the Apache wiki

Configure temporary table storage
You can change the storage of temporary table data to meet your system requirements.

About this task
By default, Apache Hive stores temporary table data in the default user scratch directory /tmp/hive-<username>.
Often, this location is not set up by default to accommodate a large amount of data such as that resulting from
temporary tables.

Procedure

1. Configure Hive to store temporary table data in memory or on SSD by setting hive.exec.temporary.table.storage.

• Store data in memory. hive.exec.temporary.table.storage=memory
• Store data on SSD. hive.exec.temporary.table.storage=ssd

2. Create and use temporary tables.

Hive drops temporary tables at the end of the session.

Use a subquery
Hive supports subqueries in FROM clauses and WHERE clauses that you can use for many Hive operations, such as
filtering data from one table based on contents of another table.

About this task
A subquery is a SQL expression in an inner query that returns a result set to the outer query. From the result set, the
outer query is evaluated. The outer query is the main query that contains the inner subquery. A subquery in a WHERE
clause includes a query predicate and predicate operator. A predicate is a condition that evaluates to a Boolean value.
The predicate in a subquery must also contain a predicate operator. The predicate operator specifies the relationship
tested in a predicate query.

Procedure

Select all the state and net_payments values from the transfer_payments table if the value of the year column in the
table matches a year in the us_census table.

SELECT state, net_payments
FROM transfer_payments

29

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTableCreate/Drop/TruncateTable

Data Access Apache Hive queries

WHERE transfer_payments.year IN (SELECT year FROM us_census);

The predicate starts with the first WHERE keyword. The predicate operator is the IN keyword.

The predicate returns true for a row in the transfer_payments table if the year value in at least one row of the
us_census table matches a year value in the transfer_payments table.

Subquery restrictions
To construct queries efficiently, you must understand the restrictions of subqueries in WHERE clauses.

• Subqueries must appear on the right side of an expression.
• Nested subqueries are not supported.
• A single query can have only one subquery expression.
• Subquery predicates must appear as top-level conjuncts.
• Subqueries support four logical operators in query predicates: IN, NOT IN, EXISTS, and NOT EXISTS.
• The IN and NOT IN logical operators may select only one column in a WHERE clause subquery.
• The EXISTS and NOT EXISTS operators must have at least one correlated predicate.
• The left side of a subquery must qualify all references to table columns.
• References to columns in the parent query are allowed only in the WHERE clause of the subquery.
• Subquery predicates that reference a column in a parent query must use the equals (=) predicate operator.
• Subquery predicates may not refer only to columns in the parent query.
• Correlated subqueries with an implied GROUP BY statement may return only one row.
• All unqualified references to columns in a subquery must resolve to tables in the subquery.
• Correlated subqueries cannot contain windowing clauses.

Aggregate and group data
You use AVG, SUM, or MAX functions to aggregate data, and the GROUP BY clause to group data query results in
one or more table columns..

About this task
The GROUP BY clause explicitly groups data. Hive supports implicit grouping, which occurs when aggregating the
table in full.

Procedure

1. Construct a query that returns the average salary of all employees in the engineering department grouped by year.

SELECT year, AVG(salary)
FROM Employees
WHERE Department = 'engineering' GROUP BY year;

2. Construct an implicit grouping query to get the highest paid employee.

SELECT MAX(salary) as highest_pay,
AVG(salary) as average_pay
FROM Employees
WHERE Department = 'engineering';

Query correlated data
You can query one table relative to the data in another table.

30

Data Access Apache Hive queries

About this task
A correlated query contains a query predicate with the equals (=) operator. One side of the operator must reference at
least one column from the parent query and the other side must reference at least one column from the subquery. An
uncorrelated query does not reference any columns in the parent query.

Procedure

Select all state and net_payments values from the transfer_payments table for years during which the value of the
state column in the transfer_payments table matches the value of the state column in the us_census table.

SELECT state, net_payments
FROM transfer_payments
WHERE EXISTS
 (SELECT year
 FROM us_census
 WHERE transfer_payments.state = us_census.state);

This query is correlated because one side of the equals predicate operator in the subquery references the state column
in the transfer_payments table in the parent query and the other side of the operator references the state column in the
us_census table.

This statement includes a conjunct in the WHERE clause.

A conjunct is equivalent to the AND condition, while a disjunct is the equivalent of the OR condition The following
subquery contains a conjunct:

... WHERE transfer_payments.year = "2018" AND us_census.state = "california"

The following subquery contains a disjunct:

... WHERE transfer_payments.year = "2018" OR us_census.state = "california"

Using common table expressions
Using common table expression (CTE), you can create a temporary view that repeatedly references a subquery.

A CTE is a set of query results obtained from a simple query specified within a WITH clause that immediately
precedes a SELECT or INSERT keyword. A CTE exists only within the scope of a single SQL statement and not
stored in the metastore. You can include one or more CTEs in the following SQL statements:

• SELECT
• INSERT
• CREATE TABLE AS SELECT
• CREATE VIEW AS SELECT

Recursive queries are not supported and the WITH clause is not supported within subquery blocks.

Use a CTE in a query
You can use a common table expression (CTE) to simplify creating a view or table, selecting data, or inserting data.

Procedure

1. Use a CTE to create a table based on another table that you select using the CREATE TABLE AS SELECT
(CTAS) clause.

CREATE TABLE s2 AS WITH q1 AS (SELECT key FROM src WHERE key = '4') SELECT
 * FROM q1;

31

Data Access Apache Hive queries

2. Use a CTE to create a view.

CREATE VIEW v1 AS WITH q1 AS (SELECT key FROM src WHERE key='5') SELECT *
 from q1;

3. Use a CTE to select data.

WITH q1 AS (SELECT key from src where key = '5')
 SELECT * from q1;

4. Use a CTE to insert data.
CREATE TABLE s1 LIKE src; WITH q1 AS (SELECT key, value FROM src WHERE key = '5') FROM q1
INSERT OVERWRITE TABLE s1 SELECT *;

Escape an illegal identifier
When you need to use reserved words, special characters, or a space in a column or partition name, enclose it in
backticks (`).

About this task

An identifier in SQL is a sequence of alphanumeric and underscore (_) characters enclosed in backtick characters. In
Hive, these identifiers are called quoted identifiers and are case-insensitive. You can use the identifier instead of a
column or table partition name.

Before you begin
You have set the following parameter to column in the hive-site.xml file to enable quoted identifiers:

Set the hive.support.quoted.identifiers configuration parameter to column in the hive-site.xml file to enable quoted
identifiers in column names. Valid values are none and column. For example, hive.support.quoted.identifiers =
column.

Procedure

1. Create a table named test that has two columns of strings specified by quoted identifiers:
CREATE TABLE test (`x+y` String, `a?b` String);

2. Create a table that defines a partition using a quoted identifier and a region number:
CREATE TABLE partition_date-1 (key string, value string) PARTITIONED BY (`dt+x` date, region int);

3. Create a table that defines clustering using a quoted identifier:
CREATE TABLE bucket_test(`key?1` string, value string) CLUSTERED BY (`key?1`) into 5 buckets;

CHAR data type support
Knowing how Hive supports the CHAR data type compared to other databases is critical during migration.

Table 1: Trailing Whitespace Characters on Various Databases

Data Type Hive Oracle SQL Server MySQL Teradata

CHAR Ignore Ignore Ignore Ignore Ignore

VARCHAR Compare Compare Configurable Ignore Ignore

STRING Compare N/A N/A N/A N/A

32

Data Access Create partitions dynamically

Create partitions dynamically

You can configure Hive to create partitions dynamically and then run a query that creates the related directories on
the file system, such as HDFS or S3. Hive then separates the data into the directories.

About this task

This example assumes you have the following CSV file named employees.csv to use as the data source:

1,jane doe,engineer,service
2,john smith,sales rep,sales
3,naoko murai,service rep,service
4,somporn thong,ceo,sales
5,xi singh,cfo,finance

Procedure

1. Put the CSV file on a file system, for example in HDFS at/user/hive/dataload/employee, and change permissions.

hdfs dfs -mkdir /user/hive/dataload/employee
hdfs dfs -chmod 777 /user/hive/dataload/employee
hdfs dfs -put employees.csv /user/hive/dataload/employee/employees.csv
hdfs dfs -chmod 777 /user/hive/dataload/employee/employees.csv

2. Launch Beeline and in the Hive shell, create an unpartitioned table that holds all the data.

CREATE EXTERNAL TABLE employees (eid int, name string, position string,
 dept string)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY ','
 STORED AS TEXTFILE
 LOCATION '/user/hive/dataload/employee';

3. Check that the data loaded into the employees table.

SELECT * FROM employees;

The output, formatted to fit this publication, appears:

+------+---------------+-------------+-------+---------+
| eid | name | position | dept | |
+------+---------------+-------------+-------+---------|
1	jane doe	engineer	service
2	john smith	sales rep	sales
3	naoko murai	service rep	service
4	somporn thong	ceo	sales
5	xi singh	cfo	finance
+------+---------------+-------------+-----------------+

4. Create a partition table.

CREATE EXTERNAL TABLE EMP_PART (eid int, name string, position string)
 PARTITIONED BY (dept string);

33

Data Access Create partitions dynamically

5. Set the dynamic partition mode to create partitioned directories of data dynamically when data is inserted.

SET hive.exec.dynamic.partition.mode=nonstrict;

6. Insert data from the unpartitioned table (all the data) into the partitioned table , dynamically creating the partitions.

INSERT INTO TABLE EMP_PART PARTITION (DEPT)
 SELECT eid,name,position,dept FROM employees;

Partitions are created dynamically.

7. Check that the partitions were created.

SHOW PARTITIONS emp_part;

+----------------+
| partition |
+----------------+
| dept=finance |
| dept=sales |
| dept=service |
+----------------+

8. Check the corresponding partition directories on HDFS.

hdfs dfs -ls /warehouse/tablespace/external/hive/emp_part

drwxrwxrwx+ - hive hadoop 0 2019-06-13 22:30 /warehouse/
tablespace/external/hive/emp_part/dept=finance
drwxrwxrwx+ - hive hadoop 0 2019-06-13 22:30 /warehouse/
tablespace/external/hive/emp_part/dept=sales
drwxrwxrwx+ - hive hadoop 0 2019-06-13 22:30 /warehouse/
tablespace/external/hive/emp_part/dept=service

You cannot remove the directories in the warehouse owned by hive.

Repair partitions using MSCK repair
The MSCK REPAIR TABLE command was designed to manually add partitions that are added to or removed from
the file system, such as HDFS or S3, but are not present in the metastore.

About this task

This task assumes you created a partitioned external table named emp_part that stores partitions outside the
warehouse. You remove one of the partition directories on the file system. This action renders the metastore
inconsistent with the file system. You repair the discrepancy manually to synchronize the metastore with the file
system, HDFS for example.

Procedure

1. List the partition directories on HDFS.

hdfs dfs -ls /user/hive/dataload/employee
Found 4 items
drwxr-xr-x - hive hdfs 0 2019-06-09 00:31 /user/hive/dataload/
employee/dept=finance
drwxr-xr-x - hive hdfs 0 2019-06-09 00:31 /user/hive/dataload/
employee/dept=sales

34

Data Access Manage partitions automatically

drwxr-xr-x - hive hdfs 0 2019-06-09 00:31 /user/hive/dataload/
employee/dept=service
-rw-r--r-- 3 hdfs hdfs 147 2019-06-08 23:54 /user/hive/dataload/
employee/employees.csv

2. Remove the dept=sales directory.

hdfs dfs -rm -r /user/hive/dataload/employee/dept=sales;
19/06/13 00:52:16 INFO fs.TrashPolicyDefault: Moved: 'hdfs://max.com:8020/
user/hive/dataload/employee/dept=sales' to trash at:...

This action also removes the data file 000000_0 in the dept=sales directory.

3. Launch Beeline, and in the Hive shell, look at the emp_part table partitions.

SHOW PARTITIONS emp_part;

The list of partitions is stale; it still includes the dept=sales directory.

+----------------+
| partition |
+----------------+
| dept=finance |
| dept=sales |
| dept=service |
+----------------+

4. Repair the partition manually.

MSCK REPAIR TABLE emp_part DROP PARTITIONS;

Manage partitions automatically

You can discover file system changes related to partitions and synchronize Hive metadata automatically. Performing
synchronization automatically as opposed to manually can save substantial time, especially when partitioned data,
such as logs, changes frequently.You can also configure how long to retain partition data and metadata.

About this task

After creating a partitioned table, Hive does not update metadata about corresponding directories on the file system
or object store that you add or drop. The partition metadata in the Hive metastore becomes stale after corresponding
directories are added or deleted. You need to synchronize the metastore and the file system.

You can refresh Hive metastore partition information manually or automatically.

• Manually

You run the MSCK (metastore consistency check) Hive command: MSCK REPAIR TABLE table_name SYNC
PARTITIONS every time you need to synchronize a partition with your file system.

• Automatically

You set up partition discovery to occur periodically.

The discover.partitions table property is automatically created and enabled for external partitioned tables. When
discover.partitions is enabled for a table, Hive performs an automatic refresh as follows:

• Adds corresponding partitions that are in the file system, but not in metastore, to the metastore.
• Removes partition schema information from metastore if you removed the corresponding partitions from the file

system.

35

Data Access Manage partitions automatically

Partition retention

You can configure how long to keep partition metadata and data and remove it after the retention period elapses.

Limitations

• Generally, partition discovery and retention is not recommended for use on managed tables.
• You must deploy a remote Hive metastore for your cluster by installing and configuring a supported database on

the cluster.

The Hive metastore acquires an exclusive lock on a table that enables partition discovery that can slow down other
queries. Using the default metastore, which is embedded in the HiveServer process and installed by Ambari, you
cannot manage a partition automatically.

Automate partition discovery and repair
Hive automatically and periodically discovers discrepancies in partition metadata in the Hive metastore and
corresponding directories on the file system, and then performs synchronization. Automating this operation for log
data or data in Spark and Hive catalogs is especially helpful.

About this task

The discover.partitions table property enables and disables synchronization of the file system with partitions. In
external partitioned tables, this property is enabled (true) by default when you create the table using Hive in HDP
3.1.4 and later. To a legacy external table (created using an earlier version of Hive), add discover.partitions to the
table properties to enable partition discovery. By default, the discovery and synchronization of partitions occurs every
5 minutes, but you can configure the frequency as shown in this task.

Procedure

1. Assuming you have an external table created using a version of Hive that does not support partition discovery,
enable partition discovery for the table.

ALTER TABLE exttbl SET TBLPROPERTIES ('discover.partitions' = 'true');

2. Set synchronization of partitions to occur every 10 minutes expressed in seconds: In Ambari > Hive > Configs, set
metastore.partition.management.task.frequency to 600.

Manage partition retention time
You can keep the size of the Hive metadata and data you accumulate for log processing, and other activities, to a
manageable size by setting a retention period for the data.

Before you begin
The table must be configured to automatically synchronize partition metadata with directories or objects on a file
system, such as HDFS or S3.

About this task

If you specify a partition metadata retention period, Hive drops the metadata and corresponding data in any partition
created after the retention period. You express the retention time using a numeral and the following character or
characters:

• ms (milliseconds)
• s (seconds)
• m (minutes)
• d (days)

36

Data Access Generate surrogate keys

In this task, you configure automatic synchronization of the file system partitions with the metastore and a partition
retention period. Assume you already created a partitioned, external table named employees as described earlier (see
link below).

Procedure

1. If necessary, enable automatic discovery of partitions for the table employees.

ALTER TABLE employees SET TBLPROPERTIES ('discover.partitions'='true');

By default, external partitioned tables already set this table property to true.

2. Configure a partition retention period of one week.

ALTER TABLE employees SET TBLPROPERTIES
 ('partition.retention.period'='7d');

The partition metadata as well as the actual data for employees in Hive is automatically dropped after a week.

Generate surrogate keys

You can use the built-in SURROGATE_KEY user-defined function (UDF) to automatically generate numerical Ids
for rows as you enter data into a table. The generated surrogate keys can replace wide, multiple composite keys.

Before you begin
Hive supports the surrogate keys on ACID tables only, as described in the following matrix of table types:

Table Type ACID Surrogate Keys File Format INSERT UPDATE/DELETE

Managed: CRUD
transactional

Yes Yes ORC Yes Yes

Managed: Insert-only
transactional

Yes Yes Any Yes No

Managed: Temporary No No Any Yes No

External No No Any Yes No

The table you want to join using surrogate keys cannot have column types that need casting. These data types must be
primitives, such as INT or STRING.

About this task

Joins using the generated keys are faster than joins using strings. Using generated keys does not force data into
a single node by a row number. You can generate keys as abstractions of natural keys. Surrogate keys have an
advantage over UUIDs, which are slower and probabilistic.

The SURROGATE_KEY UDF generates a unique Id for every row that you insert into a table.

It generates keys based on the execution environment in a distributed system, which includes a number of factors,
such as internal data structures, the state of a table, and the last transaction id. Surrogate key generation does not
require any coordination between compute tasks.

The UDF takes no arguments or two arguments as follows:

• Write Id bits
• Task Id bits

37

Data Access Query a SQL data source using the JdbcStorageHandler

Procedure

1. Create a students table in the default ORC format that has ACID properties.

CREATE TABLE students (row_id INT, name VARCHAR(64), dorm INT);

2. Insert data into the table. For example:

INSERT INTO TABLE students VALUES (1, 'fred flintstone', 100), (2, 'barney
 rubble', 200);

3. Create a version of the students table using the SURROGATE_KEY UDF.

CREATE TABLE students_v2
(`ID` BIGINT DEFAULT SURROGATE_KEY(),
 row_id INT,
 name VARCHAR(64),
 dorm INT,
 PRIMARY KEY (ID) DISABLE NOVALIDATE);

4. Insert data, which automatically generates surrogate keys for the primary keys.

INSERT INTO students_v2 (row_id, name, dorm) SELECT * FROM students;

5. Take a look at the surrogate keys.

SELECT * FROM students_v2;

+-----------------+---------------------+-------------------
+-------------------+
| students_v2.id | students_v2.row_id | students_v2.name |
 students_v2.dorm |
+-----------------+---------------------+-------------------
+-------------------+
| 1099511627776 | 1 | fred flintstone | 100
 |
| 1099511627777 | 2 | barney rubble | 200
 |
+-----------------+---------------------+-------------------
+-------------------+

6. Add the surrogate keys as a foreign key to another table, such as a student_grades table, to speed up subsequent
joins of the tables.

ALTER TABLE student_grades ADD COLUMNS (gen_id BIGINT);

MERGE INTO student_grades g USING students_v2 s ON g.row_id = s.row_id
WHEN MATCHED THEN UPDATE SET gen_id = s.id;

7. Perform fast joins on the surrogate keys.

Query a SQL data source using the JdbcStorageHandler

Using the JdbcStorageHandler, you can connect Hive to a MySQL, PostgreSQL, Oracle, or Derby data source, create
an external table to represent the data, and then query the table.

38

Data Access Creating a user-defined function

About this task

In this task you create an external table that uses the JdbcStorageHandler to connect to and read a local JDBC data
source.

Procedure

1. Load data into a supported SQL database, such as MySQL, on a node in your cluster or familiarize yourself with
existing data in the your database.

2. Obtain credentials for accessing the database.

• If you are accessing data on your network and have no security worries, you can use the user name and
password that authorizes your to access Hive.

• If you are accessing data on a remote network, create a JCEKS credential keystore on HDFS, and use
credentials you specify in the process.

3. Create an external table using the JdbcStorageHandler and table properties that specify the minimum information:
database type, driver, database connection string, user name and password for querying hive, table name, and
number of active connections to Hive.

CREATE EXTERNAL TABLE mytable_jdbc(
 col1 string,
 col2 int,
 col3 double
)
STORED BY 'org.apache.hive.storage.jdbc.JdbcStorageHandler'
TBLPROPERTIES (
 "hive.sql.database.type" = "MYSQL",
 "hive.sql.jdbc.driver" = "com.mysql.jdbc.Driver",
 "hive.sql.jdbc.url" = "jdbc:mysql://localhost/sample",
 "hive.sql.dbcp.username" = "hive",
 "hive.sql.dbcp.password" = "hive",
 "hive.sql.table" = "MYTABLE",
 "hive.sql.dbcp.maxActive" = "1"
);

4. Query the external table.

SELECT * FROM mytable_jdbc WHERE col2 = 19;

Creating a user-defined function

You export user-defined functionality (UDF) to a JAR from a Hadoop- and Hive-compatible Java project and store
the JAR on your cluster. Using Hive commands, you register the UDF based on the JAR, and call the UDF from a
Hive query.

Before you begin

• You have access to HDFS on the cluster.
• HiveServer or HiveServer Interactive, or both, are running on the cluster.
• You have installed the JDK 1.8 and a Java integrated development environment (IDE) tool on the machine where

you will create the UDF.

39

Data Access Creating a user-defined function

Set up the development environment
You can create a Hive UDF in a development environment using IntelliJ, for example, and build the UDF with Hive
and Hadoop JARS that you download from your HDP 3.x cluster.

Procedure

1. On your cluster, locate the hadoop-common-<version>.jar and hive-exec-<version>.jar.
For example:

ls /usr/hdp/current/hadoop-client/hadoop-common-* |grep -v test
/usr/hdp/current/hadoop-client/hadoop-common-3.1.1.3.1.0.0-78.jar

ls /usr/hdp/current/hive-server2/lib/hive-exec-*
/usr/hdp/current/hive-server2/lib/hive-exec-3.1.0.3.1.0.0-78.jar

2. Download the JARs to your development computer to add to your IntelliJ project later.

3. Open IntelliJ and create a new Maven-based project. Click Create New Project, select Maven, and select Java
version 1.8 as the Project SDK. Click Next.

4. Add archetype information.
For example:

• GroupId: com.mycompany.hiveudf
• ArtifactId: hiveudf

5. Click Next and Finish.
The generated pom.xml appears in sample-hiveudf.

6. To the pom.xml, add properties to facilitate versioning.
For example:

<properties>
 <hadoop.version>3.1.1.3.1.0.0-78</hadoop.version>
 <hive.version>3.1.0.3.1.0.0-78</hive.version>
</properties>

7. In the pom.xml, define the repositories.

Use internal repositories if you do not have internet access.

<repositories>
 <repository>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>warn</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <id>HDPReleases</id>
 <name>HDP Releases</name>
 <url>http://repo.hortonworks.com/content/repositories/releases/</
url>
 <layout>default</layout>
 </repository>
 <repository>
 <id>public.repo.hortonworks.com</id>
 <name>Public Hortonworks Maven Repo</name>
 <url>http://repo.hortonworks.com/content/groups/public/</url>

40

Data Access Creating a user-defined function

 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>

8. Define dependencies.
For example:

<dependencies>
 <dependency>
 <groupId>org.apache.hive</groupId>
 <artifactId>hive-exec</artifactId>
 <version>${hive.version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>${hadoop.version}</version>
 </dependency>
</dependencies>

9. Select File > Project Structure. Click Modules. On the Dependencies tab, click + to add JARS or directories.
Browse to and select the JARs you downloaded in step 1.

Create the UDF class
You define the UDF logic in a new class that returns the data type of a selected column in a table.

Procedure

1. In IntelliJ, click the vertical project tab, and expand hiveudf: hiveudf > src > main. Select the java directory, and
on the context menu, select New > Java Class and name the class, for example, TypeOf.

2. Extend the GenericUDF class to include the logic that identifies the data type of a column.
For example:

package com.mycompany.hiveudf;

import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import
 org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.apache.hadoop.io.Text;

public class TypeOf extends GenericUDF {
 private final Text output = new Text();

@Override
 public ObjectInspector initialize(ObjectInspector[] arguments) throws
 UDFArgumentException {
 checkArgsSize(arguments, 1, 1);
 checkArgPrimitive(arguments, 0);
 ObjectInspector outputOI =
 PrimitiveObjectInspectorFactory.writableStringObjectInspector;
 return outputOI;
 }

@Override

41

Data Access Creating a user-defined function

 public Object evaluate(DeferredObject[] arguments) throws HiveException
 {
 Object obj;
 if ((obj = arguments[0].get()) == null) {
 String res = "Type: NULL";
 output.set(res);
 } else {
 String res = "Type: " + obj.getClass().getName();
 output.set(res);
 }
 return output;
 }

@Override
 public String getDisplayString(String[] children) {
 return getStandardDisplayString("TYPEOF", children, ",");
 }
}

Build the project and upload the JAR
You compile the UDF code into a JAR and place the JAR on the cluster. You choose one of several methods of
configuring the cluster so Hive can find the JAR.

About this task
In this task, you choose one of several methods for configuring the cluster to find the JAR:

• Direct reference

Straight-forward, but recommended for development only.
• Hive aux library directory method

Prevents accidental overwriting of files or functions. Recommended for tested, stable UDFs to prevent accidental
overwriting of files or functions.

• Reloadable aux JAR Avoids HiveServer restarts.

Recommended if you anticipate making frequent changes to the UDF logic.

Procedure

1. Build the IntelliJ project.

...
[INFO] Building jar: /Users/max/IdeaProjects/hiveudf/target/TypeOf-1.0-
SNAPSHOT.jar
[INFO]
 --
[INFO] BUILD SUCCESS
[INFO]
 --
[INFO] Total time: 14.820 s
[INFO] Finished at: 2019-04-03T16:53:04-07:00
[INFO] Final Memory: 26M/397M
[INFO]
 --

Process finished with exit code 0

2. Navigate to the JAR in the /target directory of the project.

3. Configure the cluster so Hive can find the JAR using one of the following methods.

42

Data Access Creating a user-defined function

• Direct JAR reference

a. Upload the JAR to the cluster.
b. Move the JAR into the Hive warehouse on HDFS. For example:

$ sudo su - hdfs

$ hdfs dfs -put TypeOf-1.0-SNAPSHOT.jar /warehouse/tablespace/managed/
hiveudf-1.0-SNAPSHOT.jar

• Reloadable Aux JAR

a. Upload the JAR to the /hadoop/hive-udf-dyn directory on all HiveServer instances (and all Metastore
instances, if separate). An HDFS location is not supported.

b. In hive-site.xml, set the following property: hive.reloadable.aux.jars.path=/hadoop/hive-udf-dyn.
• Hive aux JARs path

a. Create a external (outside HDFS) directory on the cluster, /usr/hdp/3.1.0.0-78/hive/auxlib for example.
b. Create a symbolic link to the external directory. For example: ln -s /local-apps/hive-udf-aux /usr/

hdp/3.1.0.0-78/hive/auxlib

Hive automatically picks up JARS from ${HIVE_HOME}/auxlib which does not exist by default. As the
${HIVE_HOME} is version dependent, do not create the auxlib directory under the binary location, but
instead, create a symbolic link that will survive versioning.

Register the UDF
In the cluster, you log into Hive, and run a command from Beeline to make the UDF functional in Hive queries. The
UDF persists between HiveServer restarts.

Before you begin
You need to set up UDF access, using a Ranger policy for example.

About this task
In this task, the registration command differs depending on the method you chose to configure the cluster so Hive
can find the JAR. If you use the Hive aux library directory method that involves a symbolic link, you need to restart
HiveServer after registration. If you use another method, you do not need to restart HiveServer. You must recreate the
symbolic link after any patch or maintenance upgrades that deploy a new version of Hive.

Procedure

1. Using Beeline, login to HiveServer or HiveServer Interactive as a user who has UDF access.

• HiveServer, for example:

beeline -u jdbc:hive2://mycluster.com:10000 -n hive -p

• HiveServer Interactive, for example:

beeline -n hive -u jdbc:hive2://
mycluster.com:10500/;transportMode=binary

2. At the Hive prompt, select a database for use.
USE default;

3. Run the registration command that corresponds to the way you configured the cluster to find the JAR.

In the case of the direct JAR reference configuration method, you include the JAR location in the command. If
you use another method, you do not include the JAR location. The classloader can find the JAR.

43

Data Access Creating a user-defined function

• Direct JAR reference:

CREATE FUNCTION udftypeof AS 'com.mycompany.hiveudf.TypeOf01' USING JAR
 'hdfs:///warehouse/tablespace/managed/TypeOf01-1.0-SNAPSHOT.jar';

• Reloadable aux JAR:

RELOAD;
CREATE FUNCTION udftypeof AS 'com.mycompany.hiveudf.Typeof01';

• Hive aux library directory:

a. Set up a symbolic link on the command line of the local file system. HDFS is not supported.

ln -s /local-apps/hive-udf-aux /usr/hdp/3.1.0.0-78/hive/auxlib

b. In Beeline, run the command to register the UDF.

CREATE FUNCTION udftypeof AS 'com.mycompany.hiveudf.Typeof01';

c. Restart HiveServer.

4. Check that the UDF is registered.

SHOW FUNCTIONS;

You scroll through the output and find default.typeof.

Call the UDF in a query
After registration of a UDF, you do not need to restart Hive before using the UDF in a query. In this example, you
call the UDF you created in a SELECT statement, and Hive returns the data type of a column you specify.

Before you begin

• For the example query in this task, you need to create a table in Hive and insert some data.
• As a user, you need to have permission to call a UDF, which a Ranger policy can provide.

About this task
This task assumes you have the following example table in Hive:

+------------------+---------------+---------------+
| students.name | students.age | students.gpa |
+------------------+---------------+---------------+
| fred flintstone | 35 | 1.28 |
| barney rubble | 32 | 2.32 |
+------------------+---------------+---------------+

Procedure

1. Use the database in which you registered the UDF.
For example:

USE default;

2. Query Hive depending on how you configured the cluster for Hive to find the JAR.

• Either direct JAR reference or Hive aux library directory

44

Data Access Creating a user-defined function

For example:

SELECT students.name, udftypeof(students.name) AS type FROM students
 WHERE age=35;

• Reloadable aux JAR

For example:

RELOAD;
SELECT students.name, udftypeof(students.name) AS type FROM students
 WHERE age=35;

You get the data type of the name column in the students table.

+------------------+--+
| students.name | type |
+------------------+--+
| fred flintstone | Type:
 org.apache.hadoop.hive.serde2.io.HiveVarcharWritable |
+------------------+--+

45

	Contents
	Apache Hive 3 tables
	Create a CRUD transactional table
	Create an insert-only transactional table
	Create, use, and drop an external table
	Drop an external table along with data
	Using constraints
	Determine the table type
	Altering tables from flat to transactional
	Alter a table from flat to transactional

	Hive 3 ACID transactions
	Using materialized views
	Create and use a materialized view
	Use a materialized view in a subquery
	Drop a materialized view
	Show materialized views
	Describe a materialized view
	Manage rewriting of a query
	Create a materialized view and store it in Druid
	Create and use a partitioned materialized view

	Apache Hive queries
	Query the information_schema database
	Insert data into an ACID table
	Update data in a table
	Merge data in tables
	Delete data from a table
	Create a temporary table
	Configure temporary table storage

	Use a subquery
	Subquery restrictions

	Aggregate and group data
	Query correlated data
	Using common table expressions
	Use a CTE in a query

	Escape an illegal identifier
	CHAR data type support

	Create partitions dynamically
	Repair partitions using MSCK repair

	Manage partitions automatically
	Automate partition discovery and repair
	Manage partition retention time

	Generate surrogate keys
	Query a SQL data source using the JdbcStorageHandler
	Creating a user-defined function
	Set up the development environment
	Create the UDF class
	Build the project and upload the JAR
	Register the UDF
	Call the UDF in a query

