
Cloudera DataFlow for Data Hub 7.2.11

Apache NiFi RecordPath Guide
Date published: 2021-03-29
Date modified: 2021-09-08

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera DataFlow for Data Hub | Contents | iii

Contents

Apache NiFi RecordPath Overview..5

Structure of a RecordPath...5

Child Operator..6

Descendant Operator..6

Filters..7

Function Usage..7
Arrays.. 8
Maps.. 8
Predicates...9

Functions..10

Standalone Functions... 11
substring.. 11
substringAfter..11
substringAfterLast...11
substringBefore... 12
substringBeforeLast...12
replace... 12
replaceRegex... 12
concat...13
fieldName.. 13
toDate.. 13
toString.. 14
toBytes...14
coalesce... 15
format.. 16
trim.. 17
toUpperCase.. 17
toLowerCase..18
base64Encode..18
base64Decode..19
hash..19
padLeft...20
padRight.. 20
uuid5..21

Filter Functions... 21
contains..21
matchesRegex..21
startsWith...22
endsWith..22
not..22
isEmpty..22
isBlank...23

Cloudera DataFlow for Data Hub Apache NiFi RecordPath Overview

Apache NiFi RecordPath Overview

Apache NiFi offers a very robust set of Processors that are capable of ingesting, processing, routing, transforming,
and delivering data of any format. This is possible because the NiFi framework itself is data-agnostic. It doesn’t
care whether your data is a 100-byte JSON message or a 100-gigabyte video. This is an incredibly powerful feature.
However, there are many patterns that have quickly developed to handle data of differing types.

One class of data that is often processed by NiFi is record-oriented data. When we say record-oriented data, we are
often (but not always) talking about structured data such as JSON, CSV, and Avro. There are many other types of
data that can also be represented as "records" or "messages," though. As a result, a set of Controller Services have
been developed for parsing these different data formats and representing the data in a consistent way by using the
RecordReader API. This allows data that has been written in any data format to be treated the same, so long as there
is a RecordReader that is capable of producing a Record object that represents the data.

When we talk about a Record, this is an abstraction that allows us to treat data in the same way, regardless of the
format that it is in. A Record is made up of one or more Fields. Each Field has a name and a Type associated with it.
The Fields of a Record are described using a Record Schema. The Schema indicates which fields make up a specific
type of Record. The Type of a Field will be one of the following:

• String
• Boolean
• Byte
• Character
• Short
• Integer
• Long
• BigInt
• Float
• Double
• Date - Represents a Date without a Time component
• Time - Represents a Time of Day without a Date component
• Timestamp - Represents a Date and Time
• Embedded Record - Hierarchical data, such as JSON, can be represented by allowing a field to be of Type Record

itself.
• Choice - A field may be any one of several types.
• Array - All elements of an array have the same type.
• Map - All Map Keys are of type String. The Values are of the same type.

Once a stream of data has been converted into Records, the RecordWriter API allows us to then serialize those
Records back into streams of bytes so that they can be passed onto other systems.

Of course, there’s not much point in reading and writing this data if we aren’t going to do something with the data
in between. There are several processors that have already been developed for NiFi that provide some very powerful
capabilities for routing, querying, and transforming Record-oriented data. Often times, in order to perform the desired
function, a processor will need input from the user in order to determine which fields in a Record or which values in a
Record should be operated on.

Enter the NiFi RecordPath language. RecordPath is intended to be a simple, easy-to-use Domain-Specific Language
(DSL) to specify which fields in a Record we care about or want to access when configuring a processor.

Structure of a RecordPath

5

Cloudera DataFlow for Data Hub Child Operator

A Record in NiFi is made up of (potentially) many fields, and each of these fields could actually be itself a Record.
This means that a Record can be thought of as having a hierarchical, or nested, structure. We talk about an "inner
Record" as being the child of the "outer Record." The child of an inner Record, then, is a descendant of the outer-most
Record. Similarly, we can refer to an outer Record as being an ancestor of an inner Record.

Child Operator

The RecordPath language is structured in such a way that we are able to easily reference fields of the outer-most
Record, or fields of a child Record, or descendant Record. To accomplish this, we separate the names of the children
with a slash character (/), which we refer to as the child operator. For example, let's assume that we have a Record
that is made up of two fields: name and details. Also, assume that details is a field that is itself a Record and has two
Fields: identifier and address. Further, let's consider that address is itself a Record that contains 5 fields: number, stre
et, city, state, and zip. An example, written here in JSON for illustrative purposes may look like this:

{
 "name": "John Doe",
 "details": {
 "identifier": 100,
 "address": {
 "number": "123",
 "street": "5th Avenue",
 "city": "New York",
 "state": "NY",
 "zip": "10020"
 }
 }
}

We can reference the zip field by using the RecordPath: /details/address/zip. This tells us that we want to use the deta
ils field of the "root" Record. We then want to reference the address field of the child Record and the zip field of that
Record.

Descendant Operator

In addition to providing an explicit path to reach the zip field, it may sometimes be useful to reference the zip field
without knowing the full path. In such a case, we can use the descendant operator (//) instead of the child operator (/).
To reach the same zip field as above, we can accomplish this by simply using the path //zip.

There is a very important distinction, though, between the child operator and the descendant operator: the descenda
nt operator may match many fields, whereas the child operator will match at most one field. To help understand this,
consider the following Record:

{
 "name": "John Doe",
 "workAddress": {
 "number": "123",
 "street": "5th Avenue",
 "city": "New York",
 "state": "NY",
 "zip": "10020"
 },
 "homeAddress": {
 "number": "456",

6

Cloudera DataFlow for Data Hub Filters

 "street": "116th Avenue",
 "city": "New York",
 "state": "NY",
 "zip": "11697"
 }
}

Now, if we use the RecordPath /workAddress/zip, we will be referencing the zip field that has a value of "10020."
The RecordPath /homeAddress/zip will reference the zip field that has a value of "11697." However, the RecordPath
//zip will reference both of these fields.

Filters

Filters can be added to the search box as key-value pairs where the keys are predefined and check certain conditions
based on the given value. The syntax is "key:value".

Example 2: The search will be executed under Process Groups (directly or via contained Process Groups) containing
the string "myGroup" in their name or id. The result will contain components that match for "processor1".

group:myGroup processor1

Filters can be used together with other search terms and multiple filters can be used. The only constraint is that the
search must start with the filters. Unknown filters or known filters with unknown values are ignored. If the same filter
key appears multiple times, the first will be used. The order of different filters has no effect on the result.

Example 3: Search will be restricted to the currently active process group (and process groups within that). The result
will contain components that match for "import" but property matches will be excluded.

scope:here properties:exclude import

The supported filters are the following:

scope: This filter narrows the scope of the search based on the user's currently active Process Group. The only valid
value is "here". The usage of this filter looks like "scope:here". Any other value is considered as invalid, thus the filter
will be ignored during search.

group: This filter narrows the scope of the search based on the provided Process Group name or id. Search will be
restricted to groups (and their components - including subgroups and their components) the names or ids of which
match the filter value. If no group matches the filter, the result list will be empty.

properties: With this, users can prevent property matches to appear in the search result. Valid values are: "no",
"none", "false", "exclude" and "0".

Function Usage

In addition to retrieving a field from a Record, as outlined above in the Filters section, we sometimes need to refine
which fields we want to select. Or we may want to return a modified version of a field. To do this, we rely on
functions. The syntax for a function is <function name> <open parenthesis> <args> <close parenthesis>, where
<args> represents one or more arguments separated by commas. An argument may be a string literal (such as 'hello')
or a number literal (such as 48), or could be a relative or absolute RecordPath (such as ./name or /id). Additionally,
we can use functions within a filter. For example, we could use a RecordPath such as /person[isEmpty('name')
]/id to retrieve the id field of any person whose name is empty. A listing of functions that are available and their
corresponding documentation can be found below in the Functions section.

7

https://nifi.apache.org/docs/nifi-docs/html/record-path-guide.html#filters
https://nifi.apache.org/docs/nifi-docs/html/record-path-guide.html#functions

Cloudera DataFlow for Data Hub Function Usage

Arrays

When we reference an Array field, the value of the field may be an array that contains several elements, but we
may want only a few of those elements. For example, we may want to reference only the first element; only the last
element; or perhaps the first, second, third, and last elements. We can reference a specific element simply by using the
index of the element within square brackets (the index is 0-based). So let us consider a modified version of the Record
above:

{
 "name": "John Doe",
 "addresses": [
 "work": {
 "number": "123",
 "street": "5th Avenue",
 "city": "New York",
 "state": "NY",
 "zip": "10020"
 },
 "home": {
 "number": "456",
 "street": "116th Avenue",
 "city": "New York",
 "state": "NY",
 "zip": "11697"
 }
]
}

We can now reference the first element in the addresses array by using the RecordPath /addresses[0]. We can access
the second element using the RecordPath /addresses[1]. There may be times, though, that we don't know how many
elements will exist in the array. So we can use negative indices to count backward from the end of the array. For
example, we can access the last element as /addresses[-1] or the next-to-last element as /addresses[-2]. If we want
to reference several elements, we can use a comma-separated list of elements, such as /addresses[0, 1, 2, 3]. Or, to
access elements 0 through 8, we can use the range operator (..), as in /addresses[0..8]. We can also mix these, and
reference all elements by using the syntax /addresses[0..-1] or even /addresses[0, 1, 4, 6..-1]. Of course, not all of the
indices referenced here will match on the Record above, because the addresses array has only 2 elements. The indices
that do not match will simply be skipped.

Maps

Similar to an Array field, a Map field may actually consist of several different values. RecordPath gives us the
ability to select a set of values based on their keys. We do this by using a quoted String within square brackets. As an
example, let's re-visit our original Record from above:

{
 "name": "John Doe",
 "details": {
 "identifier": 100,
 "address": {
 "number": "123",
 "street": "5th Avenue",
 "city": "New York",
 "state": "NY",
 "zip": "10020"
 }

8

Cloudera DataFlow for Data Hub Function Usage

 }
}

Now, though, let's consider that the Schema that is associated with the Record indicates that the address field is not
a Record but rather a Map field. In this case, if we attempt to reference the zip using the RecordPath /details/address
/zip the RecordPath will not match because the address field is not a Record and therefore does not have any Child
Record named zip. Instead, it is a Map field with keys and values of type String. Unfortunately, when looking at
JSON this may seem a bit confusing because JSON does not truly have a Type system. When we convert the JSON
into a Record object in order to operate on the data, though, this distinction can be important.

In the case laid out above, we can still access the zip field using RecordPath. We must now use the a slightly different
syntax, though: /details/address['zip']. This is telling the RecordPath that we want to access the details field at the
highest level. We then want to access its address field. Since the address field is a Map field we can use square
brackets to indicate that we want to specify a Map Key, and we can then specify the key in quotes.

Further, we can select more than one Map Key, using a comma-separated list: /details/address['city', 'state', 'zip']. We
can also select all of the fields, if we want, using the Wildcard operator (*): /details/address[*]. Map fields do not
contain any sort of ordering, so it is not possible to reference the keys by numeric indices.

Predicates

Thus far, we have discussed two different types of filters. Each of them allows us to select one or more elements out
from a field that allows for many values. Often times, though, we need to apply a filter that allows us to restrict which
Record fields are selected. For example, what if we want to select the zip field but only for an address field where the
state is not New York? The above examples do not give us any way to do this.

RecordPath provides the user the ability to specify a Predicate. A Predicate is simply a filter that can be applied to a
field in order to determine whether or not the field should be included in the results. Like other filters, a Predicate is
specified within square brackets. The syntax of the Predicate is <Relative RecordPath> <Operator> <Expression>.
The Relative RecordPath works just like any other RecordPath but must start with a . (to reference the current field)
or a .. (to reference the current field's parent) instead of a slash and references fields relative to the field that the
Predicate applies to. The Operator must be one of:

• Equals (=)
• Not Equal (!=)
• Greater Than (>)
• Greater Than or Equal To (>=)
• Less Than (<)
• Less Than or Equal To (<=)

The Expression can be a literal value such as 50 or Hello or can be another RecordPath.

To illustrate this, let's take the following Record as an example:

{
 "name": "John Doe",
 "workAddress": {
 "number": "123",
 "street": "5th Avenue",
 "city": "New York",
 "state": "NY",
 "zip": "10020"
 },
 "homeAddress": {
 "number": "456",
 "street": "Grand St",
 "city": "Jersey City",
 "state": "NJ",

9

Cloudera DataFlow for Data Hub Functions

 "zip": "07304"
 },
 "details": {
 "position": "Dataflow Engineer",
 "preferredState": "NY"
 }
}

Now we can use a Predicate to choose only the fields where the state is not New York. For example, we can use /
*[./state != 'NY']. This will select any Record field that has a state field if the state does not have a value of "NY".
Note that the details Record will not be returned because it does not have a field named state. So in this example, the
RecordPath will select only the homeAddress field. Once we have selected that field, we can continue on with our
RecordPath. As we stated above, we can select the zip field: /*[./state != 'NY']/zip. This RecordPath will result in
selecting the zip field only from the homeAddress field.

We can also compare the value in one field with the value in another field. For example, we can select the address
that is in the person's preferred state by using the RecordPath /*[./state = /details/preferredState]. In this example, this
RecordPath will retrieve the workAddress field because its state field matches the value of the preferredState field.

Additionally, we can write a RecordPath that references the "city" field of any record whose state is "NJ" by using the
parent operator (..): /*/city[../state = 'NJ'].

Functions

In the Function Usage section above, we describe how and why to use a function in RecordPath. Here, we will
describe the different functions that are available, what they do, and how they work. Functions can be divided into
two groups: Standalone Functions, which can be the 'root' of a RecordPath, such as substringAfter(/name, ' ')
and Filter Functions, which are to be used as a filter, such as /name[contains('John')]. A Standalone Function can
also be used within a filter but does not return a boolean (true or false value) and therefore cannot itself be an entire
filter. For example, we can use a path such as /name[substringAfter(., ' ') = 'Doe'] but we cannot simply use /nam
e[substringAfter(., ' ')] because doing so doesn't really make sense, as filters must be boolean values.

Unless otherwise noted, all of the examples below are written to operate on the following Record:

{
 "name": "John Doe",
 "workAddress": {
 "number": "123",
 "street": "5th Avenue",
 "city": "New York",
 "state": "NY",
 "zip": "10020"
 },
 "homeAddress": {
 "number": "456",
 "street": "Grand St",
 "city": "Jersey City",
 "state": "NJ",
 "zip": "07304"
 },
 "details": {
 "position": "Dataflow Engineer",
 "preferredState": "NY",
 "employer": "",
 "vehicle": null,
 "phrase": " "
 }

10

https://nifi.apache.org/docs/nifi-docs/html/record-path-guide.html#function_usage
https://nifi.apache.org/docs/nifi-docs/html/record-path-guide.html#standalone_functions
https://nifi.apache.org/docs/nifi-docs/html/record-path-guide.html#filter_functions

Cloudera DataFlow for Data Hub Standalone Functions

}

Standalone Functions

substring

The substring function returns a portion of a String value. The function requires 3 arguments: The value to take a
portion of, the 0-based start index (inclusive), and the 0-based end index (exclusive). The start index and end index
can be 0 to indicate the first character of a String, a positive integer to indicate the nth index into the string, or a
negative integer. If the value is a negative integer, say -n, then this represents the n`th character for the end. A va
lue of `-1 indicates the last character in the String. So, for example, substring('hello world', 0, -1) means to take the
string hello, and return characters 0 through the last character, so the return value will be hello world.

RecordPath Return value

substring(/name, 0, -1) John Doe

substring(/name, 0, -5) John

substring(/name, 1000, 1005) <empty string>

substring(/name, 0, 1005) John Doe

substring(/name, -50, -1) <empty string>

substringAfter

Returns the portion of a String value that occurs after the first occurrence of some other value.

RecordPath Return value

substringAfter(/name, ' ') Doe

substringAfter(/name, 'o') hn Doe

substringAfter(/name, '') John Doe

substringAfter(/name, 'xyz') John Doe

substringAfterLast

Returns the portion of a String value that occurs after the last occurrence of some other value.

RecordPath Return value

substringAfterLast(/name, ' ') Doe

substringAfterLast(/name, 'o') e

substringAfterLast(/name, '') John Doe

substringAfterLast(/name, 'xyz') John Doe

11

Cloudera DataFlow for Data Hub Standalone Functions

substringBefore

Returns the portion of a String value that occurs before the first occurrence of some other value.

RecordPath Return value

substringBefore(/name, ' ') John

substringBefore(/name, 'o') J

substringBefore(/name, '') John Doe

substringBefore(/name, 'xyz') John Doe

substringBeforeLast

Returns the portion of a String value that occurs before the last occurrence of some other value.

RecordPath Return value

substringBeforeLast(/name, ' ') John

substringBeforeLast(/name, 'o') John D

substringBeforeLast(/name, '') John Doe

substringBeforeLast(/name, 'xyz') John Doe

replace

Replaces all occurrences of a String with another String.

RecordPath Return value

replace(/name, 'o', 'x') Jxhn Dxe

replace(/name, 'o', 'xyz') Jxyzhn Dxyze

replace(/name, 'xyz', 'zyx') John Doe

replace(/name, 'Doe', /workAddress/city) John New York

replaceRegex

Evaluates a Regular Expression against the contents of a String value and replaces any match with another value. This
function requires 3 arguments: the String to run the regular expression against, the regular expression to run, and the
replacement value. The replacement value may optionally use back-references, such as $1 and ${named_group}

RecordPath Return value

replaceRegex(/name, 'o', 'x') Jxhn Dxe

replaceRegex(/name, 'o', 'xyz') Jxyzhn Dxyze

replaceRegex(/name, 'xyz', 'zyx') John Doe

12

Cloudera DataFlow for Data Hub Standalone Functions

RecordPath Return value

replaceRegex(/name, '\s+.*', /workAddress/city) John New York

replaceRegex(/name, '([JD])', '$1x') Jxohn Dxoe

replaceRegex(/name, '(?<hello>[JD])', '${hello}x') Jxohn Dxoe

concat

Concatenates all the arguments together.

RecordPath Return value

concat(/name, ' lives in ', /homeAddress/city) John Doe lives in Jersey City

fieldName

Normally, when a path is given to a particular field in a Record, what is returned is the value of that field. It can
sometimes be useful, however, to obtain the name of the field instead of the value. To do this, we can use the fiel
dName function.

RecordPath Return value

fieldName(//city/..) workAddress and homeAddress

//city[not(startsWith(fieldName(..), 'work'))] Jersey City

In the above example, the first RecordPath returns two separate field names: "workAddress" and "homeAddress". The
second RecordPath, in contrast, returns the value of a "city" field and uses the fieldName function as a predicate. The
second RecordPath finds a "city" field whose parent does not have a name that begins with "work". This means that
it will return the value of the "city" field whose parent is "homeAddress" but not the value of the "city" field whose
parent is "workAddress".

toDate

Converts a String to a date. For example, given a schema such as:

{
 "type": "record",
 "name": "events",
 "fields": [
 { "name": "name", "type": "string" },
 { "name": "eventDate", "type" : "string"}
]
}

and a record such as:

{
 "name" : "My Event",
 "eventDate" : "2017-10-20T00:00:00Z"

13

Cloudera DataFlow for Data Hub Standalone Functions

}

The following record path would parse the eventDate field into a Date:

toDate(/eventDate, "yyyy-MM-dd'T'HH:mm:ss'Z'")

toDate(/eventDate, "yyyy-MM-dd'T'HH:mm:ss'Z'", "GMT+8:00")

toString

Converts a value to a String, using the given character set if the input type is "bytes". For example, given a schema
such as:

{
 "type": "record",
 "name": "events",
 "fields": [
 { "name": "name", "type": "string" },
 { "name": "bytes", "type" : "bytes"}
]
}

and a record such as:

{
 "name" : "My Event",
 "bytes" : "Hello World!"
}

The following record path would parse the bytes field into a String:

toString(/bytes, "UTF-8")

toBytes

Converts a String to byte[], using the given character set. For example, given a schema such as:

{
 "type": "record",
 "name": "events",
 "fields": [
 { "name": "name", "type": "string" },
 { "name": "s", "type" : "string"}
]
}

and a record such as:

{
 "name" : "My Event",
 "s" : "Hello World!"
}

The following record path would convert the String field into a byte array using UTF-16 encoding:

14

Cloudera DataFlow for Data Hub Standalone Functions

toBytes(/s, "UTF-16")

coalesce

Returns the first value from the given arguments that is non-null. For example, given a record such as:

{
 "id": null,
 "name": "John Doe"
}

The following record path would return "John Doe":

coalesce(/id, /name)

Given the record:

{
 "id": "1234",
 "name": null
}

The same record path would return "1234".

Given the record:

{
 "id": null,
 "name": null
}

The record path would return null.

Given the record:

{
 "id": "null",
 "name": "John Doe"
}

The record path would return the String "null". Note here the very important difference in that the id field does not
have a null value but rather the value of the field is the literal string "null".

Given the record:

{
 "name": null
}

The record path would return null. Given that the id field is not present, it is treated as a null value.

Given the record:

{
 "id": "1234",

15

Cloudera DataFlow for Data Hub Standalone Functions

 "name": "John Doe"
}

The record path would return "1234". However, the record path coalesce(/name, /id) would return "John Doe"
because both fields given are non-null, so the coalesce function returns the first value that is referenced in its
arguments, not the first value that is encountered in the Record itself.

format

Converts a Date to a String in the given format with the given time zone(optional, default time zone is GMT).

The first argument to this function must be a Date or a Number, and the second argument must be a format String
that follows the Java SimpleDateFormat, and the third argument, optional, must be a format String that either an
abbreviation such as "PST", a full name such as "America/Los_Angeles", or a custom ID such as "GMT-8:00"

For example, given a schema such as:

{
 "type": "record",
 "name": "events",
 "fields": [
 { "name": "name", "type": "string" },
 { "name": "eventDate", "type" : { "type" : "long", "logicalType" : "t
imestamp-millis" } }
]
}

and a record such as:

{
 "name" : "My Event",
 "eventDate" : 1508457600000
}

The following record path expressions would format the date as a String:

RecordPath Return value

format(/eventDate, "yyyy-MM-dd'T'HH:mm:ss'Z'") 2017-10-20T00:00:00Z

format(/eventDate, "yyyy-MM-dd") 2017-10-20

format(/eventDate, "yyyy-MM-dd HH:mm:ss Z", "GMT+8:00") 2017-10-20 08:00:00 +0800

format(/eventDate, "yyyy-MM-dd", "GMT+8:00") 2017-10-20

In the case where the field is declared as a String, the toDate function must be called before formatting.

For example, given a schema such as:

{
 "type": "record",
 "name": "events",
 "fields": [
 { "name": "name", "type": "string" },
 { "name": "eventDate", "type" : "string"}
]

16

Cloudera DataFlow for Data Hub Standalone Functions

}

and a record such as:

{
 "name" : "My Event",
 "eventDate" : "2017-10-20T00:00:00Z"
}

The following record path expression would re-format the date String:

RecordPath Return value

format(toDate(/eventDate, "yyyy-MM-dd'T'HH:mm:ss'Z'"), 'yyyy
-MM-dd')

2017-10-20

trim

Removes whitespace from the start and end of a string.

{
 "type": "record",
 "name": "events",
 "fields": [
 { "name": "name", "type": "string" }
]
}

and a record such as:

{
 "name" : " John Smith "
}

The following record path expression would remove extraneous whitespace:

RecordPath Return value

trim(/name) John Smith

toUpperCase

Change the entire String to upper case

{
 "type": "record",
 "name": "events",
 "fields": [
 { "name": "fullName", "type": "string" }
]
}

17

Cloudera DataFlow for Data Hub Standalone Functions

and a record such as:

{
 "fullName" : "john smith"
}

The following record path expression would remove extraneous whitespace:

RecordPath Return value

toUpperCase(/name) JOHN SMITH

toLowerCase

Changes the entire string to lower case.

{
 "type": "record",
 "name": "events",
 "fields": [
 { "name": "message", "type": "string" }
]
}

and a record such as:

{
 "name" : "hEllO wORLd"
}

The following record path expression would remove extraneous whitespace:

RecordPath Return value

trim(/message) hello world

base64Encode

Converts a String or byte[] using Base64 encoding, using the UTF-8 character set. For example, given a schema such
as:

{
 "type": "record",
 "name": "events",
 "fields": [
 { "name": "name", "type": "string" }
]
}

and a record such as:

{

18

Cloudera DataFlow for Data Hub Standalone Functions

 "name" : "John"
}

The following record path expression would encode the String using Base64:

RecordPath Return value

base64Encode(/name) Sm9obg==

base64Decode

Decodes a Base64-encoded String or byte[]. For example, given a schema such as:

{
 "type": "record",
 "name": "events",
 "fields": [
 { "name": "name", "type": "string" }
]
}

and a record such as:

{
 "name" : "Sm9obg=="
}

The following record path expression would decode the String using Base64:

RecordPath Return value

base64Decode(/name) John

hash

Converts a String using a hash algorithm. For example, given a schema such as:

{
 "type": "record",
 "name": "events",
 "fields": [
 { "name": "name", "type": "string" }
]
}

and a record such as:

{
 "name" : "John"
}

The following record path expression would hash the String using one of these, [SHA-384, SHA-224, SHA-256,
MD2, SHA, SHA-512, MD5] algorithms.

19

Cloudera DataFlow for Data Hub Standalone Functions

RecordPath Return value

hash(/name, 'MD5') 527bd5b5d689e2c32ae974c6229ff785

padLeft

Prepends characters to the input String until it reaches the desired length.

{
 "type": "record",
 "name": "events",
 "fields": [
 { "name": "name", "type": "string" }
]
}

and a record such as:

{
 "name" : "john smith"
}

The following record path expression would prepend '@' characters to the input String:

RecordPath Return value

padLeft(/name, 15, '@') @@@@@john smith

padRight

Appends characters to the input String until it reaches the desired length.

{
 "type": "record",
 "name": "events",
 "fields": [
 { "name": "name", "type": "string" }
]
}

and a record such as:

{
 "name" : "john smith"
}

The following record path expression would append '@' characters to the input String:

RecordPath Return value

padRight(/name, 15, '@') john smith@@@@@

20

Cloudera DataFlow for Data Hub Filter Functions

uuid5

Inserts a UUID v5 into the target field.

There are two ways to use this function: with or without a namespace. Given this schema:

{
 "type": "record",
 "name": "events",
 "fields": [
 { "name": "input", "type": "string" },
 { "name": "id_ns", "type": "string" }
]
}

and a record such as:

{
 "input" : "john smith",
 "id_ns": "02b317d3-7fec-421a-89c5-3ad0eb83c79e"
}

There are two options for using this function:

uuid5(/input)

uuid5(/input, /id_ns)

The first option will generate a simple UUID v5 that does not use a namespace in the generation process. The second
will take the value of the supplied record path and use it as the namespace.

Please note that the namespace must always be a valid UUID string. An empty string, another data type, etc. will
result in an error. This is by design because the most common use case for UUID v5 is to uniquely identify records
across data sets.

Filter Functions

contains

Returns true if a String value contains the provided substring, false otherwise

RecordPath Return value

/name[contains(., 'o')] John Doe

/name[contains(., 'x')] <returns no results>

/name[contains(../workAddress/state, /details/preferredState)] John Doe

matchesRegex

21

Cloudera DataFlow for Data Hub Filter Functions

Evaluates a Regular Expression against the contents of a String value and returns true if the Regular Expression
exactly matches the String value, false otherwise. This function requires 2 arguments: the String to run the regular
expression against, and the regular expression to run.

RecordPath Return value

/name[matchesRegex(., 'John Doe')] John Doe

/name[matchesRegex(., 'John')] <returns no results>

/name[matchesRegex(., '.* Doe')] John Doe

startsWith

Returns true if a String value starts with the provided substring, false otherwise

RecordPath Return value

/name[startsWith(., 'J')] John Doe

/name[startsWith(., 'x')] <returns no results>

/name[startsWith(., 'xyz')] <returns no results>

/name[startsWith(., '')] John Doe

endsWith

Returns true if a String value ends with the provided substring, false otherwise

RecordPath Return value

/name[endsWith(., 'e')] John Doe

/name[endsWith(., 'x')] <returns no results>

/name[endsWith(., 'xyz')] <returns no results>

/name[endsWith(., '')] John Doe

not

Inverts the value of the function or expression that is passed into the not function.

RecordPath Return value

/name[not(endsWith(., 'x'))] John Doe

/name[not(contains(., 'x'))] John Doe

/name[not(endsWith(., 'e'))] <returns no results>

isEmpty

22

Cloudera DataFlow for Data Hub Filter Functions

Returns true if the provided value is either null or is an empty string.

RecordPath Return value

/name[isEmpty(/details/employer)] John Doe

/name[isEmpty(/details/vehicle)] John Doe

/name[isEmpty(/details/phase)] <returns no results>

/name[isEmpty(.)] <returns no results>

isBlank

Returns true if the provided value is either null or is an empty string or a string that consists only of white space
(spaces, tabs, carriage returns, and new-line characters).

RecordPath Return value

/name[isBlank(/details/employer)] John Doe

/name[isBlank(/details/vehicle)] John Doe

/name[isBlank(/details/phase)] John Doe

/name[isBlank(.)] <returns no results>

23

	Contents
	Apache NiFi RecordPath Overview
	Structure of a RecordPath
	Child Operator
	Descendant Operator
	Filters
	Function Usage
	Arrays
	Maps
	Predicates

	Functions
	Standalone Functions
	substring
	substringAfter
	substringAfterLast
	substringBefore
	substringBeforeLast
	replace
	replaceRegex
	concat
	fieldName
	toDate
	toString
	toBytes
	coalesce
	format
	trim
	toUpperCase
	toLowerCase
	base64Encode
	base64Decode
	hash
	padLeft
	padRight
	uuid5

	Filter Functions
	contains
	matchesRegex
	startsWith
	endsWith
	not
	isEmpty
	isBlank

