
Data Access 3

Using Druid and Apache Hive
Date of Publish: 2019-08-16

https://docs.hortonworks.com

https://docs.hortonworks.com

Contents

Accelerating Hive queries using Druid.. 3

How Druid indexes Hive data... 3

Transform Apache Hive Data to Druid... 4
Anatomy of a Hive-to-Druid data transformation... 5

Create a Hive materialized view, store it in Druid... 7

Druid and Hive tuning...7

Data Access Accelerating Hive queries using Druid

Accelerating Hive queries using Druid

You can perform interactive analytic queries on real-time and historical data using the HDP integration of Hive and
Apache Druid (incubating). You can discover existing Druid data sources as external tables, create or ingest batch
data into Druid, set up Druid-Kafka streaming ingestion using Hive, and query Druid data sources from Hive.

The integration of Hive with Druid places a SQL layer on Druid. After Druid ingests data from a Hive enterprise data
warehouse (EDW), the interactive and sub-second query capabilities of Druid can be used to accelerate queries on
historical data from the EDW. Hive integration with Druid enables applications such as Tableau to scale while queries
run concurrently on both real-time and historical data. The following figure is an overview of how Hive historical
data can be brought into a Druid environment. Queries analyzing Hive-sourced data are run directly on the historical
nodes of Druid after indexing between the two databases completes.

Related Information
Druid Integration

How Druid indexes Hive data

Before you can create a Druid data source based on Hive data, you must understand how Hive external table data
maps to the column orientation and segment files of Druid.

Mapping of a Hive external table to a Druid file

Each Druid segment consists of the following objects to facilitate fast lookup and aggregation:

Timestamp column The SQL-based timestamp column is filled in based
on how you set the time granularity of imported Hive
data and what time range of data is selected in the Hive
external table. This column is essential for indexing
the data in Druid because Druid itself is a time-series
database. The timestamp column must be named __time.

Dimension columns The dimension columns are used to set string attributes
for search and filter operations. To index a Hive-sourced
column as a Druid dimension column, you must cast the
column as a string type.

3

https://cwiki.apache.org/confluence/display/Hive/Druid+Integration

Data Access Transform Apache Hive Data to Druid

Metric columns Metric columns are used to index metrics for use as
aggregates or measures. To index a Hive-sourced column
as a Druid metric column, you must cast the column as a
Hive numeric data type.

The following figure shows how you can categorize Druid data into three types of

columns.

Related Information
Druid Integration

Transform Apache Hive Data to Druid

You can execute a Hive query to transform data in Hive to a data source in Druid.

Before you begin

• If you use Kerberos, configure and run Hive low-latency analytical processing (LLAP).
• You set up a table, ssb_10_flat_orc as defined in the Star Schema Benchmark example.

About this task

A Hive SQL command, an excerpt from the Star Schema Benchmark using the Hive/Druid Integration, invokes the
Druid storage handler, specifies Druid segment granularity, and maps selected Hive columns to Druid column types.

Procedure

1. Put all the Hive data to undergo ETL in a Hive table.

2. Execute a Hive query to set the location of the Druid broker using a DNS name or IP address and port 8082, the
default broker text listening port.

SET hive.druid.broker.address.default=10.10.20.30:8082;

If you installed the Hive and Druid services using Ambari, you can skip this step.

3. Run a CREATE TABLE AS SELECT statement to create a new Druid datasource from the Hive table you
selected in step 1.
The following example pushes Hive data to Druid.

CREATE TABLE ssb_druid_hive
STORED BY 'org.apache.hadoop.hive.
druid.DruidStorageHandler'
TBLPROPERTIES (
"druid.segment.granularity" = "MONTH",
"druid.query.granularity" = "DAY")
AS
SELECT
cast(d_year || '-' || d_monthnuminyear || '-' || d_daynuminmonth as
 timestamp) as `__time`,
cast(c_city as string) c_city,
cast(c_nation as string) c_nation,

4

https://cwiki.apache.org/confluence/display/Hive/Druid+Integration
https://hortonworks.com/blog/sub-second-analytics-hive-druid/

Data Access Transform Apache Hive Data to Druid

cast(c_region as string) c_region,
cast(d_weeknuminyear as string) d_weeknuminyear,
cast(d_year as string) d_year,
cast(d_yearmonth as string) d_yearmonth,
cast(d_yearmonthnum as string) d_yearmonthnum,
cast(lo_discount as string) lo_discount,
cast(lo_quantity as string) lo_quantity,
cast(p_brand1 as string) p_brand1,
cast(p_category as string) p_category,
cast(p_mfgr as string) p_mfgr,
cast(s_city as string) s_city,
cast(s_nation as string) s_nation,
cast(s_region as string) s_region,
lo_revenue,
lo_extendedprice * lo_discount discounted_price,
lo_revenue - lo_supplycost net_revenue
FROM
ssb_10_flat_orc.customer, ssb_10_flat_orc.dates,
 ssb_10_flat_orc.lineorder,
ssb_10_flat_orc.part, ssb_10_flat_orc.supplier
where
lo_orderdate = d_datekey and lo_partkey = p_partkey
and lo_suppkey = s_suppkey and lo_custkey = c_custkey;

Related Information
Druid Integration

Anatomy of a Hive-to-Druid data transformation
A breakdown of the example SQL code that transforms Hive data into a Druid datasource helps you understand how
to transform your own data.

SQL example code

The following SQL statement contains the main elements of a statement that can transform Hive data into a time
series-based Druid datasource. You need to replace the values in the statement to match your data warehouse
environment and analytics parameters.

CREATE TABLE ssb_druid_hive
STORED BY 'org.apache.hadoop.hive.
druid.DruidStorageHandler'
TBLPROPERTIES (
"druid.segment.granularity" = "MONTH",
"druid.query.granularity" = "DAY")
AS
SELECT
cast(d_year || '-' || d_monthnuminyear || '-' || d_daynuminmonth as
 timestamp) as `__time`,
cast(c_city as string) c_city,
cast(c_nation as string) c_nation,
cast(c_region as string) c_region,
cast(d_weeknuminyear as string) d_weeknuminyear,
cast(d_year as string) d_year,
cast(d_yearmonth as string) d_yearmonth,
cast(d_yearmonthnum as string) d_yearmonthnum,
cast(lo_discount as string) lo_discount,
cast(lo_quantity as string) lo_quantity,
cast(p_brand1 as string) p_brand1,
cast(p_category as string) p_category,
cast(p_mfgr as string) p_mfgr,
cast(s_city as string) s_city,

5

https://cwiki.apache.org/confluence/display/Hive/Druid+Integration

Data Access Transform Apache Hive Data to Druid

cast(s_nation as string) s_nation,
cast(s_region as string) s_region,
lo_revenue,
lo_extendedprice * lo_discount discounted_price,
lo_revenue - lo_supplycost net_revenue
FROM
ssb_10_flat_orc.customer, ssb_10_flat_orc.dates, ssb_10_flat_orc.lineorder,
ssb_10_flat_orc.part, ssb_10_flat_orc.supplier
where
lo_orderdate = d_datekey and lo_partkey = p_partkey
and lo_suppkey = s_suppkey and lo_custkey = c_custkey;

Explanation of SQL example

The following breakdown of the preceding SQL statement explains the main elements of a statement that can
transform Hive data into a time series-based Druid datasource. You need to replace the values in the statement to
match your data warehouse environment and analytics parameters.

CREATE TABLE ssb_druid_hive Creates the Hive table and assigns a name to it. You
must use a table name that is not already used by another
Druid datasource.

STORED BY, 'org.apache.hadoop.hive.,
druid.DruidStorageHandler'

This calls the Druid storage handler so that the Hive data
can be transformed to a Druid datasource.

TBLPROPERTIES ("druid.segment.granularity" =
"MONTH", "druid.query.granularity" = "DAY")
AS SELECT cast(d_year || '-' || d_monthnuminyear ||
'-' || d_daynuminmonth as timestamp) as `__time`,

Creates the __time column, which is a required SQL
timestamp column for the Druid datasource.

cast(c_city as string) c_city, cast(c_nation
as string) c_nation, cast(c_region as string)
c_region, cast(d_weeknuminyear as string)
d_weeknuminyear, ...

cast (… as string) statements index columns as
dimensions. Dimensions in the Druid datasource are used
to search and filter.

lo_extendedprice * lo_discount discounted_price,
lo_revenue - lo_supplycost net_revenue

These lines preaggregate metrics columns. To index a
column as metrics, you need to cast the column to a Hive
numeric data type.

FROM ssb_10_flat_orc.customer,
ssb_10_flat_orc.dates, ...

The numeric value indicates the data scale. The other
information corresponds with the name and other
components of the source Hive tables.

Table Property Required Description Valid Values

druid.segment.popularity No Defines how the data is physically
partitioned. The values that are
permissible here correspond with
Druid segment granularity.

"YEAR", "MONTH", "WEEK",
"DAY", "HOUR", "MINUTE",
"SECOND"

druid.query.granularity No Defines how much granularity to
store in a segment. The values that
are permissible here correspond
with Druid query granularity.

"YEAR", "MONTH", "WEEK",
"DAY", "HOUR", "MINUTE",
"SECOND"

If you need Druid to ingest Hive data that follows the same schema as the first data set that you transformed, you can
do so with the INSERT INTO statement.

6

Data Access Create a Hive materialized view, store it in Druid

Create a Hive materialized view, store it in Druid

You can create a materialized view and store it in Druid using the Druid storage handler.

Before you begin

• Hive is running as a service in the cluster.
• Druid is running as a service in the cluster.
• You created a transactional table named src that has timestamp, dimension, and metric columns: __time

TIMESTAMP, page STRING, user STRING, c_added INT, and c_removed INT columns.

About this task

In this task, you include the STORED BY clause followed by the Druid storage handler. The storage handler
integrates Hive and Druid for saving the materialized view in Druid.

Procedure

1. Execute a Hive query to set the location of the Druid broker using a DNS name or IP address and port 8082, the
default broker text listening port.

SET hive.druid.broker.address.default=10.10.20.30:8082;

If you installed the Hive and Druid services using Ambari, you can skip this step.

2. Create a materialized view store the view in Druid.

CREATE MATERIALIZED VIEW druid_mv
 STORED BY 'org.apache.hadoop.hive.druid.DruidStorageHandler'
 AS SELECT __time, page, user, c_added, c_removed
 FROM src;

Related Information
Druid Integration

Druid and Hive tuning

As administrator, you can set druid.hive properties to improve Druid-Hive performance.

Performance related druid.hive properties

If Hive and Druid are installed with Ambari, the properties are set and tuned for your cluster automatically. However,
you can fine-tune some properties if you detect performance problems with applications that are running the queries.
The following list includes some of the Druid properties that can be used by Hive. As an HDP administrator, you can
troubleshoot and customize a Hive-Druid integration using these properties.

Property Description

hive.druid.indexer.segments.granularity Granularity of the segments created by the Druid storage handler.

hive.druid.indexer.partition.size.max Maximum number of records per segment partition.

hive.druid.indexer.memory.rownum.max Maximum number of records in memory while storing data in Druid.

hive.druid.broker.address.default Address of the Druid broker node. When Hive queries Druid, this
address must be declared.

7

https://cwiki.apache.org/confluence/display/Hive/Druid+Integration

Data Access Druid and Hive tuning

Property Description

hive.druid.coordinator.address.default Address of the Druid coordinator node. It is used to check the load
status of newly created segments.

hive.druid.select.threshold When a SELECT query is split, this is the maximum number of rows
that Druid attempts to retrieve.

hive.druid.http.numConnection Number of connections used by the HTTP client.

hive.druid.http.read.timeout Read timeout period for the HTTP client in ISO8601 format. For
example, P2W, P3M, PT1H30M, PT0.750S are possible values.

hive.druid.sleep.time Sleep time between retries in ISO8601 format.

hive.druid.basePersistDirectory Local temporary directory used to persist intermediate indexing state.

hive.druid.storage.storageDirectory Deep storage location of Druid.

hive.druid.metadata.base Default prefix for metadata table names.

hive.druid.metadata.db.type Metadata database type. The only valid values are "mysql" and
"postgresql"

hive.druid.metadata.uri URI to connect to the database.

hive.druid.working.directory Default HDFS working directory used to store some intermediate
metadata.

hive.druid.maxTries Maximum number of retries to connect to Druid before throwing an
exception.

hive.druid.bitmap.type Encoding algorithm use to encode the bitmaps.

If you installed both Hive and Druid with Ambari, then do not change any of the hive.druid.* properties other than
those above when there are performance issues.

Related Information
Druid Integration

8

https://cwiki.apache.org/confluence/display/Hive/Druid+Integration

	Contents
	Accelerating Hive queries using Druid
	How Druid indexes Hive data
	Transform Apache Hive Data to Druid
	Anatomy of a Hive-to-Druid data transformation

	Create a Hive materialized view, store it in Druid
	Druid and Hive tuning

