
Cloudera Runtime 7.1.3

Using Apache Hive
Date published: 2019-08-21
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Apache Hive 3 tables..5
Locating Hive tables and changing the location..6
Refer to a table using dot notation.. 7
Create a CRUD transactional table.. 7
Create an insert-only transactional table..8
Create, use, and drop an external table..9
Drop an external table along with data..10
Convert a managed, non-transactional table to external..11
Using constraints...11
Determine the table type.. 13

Hive 3 ACID transactions..14

Scheduling queries.. 17
Enable scheduled queries... 17
Periodically rebuild a materialized view..18
Get scheduled query information and monitor the query.. 19

Using materialized views..21
Create and use a materialized view... 22
Use materialized view optimations from a subquery.. 24
Drop a materialized view... 24
Show materialized views..25
Describe a materialized view... 25
Manage query rewrites... 27
Create and use a partitioned materialized view... 28

Apache Hive query basics..30
Query the information_schema database... 30
Insert data into a table..32
Update data in a table.. 32
Merge data in tables... 33
Delete data from a table...33
Create a temporary table.. 33

Configure temporary table storage...34
Use a subquery... 34

Subquery restrictions.. 35
Aggregate and group data.. 35
Query correlated data... 36
Using common table expressions...36

Use a CTE in a query.. 36
Escape an illegal identifier... 37
CHAR data type support.. 37
ORC vs Parquet in CDP.. 38

Create a default directory for managed tables..39
Configure a table location outside the warehouse root directory.. 40

Compare tables using ANY/SOME/ALL... 40

Use wildcards with SHOW DATABASES... 41

Partitions introduction... 41

Create partitions dynamically... 42

Manage partitions... 43
Automate partition discovery and repair..44
Repair partitions manually using MSCK repair.. 45
Manage partition retention time... 45

Generate surrogate keys.. 46

Using JdbcStorageHandler to query RDBMS...47

Using functions..48
Reload, view, and filter functions.. 48
Create a user-defined function... 50

Set up the development environment...50
Create the UDF class..51
Build the project and upload the JAR... 52
Register the UDF..54
Call the UDF in a query.. 54

Cloudera Runtime Apache Hive 3 tables

Apache Hive 3 tables

Table type definitions and a diagram of the relationship of table types to ACID properties clarifies Hive tables. The
location of a table depends on the table type. You might choose a table type based on its supported storage format.

You can create ACID (atomic, consistent, isolated, and durable) tables for unlimited transactions or for insert-only
transactions. These tables are Hive managed tables. You can access ACID tables for unlimited transactions from
Hive, but not from Impala. You can create an external table for non-transactional use. Because Hive control of the
external table is weak, the table is not ACID compliant.

The following diagram depicts the Hive table types.

The following matrix includes the types of tables you can create using Hive, whether or not ACID properties are
supported, required storage format, and key SQL operations.

Table Type ACID File Format INSERT UPDATE/DELETE

Managed: CRUD
transactional

Yes ORC Yes Yes

Managed: Insert-only
transactional

Yes Any Yes No

Managed: Temporary No Any Yes No

External No Any Yes No

Although you cannot use the SQL UPDATE or DELETE statements to delete data in some types of tables, you can
use DROP PARTITION on any table type to delete the data.

Table storage formats

The data in CRUD tables must be in ORC format. Implementing a storage handler that supports AcidInputFormat and
AcidOutputFormat is equivalent to specifying ORC storage.

Insert-only tables support all file formats.

The managed table storage type is Optimized Row Column (ORC) by default. If you accept the default by not
specifying any storage during table creation, or if you specify ORC storage, you get an ACID table with insert,

5

Cloudera Runtime Apache Hive 3 tables

update, and delete (CRUD) capabilities. If you specify any other storage type, such as text, CSV, AVRO, or JSON,
you get an insert-only ACID table. You cannot update or delete columns in the insert-only table.

Transactional tables

Transactional tables are ACID tables that reside in the Hive warehouse. To achieve ACID compliance, Hive has
to manage the table, including access to the table data. Only through Hive can you access and change the data in
managed tables. Because Hive has full control of managed tables, Hive can optimize these tables extensively.

Hive is designed to support a relatively low rate of transactions, as opposed to serving as an online analytical
processing (OLAP) system. You can use the SHOW TRANSACTIONS command to list open and aborted
transactions.

Transactional tables in Hive 3 are on a par with non-ACID tables. No bucketing or sorting is required in Hive 3
transactional tables. Bucketing does not affect performance. These tables are compatible with native cloud storage.

Hive supports one statement per transaction, which can include any number of rows, partitions, or tables.

External tables

External table data is not owned or controlled by Hive. You typically use an external table when you want to access
data directly at the file level, using a tool other than Hive. You can also use a storage handler, such as Druid or
HBase, to create a table that resides outside the Hive metastore.

Hive 3 does not support the following capabilities for external tables:

• Query cache
• Materialized views, except in a limited way
• Automatic runtime filtering
• File merging after insert
• ARCHIVE, UNARCHIVE, TRUNCATE, MERGE, and CONCATENATE. These statements only work for Hive

Managed tables.

When you run DROP TABLE on an external table, by default Hive drops only the metadata (schema). If you want the
DROP TABLE command to also remove the actual data in the external table, as DROP TABLE does on a managed
table, you need to set the external.table.purge property to true as described later.

Locating Hive tables and changing the location
You need to know where Hive stores tables on HDFS and how to change the warehouse location after installing the
service.

About this task
New tables that you create in CDP are stored in either the Hive warehouse for managed tables or the Hive warehouse
for external tables. The following default warehouse locations are in the HDFS file system:

• /warehouse/tablespace/managed/hive
• /warehouse/tablespace/external/hive

Managed tables reside in the managed tablespace, which only Hive can access. By default, Hive assumes external
tables reside in the external tablespace.

To determine the managed or external table type, you can run the DESCRIBE EXTENDED table_name command.

You need to set HDFS policies to access external tables in Ranger, or set up HDFS ACLs.

The capability to change the location of the Hive warehouse is intended for use immediately after installing the
service. You can change the location of the warehouse using the Hive Metastore Action menu in Cloudera Manager
as described in the following steps:

6

Cloudera Runtime Apache Hive 3 tables

Procedure

1. In Cloudera Manager, click Clusters Hive Action Menu Create Hive Warehouse Directory .

2. In Cloudera Manager, click Clusters Hive (the Hive Metastore service) Configuration , and change the hive.met
astore.warehouse.dir property value to the path for the new Hive warehouse directory.

3. Click Hive Hive Action Menu Create Hive Warehouse External Directory .

4. Change the hive.metastore.warehouse.external.dir property value to the path for the Hive warehouse external
directory.

5. Configure Ranger policies or set up ACL permissions to access the directories.

Refer to a table using dot notation
Hive 3.1 changes to table references using dot notation might require changes to your Hive scripts.

About this task
Hive 3.1 in CDP includes SQL compatibility (Hive-16907), which rejects `db.table` in SQL queries. The dot (.) is not
allowed in table names. To reference the database and table in a table name, enclosed both in backticks as follows:

`db`.`table`

Create a CRUD transactional table
You create a CRUD transactional table having ACID (atomic, consistent, isolated, and durable) properties when you
need a managed table that you can update, delete, and merge. You learn by example how to determine the table type.

7

Cloudera Runtime Apache Hive 3 tables

About this task

In this task, you create a CRUD transactional table. You cannot sort this type of table. To create a CRUD
transactional table, you must accept the default ORC format by not specifying any storage during table creation, or by
specifying ORC storage explicitly.

Procedure

1. Launch Beeline to start Hive.
For example:

beeline -u jdbc:hive2://myhiveserver.com:10000 -n hive -p

2. Enter your user name and password.
The Hive 3 connection message, followed by the Hive prompt for entering SQL queries on the command line,
appears.

3. Create a CRUD transactional table named T having two integer columns, a and b:

CREATE TABLE T(a int, b int);

4. Confirm that you created a managed, ACID table.

DESCRIBE FORMATTED T;

The table type says MANAGED_TABLE and transactional = true.

Related Information
HMS storage

Create an insert-only transactional table
You can create a transactional table using any storage format if you do not require update and delete capability. This
type of table has ACID properties, is a managed table, and accepts insert operations only. The storage format of an
insert-only table is not restricted to ORC.

About this task

In this task, you create an insert-only transactional table for storing text. In the CREATE TABLE statement,
specifying a storage type other than ORC, such as text, CSV, AVRO, or JSON, results in an insert-only ACID table.
You can explicitly specify insert-only in the table properties clause.

Procedure

1. Use Data Analytics Studio, or start Hive from the command line using your user name and substituting the name
or IP address of your HiveServer host as follows.
beeline -u jdbc:hive2://myhiveserver.com:10000 -n <your user name> -p

2. Enter your user name and password.
The Hive 3 connection message appears, followed by the Hive prompt for entering queries on the command line.

3. Create a insert-only transactional table named T2 having two integer columns, a and b:

CREATE TABLE T2(a int, b int)
 STORED AS ORC
 TBLPROPERTIES ('transactional'='true',
 'transactional_properties'='insert_only');

The 'transactional_properties'='insert_only' is required; otherwise, a CRUD table results. The STORED AS ORC
clause is optional (default = ORC).

8

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/hive-metastore/topics/hive-hms-table-storage.html

Cloudera Runtime Apache Hive 3 tables

4. Create an insert-only transactional table for text data.

CREATE TABLE T3(a int, b int)
STORED AS TEXTFILE;

The 'transactional_properties'='insert_only' is not required because the storage format is other than ORC.

Related Information
HMS storage

Create, use, and drop an external table
You use an external table, which is a table that Hive does not manage, to import data from a file on a file system
into Hive. In contrast to the Hive managed table, an external table keeps its data outside the Hive metastore. Hive
metastore stores only the schema metadata of the external table. Hive does not manage, or restrict access, to the actual
external data.

Before you begin

You need to set up access to external tables in the file system using one of the following methods.

• Set up Hive HDFS policy in Ranger (recommended) to include the paths to external table data.
• Put an HDFS ACL in place (see link below). Store a comma-separated values (CSV) file in HDFS that will serve

as the data source for the external table.

About this task

In this task, you create an external table from CSV (comma-separated values) data stored on the file system, depicted
in the diagram below. Next, you want Hive to manage and store the actual data in the metastore. You create a
managed table.

You insert the external table data into the managed table.

This task demonstrates the following Hive principles:

• The LOCATION clause in the CREATE TABLE specifies the location of external table data.
• A major difference between an external and a managed (internal) table: the persistence of table data on the files

system after a DROP TABLE statement.

• External table drop: Hive drops only the metadata, consisting mainly of the schema.
• Managed table drop: Hive deletes the data and the metadata stored in the Hive warehouse.

After dropping an external table, the data is not gone. To retrieve it, you issue another CREATE EXTERNAL
TABLE statement to load the data from the file system.

Procedure

1. Create a text file named students.csv that contains the following lines.

1,jane,doe,senior,mathematics 2,john,smith,junior,engineering

2. Move the file to HDFS in a directory called andrena, and put students.csv in the directory.

3. Start the Hive shell.
For example, substitute the URI of your HiveServer: beeline -u jdbc:hive2://myhiveserver.com:10000 -n hive -
p

4. Create an external table schema definition that specifies the text format, loads data from students.csv in /user/
andrena.

CREATE EXTERNAL TABLE IF NOT EXISTS names_text(

9

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/hive-metastore/topics/hive-hms-table-storage.html

Cloudera Runtime Apache Hive 3 tables

student_ID INT,
FirstName STRING,
LastName STRING,
year STRING,
Major STRING)
COMMENT 'Student Names' ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS TEXTFILE LOCATION '/user/andrena';

5. Verify that the Hive warehouse stores the student names in the external table.
SELECT * FROM names_text;

6. Create the schema for a managed table.

CREATE TABLE IF NOT EXISTS Names(
student_ID INT,
FirstName STRING,
LastName STRING,
year STRING,
Major STRING)
COMMENT 'Student Names';

7. Move the external table data to the managed table.
INSERT OVERWRITE TABLE Names SELECT * FROM names_text;

8. Verify that the data from the external table resides in the managed table, and drop the external table, and verify
that the data still resides in the managed table.

SELECT * from Names; DROP TABLE names_text; SELECT * from Names;

The results from the managed table Names appears.

9. Verify that the external table schema definition is lost.
SELECT * from names_text;

Selecting all from names_text returns no results because the external table schema is lost.

10. Check that the students.csv file on HDFS or S3 remains intact.

Related Information
HMS storage

HDFS ACLS

Drop an external table along with data
When you run DROP TABLE on an external table, by default Hive drops only the metadata (schema). If you want the
DROP TABLE command to also remove the actual data in the external table, as DROP TABLE does on a managed
table, you need to configure the table properties accordingly.

Procedure

1. Create a CSV file of data you want to query in Hive.

2. Start Hive.

3. Create an external table to store the CSV data, configuring the table so you can drop it along with the data.

CREATE EXTERNAL TABLE IF NOT EXISTS names_text(
 a INT, b STRING)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY ','
 STORED AS TEXTFILE
 LOCATION 's3a://andrena'
 TBLPROPERTIES ('external.table.purge'='true');

10

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/hive-metastore/topics/hive-hms-table-storage.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/hdfs-acls/topics/hdfs-acls.html

Cloudera Runtime Apache Hive 3 tables

4. Run DROP TABLE on the external table.

DROP TABLE names_text;

The table is removed from Hive Metastore and the data stored externally. For example, names_text is removed
from the Hive Metastore and the CSV file that stored the data is also deleted from HDFS.

5. Prevent data in external table from being deleted by a DROP TABLE statement.

ALTER TABLE addresses_text SET TBLPROPERTIES ('external.table.purge'='fa
lse');

Convert a managed, non-transactional table to external
You can easily convert a managed table if it is not an ACID (transactional) table to external using the ALTER
TABLE statement. You might have a non-transactional, managed table after an upgrade from Hive 1 or 2.

About this task

The following pseudo-code changes a table to external. The data and metadata is dropped when the table is dropped.

ALTER TABLE ... SET TBLPROPERTIES('EXTERNAL'='TRUE','external.table.purge'='
true')

Related Information
Before and After Upgrading Table Type Comparison

Using constraints
You can use SQL constraints to enforce data integrity and improve performance. Using constraints, the optimizer can
simplify queries. Constraints can make data predictable and easy to locate. Using constraints and supported modifiers,
you can follow examples to constrain queries to unique or not null values, for example.

You can use the constraints listed below in your queries. Hive enforces DEFAULT, NOT NULL and CHECK only,
not PRIMARY KEY, FOREIGN KEY, and UNIQUE. DEFAULT even if enforced, does not support complex types
(array,map,struct). Constraint enforcement is limited to the metadata level. This limitation aids integration with third
party tools and optimization of constraints declarations, such as materialized view rewriting.

CHECK

Limits the range of values you can place in a column.

DEFAULT

Ensures a value exists, which is useful in offloading data from a data warehouse.

PRIMARY KEY

Identifies each row in a table using a unique identifier.

FOREIGN KEY

Identifies a row in another table using a unique identifier.

UNIQUE KEY

Checks that values stored in a column are different.

NOT NULL

Ensures that a column cannot be set to NULL.

11

https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/upgrade-hdp/topics/ug_hdp_hive_check_locations.html

Cloudera Runtime Apache Hive 3 tables

Supported modifiers

You can use the following optional modifiers:

ENABLE

Ensures that all incoming data conforms to the constraint.

DISABLE

Does not ensure that all incoming data conforms to the constraint.

VALIDATE

Checks that all existing data in the table conforms to the constraint.

NOVALIDATE

Does not check that all existing data in the table conforms to the constraint.

ENFORCED

Maps to ENABLE NOVALIDATE.

NOT ENFORCED

Maps to DISABLE NOVALIDATE.

RELY

Specifies abiding by a constraint; used by the optimizer to apply further optimizations.

NORELY

Specifies not abiding by a constraint.

You use modifiers as shown in the following syntax:

((((ENABLE | DISABLE) (VALIDATE | NOVALIDATE)) | (ENFORCED | NOT ENFORC
ED)) (RELY | NORELY))

Defaults modfiers

The following default modifiers are in place:

• The default modifier for ENABLE is NOVALIDATE RELY.
• The default modifier for DISABLE is NOVALIDATE NORELY.
• If you do not specify a modifier when you declare a constraint, the default is ENABLE NOVALIDATE RELY.

The following constraints do not support ENABLE:

• PRIMARY KEY
• FOREIGN KEY
• UNIQUE KEY

To prevent an error, specify a modifier when using these constraints to override the default.

Constraints examples

The optimizer uses the constraint information to make smart decisions. The following examples show the use of
constraints.

The following example shows how to create a table that declares the NOT NULL in-line constraint to constrain a
column.

CREATE TABLE t(a TINYINT, b SMALLINT NOT NULL ENABLE, c INT);

The constrained column b accepts a SMALLINT value as shown in the first INSERT statement.

INSERT INTO t values(2,45,5667);
...
--

12

Cloudera Runtime Apache Hive 3 tables

1 row affected ...

The constrained column b will not accept a NULL value.

INSERT INTO t values(2,NULL,5667);
Error: Error running query: org.apache.hadoop.hive.ql.exec.errors.DataCon
straintViolationError: /
 Either CHECK or NOT NULL constraint violated! (state=,code=0)

The following examples shows how to declare the FOREIGN KEY constraint out of line. You can specify a
constraint name, in this case fk, in an out-of-line constraint

CREATE TABLE Persons (
 ID INT NOT NULL,
 Name STRING NOT NULL,
 Age INT,
 Creator STRING DEFAULT CURRENT_USER(),
 CreateDate DATE DEFAULT CURRENT_DATE(),
 PRIMARY KEY (ID) DISABLE NOVALIDATE);

CREATE TABLE BusinessUnit (
 ID INT NOT NULL,
 Head INT NOT NULL,
 Creator STRING DEFAULT CURRENT_USER(),
 CreateDate DATE DEFAULT CURRENT_DATE(),
 PRIMARY KEY (ID) DISABLE NOVALIDATE,
 CONSTRAINT fk FOREIGN KEY (Head) REFERENCES Persons(ID) DISABLE NOVALID
ATE
);

Determine the table type
You can determine the type of a Hive table, whether it has ACID properties, the storage format, such as ORC, and
other information. Knowing the table type is important for a number of reasons, such as understanding how to store
data in the table or to completely remove data from the cluster.

Procedure

1. In the Hive shell, get an extended description of the table.
For example: DESCRIBE EXTENDED mydatabase.mytable;

2. Scroll to the bottom of the command output to see the table type.
The following output includes that the table type is managed and transaction=true indicates that the table has
ACID properties:

...
| Detailed Table Information | Table(tableName:t2, dbName:mydatabase, o
wner:hdfs, createTime:1538152187, lastAccessTime:0, retention:0, sd:Stor
ageDescriptor(cols:[FieldSchema(name:a, type:int, comment:null), FieldSc
hema(name:b, type:int, comment:null)], ...

Related Information
HMS storage

13

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/hive-metastore/topics/hive-hms-table-storage.html

Cloudera Runtime Hive 3 ACID transactions

Hive 3 ACID transactions

Hive 3 achieves atomicity and isolation of operations on transactional tables by using techniques in write, read, insert,
create, delete, and update operations that involve delta files. You can obtain query status information from these files
and use the files to troubleshoot query problems.

Write and read operations

Hive 3 write and read operations improve the ACID qualities and performance of transactional tables. Transactional
tables perform as well as other tables. Hive supports all TPC Benchmark DS (TPC-DS) queries.

Hive 3 and later extends atomic operations from simple writes and inserts to support the following operations:

• Writing to multiple partitions
• Using multiple insert clauses in a single SELECT statement

A single statement can write to multiple partitions or multiple tables. If the operation fails, partial writes or inserts are
not visible to users. Operations remain fast even if data changes often, such as one percent per hour. Hive 3 and later
does not overwrite the entire partition to perform update or delete operations.

Hive compacts ACID transaction files automatically without impacting concurrent queries. Automatic compaction
improves query performance and the metadata footprint when you query many small, partitioned files.

Read semantics consist of snapshot isolation. Hive logically locks in the state of the warehouse when a read operation
starts. A read operation is not affected by changes that occur during the operation.

Atomicity and isolation in insert-only tables

When an insert-only transaction begins, the transaction manager gets a transaction ID. For every write, the transaction
manager allocates a write ID. This ID determines a path to which data is actually written. The following code shows
an example of a statement that creates insert-only transactional table:

CREATE TABLE tm (a int, b int) TBLPROPERTIES
('transactional'='true', 'transactional_properties'='insert_only')

Assume that three insert operations occur, and the second one fails:

INSERT INTO tm VALUES(1,1);
INSERT INTO tm VALUES(2,2); // Fails
INSERT INTO tm VALUES(3,3);

For every write operation, Hive creates a delta directory to which the transaction manager writes data files. Hive
writes all data to delta files, designated by write IDs, and mapped to a transaction ID that represents an atomic
operation. If a failure occurs, the transaction is marked aborted, but it is atomic:

tm
___ delta_0000001_0000001_0000
000000_0
___ delta_0000002_0000002_0000 //Fails
000000_0
___ delta_0000003_0000003_0000
000000_0

During the read process, the transaction manager maintains the state of every transaction. When the reader starts, it
asks for the snapshot information, represented by a high watermark. The watermark identifies the highest transaction
ID in the system followed by a list of exceptions that represent transactions that are still running or are aborted.

14

Cloudera Runtime Hive 3 ACID transactions

The reader looks at deltas and filters out, or skips, any IDs of transactions that are aborted or still running. The reader
uses this technique with any number of partitions or tables that participate in the transaction to achieve atomicity and
isolation of operations on transactional tables.

Atomicity and isolation in CRUD tables

You create a full CRUD (create, retrieve, update, delete) transactional table using the following SQL statement:

CREATE TABLE acidtbl (a INT, b STRING);

Running SHOW CREATE TABLE acidtbl provides information about the defaults: transactional (ACID) and the
ORC data storage format:

 +--+
 | createtab_stmt |
 +--+
 | CREATE TABLE `acidtbl`(|
 | `a` int, |
 | `b` string) |
 | ROW FORMAT SERDE |
 | 'org.apache.hadoop.hive.ql.io.orc.OrcSerde' |
 | STORED AS INPUTFORMAT |
 | 'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat' |
 | OUTPUTFORMAT |
 | 'org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat' |
 | LOCATION |
 | 's3://myserver.com:8020/warehouse/tablespace/managed/hive/acidtb
l' |
 | TBLPROPERTIES (|
 | 'bucketing_version'='2', |
 | 'transactional'='true', |
 | 'transactional_properties'='default', |
 | 'transient_lastDdlTime'='1555090610') |
 +--+

Tables that support updates and deletions require a slightly different technique to achieve atomicity and isolation.
Hive runs in append-only mode, which means Hive does not perform in-place updates or deletions. Isolation of
readers and writers cannot occur in the presence of in-place updates or deletions. In this situation, a lock manager or
some other mechanism, is required for isolation. These mechanisms create a problem for long-running queries.

Instead of in-place updates, Hive decorates every row with a row ID. The row ID is a struct that consists of the
following information:

• The write ID that maps to the transaction that created the row
• The bucket ID, a bit-backed integer with several bits of information, of the physical writer that created the row
• The row ID, which numbers rows as they were written to a data file

15

Cloudera Runtime Hive 3 ACID transactions

Instead of in-place deletions, Hive appends changes to the table when a deletion occurs. The deleted data becomes
unavailable and the compaction process takes care of the garbage collection later.

Create operation

The following example inserts several rows of data into a full CRUD transactional table, creates a delta file, and adds
row IDs to a data file.

INSERT INTO acidtbl (a,b) VALUES (100, "oranges"), (200, "apples"), (300, "b
ananas");

This operation generates a directory and file, delta_00001_00001/bucket_0000, that have the following data:

ROW_ID a b

{1,0,0} 100 "oranges"

{1,0.1} 200 "apples"

{1,0,2} 300 "bananas"

Delete operation

A delete statement that matches a single row also creates a delta file, called the delete-delta. The file stores a set of
row IDs for the rows that match your query. At read time, the reader looks at this information. When it finds a delete
event that matches a row, it skips the row and that row is not included in the operator pipeline. The following example
deletes data from a transactional table:

DELETE FROM acidTbl where a = 200;

This operation generates a directory and file, delete_delta_00002_00002/bucket_0000 that have the following data:

ROW_ID a b

{1,0,1} null null

Update operation

An update combines the deletion and insertion of new data. The following example updates a transactional table:

UPDATE acidTbl SET b = "pears" where a = 300;

One delta file contains the delete event, and the other, the insert event:

16

Cloudera Runtime Scheduling queries

The reader, which requires the AcidInputFormat, applies all the insert events and encapsulates all the logic to handle
delete events. A read operation first gets snapshot information from the transaction manager based on which it selects
files that are relevant to that read operation. Next, the process splits each data file into the number of pieces that each
process has to work on. Relevant delete events are localized to each processing task. Delete events are stored in a
sorted ORC file. The compressed, stored data is minimal, which is a significant advantage of Hive 3. You no longer
need to worry about saturating the network with insert events in delta files.

Scheduling queries

If you need a simple, yet powerful and secure way to create, manage, and monitor scheduled jobs, you can use
Apache Hive scheduled queries. You can replace OS-level schedulers like cron, Apache Oozie, or Apache Airflow
with scheduled queries.

Using SQL statements, you can schedule Hive queries to run on a recurring basis, monitor query progress, and
optionally disable a query schedule. You can execute queries to ingest data periodically, refresh materialized views,
replicate data, and perform other repetitive tasks. For example, you can insert data from a stream into a transactional
table every 10 minutes, refresh a materialized view used for BI reporting every hour, and replicate data from one
cluster to another on a daily basis.

A Hive scheduled query consists of the following parts:

• A unique name for the schedule
• The SQL statement to be executed
• The execution schedule defined by a Quartz cron expression.

Quartz cron expressions are expressive and flexible. For instance, expressions can describe simple schedules such as
every 10 minutes, but also an execution happening at 10 AM on the first Sunday of the month in January, February in
2021, 2022. You can describe common schedules in an easily comprehensible format, for example every 20 minutes
or every day at ‘3:25:00’.

Operation

A scheduled query belongs to a namespace, which is a collection of HiveServer (HS2) instances that are responsible
for executing the query. Scheduled queries are stored in the Hive metastore. The metastore stores scheduled queries,
the status of ongoing and previously executed statements, and other information. HiveServer periodically polls the
metastore to retrieve scheduled queries that are due to be executed. If you run multiple HiveServer instances within
a single deployment, the metastore guarantees that only one of them executes a certain scheduled query at any given
time.

You create, alter, and drop scheduled queries using dedicated SQL statements.

Related Information
Apache Hive Language Manual--Scheduled Queries

Enable scheduled queries
You need to know how to enable and disable scheduled queries and understand how the default state can prevent you
from running a query unintentionally.

17

https://cwiki.apache.org/confluence/display/Hive/Scheduled+Queries

Cloudera Runtime Scheduling queries

About this task

Scheduled queries are created in disabled mode by default in CDP. This default helps prevent you from running new
scheduled queries inadvertantly. You must explicitly enable new scheduled queries. An scheduled query can keep
the cluster awake at the wrong time. To enable a particular schedule, for example schedule1, you execute the ALTER
SCHEDULED QUERY statement:

ALTER SCHEDULED QUERY schedule1 ENABLE;

To disable this schedule: ALTER SCHEDULED QUERY schedule1 DISABLE;

To enable all newly created schedules in CDP Private Cloud Base, follow these steps:

Procedure

1. In Cloudera Manager, click Clusters Hive on TEZ Configuration

2. In Search, enter safety.

3. In Hive Service Advanced Configuration Snippet (Safety Valve) for hive-site.xml HIVE_ON_TEZ-1 (Service-
Wide), click + and add the following property: hive.scheduled.queries.create.as.enabled

4. Set the value to true.

5. Save and restart Hive on Tez.

Related Information
Apache Hive Language Manual--Scheduled Queries

Periodically rebuild a materialized view
Using materialized views can enhance query performance. You need to refresh materialized view contents when new
data is added to the underlying table. Instead of rebuilding the materialized view manually, you can schedule this task.
Rebuilding occurs periodically and transparently to users.

About this task

In this task, you create a schema for storing employee information. Imagine that you add data for a number of
employees to the table. Assume many users of your database issue queries to access to data about the employees
hired during last year including the department they belong to. You create a materialized view of the table to address
these queries. Imagine new employees are hired and you add their records to the table. These changes render the
materialized view contents outdated. You need to refresh its contents. You create a scheduled query to perform this
task. The scheduled rebuilding will not occur unless there are changes to the input tables. You test the scheduled
query by bypassing the schedule and executing the schedule immediately. Finally, you change the schedule to rebuild
less often.

Procedure

1. Create a database schema for employee data.

CREATE TABLE emps (
 empid INTEGER,
 deptno INTEGER,
 name VARCHAR(256),
 salary FLOAT,
 hire_date TIMESTAMP);
CREATE TABLE depts (
 deptno INTEGER,
 deptname VARCHAR(256),
 locationid INTEGER);

18

https://cwiki.apache.org/confluence/display/Hive/Scheduled+Queries

Cloudera Runtime Scheduling queries

2. To handle many queries to access recently hired employee and departmental data, create a materialized view.

CREATE MATERIALIZED VIEW mv_recently_hired AS
 SELECT empid, name, deptname, hire_date FROM emps
 JOIN depts ON (emps.deptno = depts.deptno)
 WHERE hire_date >= '2020-01-01 00:00:00';

3. Use the materialized view by querying the employee data.

SELECT empid, name FROM emps
JOIN depts ON (emps.deptno = depts.deptno)
WHERE hire_date >= '2020-03-01 00:00:00' AND deptname = 'finance';

4. Assuming new hiring occurred and you added new records to the emps table, rebuild the materialized view.

ALTER MATERIALIZED VIEW mv_recently_hired REBUILD;

The rebuilding refreshes the contents of the materialized view.

5. Create a scheduled query to invoke the rebuild statement every 10 minutes.

CREATE SCHEDULED QUERY scheduled_rebuild
EVERY 10 MINUTES AS
ALTER MATERIALIZED VIEW mv_recently_hired REBUILD;

A rebuild executes every 10 minutes unless there are no changes to the emps table. If a materialized view can be
rebuilt incrementally, the scheduled rebuild does not occur unless there are changes to the input tables.

6. To test the schedule, execute a scheduled query immediately.

ALTER SCHEDULED QUERY scheduled_rebuild EXECUTE;

7. Change the frequency of the rebuilding.

ALTER SCHEDULED QUERY scheduled_rebuild EVERY 20 MINUTES;

Related Information
Apache Hive Language Manual--Scheduled Queries

Get scheduled query information and monitor the query
After you create a scheduled query you can access information about it in the scheduled_queries table of the Hive
information schema. You can also use the information schema to monitor scheduled query execution.

Procedure

1. Query the information schema to get information about a schedule.

SELECT *
FROM information_schema.scheduled_queries

19

https://cwiki.apache.org/confluence/display/Hive/Scheduled+Queries

Cloudera Runtime Scheduling queries

WHERE schedule_name = 'scheduled_rebuild';

The following information appears about the scheduled query:
scheduled_query_id

Unique numeric identifier for a scheduled query.

schedule_name

Name of the scheduled query.

enabled

Whether the scheduled query is currently enabled or not.

cluster_namespace

Namespace that the scheduled query belongs to.

schedule

Schedule described as a Quartz cron expression.

user

Owner of the scheduled query.

query

SQL query to be executed.

next_execution

When the next execution of this scheduled query is due.

2. Monitor the most recent scheduled query execution.

SELECT *

20

Cloudera Runtime Using materialized views

FROM information_schema.scheduled_executions;

You can configure the retention period for this information in the Hive metastore.

scheduled_execution_id

Unique numeric identifier for a scheduled query execution.

schedule_name

Name of the scheduled query associated with this execution.

executor_query_id

Query ID assigned to the execution by HiveServer (HS2).

state

One of the following phases of execution.

• STARTED. A scheduled query is due and a HiveServer instance has retrieved its information.
• EXECUTING. HiveServer is executing the query and reporting progress in configurable

intervals.
• FAILED. The query execution was stopped due to an error or exception.
• FINISHED. The query execution was successful.
• TIMED_OUT. HiveServer did not provide an update on the query status for more than a

configurable timeout.

start_time

Start time of execution.

end_time

End time of execution.

elapsed

Difference between start and end time.

error_message

If the scheduled query failed, it contains the error message associated with its failure.

last_update_time

Time of the last update of the query status by HiveServer.

Related Information
Apache Hive Language Manual--Scheduled Queries

Using materialized views

If your queries are of a repetitive nature, you can reduce latency and resource consumption by using materialized
views. You can optimize your queries automatically using materialized views you create.

Using a materialized view, the optimizer can compare old and new tables, rewrite queries to accelerate processing,
and manage maintenance of the materialized view when data updates occur. The optimizer can use a materialized
view to fully or partially rewrite projections, filters, joins, and aggregations. Hive stores materialized views in the
Hive warehouse. You can perform the following operations related to materialized views:

• Create a materialized view of queries or subqueries
• Drop a materialized view
• Show materialized views
• Describe a materialized view
• Enable or disable query rewriting based on a materialized view
• Globally enable or disable rewriting based on any materialized view

21

https://cwiki.apache.org/confluence/display/Hive/Scheduled+Queries

Cloudera Runtime Using materialized views

• Use partitioning to improve the performance of materialized views.

Related Information
Materialized view commands

Create and use a materialized view
You can create a materialized view of a query to calculate and store results of an expensive operation, such as
particular join, that you repeatedly execute. When you issue queries specified by that materialized view, the optimizer
rewrites the query based on it. This action saves reprocessing. Query performance improves.

About this task

In this task, you create and populate example tables. You create a materialized view of a join of the tables.
Subsequently, when you run a query to join the tables, the query plan takes advantage of the precomputed join to
accelerate processing. This task is over-simplified and is intended to show the syntax and output of a materialized
view, not to demonstrate accelerated processing that results in a real-world task, which would process a large amount
of data.

Procedure

1. In Data Analytics Studio (DAS), the Hive shell, or other Hive UI, create two tables:

CREATE TABLE emps (
 empid INT,
 deptno INT,
 name VARCHAR(256),
 salary FLOAT,
 hire_date TIMESTAMP);

CREATE TABLE depts (
 deptno INT,
 deptname VARCHAR(256),
 locationid INT);

2. Insert some data into the tables for example purposes:

INSERT INTO TABLE emps VALUES (10001,101,'jane doe',250000,'2018-01-10');
INSERT INTO TABLE emps VALUES (10002,100,'somporn klailee',210000,'2017-12
-25');
INSERT INTO TABLE emps VALUES (10003,200,'jeiranan thongnopneua',175000,'
2018-05-05');

INSERT INTO TABLE depts VALUES (100,'HR',10);
INSERT INTO TABLE depts VALUES (101,'Eng',11);
INSERT INTO TABLE depts VALUES (200,'Sup',20);

3. Create a materialized view to join the tables:

CREATE MATERIALIZED VIEW mv1
 AS SELECT empid, deptname, hire_date
 FROM emps JOIN depts
 ON (emps.deptno = depts.deptno)
 WHERE hire_date >= '2017-01-01';

4. Execute a query that takes advantage of the precomputation performed by the materialized view:

SELECT empid, deptname
 FROM emps
 JOIN depts

22

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html

Cloudera Runtime Using materialized views

 ON (emps.deptno = depts.deptno)
 WHERE hire_date >= '2017-01-01'
 AND hire_date <= '2019-01-01';

Output is:

+--------+-----------+
| empid | deptname |
+--------+-----------+
10003	Sup
10002	HR
10001	Eng
+--------+-----------+

5. In Cloudera Manager, enable explain logging: Navigate to Clusters HIVE_ON_TEZ-1 Configuration , search for
hive.log.explain.output, check HiveServer2 Default Group, and click Save Changes.

6. Verify that the query rewrite used the materialized view by running an extended EXPLAIN statement:

EXPLAIN EXTENDED SELECT empid, deptname
 FROM emps
 JOIN depts
 ON (emps.deptno = depts.deptno)
 WHERE hire_date >= '2017-01-01'
 AND hire_date <= '2019-01-01';

The output shows the alias default.mv1 for the materialized view in the TableScan section of the plan.

OPTIMIZED SQL: SELECT `empid`, `deptname`
FROM `default`.`mv1`
WHERE TIMESTAMP '2019-01-01 00:00:00.000000000' >= `hire_date`
STAGE DEPENDENCIES:
 Stage-0 is a root stage

STAGE PLANS:
 Stage: Stage-0
 Fetch Operator
 limit: -1
 Processor Tree:
 TableScan
 alias: default.mv1
 filterExpr: (hire_date <= TIMESTAMP'2019-01-01
 00:00:00') (type: boolean) |
 GatherStats: false
 Filter Operator
 isSamplingPred: false
 predicate: (hire_date <= TIMESTAMP'2019-01-01
 00:00:00') (type: boolean)
 Select Operator
 expressions: empid (type: int), deptname (type: varchar(25
6))
 outputColumnNames: _col0, _col1

23

Cloudera Runtime Using materialized views

 ListSink

Related Information
Materialized view commands

Use materialized view optimations from a subquery
You can create a query having a subquery that the optimizer rewrites based on a materialized view. You create a
materialized view, and then run a query that Hive optimizes using that materialized view.

About this task

In this task, you create a materialized view and use it in a subquery to return the number of destination-origin pairs.
Suppose the data resides in a table named flights_hdfs that has the following data:

c_id dest origin

1 Chicago Hyderabad

2 London Moscow

...

Procedure

1. Create a table schema definition named flights_hdfs for destination and origin data.

CREATE TABLE flights_hdfs(
 c_id INT,
 dest VARCHAR(256),
 origin VARCHAR(256));

2. Create a materialized view that counts destinations and origins.

CREATE MATERIALIZED VIEW mv1
AS
 SELECT dest, origin, count(*)
 FROM flights_hdfs
 GROUP BY dest, origin;

3. Take advantage of the materialized view to speed your queries when you have to count destinations and origins
again.

For example, use a subquery to select the number of destination-origin pairs like the materialized view.

SELECT count(*)/2
FROM(
 SELECT dest, origin, count(*)
 FROM flights_hdfs
 GROUP BY dest, origin
) AS t;

Transparently, Hive uses the work already in place since creation of the materialized view instead of reprocessing.

Related Information
Materialized view commands

Drop a materialized view
You must understand when to drop a materialized view to successfully drop related tables.

24

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html

Cloudera Runtime Using materialized views

About this task

Drop a materialized view before performing a DROP TABLE operation on a related table. Hive does not support
dropping a table that has a relationship with a materialized view.

In this task, you drop a materialized view named mv1 from the my_database database.

Procedure

Drop a materialized view in my_database named mv1 .
DROP MATERIALIZED VIEW my_database.mv1;

Show materialized views
You can list all materialized views in the current database or in another database. You can filter a list of materialized
views in a specified database using regular expression wildcards.

About this task

You can use regular expression wildcards to filter the list of materialized views you want to see. The following
wildcards are supported:

• Asterisk (*)

Represents one or more characters.
• Pipe symbol (|)

Represents a choice.

For example, mv_q* and *mv|q1* match the materialized view mv_q1. Finding no match does not cause an error.

Procedure

1. List materialized views in the current database.
SHOW MATERIALIZED VIEWS;

2. List materialized views in a particular database.
SHOW MATERIALIZED VIEWS IN my_database;

3. Show materialized views having names that begin with mv.
SHOW MATERIALIZED VIEWS mv*;

Describe a materialized view
You can get summary, detailed, and formatted information about a materialized view.

About this task

This task builds on the task that creates a materialized view named mv1.

Procedure

1. Get summary information about the materialized view named mv1.

DESCRIBE mv1;

+------------+---------------+----------+
| col_name | data_type | comment |
+------------+---------------+----------+
| empid | int | |

25

Cloudera Runtime Using materialized views

| deptname | varchar(256) | |
| hire_date | timestamp | |
+------------+---------------+----------+

2. Get detailed information about the materialized view named mv1.

DESCRIBE EXTENDED mv1;

+-----------------------------+---------------------------------...
| col_name | data_type ...
+-----------------------------+---------------------------------...
| empid | int ...
| deptname | varchar(256) ...
| hire_date | timestamp ...
| | NULL ...
| Detailed Table Information |Table(tableName:mv1, dbName:default, own
er:hive, createTime:1532466307, lastAccessTime:0, retention:0, sd:Storag
eDescriptor(cols:[FieldSchema(name:empid, type:int, comment:null), Field
Schema(name:deptname, type:varchar(256), comment:null), FieldSchema(name
:hire_date, type:timestamp, comment:null)], location:hdfs://myserver.com
:8020/warehouse/tablespace/managed/hive/mv1, inputFormat:org.apache.hado
op.hive.ql.io.orc.OrcInputFormat, outputFormat:org.apache.hadoop.hive.ql
.io.orc.OrcOutputFormat, compressed:false, numBuckets:-1, serdeInfo:SerD
eInfo(name:null, serializationLib:org.apache.hadoop.hive.ql.io.orc.OrcSe
rde, parameters:{}), bucketCols:[], sortCols:[], parameters:{}, skewedIn
fo:SkewedInfo(skewedColNames:[], skewedColValues:[], skewedColValueLocat
ionMaps:{}), storedAsSubDirectories:false), partitionKeys:[], parameters
:{totalSize=488, numRows=4, rawDataSize=520, COLUMN_STATS_ACCURATE={\"BA
SIC_STATS\":\"true\"}, numFiles=1, transient_lastDdlTime=1532466307, buc
keting_version=2}, viewOriginalText:SELECT empid, deptname, hire_date\nF
ROM emps2 JOIN depts\nON (emps2.deptno = depts.deptno)\nWHERE hire_date >=
 '2017-01-17', viewExpandedText:SELECT `emps2`.`empid`, `depts`.`deptname`
, `emps2`.`hire_date`\nFROM `default`.`emps2` JOIN `default`.`depts`\nON
 (`emps2`.`deptno` = `depts`.`deptno`)\nWHERE `emps2`.`hire_date` >= '20
17-01-17', tableType:MATERIALIZED_VIEW, rewriteEnabled:true, creationMet
adata:CreationMetadata(catName:hive, dbName:default, tblName:mv1, tables
Used:[default.depts, default.emps2], validTxnList:53$default.depts:2:922
3372036854775807::$default.emps2:4:9223372036854775807::, materializatio
nTime:1532466307861), catName:hive, ownerType:USER)

3. Get formatting details about the materialized view named mv1.

DESCRIBE FORMATTED mv1;

+-------------------------------+--------------------------------...
| col_name | data_type ...
+-------------------------------+--------------------------------...
| # col_name | data_type ...
| empid | int ...
| deptname | varchar(256) ...
| hire_date | timestamp ...
| | NULL ...
| # Detailed Table Information | NULL ...
| Database: | default ...
| OwnerType: | USER ...
| Owner: | hive ...
| CreateTime: | Tue Jul 24 21:05:07 UTC 2019 ...
| LastAccessTime: | UNKNOWN ...
| Retention: | 0 ...
| Location: | hdfs://myserver...
| Table Type: | MATERIALIZED_VIEW ...

26

Cloudera Runtime Using materialized views

| Table Parameters: | NULL ...

| | COLUMN_STATS_ACCURATE ...

| | bucketing_version ...

| | numFiles ...

| | numRows ...

| | rawDataSize ...

| | totalSize ...

| | transient_lastDdlTime ...
| | NULL ...

| # Storage Information | NULL ...

| SerDe Library: | org.apache.hadoop.hive.ql.io.or...

| InputFormat: | org.apache.hadoop.hive.ql.io.or...
| OutputFormat: | org.apache.hadoop.hive.ql.io.or...
| Compressed: | No ...

| Num Buckets: | -1 ...

| Bucket Columns: | [] ...

| Sort Columns: | [] ...
| # View Information | NULL ...

| View Original Text: | SELECT empid, deptname, hire_da...

| View Expanded Text: | SELECT `emps2`.`empid`, `depts`...
| View Rewrite Enabled: | Yes ...

Related Information
Materialized view commands

Manage query rewrites
You can use a Hive query to stop or start the optimizer from rewriting a query based on a materialized view. As
administrator, you can globally enable or disable all query rewrites based on materialized views.

About this task

By default, the optimizer can rewrite a query based on a materialized view. If you want a query executed without
regard to a materialized view, for example to measure the execution time difference, you can disable rewriting and
then enable it again.

Procedure

1. Disable rewriting of a query based on a materialized view named mv1 in the default database.

ALTER MATERIALIZED VIEW default.mv1 DISABLE REWRITE;

2. Enable rewriting of a query based on materialized view mv1.

ALTER MATERIALIZED VIEW default.mv1 ENABLE REWRITE;

27

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html

Cloudera Runtime Using materialized views

3. Globally disable rewriting of queries based on materialized views by setting a global property.

SET hive.materializedview.rewriting=true;

Related Information
Materialized view commands

Create and use a partitioned materialized view
When creating a materialized view, you can partition selected columns to improve performance. Partitioning
separates the view of a table into parts, which often improves query rewrites of partition-wise joins of materialized
views with tables or other materialized views.

About this task

This task assumes you created a materialized view of the emps and depts tables and assumes you created these tables.
The emps table contains the following data:

empid deptno name salary hire_date

10001 101 jane doe 250000 2018-01-10

10005 100 somporn klailee 210000 2017-12-25

10006 200 jeiranan thongnopneua 175000 2018-05-05

The depts table contains the following data:

deptno deptname locationid

100 HR 10

101 Eng 11

200 Sup 20

In this task, you create two materialized views: one partitions data on department; the another partitions data on hire
date. You select data, filtered by department,from the original table, not from either one of the materialized views.
The explain plan shows that Hive rewrites your query for efficiency to select data from the materialized view that
partitions data by department. In this task, you also see the effects of rebuilding a materialized view.

Procedure

1. Create a materialized view of the emps table that partitions data into departments.

CREATE MATERIALIZED VIEW partition_mv_1 PARTITIONED ON (deptno)
AS SELECT hire_date, deptno FROM emps WHERE deptno > 100 AND deptno < 200;

2. Create a second materialized view that partitions the data on the hire date instead of the department number.

CREATE MATERIALIZED VIEW partition_mv_2 PARTITIONED ON (hire_date)
 AS SELECT deptno, hire_date FROM emps where deptno > 100 AND deptno < 2
00;

28

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html

Cloudera Runtime Using materialized views

3. Generate an extended explain plan by selecting data for department 101 directly from the emps table without
using the materialized view.

EXPLAIN EXTENDED SELECT deptno, hire_date FROM emps where deptno = 101;

The explain plan shows that Hive rewrites your query for efficiency, using the better of the two materialized views
for the job: partition_mv_1.

+--+
| Explain |
+--+
| OPTIMIZED SQL: SELECT CAST(101 AS INTEGER) AS `deptno`, `hire_date` |
| FROM `default`.`partition_mv_1` |
| WHERE 101 = `deptno` |
| STAGE DEPENDENCIES: |
| Stage-0 is a root stage
...

4. Correct Jane Doe's hire date to February 12, 2018, rebuild one of the materialized views, but not the other, and
compare contents of both materialized views.

INSERT INTO emps VALUES (10001,101,'jane doe',250000,'2018-02-12');
ALTER MATERIALIZED VIEW partition_mv_1 REBUILD;
SELECT * FROM partition_mv_1 where deptno = 101;
SELECT * FROM partition_mv_2 where deptno = 101;

The output of selecting the rebuilt partition_mv_1 includes the original row and newly inserted row because
INSERT does not perform in-place updates (overwrites).

+---------------------------+------------------------+
| partition_mv_1.hire_date | partition_mv_1.deptno |
+---------------------------+------------------------+
| 2018-01-10 00:00:00.0 | 101 |
| 2018-02-12 00:00:00.0 | 101 |
+---------------------------+------------------------+

The output from the other partition is stale because you did not rebuild it:

+------------------------+---------------------------+
| partition_mv_2.deptno | partition_mv_2.hire_date |
+------------------------+---------------------------+
| 101 | 2018-01-10 00:00:00.0 |
+------------------------+---------------------------+

5. Create a second employees table and a materialized view of the tables joined on the department number.

CREATE TABLE emps2 AS SELECT * FROM emps;

CREATE MATERIALIZED VIEW partition_mv_3 PARTITIONED ON (deptno) AS
 SELECT emps.hire_date, emps.deptno FROM emps, emps2
 WHERE emps.deptno = emps2.deptno
 AND emps.deptno > 100 AND emps.deptno < 200;

6. Generate an explain plan that joins tables emps and emps2 on department number using a query that omits the
partitioned materialized view.

EXPLAIN EXTENDED SELECT emps.hire_date, emps.deptno FROM emps, emps2
 WHERE emps.deptno = emps2.deptno

29

Cloudera Runtime Apache Hive query basics

 AND emps.deptno > 100 AND emps.deptno < 200;

The output shows that Hive rewrites the query to use the partitioned materialized view partition_mv_3 even
though your query omitted the materialized view.

7. Verify that the partition_mv_3 sets up the partition for deptno=101 for partition_mv_3.

SHOW PARTITIONS partition_mv_3;

Output is:

+-------------+
| partition |
+-------------+
| deptno=101 |
+-------------+

Related Information
Create and use a materialized view

Materialized view commands

Apache Hive query basics

Using Apache Hive, you can query distributed data storage including Hadoop data. You need to know the ANSI SQL
to view, maintain, or analyze Hive data. Examples of the basics, such as how to insert, update, and delete data from a
table, helps you get started with Hive.

Hive supports ANSI SQL and atomic, consistent, isolated, and durable (ACID) transactions. For updating data, you
can use the MERGE statement, which now also meets ACID standards. Materialized views optimize queries based on
access patterns. Hive supports tables up to 300PB in Optimized Row Columnar (ORC) format. Other file formats are
also supported. You can create tables that resemble those in a traditional relational database. You use familiar insert,
update, delete, and merge SQL statements to query table data. The insert statement writes data to tables. Update and
delete statements modify and delete values already written to Hive. The merge statement streamlines updates, deletes,
and changes data capture operations by drawing on co-existing tables. These statements support auto-commit that
treats each statement as a separate transaction and commits it after the SQL statement is executed.

Related Information
ORC Language Manual on the Apache wiki

Query the information_schema database
Hive supports the ANSI-standard information_schema database, which you can query for information about tables,
views, columns, and your Hive privileges. The information_schema data reveals the state of the system, similar to
sys database data, but in a user-friendly, read-only way. You can use joins, aggregates, filters, and projections in
information_schema queries.

About this task

One of the following steps involves changing the time interval for synchronization between HiveServer and the
policy. HiveServer responds to any policy changes within this time interval. You can query the information_schema
database for only your own privilege information.

30

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC/

Cloudera Runtime Apache Hive query basics

Procedure

1. Open Ranger Access Manager, and check that the preloaded default database tables columns and information_
schema database policies are enabled for group public.

2. Navigate to Services Hive Configs Advanced Custom hive-site .

3. Add the hive.privilege.synchronizer.interval key and set the value to 1.

This setting changes the synchronization from the default one-half hour to one minute.

4. From the Beeline shell, start Hive, and check that Ambari installed the information_schema database:

SHOW DATABASES;
...
+---------------------+
| database_name |
+---------------------+
| default |
| information_schema |
| sys |
+---------------------+

5. Use the information_schema database to list tables in the database.

USE information_schema;
...
SHOW TABLES;
...
+--------------------+
| tab_name |
+--------------------+
| column_privileges |
| columns |
| schemata |
| table_privileges |
| tables |
| views |
+--------------------+

31

Cloudera Runtime Apache Hive query basics

6. Query the information_schema database to see, for example, information about tables into which you can insert
values.

SELECT * FROM information_schema.tables WHERE is_insertable_into='YES' l
imit 2;
...
+--------------------+-------------------+-----------------
|tables.table_catalog|tables.table_schema|tables.table_name
+--------------------+-------------------+-----------------
|default |default |students2
|default |default |t3

Insert data into a table
To insert data into a table you use a familiar ANSI SQL statement. A simple example shows you have to accomplish
this basic task.

About this task
To insert data into an ACID table, use the Optimized Row Columnar (ORC) storage format. To insert data into a
non-ACID table, you can use other Hive-supported formats. You can specify partitioning as shown in the following
syntax:

INSERT INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)] VALUES values_row [, valu
es_row...]

where

values_row is (value [, value]) .

A value can be NULL or any SQL literal.

Procedure

1. Create an ACID table to contain student information.
CREATE TABLE students (name VARCHAR(64), age INT, gpa DECIMAL(3,2));

2. Insert name, age, and gpa values for a few students into the table.
INSERT INTO TABLE students VALUES ('fred flintstone', 35, 1.28), ('barney rubble', 32, 2.32);

3. Create a table called pageviews and assign null values to columns you do not want to assign a value.

CREATE TABLE pageviews (userid VARCHAR(64), link STRING, origin STRING)
PARTITIONED BY (datestamp STRING) CLUSTERED BY (userid) INTO 256 BUCKETS;
INSERT INTO TABLE pageviews PARTITION (datestamp = '2014-09-23') VALUES ('
jsmith', 'mail.com', 'sports.com'), ('jdoe', 'mail.com', null);
INSERT INTO TABLE pageviews PARTITION (datestamp) VALUES ('tjohnson', '
sports.com', 'finance.com', '2014-09-23'), ('tlee', 'finance.com', null,
 '2014-09-21');

The ACID data resides in the Hive warehouse.

Update data in a table
The syntax describes the UPDATE statement you use to modify data already stored in an Apache Hive table. An
example shows how to apply the syntax.

About this task
You construct an UPDATE statement using the following syntax:

32

Cloudera Runtime Apache Hive query basics

UPDATE tablename SET column = value [, column = value ...] [WHERE expression];

Depending on the condition specified in the optional WHERE clause, an UPDATE statement might affect every
row in a table. The expression in the WHERE clause must be an expression supported by a Hive SELECT clause.
Subqueries are not allowed on the right side of the SET statement. Partition and bucket columns cannot be updated.

Before you begin
You must have SELECT and UPDATE privileges to use the UPDATE statement.

Procedure

Create a statement that changes the values in the name column of all rows where the gpa column has the value of 1.0.
UPDATE students SET name = null WHERE gpa <= 1.0;

Merge data in tables
A sample statement shows how you can conditionally insert existing data in Hive tables using the ACID MERGE
statement. Additional merge operations are mentioned.

About this task
The MERGE statement is based on ANSI-standard SQL.

Procedure

1. Construct a query to update the customers' names and states in customer table to match the names and states of
customers having the same IDs in the new_customer_stage table.

2. Enhance the query to insert data from new_customer_stage table into the customer table if none already exists.

Update or delete data using MERGE in a similar manner.

MERGE INTO customer USING (SELECT * FROM new_customer_stage) sub ON sub.id
 = customer.id
WHEN MATCHED THEN UPDATE SET name = sub.name, state = sub.new_state
WHEN NOT MATCHED THEN INSERT VALUES (sub.id, sub.name, sub.state);

Related Information
Merge documentation on the Apache wiki

Delete data from a table
You use the DELETE statement to delete data already written to an ACID table.

About this task
Use the following syntax to delete data from a Hive table. DELETE FROM tablename [WHERE expression];

Procedure

Delete any rows of data from the students table if the gpa column has a value of 1 or 0.
DELETE FROM students WHERE gpa <= 1,0;

Create a temporary table
In CDP Private Cloud Base, you can create a temporary table to improve performance by storing data temporarily for
intermediate use, or reuse, by a complex query.

33

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML#LanguageManualDML-Merge

Cloudera Runtime Apache Hive query basics

About this task
Temporary table data persists only during the current Apache Hive session. Hive drops the table at the end of the
session. If you use the name of a permanent table to create the temporary table, the permanent table is inaccessible
during the session unless you drop or rename the temporary table. You can create a temporary table having the same
name as another user's temporary table because user sessions are independent. Temporary tables do not support
partitioned columns and indexes.

CDP Private Cloud Base only

Procedure

1. Create a temporary table having one string column.
CREATE TEMPORARY TABLE tmp1 (tname varchar(64));

2. Create a temporary table using the CREATE TABLE AS SELECT (CTAS) statement.

CREATE TEMPORARY TABLE tmp2 AS SELECT c2, c3, c4 FROM mytable;

3. Create a temporary table using the CREATE TEMPORARY TABLE LIKE statement.

CREATE TEMPORARY TABLE tmp3 LIKE tmp1;

Related Information
Create/Drop/Truncate Table on the Apache wiki

Configure temporary table storage
In CDP Private Cloud Base, you can change the storage of temporary table data to meet your system requirements.

About this task
By default, Apache Hive stores temporary table data in the default user scratch directory /tmp/hive-<username>.
Often, this location is not set up by default to accommodate a large amount of data such as that resulting from
temporary tables.

CDP Data Center only

Procedure

1. Configure Hive to store temporary table data in memory or on SSD by setting hive.exec.temporary.table.storage.

• Store data in memory. hive.exec.temporary.table.storage=memory
• Store data on SSD. hive.exec.temporary.table.storage=ssd

2. Create and use temporary tables.

Hive drops temporary tables at the end of the session.

Use a subquery
Hive supports subqueries in FROM clauses and WHERE clauses that you can use for many Hive operations, such as
filtering data from one table based on contents of another table.

About this task
A subquery is a SQL expression in an inner query that returns a result set to the outer query. From the result set, the
outer query is evaluated. The outer query is the main query that contains the inner subquery. A subquery in a WHERE
clause includes a query predicate and predicate operator. A predicate is a condition that evaluates to a Boolean value.
The predicate in a subquery must also contain a predicate operator. The predicate operator specifies the relationship
tested in a predicate query.

34

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTableCreate/Drop/TruncateTable

Cloudera Runtime Apache Hive query basics

Procedure

Select all the state and net_payments values from the transfer_payments table if the value of the year column in the
table matches a year in the us_census table.

SELECT state, net_payments
FROM transfer_payments
WHERE transfer_payments.year IN (SELECT year FROM us_census);

The predicate starts with the first WHERE keyword. The predicate operator is the IN keyword.

The predicate returns true for a row in the transfer_payments table if the year value in at least one row of the
us_census table matches a year value in the transfer_payments table.

Subquery restrictions
To construct queries efficiently, you must understand the restrictions of subqueries in WHERE clauses.

• Subqueries must appear on the right side of an expression.
• Nested subqueries are not supported.
• A single query can have only one subquery expression.
• Subquery predicates must appear as top-level conjuncts.
• Subqueries support four logical operators in query predicates: IN, NOT IN, EXISTS, and NOT EXISTS.
• The IN and NOT IN logical operators may select only one column in a WHERE clause subquery.
• The EXISTS and NOT EXISTS operators must have at least one correlated predicate.
• The left side of a subquery must qualify all references to table columns.
• References to columns in the parent query are allowed only in the WHERE clause of the subquery.
• Subquery predicates that reference a column in a parent query must use the equals (=) predicate operator.
• Subquery predicates may not refer only to columns in the parent query.
• Correlated subqueries with an implied GROUP BY statement may return only one row.
• All unqualified references to columns in a subquery must resolve to tables in the subquery.
• Correlated subqueries cannot contain windowing clauses.

Aggregate and group data
You use AVG, SUM, or MAX functions to aggregate data, and the GROUP BY clause to group data query results in
one or more table columns..

About this task
The GROUP BY clause explicitly groups data. Hive supports implicit grouping, which occurs when aggregating the
table in full.

Procedure

1. Construct a query that returns the average salary of all employees in the engineering department grouped by year.

SELECT year, AVG(salary)
FROM Employees
WHERE Department = 'engineering' GROUP BY year;

2. Construct an implicit grouping query to get the highest paid employee.

SELECT MAX(salary) as highest_pay,
AVG(salary) as average_pay
FROM Employees
WHERE Department = 'engineering';

35

Cloudera Runtime Apache Hive query basics

Query correlated data
You can query one table relative to the data in another table.

About this task
A correlated query contains a query predicate with the equals (=) operator. One side of the operator must reference at
least one column from the parent query and the other side must reference at least one column from the subquery. An
uncorrelated query does not reference any columns in the parent query.

Procedure

Select all state and net_payments values from the transfer_payments table for years during which the value of the
state column in the transfer_payments table matches the value of the state column in the us_census table.

SELECT state, net_payments
FROM transfer_payments
WHERE EXISTS
 (SELECT year
 FROM us_census
 WHERE transfer_payments.state = us_census.state);

This query is correlated because one side of the equals predicate operator in the subquery references the state column
in the transfer_payments table in the parent query and the other side of the operator references the state column in the
us_census table.

This statement includes a conjunct in the WHERE clause.

A conjunct is equivalent to the AND condition, while a disjunct is the equivalent of the OR condition The following
subquery contains a conjunct:

... WHERE transfer_payments.year = "2018" AND us_census.state = "california"

The following subquery contains a disjunct:

... WHERE transfer_payments.year = "2018" OR us_census.state = "california"

Using common table expressions
Using common table expression (CTE), you can create a temporary view that repeatedly references a subquery.

A CTE is a set of query results obtained from a simple query specified within a WITH clause that immediately
precedes a SELECT or INSERT keyword. A CTE exists only within the scope of a single SQL statement and not
stored in the metastore. You can include one or more CTEs in the following SQL statements:

• SELECT
• INSERT
• CREATE TABLE AS SELECT
• CREATE VIEW AS SELECT

Recursive queries are not supported and the WITH clause is not supported within subquery blocks.

Use a CTE in a query
You can use a common table expression (CTE) to simplify creating a view or table, selecting data, or inserting data.

36

Cloudera Runtime Apache Hive query basics

Procedure

1. Use a CTE to create a table based on another table that you select using the CREATE TABLE AS SELECT
(CTAS) clause.

CREATE TABLE s2 AS WITH q1 AS (SELECT key FROM src WHERE key = '4') SELECT
 * FROM q1;

2. Use a CTE to create a view.

CREATE VIEW v1 AS WITH q1 AS (SELECT key FROM src WHERE key='5') SELECT *
 from q1;

3. Use a CTE to select data.

WITH q1 AS (SELECT key from src where key = '5')
 SELECT * from q1;

4. Use a CTE to insert data.

CREATE TABLE s1 LIKE src;
WITH q1 AS (SELECT key, value FROM src WHERE key = '5') FROM q1 INSERT OV
ERWRITE TABLE s1 SELECT *;

Escape an illegal identifier
When you need to use reserved words, special characters, or a space in a column or partition name, enclose it in
backticks (`).

About this task

An identifier in SQL is a sequence of alphanumeric and underscore (_) characters enclosed in backtick characters. In
Hive, these identifiers are called quoted identifiers and are case-insensitive. You can use the identifier instead of a
column or table partition name.

Before you begin
You have set the following parameter to column in the hive-site.xml file to enable quoted identifiers:

Set the hive.support.quoted.identifiers configuration parameter to column in the hive-site.xml file to enable quoted
identifiers in column names. Valid values are none and column. For example, hive.support.quoted.identifiers = colu
mn.

Procedure

1. Create a table named test that has two columns of strings specified by quoted identifiers:
CREATE TABLE test (`x+y` String, `a?b` String);

2. Create a table that defines a partition using a quoted identifier and a region number:
CREATE TABLE partition_date-1 (key string, value string) PARTITIONED BY (`dt+x` date, region int);

3. Create a table that defines clustering using a quoted identifier:
CREATE TABLE bucket_test(`key?1` string, value string) CLUSTERED BY (`key?1`) into 5 buckets;

CHAR data type support
Knowing how Hive supports the CHAR data type compared to other databases is critical during migration.

37

Cloudera Runtime Apache Hive query basics

Table 1: Trailing Whitespace Characters on Various Databases

Data Type Hive Oracle SQL Server MySQL Teradata

CHAR Ignore Ignore Ignore Ignore Ignore

VARCHAR Compare Compare Configurable Ignore Ignore

STRING Compare N/A N/A N/A N/A

ORC vs Parquet in CDP
The differences between Optimized Row Columnar (ORC) file format for storing Hive data and Parquet for storing
Impala data are important to understand. Query performance improves when you use the appropriate format for your
application.

ORC and Parquet capabilities comparison

The following table compares Hive and Impala support for ORC and Parquet in CDP Public Cloud and CDP Private
Cloud Base. The Runtime Services column shows the supported services:

• Hive-on-Tez
• HiveLLAP, supported on CDP Public Cloud only
• Hive metastore (HMS)
• Impala
• Spark
• JDBC

Table 2:

Capability Data Warehouse ORC Parquet Runtime Services

Read non-transactional
data

Apache Hive # # (Hive-on-Tez | HiveLLAP)
& HMS

Read non-transactional
data

Apache Impala # # Impala & HMS

Full ACID transactions Apache Hive # (Hive-on-Tez | HiveLLAP)
& HMS

Read Insert-only
transactions

Apache Impala # # Impala & HMS

Hive Warehouse
Connector reads

Apache Hive # # ((Hive-on-Tez & JDBC)
| HiveLLAP) & Spark &
HMS

Hive Warehouse
Connector writes

Apache Hive # ((Hive-on-Tez & JDBC)
| HiveLLAP) & Spark &
HMS

Column index Apache Hive # # (Hive-on-Tez | HiveLLAP)
& HMS

Column index Apache Impala # Impala & HMS

CBO uses column
metadata

Apache Hive # (Hive-on-Tez | HiveLLAP)
& HMS

Recommended format Apache Hive # (Hive-on-Tez | HiveLLAP)
& HMS

Recommended format Apache Impala # Impala & HMS

38

Cloudera Runtime Create a default directory for managed tables

Capability Data Warehouse ORC Parquet Runtime Services

Vectorized reader Apache Hive # # (Hive-on-Tez | HiveLLAP)
& HMS

Read complex types Apache Impala # # Impala & HMS

Read/write complex types Apache Hive # # (Hive-on-Tez | HiveLLAP)
& HMS

Create a default directory for managed tables

You can specify a top level directory for managed tables when creating a Hive database.

About this task

Create a default directory for managed tables only after limiting CREATE DATABASE and ALTER DATABASE
statements to users having the Admin role, which has hive service user permissions. Permissions to the managed
directory must be limited to the hive service user. In addition to restricting permissions to the hive user, you can
further secure managed tables using Ranger fine-grained permissions, such as row-level filtering and column
masking.

As Admin, you specify a managed location within the default location specified by the hive.metastore.warehouse.dir
configuration property to give managed tables a common location for governance policies. The managed location
designates a single root directory for all tenant tables, managed and external.

Setting the metastore.warehouse.tenant.colocation property to true allows a common location for managed tables
outside the warehouse root directory, providing a tenant-based common root for setting quotas and other policies. To
set this property, in Cloudera Manager use the Hive on Tez safety valve for hive-site.xml as shown below.

Use the following syntax to create a database that specifies a location for managed tables:

CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name
 [COMMENT database_comment]
 [LOCATION external_table_path]
 [MANAGEDLOCATION managed_table_directory_path]
 [WITH DBPROPERTIES (property_name=property_value, ...)];

Do not set LOCATION and MANAGEDLOCATION to the same HDFS path.

Use the following syntax to set or change a location for managed tables.

ALTER (DATABASE|SCHEMA) database_name SET MANAGEDLOCATION [managed_table_dir
ectory_path];

Procedure

1. Create a database mydatabase that specifies a top level directory named sales for managed tables.

CREATE DATABASE mydatabase MANAGEDLOCATION '/warehouse/tablespace/managed/
hive/sales';

2. Change the abc_sales database location to the same location as mydatabase.

ALTER DATABASE abc_sales SET MANAGEDLOCATION '/warehouse/tablespace/mana
ged/hive/sales';

39

Cloudera Runtime Compare tables using ANY/SOME/ALL

Configure a table location outside the warehouse root directory

Procedure

1. In Cloudera Manager, click Clusters Hive on Tez Configuration .

2. In scope, click Hive on Tez (Service-Wide).

3. In Hive Service Advanced Configuration Snippet (Safety Valve) for hive-site.xml, click +.

4. In Name, enter metastore.warehouse.tenant.colocation.

5. In Value, enter true.

6. Save changes.

7. In Cloudera Manager Home, restart Hive on Tez.

Compare tables using ANY/SOME/ALL

Apache Hive supports quantified comparison predicates (ANY/SOME/ALL) in non-correlated subqueries according
to the SQL standard. SOME is any alias for ANY.

About this task
Hive supports using one of the following operators with a comparison predicate:

• >
• <
• >=
• <=
• <>
• =

ALL:

• If the table is empty, or the comparison is true for every row in subquery table, the predicate is true for that
predicand.

• If the comparison is false for at least one row, the predicate is false.

SOME or ANY:

• If the comparison is true for at least one row in the subquery table, the predicate is true for that predicand.
• If the table is empty or the comparison is false for each row in subquery table, the predicate is false.

If the comparison is neither true nor false, the result is undefined.

For example, you run the following query to match any value in c2 of tbl equal to any value in c1 from the same tbl:

select c1 from tbl where c1 = ANY (select c2 from tbl);

You run the following the following query to match all values in c1 of tbl not equal to any value in c2 from the same
tbl.

select c1 from tbl where c1 <> ALL (select c2 from tbl);

40

Cloudera Runtime Use wildcards with SHOW DATABASES

Use wildcards with SHOW DATABASES

In a SHOW DATABASES LIKE statement, you can use wildcards, and in this release of Hive, specify any character
or a single character.

About this task

SHOW DATABASES or SHOW SCHEMAS lists all of the databases defined in Hive metastore. You can use the
following wildcards:
%

Matches any single character or multiple characters

_

Matches any single character

|

Matches either the part of the pattern on the left or the right side of the pipe.

For example, 'students', 'stu%', 'stu_ents' match the database named students.

Partitions introduction

A brief description of partitions and the performance benefits includes characters you must avoid when creating
a partition. Examples of creating a partition and inserting data in a partion introduce basic partition syntax. Best
practices for partitioning are mentioned.

A table you create without partitioning puts the data in a single directory. Partitioning divides the data into multiple
directories. Queries of one or more columns based on the directories can execute faster. Lengthy full table scans are
avoided. Only data in the relevant directory is scanned. For example, a school_records table partitioned on a year
column, segregates values by year into separate directories. A WHERE condiition such as YEAR=2020, YEAR IN
 (2020,2019), or YEAR BETWEEN 2001 AND 2010 scans only the data in the appropriate directory to resolve the
query. Using partitions typically improves query performance.

In a SQL query, you define the partition as shown in the following example:

CREATE TABLE sale(id in, amount decimal) PARTITIONED BY (xdate string, state
 string);

To insert data into this table, you specify the partition key for fast loading:

INSERT INTO sale (xdate='2016-03-08', state='CA') SELECT * FROM staging_tabl
e WHERE xdate='2016-03-08' AND state='CA';

You do not need to specify dynamic partition columns. Hive generates a partition specification if you enable dynamic
partitions.

Examples of a query on partitioned data

INSERT INTO sale (xdate, state)
SELECT * FROM staging_table;

Follow these best practices when you partition tables and query partitioned tables:

• Never partition on a unique ID.
• Size partitions to greater than or equal to 1 GB on average.

41

Cloudera Runtime Create partitions dynamically

• Design queries to process not more than 1000 partitions.

Illegal Characters in a Partition Name

When you create a partition, do not use the following characters in a partition name:

• colon
• question mark
• percent

If you use these characters in a partition name, your directory names will contain the URL encoding of these
characters, as described in "Why some special characters should not be used in a partition name in Hive/Impala."

Related Information
Why some special characters should not be used in a partition name in Hive/Impala

Create partitions dynamically

You can configure Hive to create partitions dynamically and then run a query that creates the related directories on
the file system or object store. Hive then separates the data into the directories.

About this task

This example assumes you have the following CSV file named employees.csv to use as the data source:

1,jane doe,engineer,service
2,john smith,sales rep,sales
3,naoko murai,service rep,service
4,somporn thong,ceo,sales
5,xi singh,cfo,finance

Procedure

1. Upload the CSV file to a file system, for example S3.

2. Use Data Analytics Studio (DAS) or launch Beeline, and in the Hive shell, create an unpartitioned table that holds
all the data.

CREATE EXTERNAL TABLE employees (eid int, name string, position string,
dept string)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY ','
 STORED AS TEXTFILE
 LOCATION 's3://user/hive/dataload/employee';

3. Check that the data loaded into the employees table.

SELECT * FROM employees;

The output, formatted to fit this publication, appears:

+------+---------------+-------------+-------+---------+
| eid | name | position | dept | |
+------+---------------+-------------+-------+---------|
1	jane doe	engineer	service
2	john smith	sales rep	sales
3	naoko murai	service rep	service
4	somporn thong	ceo	sales

42

https://community.cloudera.com/t5/Customer/Why-some-special-characters-should-not-be-used-in-a/ta-p/304028

Cloudera Runtime Manage partitions

| 5 | xi singh | cfo | finance |
+------+---------------+-------------+-----------------+

4. Create a partition table.

CREATE EXTERNAL TABLE EMP_PART (eid int, name string, position string)
 PARTITIONED BY (dept string);

5. Accept the default dynamic partition mode (nonstrict) to create partitioned directories of data dynamically when
data is inserted, or if you changed the default, reset the mode as follows:

SET hive.exec.dynamic.partition.mode=nonstrict;

6. Insert data from the unpartitioned table (all the data) into the partitioned table , dynamically creating the partitions.

INSERT INTO TABLE EMP_PART PARTITION (DEPT)
 SELECT eid,name,position,dept FROM employees;

Partitions are created dynamically.

7. Check that the partitions were created.

SHOW PARTITIONS emp_part;

+----------------+
| partition |
+----------------+
| dept=finance |
| dept=sales |
| dept=service |
+----------------+

Manage partitions

You can discover partition changes and synchronize Hive metadata automatically. Performing synchronization
automatically as opposed to manually can save substantial time, especially when partitioned data, such as logs,
changes frequently. You can also configure how long to retain partition data and metadata.

About this task

After creating a partitioned table, Hive does not update metadata about corresponding objects or directories on the file
system that you add or drop. The partition metadata in the Hive metastore becomes stale after corresponding objects/
directories are added or deleted. You need to synchronize the metastore and the file system.

You can refresh Hive metastore partition information manually or automatically. The time it takes to refresh the
partition information is proportional to the number of partitions involved.

• Manually

You run the MSCK (metastore consistency check) Hive command: MSCK REPAIR TABLE table_name SYNC
PARTITIONS every time you need to synchronize a partition with the file system.

• Automatically

You set up partition discovery to occur periodically.

The discover.partitions table property is automatically created and enabled for external partitioned tables. When disc
over.partitions is enabled for a table, Hive performs an automatic refresh as follows:

• Adds corresponding partitions that are in the file system, but not in metastore, to the metastore.

43

Cloudera Runtime Manage partitions

• Removes partition schema information from metastore if you removed the corresponding partitions from the file
system.

Partition retention

You can configure how long to keep partition metadata and data, and remove it after the retention period elapses.

Limitations

Generally, partition discovery and retention is not recommended for use on managed tables. The Hive metastore
acquires an exclusive lock on a table that enables partition discovery that can slow down other queries.
Related Information
Create partitions dynamically

Apache Wiki: Discover Partitions and Partition Retention

Automate partition discovery and repair
Automated partition discovery and repair is useful for processing log data, and other data, in Spark and Hive catalogs.
You learn how to set the partition discovery parameter to suit your use case. An aggressive partition discovery and
repair configuration can delay the upgrade process.

About this task

Apache Hive can automatically and periodically discover discrepancies in partition metadata in the Hive metastore
and in corresponding directories, or objects, on the file system. After discovering discrepancies, Hive performs
synchronization.

The discover.partitions table property enables and disables synchronization of the file system with partitions. In
external partitioned tables, this property is enabled (true) by default when you create the table. To a legacy external
table (created using a version of Hive that does not support this feature), you need to add discover.partitions to the
table properties to enable partition discovery.

By default, the discovery and synchronization of partitions occurs every 5 minutes. This is too often if you are
upgrading and can result in the Hive DB being queried every few milliseconds, leading to performance degradation.
During upgrading the high frequency of batch routines dictates running discovery and synchronization infrequently,
perhaps hourly or even daily. You can configure the frequency as shown in this task.

Procedure

1. Assuming you have an external table created using a version of Hive that does not support partition discovery,
enable partition discovery for the table.

ALTER TABLE exttbl SET TBLPROPERTIES ('discover.partitions' = 'true');

2. In Cloudera Manager, click Clusters Hive Configuration , search for Hive Server Advanced Configuration Snipp
et (Safety Valve) for hive-site.xml.

3. Add the following property and value to hive-site.xml: Property: metastore.partition.management.task.frequency
Value: 600.

This action sets synchronization of partitions to occur every 10 minutes expressed in seconds. If you are
upgrading, consider running discovery and synchonization once every 24 hours by setting the value to 86,400
seconds.

Related Information
Create partitions dynamically

Apache Wiki: Discover Partitions and Partition Retention

44

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-DiscoverPartitions
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-DiscoverPartitions

Cloudera Runtime Manage partitions

Repair partitions manually using MSCK repair
The MSCK REPAIR TABLE command was designed to manually add partitions that are added to or removed from
the file system, but are not present in the Hive metastore.

About this task

This task assumes you created a partitioned external table named emp_part that stores partitions outside the
warehouse. You remove one of the partition directories on the file system. This action renders the metastore
inconsistent with the file system. You repair the discrepancy manually to synchronize the metastore with the file
system, HDFS for example.

Procedure

1. Remove the dept=sales object from the file system.

2. From the Hive command line, look at the emp_part table partitions.

SHOW PARTITIONS emp_part;

The list of partitions is stale; it still includes the dept=sales directory.

+----------------+
| partition |
+----------------+
| dept=finance |
| dept=sales |
| dept=service |
+----------------+

3. Repair the partition manually.

MSCK REPAIR TABLE emp_part DROP PARTITIONS;

Manage partition retention time
You can keep the size of the Hive metadata and data you accumulate for log processing, and other activities, to a
manageable size by setting a retention period for the data.

Before you begin
The table must be configured to automatically synchronize partition metadata with directories or objects on a file
system.

About this task

If you specify a partition metadata retention period, Hive drops the metadata and corresponding data in any partition
created after the retention period. You express the retention time using a numeral and the following character or
characters:

• ms (milliseconds)
• s (seconds)
• m (minutes)
• d (days)

In this task, you configure automatic synchronization of the file system partitions with the metastore and a partition
retention period. Assume you already created a partitioned, external table named employees as described earlier (see
link below).

45

Cloudera Runtime Generate surrogate keys

Procedure

1. If necessary, enable automatic discovery of partitions for the table employees.

ALTER TABLE employees SET TBLPROPERTIES ('discover.partitions'='true');

By default, external partitioned tables already set this table property to true.

2. Configure a partition retention period of one week.

ALTER TABLE employees SET TBLPROPERTIES ('partition.retention.period'='7
d');

The partition metadata as well as the actual data for employees in Hive is automatically dropped after a week.

Related Information
Create partitions dynamically

Apache Wiki: Discover Partitions and Partition Retention

Generate surrogate keys

You can use the built-in SURROGATE_KEY user-defined function (UDF) to automatically generate numerical Ids
for rows as you enter data into a table. The generated surrogate keys can replace wide, multiple composite keys.

Before you begin
Hive supports the surrogate keys on ACID tables only, as described in the following matrix of table types:

Table Type ACID Surrogate Keys File Format INSERT UPDATE/DELETE

Managed: CRUD
transactional

Yes Yes ORC Yes Yes

Managed: Insert-only
transactional

Yes Yes Any Yes No

Managed: Temporary No No Any Yes No

External No No Any Yes No

The table you want to join using surrogate keys cannot have column types that need casting. These data types must be
primitives, such as INT or STRING.

About this task

Joins using the generated keys are faster than joins using strings. Using generated keys does not force data into
a single node by a row number. You can generate keys as abstractions of natural keys. Surrogate keys have an
advantage over UUIDs, which are slower and probabilistic.

The SURROGATE_KEY UDF generates a unique Id for every row that you insert into a table. It generates keys
based on the execution environment in a distributed system, which includes a number of factors, such as internal data
structures, the state of a table, and the last transaction id. Surrogate key generation does not require any coordination
between compute tasks.

The UDF takes either no arguments or two arguments:

• Write Id bits
• Task Id bits

46

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-DiscoverPartitions

Cloudera Runtime Using JdbcStorageHandler to query RDBMS

Procedure

1. Create a students table in the default ORC format that has ACID properties.

CREATE TABLE students (row_id INT, name VARCHAR(64), dorm INT);

2. Insert data into the table. For example:

INSERT INTO TABLE students VALUES (1, 'fred flintstone', 100), (2, 'barney
 rubble', 200);

3. Create a version of the students table using the SURROGATE_KEY UDF.

CREATE TABLE students_v2
(`ID` BIGINT DEFAULT SURROGATE_KEY(),
 row_id INT,
 name VARCHAR(64),
 dorm INT,
 PRIMARY KEY (ID) DISABLE NOVALIDATE);

4. Insert data, which automatically generates surrogate keys for the primary keys.

INSERT INTO students_v2 (row_id, name, dorm) SELECT * FROM students;

5. Take a look at the surrogate keys.

SELECT * FROM students_v2;

+-----------------+---------------------+-------------------+-----------
--------+
| students_v2.id | students_v2.row_id | students_v2.name | students_v2.
dorm |
+-----------------+---------------------+-------------------+-----------
--------+
| 1099511627776 | 1 | fred flintstone | 100
 |
| 1099511627777 | 2 | barney rubble | 200
 |
+-----------------+---------------------+-------------------+-------------
------+

6. Add the surrogate keys as a foreign key to another table, such as a student_grades table, to speed up subsequent
joins of the tables.

ALTER TABLE student_grades ADD COLUMNS (gen_id BIGINT);

MERGE INTO student_grades g USING students_v2 s ON g.row_id = s.row_id
WHEN MATCHED THEN UPDATE SET gen_id = s.id;

Now you can achieve fast joins on the surrogate keys.

Using JdbcStorageHandler to query RDBMS

Using the JdbcStorageHandler, you can connect Hive to a MySQL, PostgreSQL, Oracle, DB2, or Derby data source.
You can then create an external table to represent the data, and query the table.

47

Cloudera Runtime Using functions

About this task

This task assumes you are a CDP Private Cloud Base user. You create an external table that uses the
JdbcStorageHandler to connect to and read a local JDBC data source.

Procedure

1. Load data into a supported SQL database, such as MySQL, on a node in your cluster, or familiarize yourself with
existing data in the your database.

2. Create an external table using the JdbcStorageHandler and table properties that specify the minimum information:
database type, driver, database connection string, user name and password for querying hive, table name, and
number of active connections to Hive.

CREATE EXTERNAL TABLE mytable_jdbc(
 col1 string,
 col2 int,
 col3 double
)
STORED BY 'org.apache.hive.storage.jdbc.JdbcStorageHandler'
TBLPROPERTIES (
 "hive.sql.database.type" = "MYSQL",
 "hive.sql.jdbc.driver" = "com.mysql.jdbc.Driver",
 "hive.sql.jdbc.url" = "jdbc:mysql://localhost/sample",
 "hive.sql.dbcp.username" = "hive",
 "hive.sql.dbcp.password" = "hive",
 "hive.sql.table" = "MYTABLE",
 "hive.sql.dbcp.maxActive" = "1"
);

3. Query the external table.

SELECT * FROM mytable_jdbc WHERE col2 = 19;

Related Information
Apache Wiki: JdbcStorageHandler

Using functions

You can call a built-in Hive function to execute one of a wide-range of operations instead of performing multiple
steps. You use SHOW FUNCTIONS to search for or list available functions. You can create a user-defined function
(UDF) when a built-in is not available to do what you need. You might need to reload functions to update the
availability of functions created in another session.

Reload, view, and filter functions
To determine which Hive functions and operators are available, you reload functions, and then use the SHOW
FUNCTIONS statement. An optional pattern in the statement filters the list of functions returned by the statement.

About this task

In this task, you first reload functions to make available any user-defined functions that were registered in Hive
session after your session started. The syntax is:

RELOAD (FUNCTION|FUNCTIONS);

48

https://cwiki.apache.org/confluence/display/Hive/JDBC+Storage+Handler

Cloudera Runtime Using functions

Next, you use the SHOW FUNCTIONS statement. The syntax of this statement is:

SHOW FUNCTIONS [LIKE "<pattern>"];

<pattern> represents search characters that can include regular expression wildcards.

Finally, you get more information about use by issuing the DESCRIBE FUNCTION statement.

Procedure

1. Open the Hive shell.
On the command line of a cluster node, for example:

beeline -u jdbc:hive2://mycloudhost-3.com:10000 -n <your user name> -p

2. Reload functions to ensure all registered UDFs are available in your session.

RELOAD FUNCTIONS;

Use the plural form of the command. RELOAD FUNCTION is for backward compatibility.

3. Generate a list of available built-in and user-defined functions (UDFs).

SHOW FUNCTIONS;

The list of built-in functions, operators, and UDFs appear.

+------------------------------+
| tab_name |
+------------------------------+
| ! |
| != |
| $sum0 |
| % |
...

4. Generate a filtered list of functions using the regular expression wildcard %.

SHOW FUNCTIONS LIKE "a%";

All available functions that begin with the character a appear.

+------------------------------+
| tab_name |
+------------------------------+
| abs |
| acos |
| add_months |
...

5. Get more information about a particular function.

DESCRIBE FUNCTION abs;

+---+
| tab_name |
+---+
| ABS(x) - returns the absolute value of x |
+---+

49

Cloudera Runtime Using functions

6. Get more information about the function.

DESCRIBE FUNCTION EXTENDED abs;

+--+
| tab_name |
+--+
| ABS(x) - returns the absolute value of x |
| Synonyms: abs |
| Example: |
| > SELECT ABS(0) FROM src LIMIT 1; |
| 0 |
| > SELECT ABS(-5) FROM src LIMIT 1; |
| 5 |
| Function class:org.apache.hadoop.hive.ql.udf.generic.GenericUDFAbs |
| Function type:BUILTIN |
+--+

Create a user-defined function
You export user-defined functionality (UDF) to a JAR from a Hadoop- and Hive-compatible Java project and store
the JAR on your cluster or object store. Using Hive commands, you register the UDF based on the JAR, and call the
UDF from a Hive query.

Before you begin

• You have access rights to upload the JAR to the cluster to your cluster or object store.

Cloudera Manager, Minimum Required Role: Configurator (also provided by Cluster Administrator, Full
Administrator).

• Hive on Tez or Hive LLAP is running on the cluster.
• You have installed Java and a Java integrated development environment (IDE) tool on the machine, or virtual

machine, where you will create the UDF.

Set up the development environment
You can create a Hive UDF in a development environment using IntelliJ, for example, and build the UDF. You define
the Cloudera Maven Repository in your POM, which accesses necessary JARS hadoop-common-<version>.jar and
hive-exec-<version>.jar that your define as dependencies.

Procedure

1. Open IntelliJ and create a new Maven-based project. Click Create New Project. Select Maven and the supported
Java version as the Project SDK. Click Next.

2. Add archetype information.
For example:

• GroupId: com.mycompany.hiveudf
• ArtifactId: hiveudf

3. Click Next and Finish.
The generated pom.xml appears in sample-hiveudf.

4. To the pom.xml, add properties to facilitate versioning.
For example:

<properties>
 <hadoop.version>TBD</hadoop.version>
 <hive.version>TBD</hive.version>

50

Cloudera Runtime Using functions

</properties>

5. In the pom.xml, define the repositories.

Use internal repositories if you do not have internet access.

<repositories>
 <repository>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>warn</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <id>HDPReleases</id>
 <name>HDP Releases</name>
 <url>http://repo.hortonworks.com/content/repositories/releases/</u
rl>
 <layout>default</layout>
 </repository>
 <repository>
 <id>public.repo.hortonworks.com</id>
 <name>Public Hortonworks Maven Repo</name>
 <url>http://repo.hortonworks.com/content/groups/public/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>repository.cloudera.com</id>
 <url>https://repository.cloudera.com/artifactory/cloudera-repos/<
/url>
 </repository>
 </repositories>

6. Define dependencies.
For example:

<dependencies>
 <dependency>
 <groupId>org.apache.hive</groupId>
 <artifactId>hive-exec</artifactId>
 <version>${hive.version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>${hadoop.version}</version>
 </dependency>
</dependencies>

Create the UDF class
You define the UDF logic in a new class that returns the data type of a selected column in a table.

Procedure

1. In IntelliJ, click the vertical project tab, and expand hiveudf: hiveudf src main . Select the java directory, and on
the context menu, select New Java Class , and name the class, for example, TypeOf.

51

Cloudera Runtime Using functions

2. Extend the GenericUDF class to include the logic that identifies the data type of a column.
For example:

package com.mycompany.hiveudf;

import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.\
PrimitiveObjectInspectorFactory;
import org.apache.hadoop.io.Text;
public class TypeOf extends GenericUDF {
 private final Text output = new Text();
@Override
 public ObjectInspector initialize(ObjectInspector[] arguments) throws U
DFArgumentException {
 checkArgsSize(arguments, 1, 1);
 checkArgPrimitive(arguments, 0);
 ObjectInspector outputOI = PrimitiveObjectInspectorFactory.writableSt
ringObjectInspector;
 return outputOI;
 }

@Override
 public Object evaluate(DeferredObject[] arguments) throws HiveException
 {
 Object obj;
 if ((obj = arguments[0].get()) == null) {
 String res = "Type: NULL";
 output.set(res);
 } else {
 String res = "Type: " + obj.getClass().getName();
 output.set(res);
 }
 return output;
 }

@Override
 public String getDisplayString(String[] children) {
 return getStandardDisplayString("TYPEOF", children, ",");
 }
}

Build the project and upload the JAR
You compile the UDF code into a JAR and add the JAR to the classpath on the cluster. You choose one of several
methods of configuring the cluster so Hive can find the JAR.

About this task
CDP Private Cloud Base

Use one of these methods to configure the cluster to find the JAR:

• Direct reference

Straight-forward, but recommended for development only.
• Hive aux library directory

Prevents accidental overwriting of files or functions. Recommended for tested, stable UDFs to
prevent accidental overwriting of files or functions.

52

Cloudera Runtime Using functions

• Reloadable aux JAR

Avoids HiveServer restarts. Recommended if you anticipate making frequent changes to the
UDF logic.

CDP Public Cloud

Use the Direct reference method only.

Procedure

1. Build the IntelliJ project.

...
[INFO] Building jar: /Users/max/IdeaProjects/hiveudf/target/TypeOf-1.0-S
NAPSHOT.jar
[INFO] ---

[INFO] BUILD SUCCESS
[INFO] --

[INFO] Total time: 14.820 s
[INFO] Finished at: 2019-04-03T16:53:04-07:00
[INFO] Final Memory: 26M/397M
[INFO] --

Process finished with exit code 0

2. In IntelliJ, navigate to the JAR in the /target directory of the project.

3. Configure the cluster so Hive can find the JAR using one of the following methods.

• Direct JAR reference

a. Upload the JAR to HDFS (CDP Private Cloud Base) or S3 (CDP Public Cloud).
b. Move the JAR into the Hive warehouse. For example, in CDP Private Cloud Base:

$ hdfs dfs -put TypeOf-1.0-SNAPSHOT.jar /warehouse/tablespace/manage
d/hiveudf-1.0-SNAPSHOT.jar

• Hive aux JARs path (CDP Private Cloud Base only)

a. In CDP Private Cloud Base, click Cloudera Manager Clusters and select the HIVE. Click Configuration
and search for Hive Auxiliary JARs Directory.

b. Specify a directory value for the Hive aux JARs property if necessary, or make a note of the path.
c. Upload the JAR to the specified directory on all Hive metastore instances.
d. Click Cloudera Manager Clusters and select the HIVE-ON-TEZ. Click Configuration and search for Hive

Auxiliary JARs Directory.
e. Upload the JAR to the specified directory on all HiveServer instances.

• Reloadable aux JAR (CDP Private Cloud Base only)

a. Upload the JAR to the /hadoop/hive-udf-dyn directory on all HiveServer instances (and all Metastore
instances, if separate). An HDFS location is not supported.

b. In hive-site.xml, set the following property: hive.reloadable.aux.jars.path=/hadoop/hive-udf-dyn.

4. In IntelliJ, click Save.

5. Click Actions Deploy Client Configuration .

6. Restart the Hive service. For example, restart HIVE.

53

Cloudera Runtime Using functions

Register the UDF
In the cluster, you log into Hive, and run a command from Beeline to make the UDF functional in Hive queries. The
UDF persists between HiveServer restarts.

Before you begin
You need to set up UDF access, using a Ranger policy for example.

About this task
In this task, the registration command differs depending on the method you choose to configure the cluster for
finding the JAR. If you use the Hive aux library directory method that involves a symbolic link, you need to restart
HiveServer after registration. If you use the Direct JAR reference or Reloadable aux JAR methods, you do not need
to restart HiveServer. You must recreate the symbolic link after any patch or maintenance upgrades that deploy a new
version of Hive.

Procedure

1. Using Beeline, login to HiveServer as a user who has UDF access.

HiveServer, for example:

beeline -u jdbc:hive2://mycluster.com:10000 -n hive -p

2. At the Hive prompt, select a database for use.
USE default;

3. Run the registration command that corresponds to the way you configured the cluster to find the JAR.

In the case of the direct JAR reference configuration method, you include the JAR location in the command. If
you use another method, you do not include the JAR location. The classloader can find the JAR.

• Direct JAR reference:

CREATE FUNCTION udftypeof AS 'com.mycompany.hiveudf.TypeOf01' USING JAR
'S3:///warehouse/tablespace/managed/TypeOf01-1.0-SNAPSHOT.jar';

• Hive aux library directory (CDP Private Cloud Base only):

a. Set up a symbolic link on the command line of the local file system.

ln -s /local-apps/hive-udf-aux <path to hive parcel>/hive/auxlib

b. In Beeline, run the command to register the UDF.

CREATE FUNCTION udftypeof AS 'com.mycompany.hiveudf.Typeof01';

c. Restart HiveServer.
• Reloadable aux JAR (CDP Private Cloud Base only):

RELOAD;
CREATE FUNCTION udftypeof AS 'com.mycompany.hiveudf.Typeof01';

4. Check that the UDF is registered.

SHOW FUNCTIONS;

You scroll through the output and find default.typeof.

Call the UDF in a query
After registration of a UDF, you do not need to restart Hive before using the UDF in a query. In this example, you
call the UDF you created in a SELECT statement, and Hive returns the data type of a column you specify.

54

Cloudera Runtime Using functions

Before you begin

• For the example query in this task, you need to create a table in Hive and insert some data.
• As a user, you need to have permission to call a UDF, which a Ranger policy can provide.

About this task
This task assumes you have the following example table in Hive:

+------------------+---------------+---------------+
| students.name | students.age | students.gpa |
+------------------+---------------+---------------+
| fred flintstone | 35 | 1.28 |
| barney rubble | 32 | 2.32 |
+------------------+---------------+---------------+

Procedure

1. Use the database in which you registered the UDF.
For example:

USE default;

2. Query Hive depending on how you configured the cluster for Hive to find the JAR.

• Direct JAR reference or Hive aux library directory

For example:

SELECT students.name, udftypeof(students.name) AS type FROM students WHE
RE age=35;

• Reloadable aux JAR

For example:

RELOAD;
SELECT students.name, udftypeof(students.name) AS type FROM students WHE
RE age=35;

You get the data type of the name column in the students table.

+------------------+--
--------+
| students.name | type
 |
+------------------+--
--------+
| fred flintstone | Type: org.apache.hadoop.hive.serde2.io.HiveVarcharWri
table |
+------------------+--
--------+

55

	Contents
	Apache Hive 3 tables
	Locating Hive tables and changing the location
	Refer to a table using dot notation
	Create a CRUD transactional table
	Create an insert-only transactional table
	Create, use, and drop an external table
	Drop an external table along with data
	Convert a managed, non-transactional table to external
	Using constraints
	Determine the table type

	Hive 3 ACID transactions
	Scheduling queries
	Enable scheduled queries
	Periodically rebuild a materialized view
	Get scheduled query information and monitor the query

	Using materialized views
	Create and use a materialized view
	Use materialized view optimations from a subquery
	Drop a materialized view
	Show materialized views
	Describe a materialized view
	Manage query rewrites
	Create and use a partitioned materialized view

	Apache Hive query basics
	Query the information_schema database
	Insert data into a table
	Update data in a table
	Merge data in tables
	Delete data from a table
	Create a temporary table
	Configure temporary table storage

	Use a subquery
	Subquery restrictions

	Aggregate and group data
	Query correlated data
	Using common table expressions
	Use a CTE in a query

	Escape an illegal identifier
	CHAR data type support
	ORC vs Parquet in CDP

	Create a default directory for managed tables
	Configure a table location outside the warehouse root directory

	Compare tables using ANY/SOME/ALL
	Use wildcards with SHOW DATABASES
	Partitions introduction
	Create partitions dynamically
	Manage partitions
	Automate partition discovery and repair
	Repair partitions manually using MSCK repair
	Manage partition retention time

	Generate surrogate keys
	Using JdbcStorageHandler to query RDBMS
	Using functions
	Reload, view, and filter functions
	Create a user-defined function
	Set up the development environment
	Create the UDF class
	Build the project and upload the JAR
	Register the UDF
	Call the UDF in a query

