Apache Spark 3

Configuring Apache Spark

Date of Publish: 2019-08-26

P

Hortonworks

https://docs.hortonwor ks.com

https://docs.hortonworks.com

Contents

Configuring the Spark TRrift SErVEr ... 3
Configuring the LIVY SENVEN ...ttt 3
Configuring the Spark HiStOry SErVEr ... 3
Configuring Dynamic Resource AlOCatioN..........cccvvveieeiciecrie e 4
Customize dynamic resource allocation Settings 0N AMDEIT.........ccoerirrinrenne e 4
Manually configure dynamicC reSOUrCe allOCELION.c.veuerieririeiirieierie sttt 5
Configure a job for dynamic reSourCe allOCaLION.........c..ciieirieirieiee e 6
Dynamic resource allOCatiON PrOPEITIES........ccccirirririeierieieriet ettt sb e b e bt e bt se et se bbb e s e enas 6
Configuring Spark for Wire ENCryption........ccceeceeiieeeceesie e see e 7
Configuring Spark for a Kerberos-enabled Cluster........ccccoovveviiviiieciie e, 9
Configure the Spark NISLOrY SEIVEN ... bbb et 9
Configure the Spark THITE SEIVEN ... bbb bbb e 10

Set up access for SUBMIttNG JODS.........oii e e 10

Apache Spark Configuring the Spark Thrift Server

Configuring the Spark Thrift Server

Use the following steps to configure the Apache Spark Thrift server.

About thistask
The Apache Spark Thrift server is a service that allows JDBC and ODBC clientsto run Spark SQL queries. The
Spark Thrift server isavariant of HiveServer2.

Customizing the Spark Thrift Server Port

The default Spark Thrift server port is 10016. To specify adifferent port, select Spark > Config on the Ambari
dashboard, then select Advanced spark-hive-site-override. Set the hive.server2.thrift.port property to the new port
number. Click Save, then restart Spark and any other components that require a restart.

Configuring the Livy Server

Use the following steps to configure the Livy server.

ConfiguretheLivy Server

1. Select Spark > Config on the Ambari dashboard, then select Custom livy-conf.
2. Add alivy.superusers property and set it to the Zeppelin service account.

For anon-Ambari cluster, see "Installing and Configuring Livy" in the Spark 2 chapter of the Command Line
Installation Guide.

Configure SSL for the Livy Server
To enable SSL for Livy, configure the following parameters for the SSL certificate and key, the keystore password,
and the key password, respectively:

livy. keyst ore=<keystore_file>
livy. keystore. password = <st or ePasswor d>
livy. key-password = <KeyPasswor d>

For background information about configuring SSL for Spark, see "Configuring Spark for Wire Encryption™ in this
guide.

Configure High Availability for the Livy Server

By default, if the Livy server fails, all connected Spark clusters are terminated. This means that al jobs and data will
disappear immediately.

For deployments that require high availability, Livy supports session recovery, which ensures that a Spark cluster
remains available if the Livy server fails. After arestart, the Livy server can connect to existing sessions and roll back
to the state before failing.

Livy uses several property settings for recovery behavior related to high availability. These settings are managed by
Ambari.

Configuring the Spark History Server

Use the following steps to configure the Apache Spark history server.

3

Apache Spark Configuring Dynamic Resource Allocation

The Spark history server isamonitoring tool that displays information about completed Spark applications. This
information is pulled from the data that applications by default write to a directory on Hadoop Distributed File
System (HDFS).

To access the Spark history server, click Spark2 in the Ambari Dashboard, then click Spark2 History Server Ul under
"Quick Links".

Ambari Admin users can see the history of all Spark jobs. Other users can only see the history of jobs they submitted.

Related Information
Apache Monitoring and Instrumentation

Configuring Dynamic Resour ce Allocation

This section describes how to configure dynamic resource allocation for Apache Spark.

When the dynamic resource allocation feature is enabled, an application's use of executorsis dynamically adjusted
based on workload. This means that an application can relinquish resources when the resources are no longer needed,
and request them later when there is more demand. This feature is particularly useful if multiple applications share
resources in your Spark cluster.

Dynamic resource allocation is available for use by the Spark Thrift server and general Spark jobs.

Note:
E Dynamic Resource Allocation does not work with Spark Streaming.
Y ou can configure dynamic resource allocation at either the cluster or the job level:
» Cluster level:

e Onan Ambari-managed cluster, the Spark Thrift server uses dynamic resource all ocation by default. The
Thrift server increases or decreases the number of running executors based on a specified range, depending on
load. (In addition, the Thrift server runsin Y ARN mode by default, so the Thrift server uses resources from
the YARN cluster.) The associated shuffle service starts automatically, for use by the Thrift server and general
Spark jobs.

e Onamanually installed cluster, dynamic resource allocation is not enabled by default for the Thrift server or
for other Spark applications. Y ou can enable and configure dynamic resource allocation and start the shuffle
service during the Spark manual installation or upgrade process.

« Joblevel: You can customize dynamic resource allocation settings on a per-job basis. Job settings override cluster
configuration settings.

Cluster configuration is the default, unless overridden by job configuration.

The following subsections describe each configuration approach, followed by alist of dynamic resource alocation
properties and a set of instructions for customizing the Spark Thrift server port.

Customize dynamic resour ce allocation settings on Ambari
Use the following steps to review and customize dynamic resource all ocation settings on an Ambari-managed cluster.

On an Ambari-managed cluster, dynamic resource allocation is enabled and configured for the Spark Thrift server as
part of the Spark installation process. Dynamic resource allocation is not enabled by default for general Spark jobs.

Y ou can review dynamic resource allocation for the Spark Thrift server, and enable and configure settings for general
Spark jobs, by selecting Services > Spark > Advanced spark-thrift-sparkconf:

http://spark.apache.org/docs/2.0.0/monitoring.html#viewing-after-the-fact

Apache Spark Configuring Dynamic Resource Allocation

Spark SynamacAllocaton. Eriie - i}]
araied

KITF-L - = o 5
NEiBIEXSCUtOns

KdynamasAlloci o c

R
spark.gynamecaliocation n] 2] [
""" E e
sparkaventLog.dir {ispark_histon o ¢
5 E 0y .6 i f] s
SPArC OB UTOr, MmOy o K
Bpark sy 18 |fepark s]] (4

- F g

/| [
spark NSHony. pror £ k ¢ Nisbory listoryProvider o
spark ter llspar .3 masii o 4
apark_sthad g B f rac e ler.] ['ad
pllocation. file
spark o Liler Tl | o [
spark shiuffe, senaica Erua o [
i Wik
SEEr VAT AN, TR, 112] i
Spark B £ o 4

The "Advanced spark-thrift-sparkconf" group lists required settings. Y ou can specify optional propertiesin the
custom section. For acomplete list of DRA properties, see "Dynamic Resource Allocation Properties” in this guide.

Dynamic resource allocation requires an external shuffle service that runs on each worker node as an auxiliary service
of NodeManager. If you installed your cluster using Ambari, the service is started automatically for use by the Thrift
server and general Spark jobs; no further steps are needed.

Manually configure dynamic resour ce allocation

Use the following steps to manually configure dynamic resource allocation settings.

Procedure

1. Add the following properties to the spark-defaults.conf file associated with your Spark installation (typically in the
$SPARK_HOME/conf directory):

e Set spark.dynamicAllocation.enabled to true.

Apache Spark Configuring Dynamic Resource Allocation

e Set spark.shuffle.service.enabled to true.
2. (Optional) To specify a starting point and range for the number of executors, use the following properties:

o gpark.dynamicAllocation.initial Executors
 gpark.dynamicAllocation.minExecutors
» gpark.dynamicAllocation.maxExecutors

Note that initial Executors must be greater than or equal to minExecutors, and less than or equal to maxExecutors.

For a description of each property, see "Dynamic Resource Allocation Properties’ in this guide.
3. Start the shuffle service on each worker node in the cluster:

a. Intheyarn-site.xml file on each node, add spark_shuffle to yarn.nodemanager.aux-services, and then set
yarn.nodemanager.aux-services.spark_shuffle.class toorg.apache.spark.network.yarn.Y arnShuffleService.

b. Review and, if necessary, edit spark.shuffle.service.* configuration settings.
c. Restart all NodeManagersin your cluster.

Related Information
Apache Spark Shuffle Behavior

Configure ajob for dynamic resour ce allocation
Use the following steps to configre dynamic resource allocation for a specific job.
There are two ways to customize dynamic resource allocation properties for a specific job:
* Include property values in the spark-submit command, using the -conf option.

This approach loads the default spark-defaults.conf file first, and then applies property values specified in your
spark-submit command.

Example:

spark-submit --conf “property _name=property value’
« Create ajob-specific spark-defaults.conf file and passit to the spark-submit command.

This approach uses the specified properties file, without reading the default property file.
Example:

spark-submit --properties-file <property_file>

Dynamic resour ce allocation properties
The following tables provide more information about dynamic resource allocation properties.

Table 3.1. Dynamic Resource Allocation Properties

Property Name Value Meaning
spark.dynamicAllocation. enabled Default istrue for the Spark Thrift server, and | Specifies whether to use dynamic resource
false for Spark jobs. allocation, which scales the number of

executors registered for an application up
and down based on workload. Note that this
featureis currently only availablein YARN
mode.

spark.shuffle.service. enabled true Enables the external shuffle service, which
preserves shuffle files written by executors so
that the executors can be safely removed.

This property must be set to true if
spark.dynamicAllocation. enabledis true.

https://spark.apache.org/docs/2.0.0/configuration.html#shuffle-behavior

Apache Spark Configuring Spark for Wire Encryption

Property Name Value Meaning
spark.dynamicAllocation. initial Executors Default is spark.dynamicAllocation. Theinitial number of executors to run if
minExecutors dynamic resource allocation is enabled.

This value must be greater than or equal to the
minExecutors value, and less than or equal to

the maxExecutors value.

spark.dynamicAllocation. maxExecutors Default isinfinity Specifies the upper bound for the number of
executors if dynamic resource allocation is
enabled.

spark.dynamicAllocation. minExecutors DefaultisO Specifies the lower bound for the number of
executors if dynamic resource allocation is
enabled.

Table 3.2. Optional Dynamic Resource Allocation Properties

Property Name Value Meaning

spark.dynamicAllocation. Default is 60 seconds (60s) If dynamic resource allocation is enabled and

executorldleTimeout an executor has been idle for more than this
time, the executor is removed.

spark.dynamicAllocation. Default isinfinity If dynamic resource allocation is enabled and

cachedExecutor|dleTimeout an executor with cached data blocks has been
idle for more than this time, the executor is
removed.

spark.dynamicAllocation. 1 second (1s) If dynamic resource allocation is enabled and

schedulerBacklogTimeout there have been pending tasks backlogged
for more than thistime, new executors are
requested.

spark.dynamicAllocation. Default is schedulerBacklogTimeout Same as spark.dynamicAllocation.

sustai nedSchedul erBacklogTimeout schedulerBacklogTimeout,but used only for
subsequent executor requests.

Related Information
Apache Dynamic Resource Allocation

Configuring Spark for Wire Encryption

Y ou can configure Spark to protect sensitive datain transit by enabling wire encryption.

About thistask

In general, wire encryption protects data by making it unreadable without a phrase or digital key to access the data.
Data can be encrypted whileit isin transit and when it is at rest:

« "Intransit" encryption refersto data that is encrypted when it traverses a network. The data is encrypted between
the sender and receiver process across the network. Wire encryption isaform of "in transit" encryption.

o "Atrest" or "transparent” encryption refers to data stored in a database, on disk, or on other types of persistent
media

Apache Spark supports "in transit" wire encryption of datafor Apache Spark jobs. When encryption is enabled, Spark
encrypts al data that is moved across nodes in a cluster on behalf of ajob, including the following scenarios:

« Datathat is moving between executors and drivers, such as during a collect() operation.
« Datathat is moving between executors, such as during a shuffle operation.

Spark does not support encryption for connectors accessing external sources; instead, the connectors must handle any
encryption requirements. For example, the Spark HDFS connector supports transparent encrypted data access from

7

http://spark.apache.org/docs/2.0.0/job-scheduling.html#dynamic-resource-allocation

Apache Spark

Configuring Spark for Wire Encryption

HDFS: when transparent encryption is enabled in HDFS, Spark jobs can use the HDFS connector to read encrypted
datafrom HDFS.

Spark does not support encrypted data on local disk, such as intermediate data written to alocal disk by an executor
process when the data does not fit in memory. Additionally, wire encryption is not supported for shuffle files, cached
data, and other application files. For these scenarios you should enable local disk encryption through your operating
system.

Note:
E Enabling Spark wire encryption also enables HTTPS on the History Server Ul, for browsing historical job
data.

Procedure
1. On each node, create keystore files, certificates, and truststore files.
a. Create akeystorefile:

keyt ool -genkey \
-alias <host> \
-keyal g RSA \
-keysi ze 1024 \
—dnanme CN=<host >, OQU=hw, C=hw, L=pal oal t 0, ST=ca, C=us \
—keypass <KeyPasswor d> \
-keystore <keystore file> \
- st orepass <stor ePasswor d>

b. Create acertificate:

keyt ool -export \
-alias <host>\
-keystore <keystore file> \
-rfc —file <cert _file>\
- st orepass <Stor ePasswor d>

c. Create atruststorefile:

keytool -inport \
-nopronpt \
-alias <host>\
-file <cert _file>\
-keystore <truststore file> \
- storepass <truststorePassword>

2. Create onetruststore file that contains the public keys from all certificates.

a. Log on to one host and import the truststore file for that host:

keyt ool -inport \
- nopronpt \
-alias <hostnane> \
-file <cert _file>\
-keystore <all _jks>\
-storepass <al |l Trust st or ePasswor d>

b. Copy the <all_jks> file to the other nodes in your cluster, and repeat the keytool command on each node.
3. Enable Spark authentication.
a. Set spark.authenticate to true in the yarn-site.xml file:
<property>

<nane>spar k. aut hent i cat e</ nane>
<val ue>t rue</val ue>

Apache Spark

Configuring Spark for a K erberos-enabled Cluster

</ property>

b. Set thefollowing properties in the spark-defaults.conf file:

spark. aut henticate true
spar k. aut hent i cat e. enabl eSasl Encrypti on true

4. Enable Spark SSL.
Set the following properties in the spark-defaults.conf file:

spark.
sparKk.
spark.
spar k.
spark.
spark.
sparKk.

ssl

ssl .
ssl .
ssl .
ssl .
.trustStore <all _jks>

.trust St orePassword <al | Tr ust st or ePasswor d>

ssl
ssl

. enabl ed true

keyPassword <KeyPasswor d>
keyStore <keystore file>

keySt or ePassword <st or ePasswor d>
protocol TLS

5. Enable HTTPS for the Spark Ul.

Set spark.ui.https.enabled to true in the spark-defaults.conf file:

spar k. ui . https. enabl ed true

6. (Optiona) If you want to enable optional on-disk block encryption, which applies to both shuffle and RDD blocks
on disk, complete the following steps:

a. Add the following properties to the spark-defaults.conf file for Spark:

spark.io.encryption. enabl ed true
spark.io.encryption. keySi zeBits 128
spar k. i o.encryption. keygen. al gori t hm HracSHA1

b. Enable RPC encryption.

Configuring Spark for a Kerberos-enabled Cluster

This section describes how to configure Apache Spark for a Kerberos-enabled cluster.

About thistask

Before running Spark jobs on a Kerberos-enabled cluster, configure additional settings for the following modules and

scenarios:

e Spark history server

e Spark Thrift server

 Individuas who submit jobs

» Processes that submit jobs without human interaction

Each of these scenariosis described in the following subsections.

When Kerberos is enabled on an Ambari-managed cluster, Livy configuration for Kerberos is handled automatically.

Configurethe Spark history server

On aKerberos-enabled cluster, the Spark history server daemon must have a Kerberos account and keytab.

When you enable Kerberos for a Hadoop cluster with Ambari, Ambari configures Kerberos for the Spark history
server and automatically creates a Kerberos account and keytab for it. Ambari configures the Spark history server

9

Apache Spark Configuring Spark for a K erberos-enabled Cluster

permissions such that Admin users can see the history of all Spark jobs, and other users can only see the history of
jobs they submitted. To customize these settings, select Spark2 > Configs > Custom spark2-defaultsin Ambari.

For example, to add Admin users:
1. Select Spark2 > Configs > Custom spark2-defaults in Ambari.
2. Add following properties:

Table 1. Apache Spark History Server ACL Settings

Property Value
spark.history.ui.acls.enable true
spark.history.ui.admin.acls Comma-separated list of Admin users.

3. Click Save, then restart Spark and any other services that require arestart.

Related Information

Apache Spark Security

Apache Spark Monitoring and I nstrumentation
Enabling Kerberos Authentication Using Ambari
Creating Service Principals and Keytab Files for HDP

Configurethe Spark Thrift server
Use the following steps to configure the Apache Spark Thrift server on a Kerberos-enabled cluster.
If you areinstalling the Spark Thrift server on a Kerberos-enabled cluster, note the following regquirements:

» The Spark Thrift server must run in the same host as HiveServer2, so that it can access the hiveserver2keytab.
e Permissionsin /var/run/spark and /var/log/spark must specify read/write permissions to the Hive service account.
* You must use the Hive service account to start the thriftserver process.

If you access Hive warehouse files through HiveServer2 on a deployment with fine-grained access control, run
the Spark Thrift server as user hive. This ensures that the Spark Thrift server can access Hive keytabs, the Hive
metastore, and HDFS data stored under user hive.

& Important:
If you read files from HDFS directly through an interface such as the Spark CL1 (as opposed to HiveServer2
with fine-grained access control), you should use a different service account for the Spark Thrift server.
Configure the account so that it can access Hive keytabs and the Hive metastore. Use of an alternate account
provides a more secure configuration: when the Spark Thrift server runs queries as user hive, all data
accessible to user hiveis accessible to the user submitting the query.

For Spark jobs that are not submitted through the Thrift server, the user submitting the job must have access to the
Hive metastore in secure mode, using the kinit command.

Set up accessfor submitting jobs

Use the following steps to set up access for submitting Spark jobs on a Kerberos-enabled cluster.

About thistask

Accounts that submit jobs on behalf of other processes must have a Kerberos account and keytab. End users should
use their own keytabs (instead of using a headless keytab) when submitting a Spark job. The following sections
describe both scenarios.

10

https://spark.apache.org/docs/latest/security.html
https://spark.apache.org/docs/latest/monitoring.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.4/authentication-with-kerberos/content/enabling_kerberos_authentication_using_ambari.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.4/security-reference/content/kerberos_nonambari_creating_service_principals_and_keytab_files_for_hdp.html

Apache Spark

Configuring Spark for a K erberos-enabled Cluster

Set Up Accessfor an Account

When access is authenticated without human interaction (as happens for processes that submit job requests), the
process uses a headless keytab. Security risk is mitigated by ensuring that only the service that should be using the
headl ess keytab has permission to read it.

The following example creates a headless keytab for a spark service user account that will submit Spark jobs on node
bluel@example.com:

1. Create aKerberos service principal for user spark:

kadmin.local -q "addprinc -randkey spark/bluel@EXAMPLE.COM"
2. Createthe keytab:

kadmi n.local -q "xst -k /etc/security/keytabs/spark. keytab
spar k/ bl uel @&XAMPLE. COM'

3. For every node of your cluster, create a spark user and add it to the hadoop group:

useradd spark -g hadoop
4. Make spark the owner of the newly created keytab:

chown spark:hadoop /etc/security/keytabs/spark.keytab
5. Limit access by ensuring that user spark isthe only user with access to the keytab:

chmod 400 /etc/security/keytabs/spark.keytab

In the following example, user spark runs the Spark Pi example in a Kerberos-enabled environment:

su spark
kinit -kt /etc/security/keytabs/spark. keytab spark/ bl uel@XAVPLE. COM
cd /usr/hdp/current/spark-client/
./ bi n/spark-submt --class org.apache. spark. exanpl es. Spar kPi \
--master yarn-cluster \
--num executors 1\
--driver-nenory 512m\
--executor-nmenory 512m\
--executor-cores 1\
I'i b/ spark-exanpl es*.jar 10

Set Up Accessfor an End User

Each person who submits jobs must have a Kerberos account and their own keytab; end users should use their own
keytabs (instead of using a headless keytab) when submitting a Spark job. Thisis abest practice: submitting ajob
under the end user keytab delivers a higher degree of audit capability.

In the following example, end user SUSERNAME has their own keytab and runs the Spark Pi job in a Kerberos-
enabled environment:

su $USERNAME
ki nit USERNAVE@'OUR- LOCAL- REALM COM
cd /usr/hdp/current/spark-client/
./ bin/spark-submit --class org.apache. spark. exanpl es. Spar kPi \
--master yarn-cluster \
--num executors 3\
--driver-nenory 512m\
--executor-nmenory 512m\
--executor-cores 1\
I'i b/ spark-exanpl es*.jar 10

11

	Contents
	Configuring the Spark Thrift Server
	Configuring the Livy Server
	Configuring the Spark History Server
	Configuring Dynamic Resource Allocation
	Customize dynamic resource allocation settings on Ambari
	Manually configure dynamic resource allocation
	Configure a job for dynamic resource allocation
	Dynamic resource allocation properties

	Configuring Spark for Wire Encryption
	Configuring Spark for a Kerberos-enabled Cluster
	Configure the Spark history server
	Configure the Spark Thrift server
	Set up access for submitting jobs

