Cloudera DataFlow for Data Hub 7.2.12

Apache Flink

Date published: 2019-12-16
Date modified: 2021-10-25

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera DataFlow for Data Hub | Contents | iii

Running a simple Flink application...........cccooveiieieiiie e 4
Application devVElOPMENT.........ccvi i 5
TS o) T Lo 1o g T 1 (N 5
Source, operator and SiNK iN DataStream APL........oooececeee e 5

Flink appliCation EXamMPIE........ccciueiieieieececese e sttt s teste s reste e s ee e enae e e e eneenennenns 7

Testing and validating Flink appliCationS..........c.cceiveieiineeecese et see s 8

T S (0= o A =001 = (= 8
Configuring FliNK apPliCaLiONS.........cccviiiiieiisesie e seese e ettt e e e e te e e e e e e eseesessesnesrenteseesrenen 10
Setting paralelism and max parall€liSmM........cccoeieeeccc e e 10

Configuring Flink appliCation FESOUICES..........ciiiieriereereeieieeeeeseseste e see e te e sreseesesae e eseesessessesresseses 11

Configuring ROCKSDB Stat€ bBaCken.........cccviiieiiiiii it 12

Enabling checkpoints for Flink appliCations.............ccoiviiiiierie et 13

DataStr €amM CONNECLONS........viieiiiiieeciieee e s e e e et e e srre e e e rre e e e snneeeennneeeeas 14
HBESE SINK WITH FIINK.......oii et b e sttt e e e et e e e e e e e e neebea 15
Creating and configuring the HBaseSINKFUNCLION...........coiiiiiiiie e 15

KafKa Wt FIINK. ..ottt sttt a e a bt a et bese s s s e e st eb e e et beneneen 16
Schema Registry With FIINK ..o e 17

Kafka MEIHCS REDOIEN ...ttt ettt s ae b bt sae b b see e e eas 19

KUAU WITR FIINK .ttt ettt h bt ae b e b e s b s b e be e e se et e e e e e e eneenis 21

JOD THFECYCIE..c e 21
RUNNING 8 FIINK JOD....ueeitiie ettt bbbt s b et b e bbbt nb et st e e b e 21

USING FIINK CL ettt ettt stttk e b e s b e b e s e bt s e bt s bbbt bt b ettt 23
Enabling savepoints for FIiNK appliCatioNS...........ccoiiriiiiiineieereee ettt 23

1Y/ 0] 11 T PSS 23
FIINK DESHDOBIU. ...ttt ettt bbbt et b et bbb 23
Streams Messaging Manager INEEGIAtiON..........cccveereiieieresesteseeseeseeseeeeesesse e sresresresteseesseeesenseseesesseesessenses 24
Enabling Flink DEBUG 10QQING. .. .ttcteieitirtiriesiesiesieseeseeeesesessessessessessessessssaessessesssssssssssssssssssessessessessessessesseses 24
(€101 o g F=T o SRR 25
Flink metadata COIIECtioN USING ALIBS......cooiiiiiie ettt sttt ene 25

Atlas entities in Flink metadata COlECHION.c.oiiriiieeiee bbb 26
Migrating FIINK JODS.......coo e 26
Migrating Flink JODS WItNOUL SEALE.........ccceirieiirieiirieirieere ettt 27
Migrating stateful FIINK JODS........coi i e 27

Updating FliNK jOD AEPENAENCIES.......c..eiviieieieeee ettt st s e esessesrestesaeseesteseesnens 29

Cloudera DataFlow for Data Hub Running a simple Flink application

In this example, you will use the Stateless Monitoring Application from the Flink Tutorials to build your Flink
project, submit a Flink job and monitor your Flink application using the Flink Dashboard in an unsecured
environment.

* You have a CDP Public Cloud environment.

e You have a CDP username (it can be your own CDP user or a CDP machine user) and a password set to access
Data Hub clusters.

The predefined resource role of this user is at least EnvironmentUser. This resource role provides the ability to
view Data Hub clusters and set the Freel PA password for the environment.

e Your user is synchronized to the CDP Public Cloud environment.
e You have a Streaming Analytics cluster.

1. Clonethe simpletutoria from git:

git clone https://github.com cloudera/flink-tutorials.git

2. Accessthe simpletutorial folder:

cd flink-tutorials/flink-sinple-tutorial

3. Build your Flink project using maven:

mvn cl ean package

4. Upload the Flink project to your cluster.

scp target/flink-sinple-tuto
rial-<flink_ version>-<csa_version>.jar <your_workl oad_user nane>@nast er _node_FQDN>: .

Provide your workload password when prompted.
5. SSH into the node where you uploaded the job jar using your workload username.

ssh <your wor kl oad_user nane>@nast er _node_FQDN>

Provide your workload password when prompted.
6. Run the Flink application:

flink run -d -p 2 -ynm HeapMoni tor target/flink-sinple-tutor
i al -<flink_version>-<csa-version>.jar

Note: In case you encounter an error about missing mapped role for the user, you need to make sure that
you have set the correct access rights. For more information, see the Give users access to your cluster
section.

7. Navigateto Management Console > Environments, and select the environment where you have created your
cluster.

8. Select the Streaming Analytics cluster.

9. Click Flink Dashboard from the services.
The Flink Dashboard opens in a new window.

Cloudera DataFlow for Data Hub Application devel opment

10. Click Task Manager on the left side menu.
11. Monitor your Flink application under logs.

Give users access to your cluster

Y ou must understand the parts of application structure to build and develop a Flink streaming application. To create
and run the Flink application, you need to create the application logic using the DataStream API.

A Flink application consists of the following structural parts:

» Creating the execution environment

» Loading datato asource

e Transforming theinitial data

» Writing the transformed data to a sink

» Triggering the execution of the program

St reanmExecut i onEnvi ronnent env = StreanExecuti onEnvi ronnent . get Execut i onEnvi
ronnent () ;

env execute("Flink Streani ng Secured Job Sanple")

The getExecutionEnvironment() static call guarantees that the pipeline always uses the correct environment based

on the location it is executed on. When running from the IDE, alocal execution environment, and when running
from the client for cluster submission, it returns the Y ARN execution environment. The rest of the main class defines
the application sources, processing flow and the sinks followed by the execute() call. The execute call triggersthe
actual execution of the pipeline either locally or on the cluster. The StreamExecutionEnvironment class is needed to
configure important job parameters for maintaining the behavior of the application and to create the DataStream.

Create Atlas entity type definitions

Flink Project Template

Simple Tutorial: Application logic

Stateful Tutorial: Build a Flink streaming application
Apache Flink documentation: DataStream APl overview

A DataStream represents the data records and the operators. There are pre-implemented sources and sinks for Flink,
and you can also use custom defined connectors to maintain the dataflow with other functions.

Dat aStreanxkStri ng> source = env. addSour ce(consuner)
. hame(" Kaf ka Source")
. ui d(" Kaf ka Source")
.map(record -> record.getld() + "," + record.getNanme() + "," + record
.get Description())
. name(" ToQut put Stri ng");
Stream ngFi | eSi nk<String> sink = Streani ngFi |l eSi nk

5

https://docs.cloudera.com/cdf-datahub/7.2.12/quick-start-sa/topics/cdf-datahub-sa-cluster-quick-start-giveaccess.html
https://docs.cloudera.com/cdf-datahub/7.2.12/flink-analyzing-data/topics/cdf-datahub-sa-atlas-configuration.html
https://docs.cloudera.com/cdf-datahub/7.2.12/how-to-flink/topics/csa-flink-archetype.html
https://github.com/cloudera/flink-tutorials/blob/master/flink-simple-tutorial/README.md#application-logic
https://github.com/cloudera/flink-tutorials/blob/master/flink-stateful-tutorial/README.md#implementing-the-flink-application
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/datastream_api.html

Cloudera DataFlow for Data Hub Application devel opment

. f or Rowfor mat (new Pat h(par ans. get Requi r ed(K_HDFS_QUTPUT)), new Si npl eSt
ri ngencoder <Stri ng>("UTF-8"))
.build();
sour ce. addSi nk(si nk)
. hame("FS Si nk")
.ui d("FS Sink");
source.print();

Choosing the sources and sinks depends on the purpose of the application. As Flink can be implemented in any kind
of an environment, various connectors are available. In most cases, Kafkais used as a connector asit has streaming
capabilities and can be easily integrated with other services.

Sour ces
Sources are where your program reads its input from. Y ou can attach a source to your program by
using StreamExecutionEnvironment.addSource(sourceFunction). Flink comes with a number of pre-
implemented source functions. For the list of sources, see the Apache Flink documentation.
Streaming Analytics in Cloudera supports the following sources:
« HDFS
» Kafka
Operators
Operators transform one or more DataStreams into a new DataStream. When choosing the operator,
you need to decide what type of transformation you need on your data. The following are some
basic transformation:
° M ap
Takes one element and produces one element.
dat aSt ream map()
e FlaMap
Takes one element and produces zero, one, or more elements.
dat aStream f | at Map()
o Filter
Evaluates a boolean function for each element and retains those for which the function returns
true.
dataStream filter()
 KeyBy
Logically partitions a stream into digoint partitions. All records with the same key are assigned
to the same partition. This transformation returns a KeyedStream
dat aStream keyBy() // Key by field "soneKey"
dat aStream keyBy() // Key by the first elenment of a Tuple
e Window
Windows can be defined on already partitioned KeyedStreams. Windows group the datain each
key according to some characteristic (e.g., the data that arrived within the last 5 seconds).
dat aSt ream keyBy() . wi ndow(Tunbl i ngEvent Ti meW ndows. of (Ti ne. s
econds(5))); // Last 5 seconds of data
For the full list of operators, see the Apache Flink documentation.
Sinks

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/operators/#datastream-transformations

Cloudera DataFlow for Data Hub Application devel opment

Data sinks consume DataStreams and forward them to files, sockets, external systems, or print
them. Flink comes with a variety of built-in output formats that are encapsul ated behind operations
on the DataStreams. For the list of sources, see the Apache Flink documentation.

Streaming Analytics in Cloudera supports the following sinks:

« Kafka
e HBase
e Kudu

« HDFS

Apache Flink documentation: Operators

Apache Flink documentation: Window operator
Apache Flink documentation: Generating watermarks
Apache Flink documentation: Working with state
Apache Flink documentation: User defined functions

Thefollowing is an example of aFlink application logic from the Secure Tutorial. The application isusing Kafkaas a
source and writing the outputs to an HDFS sink.

public class Kaf kaToHDFSAvroJob {
private static Logger LOG = Logger Fact ory. get Logger (Kaf kaToHDFSAvr oJob. cl
ass) ;
public static void main(String[] args) throws Exception {
Par anet er Tool parans = Utils. parseArgs(args);

St r eanExecut i onEnvi ronnment env = StreanExecuti onEnvironnent. get Executi on
Envi ronment () ;

Kaf kaDeseri al i zat i onSchenma<Message> schema = Cl ouder aRegi st r yKaf kaDeseri al
i zati onSchenma
. bui | der (Message. cl ass)
.setConfig(Uils.readSchemaRegi stryProperties(parans))
Lbuild();
Fl i nkKaf kaConsunmer <Message> consumer = new Fl i nkKaf kaConsuner <Message>(
par ans. get Requi r ed(K_KAFKA TOPI C), schema, Utils.readKaf kaProperties(parans)

)

Dat aStreanxkStri ng> source = env. addSour ce(consuner)
. name(" Kaf ka Source")
. ui d(" Kaf ka Source")
.map(record -> record.getld() + "," + record.getName() + "," + record.g
et Descri ption())
. name(" ToQut put String");
St ream ngFi | eSi nk<String> sink = Streani ngFi |l eSi nk
. f or RowFor mat (new Pat h(par ans. get Requi red(K_HDFS_QOUTPUT)), new Si npl e
StringEncoder <Stri ng>("UTF-8"))
Lbuild();
sour ce. addSi nk(si nk)
.nane("FS Si nk")
.uid("FS Sink");
source. print();

env. execute("Flink Stream ng Secured Job Sanple");

}
}

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/operators/
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/event_timestamps_watermarks.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/state/state.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/user_defined_functions.html

Cloudera DataFlow for Data Hub Application devel opment

After you have built your Flink streaming application, you can create a simple testing method to validate the correct
behaviour of your application.

Pipelines can be extracted to static methods and can be easily tested with the JUnit framework.

A simple JUnit test can be written to verify the core application logic. The test isimplemented in the test class and
should be regarded as an integration test of the application flow.

The test mimics the application main class with only minor differences:

1. Create the StreamExecutionEnvironment the same way.

2. Usethe env.fromElements(..) method to pre-populate a DataStream with some testing data.
3. Feed thetesting datato the static data processing logic as before.

4. Verify the correctness once the test is finished.

@rest
public void testPipeline() throws Exception {
final String alerthMsk = "42";
St r eanExecut i onEnvi ronnent env = StreanExecuti onEnvi ronnment . get Exec
uti onEnvi ronnent () ;
HeapMetrics alertl = testStats(0.42);
HeapMetrics regularl = test Stats(0.452);
HeapMetrics regular2 = testStats(0.245);
HeapMetrics alert2 = testStats(0.9423);

Dat aSt r eanSour ce<HeapMetri cs> testlnput = env.fronkEl ements(alerti,
alert2, regularl, regular?2);
HeapMoni t or Pi pel i ne. conput eHeapAl erts(testlnput, ParaneterTool.fro
mArgs(new String[]{"--al ert Mask", al ertMask}))
. addSi nk(new Si nkFuncti on<HeapAl ert>() {

@verride
public void invoke(HeapAl ert val ue) {

t est Qut put . add(val ue);
}
})

.setParallelisn(l);
env. execut e();
assert Equal s(Set s. newHashSet (HeapAl ert . maskRat i ovat ch(al ert Mask, al
ertl),
HeapAl ert. maskRat i oMat ch(al ert Mask, alert2)), testQutput);

private HeapMetrics testStats(double ratio) {
return new HeapMetrics(HeapMetrics. OLD GEN, 0, 0, ratio, 0, "test
host");

}

Simple Tutoria: Testing the data pipeline
Stateful Tutorial: Test and validate the streaming pipeline

The Quickstart Archetype serves as atemplate for a Flink streaming application. Y ou can use the Archetype to

add source, sink and computation to the template. Like this you can practice the devel opment of asimple Flink
application, or use the Archetype as the starting point for amore complex application including state,watermark and
checkpoint.

https://github.com/cloudera/flink-tutorials/blob/master/flink-simple-tutorial/README.md#testing-the-data-pipeline
https://github.com/cloudera/flink-tutorials/blob/master/flink-stateful-tutorial/README.md#testing-and-validating-our-pipeline

Cloudera DataFlow for Data Hub Application devel opment

The Flink quickstart archetype can be used to quickly build a basic Flink streaming project.

Note: You need toinstall the archetype locally on your host as Cloudera does not rel ease maven archetypes
E to the Maven Central Repository.

1. Perform the following commands to create the archetype locally:

git clone https://github. conf cloudera/flink-tutorials
cd flink-tutorials

cd flink-quickstart-archetype

mvn cl ean install

cd ..

The following entry should be seen in your local catalog:

cat ~/.n2/repository/archetype-catal og. xn

<ar chet ypes>

<ar chet ype>
<gr oupl d>com cl ouder a. f | i nk</ gr oupl d>
<artifactld>flink-quickstart-archetype</artifactld>
<versi on>1. 10. 0-csal. 2. 0. 0</ ver si on>
<descri ption>fli nk-qui ckstart-archetype</description>

</ archet ype>

</ archet ypes>

2. Generate the project skeleton with the following commands:

mvn ar chet ype: generate \
- Dar chet ypeG oupl d=com cl oudera. flink \
-DarchetypeArtifactld=flink-quickstart-archetype \
- Dar chet ypeVer si on=1. 10. 0-csal.2.0.0

3. Provide basic information about the streaming application.
Y ou can choose to customize configurations yourself or use automatically generated information.

¢ Touseautomatically generated information, press Enter.
» If you choose to customize configuration, set the following properties:

Defi ne value for property 'groupld': com cloudera.flink

Define value for property "artifactld':
sanpl e- proj ect

Defi ne value for property 'version' 1.0-
SNAPSHOT:

Defi ne value for property 'package' c
om cl oudera. f i nk:

Confirm properties configuration:

groupl d: com cl oudera. flink

artifactld: sanple-project

versi on: 1. 0- SNAPSHOT
package: com cl oudera. flink
Y.

The generated project will ook like this:

sanpl e- proj ect
pom xni

Cloudera DataFlow for Data Hub Application devel opment

H#Hit# src
mai n
| ava
com
cl ouder a
flink
Stream ngJob. j ava

resources
| og4j . properties

4. Open StreamingJob.javafile.
The archetype application will look like this:

public class Streani ngJob {
public static void main(String[] args) throws Exception {
final StreanExecutionEnvironment env = StreanmExecuti onEnvironnent. get Ex
ecut i onEnvi ronnent () ;
Dat aSt r eanxl nt eger> ds = env. fronkEl enents(1, 2, 3,4);
ds. printToErr();
env. execute("Flink Stream ng Java APl Skel eton");

}
}

5. Customize the archetype application by adding source, stream transformation and sink to the Datastream class.
6. Run the application with env.execute command.

Y ou have built your Flink streaming project.

Y ou can further develop your application, or you can run the Flink application archetype.

Cloudera Streaming Analytics includes Flink with configuration that works out of the box. It is not mandatory to
configure Flink to production, but you can use the available configurations to optimize the application behavior in
production. Cloudera Manager includes all the necessary configurations for Flink that can also be accessed from the
flink-conf.yaml file.

The max parallelism is the most essential part of resource configuration for Flink applications as it defines the
maximum jobs that are executed at the same timein parallel instances. However, you can optimize max parallelismin
case your production goals differ from the default settings.

In aFlink application, the different tasks are split into several parallel instances for execution. The number of parallel

instances for atask is called parallelism. Parallelism can be defined at the operator, client, execution environment and
system level. Cloudera recommends setting parallelism to alower value at first use, and increasing it over timeif the

job cannot keep up with the input rate.

To configure the max parallelism, setMaxParallelism is called asit controls the number of key-groups created by the
state backends. A key-group is a partition of an operator state. The number of key-groups determines how datais
going to be distributed among the parallel operators. If the key-groups are not distributed evenly, the data distribution
is also uneven.

Consider the following aspects when setting the max parallelism:

« The number should be large enough to accommodate expected future load increases as this setting cannot be
changed without starting from an empty state.

10

Cloudera DataFlow for Data Hub Application devel opment

* |If Pisthe selected parallelism for the job, the max parallelism should be divisible by P to get even state
distribution.

» Please note that larger max parallelism settings have greater cost on the state backend side, for large scale
production jobs benchmarking the size of the state based on the maximum parallelism is useful before changing
this parameter.

Based on these criteria, Cloudera recommends setting the max paralellism to factorias or other numbers with alarge
number of divisors (120, 180, 240, 360, 720, 840, 1260), which will make parallelism tuning easier.

1 million record / sec / core 100 000 records/ sec / core 10 000 records/ sec / core

Generally, Flink automatically identifies the required resources for an application based on the parallelism settings.
However, you can adjust the configurations based on your requirements by specifying the number of task managers
and their memory allocation for individual Flink applications or for the entire Flink deployment.

To control the resources of individual TaskManager processes and the amount of work alocated to them, Cloudera
recommends starting the configuration with the following options:
Number of Task Slots

The number of task slots controls how many parallel pipeline/operator instances can be executed in
asingle TaskManager. Together with the parallelism setting, you can ultimately define how many
TaskManagers will be allocated for the job. For example, if you set the job parallelism to 12 and
the taskmanager.numberOf TaskSlots to 4, there will be 3 TaskManager containers for the job as the
value of parallelism will be divided with the number of task dots.

Y ou can set the number of task slots in Cloudera Manager under the Configuration tab.

TaskManager Number of Task Slots FLINK-1 (Service-Wide) O Undo

taskmanager.numberOfTaskSlots
o taskmanager_number_of_task_slots

4

TaskManager Process Memory Size

The taskmanager.memory.process.size option control s the total memory size of the TaskManager
containers. For applications that store data on heap or use large state sizes, it is recommended towe
should increase the process size accordingly. Y ou can set the number of task slotsin Cloudera
Manager under the Configuration tab.

TaskManager Process Memory Size FLINK-1 (Service-Wide)

taskn*anagcr.mc—rrc|'~.a.procc-ss.8|ze .
. i) 2 GiB w
& taskmanager_memory_process_size

For more information about the TaskManager memory management, see the Apache Flink
documentation. Y ou can also check the TaskManager configuration of your running application on
the Flink Dashboard to review the configured values before making adjustments.

11

Cloudera DataFlow for Data Hub

Memory
Flink Memary Mol Configured Vahues Mistric
T —— Framauork Hoss 128 MB
oS — s - 0.9 ME | 664 M8
Maragid Mass 835 MB
e U 08 [638 MB
9 s gy
Framawark Gff-Haap 128 M8
S Task Off-Hean a8
ek OF seag Hat & 155 MB
b ! 128 KB | 158 ME
[e—
P vertenrme WM Mataspace 56 ME
6.8 MB [256 Wil
-
SWM Ovarbead 206 MB

Network buffers for throughput and latency

Flink uses network buffers to transfer data from one operator to another. These buffers are filled up with data during
the specified time for the timeout. In case of high data rates, the set time is usually never reached. For cases when
the datarate is high, the throughput can be further increased with setting the buffer timeout to an intentionally higher
value due to the characteristics of the TCP channel. However, thisin turn increases the latency of the pipeline.

Yarn Related Configurations

Flink on YARN jobs are configured to tolerate a maximum number of failed containers before they terminate. Y ou
can configure the Y ARN maximum failed containers setting in proportion to the total parallelism and the expected
lifetime of the jab.

High Availability is enabled by default in CSA. This eliminates the JobManager as a single point of failure. Y ou can
also tune the application resilience by setting the Y ARN maximum application attempts, which determines how many
times the application will retry in case of failures.

Furthermore, you can use a Y ARN queue with preemption disabled to avoid long running jobs being affected when
the cluster reaches its capacity limit.

Reference values for the configurations

Configuration Parameter Recommended value

TM container memory -ytm / taskmanager.heap.size TM Heap + Heap-cutoff
Managed Memory Fraction taskmanager.memory.managed.fraction 04-0.9

Max parallelism pipeline.max-parallelism 120,720,1260,5040

Buffer timeout execution.buffer-timeout 1-100

YARN queue -yqu A queue with no preemption
YARN max failed containers yarn.maximum-failed-containers 3*num_containers

YARN max AM failures yarn.application-attempts 35

Configuring RocksDB state backend

Y ou can use RocksDB as a state backend when your Flink streaming application requires alarger state that doesn't fit
easily in memory. The RocksDB state backend uses a combination of fast in-memory cache and optimized disk based
lookups to manage state.

Y ou can configure the state backend for your streaming application by using the state.backend parameter directly or
in Cloudera Manager under the Configuration tab:

12

Application development

Cloudera DataFlow for Data Hub Application devel opment

State Backend FLINK-1 (Service-Wide) O Undo

state.backend |: j FILESYSTEM

&f state_backend

@® ROCKSDB

Y ou can adjust how much memory RocksDB should use as a cache to increase lookup performance by setting the
memory managed fraction of the TaskManagers in Cloudera Manager under the Configuration tab:

TaskManager Managed Memory Fraction FLINK-1 (Service-Wide)

taskmanager memory.managed.fraction

0.4
& taskmanager_managed_memory_fraction |

The default fraction value is 0.4, but with larger cache requirements you need to increase this value together with the
total memory size.

To make your Flink application fault tolerant, you need to enable automatic checkpointing. When an error or afailure
occurs, Flink will automatically restarts and restores the state from the last successful checkpoint. Checkpointing is
not enabled by default.

Whileit is possible to enable checkpointing programmatically through the StreamExecutionEnvironment, Cloudera
recommends to enable checkpointing either using the configuration file for each job, or as a default configuration for
all Flink applications through Cloudera Manager.

To enable checkpointing, you need to set the execution.checkpointing.interval configuration option to avalue larger
than 0. It is recommended to start with a checkpoint interval of 10 minutes (600000 milliseconds).

Y ou can acces the configuration options of checkpointing in Cloudera Manager under the Configuration tab.

13

Cloudera DataFlow for Data Hub DataStream connectors

Enable Checkpoint Compression [] FLINK-1 (Service-Wide)

execution.checkpointing.snapshot-compression
& execution_snapshot_compression

Externalized Checkpoint Retention FLINK-1 (Service-Wide)
execution.checkpointing.externalized-checkpoint- @ RETAIN_ON_CANCELLATION
retention -

& externalized_checkpoint_retention O DELETE_ON_CAMNCELLATION
Checkpointing Interval (milliseconds) FLINK-1 (Service-Wide)

execution.checkpointing.interval ‘ ‘
& checkpointing_interval

Max Concurrent Checkpoints FLINK-1 (Service-Wide)
execution.checkpointing. max-concurrent-checkpoints ‘ 1 J
@8 max_concurrent_checkpoints

Min Pause Between Checkpoints (milliseconds) FLINK-1 (Service-Wide)

execution.checkpointing. min-pause ‘
&5 checkpointing_min_pause

0|

Checkpointing Mode FLINK-1 (Service-Wide)

execution.checkpointing. mode

@2 checkpointing_mode (® EXACTLY_ONCE

() AT_LEAST_ONCE

Checkpointing Timeout (milliseconds) FLINK-1 (Service-Wide)

execution.checkpointing.timeout

@2 checkpointing_timeout 60000

DataStream connectors

14

Cloudera DataFlow for Data Hub DataStream connectors

Cloudera Streaming Analytics offers HBase connector as asink. Like this you can store the output of areal-time
processing application in HBase. Y ou must develop your application defining HBase as sink and add HBase
dependency to your project.

The HBase Streaming connector has the following key features:

« Automatic configuration on the platform
« High throughput buffered operations
* Customizable data-driven update/del ete logic

To use the HBase integration, add the following dependency to your project:

<dependency>
<gr oupl d>or g. apache. f | i nk</ gr oupl d>
<artifact!ld>flink-hbase_${scal a. bi nary. version}</artifactld>
<versi on>${f i nk. versi on} </ versi on>

</ dependency>

The general purpose HBase sink connector isimplemented in the org.apache.flink.addons.hbase.HBaseSinkFunction
class.

Thisis an abstract class that must be extended to define the interaction logic (mutations) with HBase. By using the
BufferedMutator instance, you can implement arbitrary data driven interactions with HBase. Whileit is possible to
run al mutations supported by the BufferedM utator interface, Cloudera strongly recommends that users should only
use idempotent mutations: Put and Delete.

Y ou must configure the HBaseSinkFunction with Table names to have HBase as a sink. The HBase table needs to be
created before the streaming job is submitted. Y ou should also configure the operation buffering parameters to make
sure that every data coming from Flink is buffered into HBase.

The HBase sink instance is aways created as a subclass of the HBaseSinkFunction. When users create the subclass
they have to provide required and optional parameters through the constructor of the superclass, the HBaseSinkFun
ction itself.

Required parameters:
« Table name (the table itself must be created before the streaming job starts)
Optiona parameters:

» Hadoop Configuration object for setting up the HBase client
e HBaseOptions for minimal connection configuration

The optional parameters are configured automatically by the Cloudera platform and should only be used for setting up
custom HBase connections.

Important: The Flink Gateway node should also be an HBase Gateway node for the automatic configuration
to work in the Cloudera environment.

To configure the operation buffering parameters, you need to use the HBaseSinkFunction.setWriteOptions() method.
Y ou can set the following configuration parameters using the HBaseWriteOptions object:

» setBufferFlushMaxSizelnBytes : Maximum byte size of the buffered operations before flushing
» setBufferFlushMaxRows : Maximum number of operations buffered before flushing
» setBufferFlushintervalMillis : Maximum time interval before flushing

15

Cloudera DataFlow for Data Hub DataStream connectors

See the following example for setting up an HBase sink running on the Cloudera platform:

/1 Define a new HBase sink for witing to the | TEM QUERI ES t abl e
HBaseSi nkFunct i on<Quer yResul t > hbaseSi nk = new HBaseSi nkFuncti on<Quer yResul
t>("1 TEM QUERI ES") {
@wverride
public void executeMitati ons(QueryResult qresult, Context context, Buffer
edMut at or mutator) throws Exception {
/1l For each incom ng query result we create a Put operation
Put put = new Put (Bytes.toBytes(qgresult.queryld));
put . addCol uim(Bytes. toBytes("item d"), Bytes.toBytes("str"), Byt es. t 0By
tes(gresult.itemnfo.itenm d));
put . addCol uim(Byt es. t oByt es("quantity"), Bytes.toBytes("int"), Bytes.to
Bytes(qgresult.item nfo.quantity));
nmut at or . nmut at e(put) ;
: }
/1 Configure our sink to not buffer operations for nore than a second (to
reduce end-to-end | atency)
hbaseSi nk. set WiteOpti ons(HBaseWiteOptions. buil der ()
.setBufferFlushlnterval M11is(1000)
Lbui I d()

/} Add the sink to our query result streangueryResultStream addSi nk(hbaseSi
nk) ;

Cloudera Streaming Analytics offers Kafka connector as a source and a sink to create a complete stream processing
architecture with a stream messaging platform. Y ou must develop your application defining Kafka as a source and
sink, after adding Kafka dependency to your project.

In CSA, adding Kafka as a connector creates a scalable communication channel between your Flink application and
the rest of your infrastructure. Kafkais often responsible for delivering the input records and for forwarding them as
an output, creating a frame around Flink.

When Kafkais used as a connector, Cloudera offers the following integration solutions:

» Schema Registry

» Streams Messaging Manager

» KafkaMetrics Reporter

Both Kafka sources and sinks can be used with exactly once processing guarantees when checkpointing is enabled.

For more information about Apache Kafka, see the Cloudera Runtime documentation.

1. Add the Kafka connector dependency to your Flink job.

Example for Maven:

<dependency>
<gr oupl d>or g. apache. f | i nk</ gr oupl d>
<artifact!ld>flink-connector-kafka_${scal a. binary.version}</artifactld>
<versi on>${fli nk. versi on} </ versi on>

</ dependency>

16

https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/kafka-overview/topics/kafka-overview-intro.html

Cloudera DataFlow for Data Hub DataStream connectors

2. Set FlinkKafkaConsumer as the source in the Flink application logic.

Properties properties = new Properties();
properties. put ("bootstrap. servers", "<your_broker_url>");
properties. put("group.id", "<your_group_id>");

Fl i nkKaf kaConsuner <Stri ng> source = new Fl i nkKaf kaConsuner <>(
"<your _i nput _topi c>",
new Si npl eStri ngSchema(),
properties);

3. Set FlinkKafkaProducer as the sink in the Flink application logic.

Properties properties = new Properties();
properties. put ("bootstrap. servers", "<your_broker_url>");
FI i nkKaf kaPr oducer <Stri ng> out put = new Fl i nkKaf kaPr oducer <>(
<your _out put _topi c>",
new Si npl eStri ngSchena(),
properties,
Sermant i c. EXACTLY_ONCE) ;

Stateful Tutoria: Setting up Kafkainputs and outputs
Checkpointing

When Kafkais chosen as source and sink for your application, you can use Cloudera Schema Registry to register and
retrieve schemainformation of the different Kafkatopics. Y ou must add Schema Registry dependency to your project
and add the appropriate schema object to your Kafka topics.

There are several reasons why you should prefer the Schema Registry instead of custom serializer implementations on
both consumer and producer side:

» Offers automatic and efficient serialization/deserialization for avro and basic types (+ JSON in the future)

« Guaranteesthat only compatible data can be written to a given topic (assuming that every producer uses the
registry)

» Supports safe schema evolution on both producer and consumer side

» Offersvisihility to developers on the data types and they can track schema evolution for the different Kafka topics

Add the following Maven dependency or equivalent to use the schemaregistry integration in your project:

<dependency>
<gr oupl d>or g. apache. f | i nk</ gr oupl d>
<artifactld>flink-avro-cloudera-registry</artifactld>
<version>${fl i nk. version}</versi on>

</ dependency>

The schema registry can be plugged directly into the FlinkK afkaConsumer and FlinkK afkaProducer using the
appropriate schema:

org. apache. flink.formats. avro. registry. cl oudera. C ouder aRegi st r yKaf kaDes
erializati onSchema

org. apache. flink.formats. avro.regi stry. cl oudera. C ouder aRegi st r yKaf kaSer
i alizationSchena

See the Apache Flink documentation for Kafka consumer and producer basics.

17

https://github.com/cloudera/flink-tutorials/tree/master/flink-stateful-tutorial#setting-up-kafka-inputs-and-outputs
https://docs.cloudera.com/cdf-datahub/7.2.12/how-to-flink/topics/csa-checkpoint.html
https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/connectors/kafka.html

Cloudera DataFlow for Data Hub DataStream connectors

Currently, the following data types are supported for producers and consumers:

» Avro Specific Record types
* Avro Generic Records
« Basic Java Datatypes: byte[], Byte, Integer, Short, Double, Float, Long, String, Boolean

To get started with Avro schemas and generated Java objects, see the Apache Avro documentation.

Y ou need to include every SSL configuration into a Map that is passed to the Schema Registry configuration.

Map<String, String> ssldientConfig = new HashMap<>();
ssl dient Config. put (K TRUSTSTORE PATH, parans. get (K SCHEMA REG SSL_CLI ENT

_KEY + "." + K_TRUSTSTORE_PATH)) ;
ssl dient Config. put (K TRUSTSTORE PASSWORD, parans. get (K SCHEMA REG SSL_CLI
ENT_KEY + "." + K_TRUSTSTORE_PASSWORD)) ;

Map<Stri ng, Obj ect> schenmaRegi stryConf = new HashMap<>();
schemaRegi st ryConf . put (K_SCHEMA REG URL, parans. get (K_SCHEMA REG URL));
schenmaRegi st ryConf . put (K SCHEMA REG SSL_CLI ENT_KEY, ssl dient Config);

For Kerberos authentication, Flink can maintain the authentication and ticket renewal automatically. Y ou can define
an additional RegistryClient property to the security.kerberos.login.contexts parameter in Cloudera Manager.

security. kerberos. | ogin. contexts=Cient, Kaf kad i ent, Regi stryC i ent

Y ou can construct the schema serialization with the ClouderaRegistryK af kaSerializationSchema.builder(..) object for
FlinkK afkaProducer. Y ou must set the topic configuration and RegistryAddress parameter in the object.

The serialization schema can be constructed using the ClouderaRegistryK af kaSeriali zationSchema.builder(..) object.
Required settings:

« Topic configuration when creating the builder, which can be static or dynamic (extracted from the data)
* RegistryAddress parameter on the builder to establish the connection

Optional settings:

« Arbitrary SchemaRegistry client configuration using the setConfig method
« Key configuration for the produced Kafka messages

» Specifying a KeySelector function that extracts the key from each record
» Using aTuple2 stream for (key, value) pairs directly
» Security configuration

Kaf kaSeri al i zati onSchena<I| t enTr ansacti on> schema = O ouder aRegi st ryKaf kaSer i
al i zati onSchema

. <ItemTransacti on>bui | der (t opi c)

. set Regi st ryAddr ess(regi stryAddress)

.setKey(Itemlransaction::getltem d)

Lbuild();
FI i nkKaf kaPr oducer <l t enilr ansact i on> kaf kaSi nk = new Fl i nkKaf kaPr oducer <>("du

mmy", schenma, kafkaProps, FlinkKafkaProducer. Semantic. AT _LEAST ONCE);

18

https://avro.apache.org/docs/1.8.1/gettingstartedjava.html

Cloudera DataFlow for Data Hub DataStream connectors

Y ou can construct the schema deserialization with the ClouderaRegistryK afkaDeserializationSchema.builder(..)
object for FlinkK afkaProducer to read the messages in the same schema from the FlinkK afkaProducer. Y ou must set
the class or schema of the input messages and the RegistryAddress parameter in the object.

The deserialization schema can be constructed using the ClouderaRegistryK afkaDeserializationSchema.builder(..)
object.

When reading messages (and keys), you always have to specify the expected Class<T> or record Schema of the input
records. Thisway Flink can do any necessary conversion between the raw data received from Kafka and the expected
output of the deserialization.

Required settings:

» Classor Schema of the input messages depending on the data type
* RegistryAddress parameter on the builder to establish the connection

Optional settings:

« Arbitrary SchemaRegistry client configuration using the setConfig method

« Key configuration for the consumed Kafka messages (only to be specified if reading the keys into akey or value
stream is necessary)

e Security configuration

Kaf kaDeseri al i zat i onSchema<l t enmilr ansacti on> schema = Cl ouder aRegi st r yKaf kaDe
seri al i zati onSchema

. bui I der (1tenTransacti on. cl ass)

. set Regi stryAddress(regi stryAddress)

cbui 1 d();
FI i nkKaf kaConsumer <I t enilr ansacti on> transacti onSource = new Fl i nkKaf kaConsu
mer <>(i nput Topi ¢, schema, kafkaProps, groupld);

In Cloudera Streaming Analytics, Kafka Metrics Reporter is available as another monitoring solution when Kafkais
used as a connector within the pipeline to retrieve metrics about your streaming performance.

Flink offers aflexible Metrics Reporter API for collecting the metrics generated by your streaming pipelines.
Cloudera provides an additional implementation of this, which writes metrics to Kafka with the following JSON

schema:

U, . . .
"timestanp" : nunber -> millisecond tinestanp of the netric record
"name" : string -> nane of the nmetric

(e.g. nunBytesCut)
"type" : string -> metric type enum GAUGE, COUNTER, METER, H STOGRAM

"variables" : {string => string} -> Scope vari abl es
(e.g. {"<job_id>" : "123", "<host>" : "l ocal host"})
"val ues" : {string => nunber} -> Metric specific val ues

(e.g. {"count" : 100})

For more information about Metrics Reporter, see the Apache Flink documentation.

The Kafka metrics reporter can be configured similarly to other upstream metric reporters.
Required parameters

» topic: target Kafka topic where the metric records will be written at the configured intervals
» bootstrap.servers. Kafka server addresses to set up the producer

19

https://ci.apache.org/projects/flink/flink-docs-release-1.12/ops/metrics.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/ops/metrics.html#reporter

Cloudera DataFlow for Data Hub

DataStream connectors

Optiona parameters

« interval: reporting interval, default value is 10 seconds, format is 60 SECONDS
» log.errors: logging of metric reporting errors, value either true or false

Y ou can configure the Kafka metrics reporter per job using the following command line properties:

flink run -d -p 2 -ynm HeapMoni tor \

-yD netrics.reporter. kaf ka. cl ass=org. apache. flink. netri cs. kaf ka. Kaf kaMetri c

sReporter \

-yD netrics.reporter. kaf ka.topi c=netrics-topic.log \

-yD netrics. reporter. kaf ka. boot st rap. server s=<kaf ka_br oker>: 9092 \
-yD nmetrics.reporter. kaf ka. i nterval ="60 SECONDS" \

-yD nmetrics.reporter. kaf ka. |l og. errors=fal se \
flink-sinple-tutorial-1.3-SNAPSHOT. | ar

The following is amore advanced Flink command that also contains security related configurations:
flink run -d -p 2 -ynm HeapMoni tor \

-yD security. kerberos. | ogi n. keyt ab=sone. keyt ab \
-yD security. kerberos. | ogin. principal =sonme_principal \

-yD nmetrics. reporter. kaf ka. cl ass=or g. apache. flink. netrics. kaf ka. Kaf kaMetri c

sReporter \
-yD netrics.reporter. kaf ka.topi c=netrics-topic.log \
-yD netrics.reporter. kaf ka. boot strap. server s=<kaf ka_br oker >; 9093 \
-yD netrics.reporter. kaf ka.interval ="60 SECONDS" \
-yD netrics. reporter. kaf ka. |l og. errors=fal se \
-yD netrics.reporter. kaf ka. security. protocol =SASL_SSL \
-yD netrics. reporter. kaf ka. sasl . ker beros. servi ce. name=kaf ka \
-yD netrics.reporter. kafka. ssl.truststore.location=truststore.jks \
flink-sinple-tutorial-1.3-SNAPSHOT. | ar

Y ou can also set the metrics properties globally in Cloudera Manager using Flink Client Advanced Configuration

Snippet (Safety Valve) for flink-conf-xml/flink-conf.xml.

The reporter supports passing arbitrary Kafka producer properties that can be used to modify the behavior, enable

security, and so on. Serializer classes should not be modified asit can lead to reporting errors.

See the following example configuration of the Kafka Metrics Reporter:

Required configuration

metrics. reporter. kaf ka. cl ass:

org. apache. flink. netrics. kaf ka. Kaf kaMet ri csReport er
metrics.reporter. kafka.topic: netrics-topic.log

metrics.reporter. kaf ka. boot st rap. servers: broker1: 9092, br oker 2: 9092

Optional configuration
metrics.reporter. kafka.interval: 60 SECONDS
metrics.reporter. kafka.l og.errors: false

Optional Kafka producer properties
metrics.reporter. kaf ka. security. protocol : SSL
metrics.reporter. kaf ka. ssl .truststore. | ocation:
/var/privatel/ssl/kafka.client.truststore.jks

Note: Any optional property with metrics.reporter.kafka. prefix tag is processed as Kafka client
E configuration.

For example: metrics.reporter.kafka.property _name: property value will be converted to property _name: p

roperty_value.

20

Cloudera DataFlow for Data Hub Job lifecycle

Cloudera Streaming Analytics offers Kudu connector as a sink to create analytical application solutions. Kudu is an
analytic data storage manager. When using Kudu with Flink, the analyzed datais stored in Kudu tables as an output to
have an analytical view of your streaming application.

Y ou can read Kudu tables into a DataStream using the KuduCatal og with Table API or using the KuduRowInputForm
at directly in the DataStream. The difference between the two methods is that when using the KuduRowI nputFormat,
you need to manually provide information about the table.

For more information about the Kudu sink in DataStream API, see the official documentation.

After developing your application, you can submit your Flink jobin YARN per-job or session mode. To submit the
Flink job, you need to run the Flink client in the command line including security parameters and other configurations
with the run command.

Submitting a job means uploading the job’s JAR and related dependencies to the Flink cluster and initiating the job
execution.

The Flink jobs you submit to the cluster are running on Y ARN. Submitting ajob means that the JAR file of the Flink
application is uploaded to the cluster with the related dependencies. and the job execution isinitiated. Y ou have the
following mode in which you can run your Flink jobs:

e Per-job mode

Per-job mode means that you run the Flink job in a dedaction Y ARN application. In this case each submitted Flink
job hasitsown Flink cluster in YARN, with its own Job Manager and Task Managers. When you run Flink jobsin
per-job mode, every job submission creates anew cluster. Asthe cluster deployment has to be created with every
submission, the execution of the job can take up time.

* Session mode

Session mode means that you run multiple Flink jobs in the same Y ARN sessions. In this case every Flink job
shares the cluster, the allocated resources, the Job Manager and Task Managers. When you run Flink jobsin
session mode, the submitted jobs are created in one cluster and are long-lived. The execution time is shorter than
in per-job mode, however you need to consider that in a session mode a cluster failure affects every Flink job, and
recreation from a savepoint can take up time.

Y ou can set how to run your Flink job with the execution.target setting in the Flink configuration file. By defaullt,
execution.target is set to yarn-per-job, but you can change it to yarn-session. Alternatively, you can add the
corresponding arguments to the flink run command when submitting the Flink job.

* You haveinstalled and configured the Flink service on your cluster.

For more information, see the Adding Flink as a service documentation.

* You have HDFS Gateway, Flink and YARN Gateway roles assigned to the host you are using for Flink
submission.

For more information, see the Cloudera Manager documentation.

21

https://github.com/apache/bahir-flink/tree/master/flink-connector-kudu#datastream-api
https://docs.cloudera.com/csa/1.5.1/installation/topics/csa-add-flink-service.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/managing-clusters/topics/cm-managing-roles.html

Cloudera DataFlow for Data Hub Job lifecycle

* You have uploaded the Flink application JAR file and job propertiesfile to the Flink cluster.

1. Connect to the cluster using ssh where you want to run the Flink application.
ssh root @your host nane>

E Note: You are prompted to provide your password to the cluster.

2. Submit the Flink job using the flink run command.
Per-job mode

flink run\
-d\
-myarn-cluster \
-ynm <j ob_nane_i n_yarn> \
-p <job_parallelisnm \
-ys <slots_per_task _nanager> \
-yt m <nenory_per _container_in_nb> \
<job_jar file> <job_paraneters> ...

Session mode

a. Start aFlink session cluster.

flink-yarn-session \
-d\
-nm <j ob_nanme_i n_yarn> \
-s <slots_per_task manager> \
-tm <nmenory_per_contai ner_in_nmb>

The flink-yarn-session command outputs the ID of the corresponding YARN application. Y ou
need to add the Y ARN application ID to the flink run command.

YARN ApplicationlD: application_ 1616633166424 0024
b. Submit the Flink job.

flink run\
-d \
-myarn-cluster \
-e yarn-session \
-yid <application_id>\
-p <parallelisnm \
<job_jar_file> <job_paraneters>

B Note:
To run aFlink job, your HDFS Home Directory hasto exist. If it does not exist, you receive an error
message similar to:

Per m ssi on deni ed: user =$USER NAME, access=WRI TE, i node="/user”
Simple Tutorial: Running the application from IntelliJ

Simple Tutorial: Running the application on a Cloudera cluster
Stateful Tutorial: Deploy and monitor the application

22

https://github.com/cloudera/flink-tutorials/tree/master/flink-simple-tutorial#running-the-application-from-intellij
https://github.com/cloudera/flink-tutorials/tree/master/flink-simple-tutorial#running-the-application-on-a-cloudera-cluster
https://github.com/cloudera/flink-tutorials/blob/master/flink-stateful-tutorial/README.md#deploying-the-application

Cloudera DataFlow for Data Hub Monitoring

Y ou can use the Flink command line interface to operate, configure and maintain your Flink applications.

The Flink CLI works without requiring the user to always specify the Y ARN application ID when submitting
commands to Flink jobs. Instead, the jobs are identified uniquely on the YARN cluster by their job IDs.

The following improvements are implemented for Flink CLI:

e flink list: Thiscommand lists all the jobs on the YARN cluster by default, instead of listing the jobs of asingle
Flink cluster.

» flink savepoint <jobld> and flink cancel <jobld>: The savepoint and cancel commands, along with the other
single job commands, no longer require the -yld parameter, and work if you provide only the ID of the job.

« flink run: Y ou do not need to specify -m yarn-cluster, asit isincluded in the run command by default.

Beside checkpointing, you are also able to create a savepoint of your executed Flink jobs. Savepoints are not
automatically created, so you need to trigger them in case of upgrade or maintenance. Y ou can also resume your
applications from savepoint.

Y ou can set the default savepoint directory in flink-conf.yaml under state.savepoints.dir property.

The following command lines can be used to maintain savepoints:

Trigger savepoint $ bin/flink savepoint -yid <yarnApplD> <jobld> [targetDirectory]
Stop job with savepoint $ bin/flink stop -yid <yarnAppID> <jobld>

Resume from savepoint $ bin/flink run -s <savepointPath> [runArgs]

Deleting savepoint $ bin/flink savepoint -d <savepointPath>

The Flink Dashboard is a built-in monitoring interface for Flink applications in Cloudera Streaming Analytics. You
can monitor your running, completed and stopped Flink jobs on the dashboard. Y ou reach the Flink Dashboard
through Cloudera Manager.

After deploying Flink and the required components, you can configure and monitor each component individualy,
or the whole cluster with Cloudera Manager. For the general use of Cloudera Manager, see the Cloudera Manager
documentation.

The Flink Dashboard acts as a single Ul for monitoring all the jobs running on the YARN cluster. It shows all the
running, failed, and finished jobs.

B Note: The Flink Dashboard is an updated version of the Flink HistoryServer.

Y ou can also use the dashboard to navigate between the different Flink clusters from a central place.

23

https://docs.cloudera.com/cloudera-manager/7.5.4/index.html

Cloudera DataFlow for Data Hub Monitoring

= Version: 1.10.0-csa1.2.0.0-SNAPSHOT ~ Commit: 44acdbd @ 20.04.2020 @ 16:54:12 CEST ~ Message: ()

Available Task Slots Running Jobs

2 4

Running Job List

Job Name Start Time Duration © EndTime : Tasks Status Cluster
default: select * from KioskIntrusionSFO 2020-04-20 22:44:26 2m 20s 1) RUNNING
ve Maintenance 2020-04 [16 [18)

2:00 24m45s [16 6 R

Completed Job List

Job Name Start Time End Time -+ Tasks Status Cluster

Ny 2020-04-20 o .o 2020-04-20 !F
XL Predictive Maintenance S 19ma6s e , FINISHED

2020-04-20 2020-04-20
m1s 1]
22:43:07 22:44:00

Y ou can use the Streams M essaging Manager (SMM) Ul to monitor end-to-end latency of your Flink application
when using Kafka as a datastream connector.

End-to-end latency throughout the pipeline can be monitored using SMM. To use SMM with Flink, interceptors need
to be enabled for Kafkain the Flink connectors.

For more information about enabling interceptors, see the SMM documentation.

Y ou can review the log text files of the Flink jobs when an error is detected during the processes. When you set the
log level of Flink to DEBUG, you can easily trace the log file for errors.

A logfileiscreated for every Flink process that contains messages for the different events happening in the given
process. You can use these log files to solve the errors and problems that can occur during Flink processes. Y ou can
access the Flink logs using the Flink Dashboard.

1. Navigateto the Configuration page in Cloudera Manager.

a) Navigateto Management Console > Environments, and select the environment where you have created your
cluster.

b) Select the Streaming Analytics cluster from the list of Data Hub clusters.

¢) Select Cloudera Manager from the services.
Y ou are redirected to the Cloudera Manager user interface.

d) Click Clusters> Flink .

€) Click Configuration.

2. Search for Flink Client Advanced Configuration Snippet (Safety Valve) for flink-conf/log4j.properties
configuration.

24

https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/monitoring-end-to-end-latency/topics/smm-end-to-end-latency-overview.html

Cloudera DataFlow for Data Hub Governance

3. Add the following parameters to the Safety Valve:

| ogger.flink.nane = org.apache.flink
| ogger.flink.level = DEBUG

4. Click Save Changes.

5. Restart the Flink service with Action > Restart .

After updating the Flink log configuration in Cloudera Manager, you need to access the Y ARN Resource Manager
user interface from the Streaming Analytics cluster page.

6. Accessthe YARN Resource Manager user interface to stop the YARN job of the Flink application.
a) Navigate to Management Console > Environments, and select the environment where you have created your
cluster.
b) Select the Streaming Analytics cluster.
¢) Select Resource Manager from the list of Services.
Y ou are redirected to the Resour ce Manager user interface.
d) Select Applications.
The running Flink applications are displayed.
7. Select the application you need to stop.
8. Click Settings.
9. Select Kill application.

After stopping the Flink application, you can review the log file of the Flink job by accessing the Flink Dashboard
from the Streaming Analytics cluster page.

10. Navigate to Flink Dashboard and review the log level for the running job.
a) Navigate to Management Console > Environments, and select the environment where you have created your
cluster.
b) Select the Streaming Analytics cluster.
¢) Click FHink Dashboard from the list of services.
11. Select Task Managers from the main menu.
12. Select the previously submitted job.

13. Click Logs.

In Cloudera Streaming Analytics, you can use Flink with Apache Atlas to track the input and output data of your
Flink jobs.

Atlasis alineage and metadata management solution that is supported across the Cloudera Data Platform. This means
that you can find, organize and manage different assets of data about your Flink applications and how they relate to
each other. This enables arange of data stewardship and regulatory compliance use cases.

For more information about Atlas, see the Cloudera Runtime documentation.

Create Atlas entity type definitions

25

https://docs.cloudera.com/runtime/7.2.12/cdp-governance-overview/topics/atlas-overview.html
https://docs.cloudera.com/cdf-datahub/7.2.12/flink-analyzing-data/topics/cdf-datahub-sa-atlas-configuration.html

Cloudera DataFlow for Data Hub Migrating Flink jobs

Atlas entities in Flink metadata collection

In Atlas, the core concept of representing Flink applications, Kafka topics, HBase tables, and so on, iscalled an
entity. Y ou need to understand the relation and definition for entitiesin a Flink setup to enhance the metadata
collection.

When submitting updates to Atlas, a Flink application describes itself and the entities it uses as sources and sinks.
Atlas creates and updates the corresponding entities, and creates lineage from the collected and already available
entities. Internally, the communication between the Flink client and the Atlas server isimplemented using a Kafka
topic. Thissolution is referred to as Flink hook by the Atlas community.

Kiosk Errors Over Last 10 minutes (flink_application)

ns: |4

Properties Relationships Classifications. Audits

OCurrent Entity I In Progress — Impact allallelr|la

kiosk_events_raw_.

GenerateFlowFile,.,

Related Concepts

Flink application structure

Related Information

Create Atlas entity type definitions

Flink Project Template

Simple Tutoria: Application logic

Stateful Tutorial: Build a Flink streaming application
Apache Flink documentation: DataStream APl overview

Migrating Flink jobs

After upgrading the version of the Data Lake in your CDP Public Cloud environment, you need to create Data
Hub clusters using the Streaming Analytics cluster template that corresponds to the new version of the Data L ake.
To restart your existing Flink jobs on the upgraded Data Hub clusters, you need to migrate your Flink jobs. The
migration process depends on the state of the Flink jobs.

After creating a new Data Hub cluster using the latest Streaming Analytics cluster template, you need to migrate your
Flink jobs to the new cluster. The process of migration depends on the state of your Flink jobs: if you have stateful
jabs, you need to stop your Flink applications with creating savepoints. Before starting the job migration, make sure
that the job dependies are updated based on the latest version of Flink in CDP Public Cloud.

26

https://docs.cloudera.com/cdf-datahub/7.2.12/flink-analyzing-data/topics/cdf-datahub-sa-atlas-configuration.html
https://docs.cloudera.com/cdf-datahub/7.2.12/how-to-flink/topics/csa-flink-archetype.html
https://github.com/cloudera/flink-tutorials/blob/master/flink-simple-tutorial/README.md#application-logic
https://github.com/cloudera/flink-tutorials/blob/master/flink-stateful-tutorial/README.md#implementing-the-flink-application
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/datastream_api.html

Cloudera DataFlow for Data Hub Migrating Flink jobs

When you run Flink application without state, you only need to stop your currently running Flink jobs, and restart
them on your upgraded Data Hub clusters.

1. Connect to your host where you run your Flink jobs using ssh.

ssh <wor kl oad_user name>@nast er _host >
Passwor d: <your wor kl oad_passwor d>

2. Determine which jobs you want to stop by listing the Flink job I1Ds.

flink Iist

3. Stop your Flink jobs using command line interface (CLI).

flink cancel <flink_job_ |ID>

4. Resubmit the stopped Flink jobs on your new cluster.
a) Connect to your host where you intend to run your Flink jobs using ssh.

ssh <wor kl oad_user name>@nast er _host >
Passwor d: <your_wor kl oad_passwor d>

b) Resubmit your Flink application.

flink run <run_argunents> \
<jar_file> <app_argunent s>

When you run Flink application with state, you must stop the Flink jobs with a savepoint, so you can restart them
from the exact point on your upgraded Data Hub clusters. Based on the version of your original cluster, you can
provide the savepoint path either in HDFS or S3.

The following savepoint paths are supported based on the version of your original cluster:

« |f the version of the origina cluster was 7.2.9 or lower, you need to provide the savepoint path in HDFS.
« |f theversion of the origina cluster was 7.2.10 or higher, you need to provide the savepoint path in S3.

1. Connect to your host where you run your Flink jobs using ssh.

ssh <wor kl oad_user name>@nast er _host >
Passwor d: <your _wor kl oad_passwor d>

2. Determine which jobs you want to stop by listing the Flink job IDs.

flink Iist

27

Cloudera DataFlow for Data Hub Migrating Flink jobs

3. Stop your Flink jobs with a savepoint using command line interface (CLI).

If the version of your original cluster was 7.2.10 or higher, store the savepoint in S3:
flink stop --savepointPath s3a://<bucket_nanme>/ savepoints <flink_job_id>
If the version of your original cluster was 7.2.9 or lower, store the savepoint in HDFS:

flink stop --savepointPath hdfs:///tnp/savepoints <flink job_ id>
4, Take note of the savepoint path in the output of the command as you must provide the path when resuming the
Flink applications.
5. Copy the savepoint from HDFS to S3, only if the version of your original cluster was 7.2.9 or lower.
a) If the savepoint sizeisminimal:

hdfs dfs -nkdir -p s3a://aa-uet2/savepoints/
hdf s dfs -cp <savepoi nt _pat h> s3a:// <bucket nane>/ savepoi nt s/

b) If the savepoint sizeislarge (several GB or larger):

hdfs dfs -nkdir -p s3a://aa-uet2/savepoints/
hadoop distcp -m 10 <savepoi nt_pat h> s3a:// <bucket nane>/ savepoi nt s/
6. Createthe Data Hub cluster with the new version.
For more information, see the Creating Sreaming Analytics cluster section.
7. Copy the savepoint from S3 to HDFS, only if the version of your original cluster was 7.2.9 or lower.
Make sure that you provide the same path on HDFS as the original savepoint location in the original cluster.
a) If the savepoint sizeisminimal:

hdfs dfs -cp \
s3a: // <bucket nane>/ savepoi nt s/ <savepoi nt _f ol der _nane> \
hdf s: ///t np/ savepoi nt s/

b) If the savepoint sizeislarge (several GB or larger):

hadoop distcp -m 10 \
s3a: // <bucket nanme>/ savepoi nt s/ <savepoi nt _f ol der _nane> \
hdf s: ///tnp/ savepoi nt s/
8. Update the Flink job dependenciesin your POM file, and rebuild your JAR file.
For more information, see the Updating Flink job dependencies section.
9. Resume your Flink application from savepoint.

If the version of your original cluster was 7.2.10 or higher, restore your application from S3:
flink run <run_argunents> \

-fronBavepoi nt s3a://<bucket nane>/ savepoi nts \
<jar_file> <app_argunent s>

If the version of your original cluster was 7.2.9 or lower, restore your application from HDFS:

flink run <run_argunents> \
-fronBavepoi nt hdfs:///tnp/savepoi nt s/ <savepoi nt _nane> \
<jar_file> <app_argunent s>

28

Cloudera DataFlow for Data Hub Migrating Flink jobs

When you migrate your Flink jobs to a cluster that has a new supported version of Flink, the applications need to use
anew version of the artifacts provided by the Flink deployment in your cluster. To avoid incompatibilities between
the packaged artifacts of your application and the artifacts provided by the Flink cluster, ensure that the POM file of
the application is updated to match the Flink version of the new Data Hub cluster.

1. Navigateto Management Console > Environments, and select the environment where you have crested your
cluster.

Select the Streaming Analytics cluster from the list of Data Hub clusters.
Select Repository Details.
Search for the Cloudera Runtime Repository Specification section, and review the Flink version.

Name: FLINK

Version: 1.13.2-csadh1.5.0.0-cdn7.2.12.0-35-17794544

Update the <flink.version> property of your POM file using the Flink and Cloudera Streaming Analyitcs (CSA)
version of your Data Hub cluster.

Y ou need to copy and paste only the prefix before the ‘cdh’ version number: 1.13.2-csadh1.5.0.0.

El N

ol

<properties>
éfiink.version>1.13.2-csadh1.5.0.0</f|ink.version>
</pr6bérties>
édépendencies>
édépendency>
<gr oupl d>or g. apache. f | i nk</ gr oupl d>
<artifactld>flink-java</artifactld>
<versi on>${flink. versi on}</versi on>
</ dependency>
<depéhdencies>

6. Rebuild your JAR file.

mvn cl ean package

29

	Contents
	Running a simple Flink application
	Application development
	Flink application structure
	Source, operator and sink in DataStream API
	Flink application example
	Testing and validating Flink applications

	Flink Project Template
	Configuring Flink applications
	Setting parallelism and max parallelism
	Configuring Flink application resources
	Configuring RocksDB state backend
	Enabling checkpoints for Flink applications

	DataStream connectors
	HBase sink with Flink
	Creating and configuring the HBaseSinkFunction

	Kafka with Flink
	Schema Registry with Flink
	ClouderaRegistryKafkaSerializationSchema
	ClouderaRegistryKafkaDeserializationSchema

	Kafka Metrics Reporter

	Kudu with Flink

	Job lifecycle
	Running a Flink job
	Using Flink CLI
	Enabling savepoints for Flink applications

	Monitoring
	Flink Dashboard
	Streams Messaging Manager integration
	Enabling Flink DEBUG logging

	Governance
	Flink metadata collection using Atlas
	Atlas entities in Flink metadata collection

	Migrating Flink jobs
	Migrating Flink jobs without state
	Migrating stateful Flink jobs
	Updating Flink job dependencies

