Using Apache Phoenix to store and access data 3

Using Apache Phoenix to store and access data
Date of Publish: 2019-12-17

P

Hortonworks

https://docs.hortonwor ks.com

https://docs.hortonworks.com

Contents

What's New in Apache PROBNIX........cooiiiiiiiieceeee e 3
Orchestrating SQL and APIs with Apache PhoeniX.........ccccoevviieeieccecvee e, 3
Enable Phoenix and interdependent COMPONENES..........c.ccvirireieresie e seesese ettt s se e sae e neens 3

Thin Client connectivity with Phoenix QUENY SEIVEN.......cocciieeeececie et se st sne e e 4
Secure authentication on the PhoeniX QUENY SEIVET........cccvcivierineiiesieseseseeseeaeessesessesessesresseseessenes 4

Options t0 OBLAIN @ CHIENE AFIVEN ...t st sa et e e e e e e esensennennens 4
Obtaining a driver for application deVElOPMENL..........ccciiieeeciece e 5

Creating and using User -Defined functions (UDFs) in PhoeniX.........c.cccveveennn. 5
Overview of mapping Phoenix schemas to HBase namespaces.............cccccveenneee. 6
ENable NamMESPaCce MADIDING.......c ettt sttt sttt sttt et se bt se bt sa st sb et b et b et b et e b e e eb e e et e seebe e e e e 6
Namespace mapping properties in the hbase-site XMl file........ociiiiinninn e 6

Overview t0 Managing SCHEMES...........oiiuiiiiee bbbt b e nbne 7
Associating tables of a schema to a namespace...........cccevevceevee e ccee s 7
Associating table in a noncustomized environment without Kerberos...........cveveeeiereeeniesce s e 7
Associating table in a customized Kerberos enVironmMENt..........cccoveeeiereeieeesiese e e e see e e eesesseenens 7
Under standing Apache Phoenix-spark CONNECLOr...........cccocvvcenninicennieescieeeenne, 8
CONNECE TO SECUNEA CIUSTEN......euetiectie ettt bbbttt bt bbb 8
Considerations for SEtting UP SPAIK........co.o oo et e b e ae e 8
Phoenix Spark cONNECLOr USAJE EXAMPIES........ocui ittt sttt sttt e e se e ae b sbe e sbe e 9
Reading PhoeniX tADIES.........ooii ettt b s bbbttt ne e 9

SaViNG PROBNIX tAIDIES........ciuiiiiee et et ettt b et ae b b saesn e 10

Using PySpark t0 READ and WRITE tahlES...........co.oiuereeireseeeseeeseeeeesessesseseeseessee s sessesseesssesssennes 11

Limitations of Apache PhoeniX-Spark CONNECLO............ciueiereieirereeiene e et 12
Under standing Apache Phoenix-Hive CONNECLOrcccvvveceeveniciecsee e, 12
Considerations fOr SEtiNG UP HIVE........oo i 12
Apache PhoenixX-HiVe USBgE EXaMPIES.........coi ittt sttt s 13
Limitations of PhoEniX-HiVe CONNECLON.........ccerieieieieeetire sttt s e et e e e nne e 14
Python library for Apache PhoeniX.........cccceeciiiieiiieie e 14
Example of Phoenix PYythON [IDrary ...ttt st s nnen 15
USING INAEX 1N PROBNIX.....coiiiiiiii e 15
GlODal INAEXES IN PROBNIX......c.citiiiiiiit ittt b et n s s s b n st nn s 15

LOCaAl INAEXES 1N PROBNIX......cviieetirieiirteieitetst ettt b e b bt e bt e st e st n e n e s s s 15

Using Phoenix Client t0 1080 QataL.........ccoiiirieiiieee et e s b e 15

Using Apache Phoenix to store and access data What's New in Apache Phoenix

What's New in Apache Phoenix

Phoenix in Hortonworks Data Platform (HDP) 3.0 includes the following new features:

HBase 2.0 support

Thisis one of the major release driver.
Python driver for Phoenix Query Server

Thisisacommunity driver that is brought into the Apache Phoenix project. It Provides Python db 2.0 API
implementation.

Query log

Thisisanew system table "SY STEM.LOG" that captures information about queries that are being run against the
cluster (client-driven).

Column encoding

Thisis new to HDP. Y ou can use a custom encoding scheme of data in the HBase tabl e to reduce the amount
of space taken. This increases the performance due to less data to read and thereby reduces the storage. The
performance gain is 30% and above for the sparse tables.

Hive 3.0 support for Phoenix

It provides updated phoenix-hive StorageHandler for the new Hive version.
Spark 2.3 support for Phoenix

It provides updated phoenix-spark driver for new the Spark version.
Supports GRANT and REVOKE commands

It provides automatic changes to indexes ACLSs, if access changed for data table or view.
This version introduces support for sampling tables.

Supports atomic update (ON DUPLICATE KEY).

Supports snapshot scanners for MR-based queries.

Hardening of both the secondary indexes that includes Local and Global.

Orchestrating SQL and APIswith Apache Phoenix

Apache Phoenix isa SQL abstraction layer for interacting with Apache HBase and other Hadoop components.
Phoenix lets you create and interact with tables in the form of typical DDL/DML statements viaits standard JDBC
API. With the driver APIs, Phoenix translates SQL to native HBase API calls.

Consequently, Phoenix provides a SQL skin for working with data and objects stored in the NoSQL schema of
HBase.

This Phoenix documentation focuses on interoperability with HBase. For more information about Phoenix
capabilities, see the Apache Phoenix website.

Related Information
Apache Phoenix website

Enable Phoenix and inter dependent components

Use Ambari to enable phoenix and its related components.

https://phoenix.apache.org/index.html

Using Apache Phoenix to store and access data Orchestrating SQL and APIs with Apache Phoenix

About thistask

If you have a Hortonworks Data Platform installation with Ambari, then no separate installation is required for
Phoenix.

To enable Phoenix with Ambari:

Procedure

1. Open Ambari.

Select Servicestab > HBase > Configs tab.
Scroll down to the Phoenix SQL settings.
(Optional) Reset the Phoenix Query Timeout.
Click the Enable Phoenix slider button.

o r wD

Note:
B Y our Phoenix installation must be the same version as the one that is packaged with the distribution of the
HDP stack version that is deployed across your cluster.

Thin Client connectivity with Phoenix Query Server

The Phoenix Query Server (PQS) is acomponent of the Apache Phoenix distribution. PQS provides an aternative
means to connect directly. PQS is a stand-alone server that converts custom APl calls from "thin clients' to HTTP
requests that make use of Phoenix capabilities.

This topology offloads most computation to PQS and requires a smaller client-side footprint. The PQS client protocol
is based on the Avatica component of Apache Calcite.

Secur e authentication on the Phoenix Query Server

About thistask

Y ou can enable Kerberos-based authentication on PQS with Ambari. If you chose to install HDP manually instead,
see Configuring Phoenix Query Server to enable the Kerberos protocol.

Related Information
Configuring Phoenix Query Server

Optionsto obtain a client driver

Y ou have two options to devel op an application that works with Phoenix, depending on the client-server architecture.
They are without PQS and with PQS.

Without Phoenix Query Server:

If your environment does not have a PQS layer, applications that connnect to Phoenix must use the Phoenix JDBC
client driver.

With Phoenix Query Server:

PQS s an abstraction layer that enables other languages such as Python and GoL ang to work with Phoenix. The
layer provides a protocol buffer asan HTTP wrapper around Phoenix JDBC. Y ou might prefer to use a non-Java
client driver for one of various reasons, such asto avoid the VM footprint on the client or to devel op with a different
application framework.

https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.1.5/security-reference/content/kerberos_nonambari_configuring_phoenix_query_server.html

Using Apache Phoenix to store and access data

Creating and using User-Defined functions (UDFs) in Phoenix

Obtaining adriver for application development

To obtain the appropriate driver for application development, visit the specified site and download the driver from

appropriate file path.
JDBC Driver

JDBC Driver asa Maven dependency

Microsoft .NET Driver

Other non-Javadrivers

Related Information

Hortonworks Phoenix server-client repository

Versions tab

Use the /usr/hdp/current/phoenix-client/phoenix-
client.jar file in the Hortonworks Phoenix server-client
repository. If you use the repository, download the JAR
file corresponding to your installed HDP version. With
Ambari, you can determine the HDP version by using
the Versions tab. Alternatively, run the hadoop version
command to print information displaying the HDP
version.

See Download the HDP Maven Artifacts for Maven
artifact repositories that are available for HDP.

Download and install a NuGet package for the
Microsoft .NET Driver for Apache Phoenix and Phoenix
Query Server.

Note: Operability with this driver is a Hortonworks
Technical Preview and considered under development.
Do not use this feature in your production systems.

If you have questions regarding this feature, contact
Support by logging a case on the Hortonworks Support
Portal.

Other non-JDBC Driversfor Phoenix are available

as HDP add-ons and on other websites, but they are

not currently supported by Hortonworks. Y ou can

find compatible client drivers by constructing aweb
search string consisting of "avatica" and the name of an
application programming language that you want to use.
Example: avatica python .

Microsoft .NET Driver for Apache Phoenix and Phoenix Query Server

Hortonworks Support Portal

Creating and using User-Defined functions (UDFs) in Phoenix

With a user-defined function (UDF), you can extend the functionality of your SQL statements by creating scalar

functions that operate on a specific tenant.

For details about creating, dropping, and how to use UDFs for Phoenix, see User-defined functions on the Apache

website.

Related Information
User-defined functions

http://repo.hortonworks.com/content/repositories/releases/org/apache/phoenix/phoenix-server-client/
https://docs.cloudera.com/HDPDocuments/Ambari-2.7.5.0/managing-and-monitoring-ambari/content/amb_finding_current_stack_and_versions_information.html
https://www.nuget.org/packages/Microsoft.Phoenix.Client/
https://hortonworks.secure.force.com/CustomerPortalLoginPage?startURL=home/home.jsp
https://phoenix.apache.org/udf.html

Using Apache Phoenix to store and access data Overview of mapping Phoenix schemas to HBase namespaces

Overview of mapping Phoenix schemas to HBase namespaces

Y ou can map a Phoenix schemato an HBase namespace to gain multitenancy featuresin Phoenix.

HBase, which is often the underlying storage engine for Phoenix, has namespaces to support multitenancy features.
Multitenancy helps an HBase user or administrator perform access control and quota management tasks. Also,
namespaces enabl e tighter control of where a particular data set is stored on RegionsServers. See Enabling
Multitenancy with Namepaces for further information.

Prior to HDP 2.5, Phoenix tables could not be associated with a namespace other than the default namespace.

Related Information
Enabling Multitenancy with Namepaces

Enable namespace mapping

Y ou can enable namespace mapping by setting an appropriate property in the hbase-sitexml of both the client and the
server.

About thistask

Note:

E After you set the properties to enable the mapping of Phoenix schemas to HBase namespaces, reverting
the property settings renders the Phoenix database unusable. Test or carefully plan the Phoenix to HBase
namespace mappings before implementing them.

To enable Phoenix schema mapping to a non-default HBase namespace:

Procedure

1. Set the phoenix.schema.isNamespaceM appingEnabled property to true in the hbase-site.xml file of both the client
and the server.

2. Restart the HBase Master and RegionServer processes.

Note:

E Y ou might not want to map Phoenix system tables to namespaces because there are compatibility issues with
your current applications. In this case, set the phoenix.schema.mapSystemT ablesToNamespace property of
the hbase-site.xml fileto false.

Namespace mapping propertiesin the hbase-sitexml file

There are two namespace properties in the hbase-site.xml file. They are
phoenix.schema.isNamespaceM appingEnabled and phoenix.schema.mapSystemT ablesToNamespace.

phoenix.schema.isNamespaceM appingEnabled Enables mapping of tables of a Phoenix schema to a non-
default HBase namespace. To enable mapping of schema
to a non-default namespace, set the value of this property
to true. Default setting for this property isfalse.

phoenix.schema.mapSystemT ablesT oNamespace With true setting (default): After namespace mapping is
enabled with the other property, all system tables, if any,
are migrated to a namespace called system.

With false setting: System tables are associated with the
default namespace.

https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.1.5/hbase-data-access/content/hbase-namespaces.html

Using Apache Phoenix to store and access data Associating tables of a schemato a namespace

Overview to managing schemas

You can use DDL statements such as CREATE SCHEMA, USE SCHEMA and DROP SCHEMA to manage
schemeas.

Y ou must have admin privilegesin HBase to run CREATE SCHEMA or DROP SCHEMA.
See the Apache Phoenix Grammar reference page for how you can use these DDL statements.

Asyou create physical tables, views, and indexes, you can associate them with a schema. If the schema aready has
namespace mapping enabled, the newly created objects automatically become part of the HBase namespace. The
directory of the HBase namespace that maps to the Phoenix schemainherits the schema name. For example, if the
schemaname is storel, then the full path to the namespace is $hbase.rootdir/data/storel. See the "F.A.Q." section of
Apache Phoenix Namespace Mapping for more information.

Related Information
Apache Phoenix Grammar
Apache Phoenix Namespace Mapping

Associating tables of a schema to a namespace

After you enable namespace mapping on a Phoenix schemathat already has tables, you can migrate the tablesto an
HBase namespace. The namespace directory that contains the migrated tables inherits the schema name.

For example, if the schema name s storel, then the full path to the namespace is $hbase.rootdir/data/storel. System
tables are migrated to the namespace automatically during the first connection after enabling namespace properties.

Associating table in a noncustomized environment without Kerberos

Y ou can run an appropriate command to associate a table in a noncustomized environment without Kerberos.

Procedure

* Run the following command to associate atable:

$bi n/ psql . py
ZooKeeper _host nane
-m

schema_nane. t abl e_nane

Associating table in a customized K erber os environment

Y ou can run an appropriate command to associate a table in a customized Kerberos environment.

Before you begin

Prerequisite: In a Kerberos-secured environment, you must have admin privileges (user hbase) to complete the
following task.

Procedure

1. Navigate to the Phoenix home directory. The default location is /usr/hdp/current/phoenix-client/.

https://phoenix.apache.org/language/index.html
https://phoenix.apache.org/namspace_mapping.html

Using Apache Phoenix to store and access data Understanding Apache Phoenix-spark connector

2. Run acommand to migrate atable of a schemato a namespace, using the following command syntax for the
options that apply to your environment:

$ bi n/ psql . py
ZooKeeper _host nanes: 2181

: zookeeper . znode. par ent

: HBase_headl ess_keytab | ocati on
> princi pal _nane

; Tenant | d=tenant |d

; Current SCN=current _SCN

-m

schena_nane. t abl e_nane

Additional information for valid command parameters:

e ZooKeeper _hostnames

Enter the ZooK eeper hostname or hostnames that compose the ZooK eeper quorum. If you enter multiple
hostnames, enter them as commarseparated values. This parameter is required. Y ou must append the colon and
ZooK eeper port number if you invoke the other security parameters in the command. The default port number
is2181.

» zookeeper.znode.parent

This setting is defined in the hbase-site.xml file.
e -mschema _name.table name

The -m argument is required. There is a space before and after the -m option.

Under standing Apache Phoenix-spark connector

With Hortonworks Data Platform (HDP), you can use Apache Phoenix-spark plugin on your secured clustersto
perform READ and WRITE operations. Y ou can use this tool with HDP 2.5 or later.

Connect to secured cluster

Y ou can connect to a secured cluster using the Phoenix JDBC connector.

Procedure

Enter the following syntax in the shell:

j dbc: phoeni x: <ZK host nanes>: <ZK port >: <r oot znode>: <pri nci pal nane>: <keyt ab
file location>

j dbc: phoeni x: h1. hdp. | ocal , h2. hdp. | ocal , h3. hdp. | ocal : 2181: / hbase-
secure: user 1@1DP. LOCAL: / User s/ user 1/ keyt abs/ myuser . headl ess. keyt ab

Y ou need Principal and keytab parameters only if you have not done the kinit before starting the job and want
Phoenix to log you in automatically.

Considerationsfor setting up spark

Set up Spark based on your requirement. Following are some of the considerations that you will have to take into
account.

Using Apache Phoenix to store and access data Understanding Apache Phoenix-spark connector

* You should configure the 'spark.executor.extraClassPath' and ‘ spark.driver.extraClassPath’ in spark-defaults.conf
fileto include the ‘phoenix-<version>-client.jar’ to ensure that all required Phoenix and HBase platform
dependencies are available on the classpath for the Spark executors and drivers.

* HDP Version Spark Version JARSs to add (order dependent)

>=2.6.2 (including 3.0.0) Spark 2 phoenix-<version>-spark2.jar

phoenix-<version>-client.jar

>=2.6.2 (including 3.0.0) Spark 1 phoenix-<version>-spark.jar

phoenix-<version>-client.jar

2.6.0-26.1 Spark 2 Unsupported: upgrade to at least HDP-2.6.2

2.6.0-2.6.1 Spark 1 phoenix-<version>-spark.jar

phoenix-<version>-client.jar

2.5 Spark 1 phoenix-<version>-client-spark.jar

* Toenableyour IDE, you can add the following provided dependency to your build:

<dependency><gr oupl d>or g. apache. phoeni x</ gr oupl d>
<artifactld>phoeni x-spark</artifactld>

<ver si on>${ phoeni x. ver si on} </ ver si on>

<scope>pr ovi ded</ scope></ dependency>

Phoenix Spark connector usage examples
Y ou can refer to the following Phoenix spark connector examples:

» Reading Phoenix tables
» Saving Phoenix tables
e Using PySpark to READ and WRITE tables

Reading Phoenix tables
For example, you have a Phoenix table with the following DDL, you can use use one of the following methods to load
thetable:
« AsaDataFrame using the Data Source API
» AsaDataFrame using a configuration object
* Asanan RDD using a Zookeeper URL

CREATE TABLE TABLEL (1D BI G NT NOT NULL PRI MARY KEY, COL1 VARCHAR);
UPSERT | NTO TABLEL (1D, COL1) VALUES (1, 'test row 1');
UPSERT | NTO TABLEL (1D, COL1) VALUES (2, 'test _row 2');

Example: Load a DataFrame using the Data Sour ce API

i mport org. apache. spar k. Spar kCont ext
i mport org.apache. spark. sql . SQLCont ext
i mport org.apache. phoeni x. spark. _

val sc = new SparkContext("local", "phoenix-test")
val sql Context = new SQ.Cont ext (sc)

val df = sql Context. | oad(

Using Apache Phoenix to store and access data Understanding Apache Phoenix-spark connector

"org. apache. phoeni x. spar k",
Map(“"tabl e" -> "TABLE1l", "zkUrl" -> "phoeni x-server:2181")

df
ilter(df ("COL1") === "test_row 1" && df ("ID') === 1L)
.select(df("ID"))
. show

Example: Load as a DataFrame directly using a Configuration object

i mport org. apache. hadoop. conf. Confi gurati on
i mport org. apache. spar k. Spar kCont ext

i mport org.apache. spark. sql . SQLCont ext

i mport org.apache. phoeni x. spark. _

val configuration = new Configuration()
/1 Can set Phoeni x-specific settings, requires 'hbase. zookeeper. quorumn

val sc = new SparkContext("local", "phoenix-test")
val sql Context = new SQ.Cont ext (sc)

// Loads the columms 'ID and 'COL1' from TABLEl1 as a Dat aFr ane
val df = sqgl Cont ext. phoeni xTabl eAsDat aFr ane(

"TABLE1", Array("ID', "COL1"), conf = configuration
)

df . show

Example: Load asan RDD using a Zookeeper URL

i mport org.apache. spar k. Spar kCont ext
i mport org.apache. spark. sql . SQLCont ext
i mport org. apache. phoeni x. spark. _

val sc = new SparkContext("local", "phoenix-test")

// Loads the colums 'ID and 'COL1' from TABLE1l as an RDD
val rdd: RDD[Map[String, AnyRef]] = sc. phoeni xTabl e AsRDD(
"TABLE1", Seq("ID', "COL1"), zkUrl = Some("phoeni x-server:2181")

)

rdd. count ()
val firstld = rddl.first()("1D").aslnstanced [Long]
val firstCol = rddl.first()("COL1").aslnstanceO[String]

Saving Phoenix tables
Y ou can refer to the following examples for saving RDDs and DataFrames.

Example: Saving RDDs
For example, you have a Phoenix table with the following DDL, you can save it asan RDD.

CREATE TABLE OUTPUT_TEST_TABLE (id Bl G NT NOT NULL PRI MARY KEY, col 1
VARCHAR, col 2 | NTECER);

10

Using Apache Phoenix to store and access data Understanding Apache Phoenix-spark connector

The saveToPhoenix method is an implicit method on RDD[Product], or an RDD of Tuples. The data types must
correspond to one of the Java types supported by Phoenix.

i mport org. apache. spar k. Spar kCont ext
i mport org.apache. phoeni x. spark. _

val sc = new SparkContext("local", "phoenix-test")
val dataSet = List((1L, "21", 1), (2L, "2", 2), (3L, "3", 3))

sc
.parallelize(dataSet)
. saveToPhoeni x(
" QUTPUT_TEST_TABLE",
Seq("I D', "CO.1", " COL2"),
zkUrl = Sone("phoeni x-server:2181")

)

Example: Saving DataFrames

The save is method on DataFrame allows passing in a data source type. Y ou can use org.apache.phoenix.spark, and
must also passin atable and zkUrl parameter to specify which table and server to persist the DataFrame to. The
column names are derived from the DataFrame’ s schema field names, and must match the Phoenix column names.

The save method also takes a SaveM ode option, for which only SaveMode.Overwrite is supported. For example, you
have atwo Phoenix tables with the following DDL, you can save it as a DataFrames.

Using PySpark to READ and WRITE tables
With Spark’ s DataFrame support, you can use pyspark to READ and WRITE from Phoenix tables.

Example: Load a DataFrame

Given atable TABLEL and a Zookeeper url of localhost:2181, you can load the table as a DataFrame using the
following Python code in pyspark:

df = sql Context.read \
. format ("org. apache. phoeni x. spark") \
.option("table", "TABLE1") \
.option("zkUrl", "local host:2181") \
.1 oad()

Example: Save a DataFrame

Given the same table and Zookeeper URL s above, you can save a DataFrame to a Phoenix table using the following
code:

df .write \
.format ("org. apache. phoeni x. spark") \
. mode("overwite") \
.option("table", "TABLE1") \
.option("zkUWl", "local host:2181") \
. save()

Note:

E The functions phoenixTableAsDataFrame, phoenixTableAsRDD and saveT oPhoenix all support optionally
specifying a conf Hadoop configuration parameter with custom Phoenix client settings, as well as an optional
zkUrl parameter for the Phoenix connection URL.

11

https://phoenix.apache.org/language/datatypes.html

Using Apache Phoenix to store and access data Understanding Apache Phoenix-Hive connector

If zkUrl isn’t specified, it's assumed that the “ hbase.zookeeper.quorum” property has been set in the conf
parameter. Similarly, if no configuration is passed in, zkUrl must be specified.

Limitations of Apache Phoenix-spark connector
Y ou should be aware of the following limitations on using the Apache Phoenix-Spark connector:

* You can use the DataSource API only for basic support for column and predicate pushdown.

» The DataSource API does not support passing custom Phoenix settings in configuration. Y ou must create the
DataFrame or RDD directly, if you need afine-grained configuration.

» Thereisno support for aggregate or distinct queries, but you can perform any operation on RDDs or DataFrame
formed after reading data from Phoenix.

Note:

E The Phoenix JDBC driver normalizes column names, but the Phoenix-Spark integration does not perform
this operation while loading data from Phoenix Table. so, while creating data frames or RDDs from
Phoenix table(sparkContext.phoenixTableAsRDD or sgl Context.phoenixTableAsDataFrame), you must
specify column names in the same way as defined when the Phoenix table was created. However, while
persisting data frame in Phoenix , it can normalize the column names(which are not double quoted) by
default, which can aso be turned off by setting the skipNormalizingldentifier parameter to true.

df.saveToPhoenix(<tableName>, zkUrl = Some(quorumAddress),skipNormalizingl dentifier=true)

Under standing Apache Phoenix-Hive connector

With Hortonworks Data Platform (HDP), you can use the Phoenix-Hive Storage Handler on your secured clusters to
handle large joins and large aggregation. Y ou can use this Storage Handler with HDP 2.6 or later.

This connector enables you to access the Phoenix data from Hive without any data transfer. So the Business
Intelligence (BI) logic in Hive can access the operational data available in Phoenix. Using this connector, you can
run a certain type of queriesin Phoenix more efficiently than using Hive or other applications, however, thisis not
auniversal tool that can run al types of queries. In some cases, Phoenix can run queries faster than the Phoenix
Hive integration and vice versa. In others, you can run thistool to perform operations like many to many joins and
aggregations which Phoenix would otherwise struggle to effectively run on its own. Thisintegration is better suited
for performing online analytical query processing (OLAP) operations than Phoenix.

Another use case for this connector is transferring the data between these two systems. Y ou can use this connector to
simplify the data movement between Hive and Phoenix, since an intermediate form of the data (for example, a.CSV
file) is not required. The automatic movement of structured data between these two systems is the major advantage of
using thistool. Y ou should be aware that for moving alarge amount of data from Hive to Phoenix CSV bulk load is
preferable due to performance reasons.

A changeto Hivein HDP 3.0 isthat all StorageHandlers must be be marked as“ external”. There is no such thing as
an non-external table created by a StorageHandler. If the corresponding Phoenix table exists when the Hive tableis
created, it will mimic the HDP 2.x semantics of an “external” table. If the corresponding Phoenix table does not exist
when the Hivetableis created, it will mimic the HDP 2.x semantics of a non-external table (for example, the Phoenix
table is dropped when the Hive table is dropped).

Considerationsfor setting up Hive
Make phoenix-$VERSION-hive,jar available for Hive:

12

Using Apache Phoenix to store and access data Understanding Apache Phoenix-Hive connector

* Add the phoenix-hive JAR to the HIVE_AUX_JARS PATH variablein hive-env.sh.

H VE_AUX_JARS PATH=[..],file:///usr/hdp/current/phoenix-client/phoeni x-
$VERSI O\- hi ve. j ar

For HDP 3.0, you can add the following jar to the hive.aux.jars.path parameter as a comma-separated list. The
exact file name for HDP-3.0 exists below, but please note that the version will be different for subsequent HDP
3.X.X releases.

file:///usr/hdp/current/phoenix-client/phoenix-5.0.0.3.0.0.0-1634-hive.jar
e Add aproperty to hive-site.xml so that Hive MapReduce jobs can also add the phoenix-hive jar to the classpath:

<property>

<nanme>hi ve. aux. j ar s. pat h</ name>

<val ue>file:///usr/hdp/current/phoeni x-client/phoeni x-$VERSI ON- hi ve. j ar </
val ue>

</ property>

Apache Phoenix-Hive usage examples

Y ou can view the examples of creating atable, loading data, and querying data using Hive. Y ou can use the Apache
Phoenix StorageHandler plugin to enable Apache Hive access to Phoenix tables from the Apache Hive command line
using HiveQL.

Creating atable

In HDP 3.0, all the Hive tables that are backed by a StorageHandler must use the EXTERNAL keyword. Creating an
external Hive table requires an existing table in Phoenix. Hive manages only the Hive metadata. Dropping an external
table from Hive deletes only the Hive metadata, but the Phoenix table is not deleted.

Use the create external table command to craete an EXTERNAL Hive table.

create external table ext_table (
il int,
sl string,
f1 float,
d1l deci mal

STORED BY ' or g. apache. phoeni x. hi ve. Phoeni xSt or ageHandl er"'
TBLPROPERTI ES (

"phoeni x. t abl e. nane" = "ext _table",
"phoeni x. zookeeper. quorumt = "l ocal host",
"phoeni x. zookeeper . znode. parent” = "/hbase",
"phoeni x. zookeeper.client.port" = "2181",
"phoeni x. rowkeys" = "i 1",
"phoeni x. col um. mappi ng" = "il:il1, sl:s1, f1l:f1, di:d1"
)
Following are the parameters that you could use when creating an external table.
Parameter Default Vaue Description
phoenix.table.name The same name asthe | Name of the existing Phoenix table
Hive table
phoenix.zookeeper.quorum localhost Specifies the ZooK eeper quorum for HBase
phoenix.zookeeper.znode.parent /hbase Specifies the ZooK eeper parent node for HBase

13

Using Apache Phoenix to store and access data

Python library for Apache Phoenix

phoenix.zookeeper.client.port 2181 Specifies the ZooK eeper port
phoenix.rowkeys N/A The list of columnsto be the primary key in a Phoenix table
phoenix.column.mapping N/A M appings between column names for Hive and Phoenix

L oad data

Use insert statement to |oad data to the Phoenix table through Hive.

insert into table T values (....);

insert into table T select cl1,c2,c3 from source_tabl e;

Query data

Y ou can use HiveQL for querying datain a Phoenix table. A Hive query on asingle table can be as fast as running the
query in the Phoenix CLI with the following property settings:

hi ve. f et ch. t ask. conver si on=nore and hi ve. exec. paral |l el =t rue

Following are some of the parameters that you could use when querying the data.

Parameter Default Value Description

hbase.scan.cache 100 Read row size for a unit request

hbase.scan.cacheblock false Whether or not cache block

split.by.stats false If true, mappers use table statistics. One mapper per guide post.

[hive-table-name].reducer.count

1

Number of reducers. In Tez mode, this affects only single-table queries.
See Limitations.

[phoenix-table-name].query.hint

Hint for Phoenix query (for example, NO_INDEX)

Limitations of Phoenix-Hive connector

Following are some of the limitations of Phoenix-Hive connector:

* Only 4K character specification is allowed to specify afull table. If the volume of the datais huge, then thereisa
possibility to lose the metadata information.
* Thereisadifferencein the way timestamp is saved in Phoenix and Hive. Phoenix uses binary format, whereas
Hive uses atext format to store data.

» HiveLLAPisnot supported in this integration.

e Asof HDP 3.0, the MapReduce engine for Hive is deprecated. Similarly, thistool is not guaranteed to work with

the MapReduce engine.

Python library for Apache Phoenix

The Apache Phoenix Python driver is a new addition to the Apache Phoenix. It was originally known as "Python

Phoenixdb".

For more information, see the Apache Phoenix site.

The Python driver provides the Python DB2.0 API , which is a generic interface for interacting with databases
through Python. This driver requires Phoenix Query Server (PQS) to interact with Phoenix. Using this driver, you can
execute queries and load data. All data types are expected to be functional and there are no limitations on the kind of

queries that this driver can execute.

14

Using Apache Phoenix to store and access data Using index in Phoenix

E Note:
This driver does not support Kerberos authentication.

Example of Phoenix Python library

Following code is an example of Phoenix Python library.

db = phoeni xdb. connect (' http://1 ocal host: 8765', autoconm t=Tr ue)

wi th db. cursor() as cursor:

cursor. execut e("DROP TABLE | F EXI STS test")

cursor. execut e(" CREATE TABLE test (id | NTEGER PRI MARY KEY, text VARCHAR)")
cur sor. execut emany (" UPSERT | NTO test VALUES (?, ?2)", [[i, 'text
{}' .format(i)] for i in range(10)])

wi th db. cursor() as cursor:

cursor.itersize = 4

cursor. execut e(" SELECT * FROM test WHERE i d>1 ORDER BY id")

sel f. assert Equal (cursor.fetchall (), [[i, '"text {}'.format(i)] for i in
range(2, 10)])

db. cl ose()

Using index in Phoenix

Apache Phoenix automatically usesindexesto service aquery.

Phoenix supports global and local indexes. Each is useful in specifc scenarios and hasits own performance
characteristics.

Global indexesin Phoenix

Y ou can use global indexes for READ-heavy use cases. Each global index is stored in its own table, and thusis not
co-located with the data table.

With global indexes, you can disperse the READ load between the main and secondary index table on different
RegionServers serving different sets of access patterns. A Global index is a covered index. It isused for queries only
when all columnsin that query are included in that index.

L ocal indexesin Phoenix
Y ou can use local indexes for WRITE-heavy use cases. Each local indexesis stored within the datatable.

With global indexes, you can use local indexes even when all columns referenced in a query are not contained in the
index. Thisis done by default for local indexes, because the table and index data resides on the same region server
and hence it ensures that the lookup islocal.

Using Phoenix client to load data
Y ou must use Phoenix client to load data into the HBase database and also to write to the Phoenix tables.

Index updates are automatically generated by the Phoenix client and there is no user intervention or effort required.
Whenever arecord iswritten to the Phoenix tables, the client generates updates for the indexes automatically.

15

Using Apache Phoenix to store and access data Using index in Phoenix

E Note:

If Phoenix table has indexes, you can use JDBC driver or CSV bulk load table to update or ingest data.

It is highly recommended that you use Phoenix client to load datainto the HBase database and also to write to the
Phoenix tables. If HBase APIs are used to write data to a Phoenix data table, indexes against that Phoenix data table
will not be updated.

16

	Contents
	What's New in Apache Phoenix
	Orchestrating SQL and APIs with Apache Phoenix
	Enable Phoenix and interdependent components
	Thin Client connectivity with Phoenix Query Server
	Secure authentication on the Phoenix Query Server

	Options to obtain a client driver
	Obtaining a driver for application development

	Creating and using User-Defined functions (UDFs) in Phoenix
	Overview of mapping Phoenix schemas to HBase namespaces
	Enable namespace mapping
	Namespace mapping properties in the hbase-site.xml file

	Overview to managing schemas

	Associating tables of a schema to a namespace
	Associating table in a noncustomized environment without Kerberos
	Associating table in a customized Kerberos environment

	Understanding Apache Phoenix-spark connector
	Connect to secured cluster
	Considerations for setting up spark
	Phoenix Spark connector usage examples
	Reading Phoenix tables
	Saving Phoenix tables
	Using PySpark to READ and WRITE tables

	Limitations of Apache Phoenix-spark connector

	Understanding Apache Phoenix-Hive connector
	Considerations for setting up Hive
	Apache Phoenix-Hive usage examples
	Limitations of Phoenix-Hive connector

	Python library for Apache Phoenix
	Example of Phoenix Python library

	Using index in Phoenix
	Global indexes in Phoenix
	Local indexes in Phoenix
	Using Phoenix client to load data

