Cloudera Runtime 7.1.6

Securing Apache Kafka

Date published: 2019-12-18
Date modified: 2021-03-03

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Channel eNCIYPLION........ooee e e ere e e 4
Configure TLS/SSL encryption for Kafka BrOKENS..........cuoiiiiriiieiererer e 4
Configure TLS/SSL encryption for KafKa CHENES.........coiiiiiiiinenereee e 5
Configuring TLS/SSL encryption for Kafka MirrorMaker ..o 6
Configure Zookeeper TLS/SSL SUPPOIt fOr KafKaL........coiiiiririieiieerie e 7

FA U 14 = 1A Lo 4 o o PSSR 8
TLS/SSL client AUthENTICELION.ceiieiereeiiriete ettt sttt sttt e et e et e seebenenbe e 8

Configure TLS/SSL client authentication for Kafka brokers...........ccceovevevcecvnie s 8
Configure TLS/SSL authentication for Kafka ClientS.........ccceveeeieieeiesine e 9
Principal NamME MaPPING.....c.eiueeeiiiie s se st e e see e e e e e e stesre s aesresteseeseenaesse s e e eseeneeneesensesnesrenres 11
Enable Kerberos authentication fOr KafKaL.........cooiriiriineirece e 11
Delegation token based authentiCation.............ccveiieiicieiie i s sa e s seeneenens 13
Enable or disable authentication with delegation tOKENS............ccccvveriie v 14
Manage individual delegation tOKENS............cciiiiieie i neerenne s 15
ROtate the MASLEr KEY/SECIEL........ccueieeeeeeeee e ettt s ae s be s tesee e e nae e e e eneas 15
Client authentication using delegation tOKENS............ccovviiirerieie s 16
Kafka security hardening With ZOOKEEPEr ACLS.......ccciueicieeeecer et sre e 17
DY e W11 1< g1 Lo o] o I SRS 20
Configure LDAP authentication for Kafka broKers..........ccccceoeeeviiisesienie s 20
Configure Kafka LDAP authentication for Kafka Clients..........cccccvvvieiienie s 21
N W11 0= o (o= (o o OO 22
Configure PAM authentication for Kafka BroKers............covcvieiiisie s 22
Configure PAM authentication for Kafka ClientS.........ccvceieiiieicieciecesese s 23

F N U 18 a1 @14 11 Lo o PSS 24

L 00 = TP U TSP PPV 24
Enable authorization in Kafka With RaNGEN ..o s 24

Configure the resource-based Ranger service used for authorization.............c.ccverereneneieinincncnee 25

[NEEr -Dr OKEr SECUTITYeiiieeie e ree s 26

Cloudera Runtime Channel encryption

Kafka supports client to broker and inter-broker TLS/SSL encrypted communications. Configuring TLS/SSL
encryption for a Kafka deployment involves configuring both clients and brokers. In addition to this, Kafka also
supports TLS/SSL communication with Zookeeper.

Kafka supports TLS/SSL encrypted communication with both brokers and clients. To enable and configure TLS/SSL,
you need to enable TLS/SSL for the brokers and enter key and truststore related information.

Thefollowing list of steps walks you through the configuration required to set up TLS/SSL encryption for Kafka
brokers. It lists all mandatory configuration properties as well as a number of optional properties that you can
configure.

Kafka brokers support multiple key and truststore types. The following instructions, however, do not provide details
regarding how the key or truststore type used by the brokersis configured. This is because the store type is not
configured at a broker level. Instead, it is configured on Cloudera Manager’s central security page by going to
AdministrationSettingsJava Keystore Type.

* Generate or acquire akey and truststore for your brokers which contain all necessary keys and certificates.

* Note down the locations and passwords for the key and truststores. Y ou will need to provide these during
configuration.

1. In Cloudera Manager, select the Kafka service.
2. Goto Configuration.
3. Find and configure the following properties based on your cluster and requirements.

Enable TLS/SSL for Kafka Broker Enables or disables TLS/SSL communication between clients and the
Kafka broker.
Kafka Broker TLS/SSL Server JKS Keystore File Location The path to the TLS/SSL keystore file containing the server

certificate and private key used for TLS/SSL. Used when the Kafka
broker isacting asa TLS/SSL server.

Kafka Broker TLS/SSL Server JKS Keystore File Password The password for the Kafka broker keystorefile.

KafkaBroker TLS/SSL Server JKS Keystore Key Password The password that protects the private key contained in the keystore
used when the Kafka broker isacting asa TLS/SSL server.

Kafka Broker TLS/SSL Client Trust Store File The location on disk of the truststore used to confirm the authenticity
of TLS/SSL servers that the Kafka broker might connect to. Thisis
used when the Kafka broker isthe clientina TLS/SSL connection.
This truststore must contain the certificate(s) that signed the
certificate(s) of the connected service(s). If this parameter is not
provided, the default list of known certificate authorities is used
instead.

Cloudera Runtime Channel encryption

Cloudera Manager Property Description

KafkaBroker TLS/SSL Client Trust Store Password The password for the Kafka broker truststore file. This password is
not mandatory to access the truststore; thisfield can be left blank.
This password provides optional integrity checking of thefile. The
contents of truststores are certificates, and certificates are public
information.

4. (Optional) Configure additional properties.
If required, additional TLS/SSL related properties can be configured with the Kafka Broker Advanced

Configuration Snippet (Safety Valve) for kafka.properties property. The following are some of the most
commonly used optiona properties:

Kafka Broker Property Description

ssl.provider The name of the security provider used for TLS/SSL connections.
Default is the default security provider of the VM.

ssl.cipher.suites A cipher suite is anamed combination of authentication, encryption,
MAC, and a key exchange algorithm used to negotiate the security
settings for a network connection using the TLS/SSL network
protocol.

ssl.enabled.protocols List of enabled protocols, for example, TLSv1.2,TLSv1.1,TLSv1.
Should contain at least one protocol.

5. Click Save Changes.
6. Restart the Kafka service.

Results
Kafka brokers are configured for TLS/SSL encryption.

What to do next

Configure your clients for TLS/SSL encryption. Alternatively, you can also continue with configuring TLS/SSL
authentication for the brokers.

Related Information

Configure TLS/SSL client authentication for Kafka brokers

Configure TLS/SSL encryption for Kafka clients

Kafka supports TLS/SSL encrypted communication with both brokers and clients. Client configuration is done by
setting the relevant security-related properties for the client.

About this task

The following steps demonstrate configuration for the console consumer or producer. If you are configuring a custom
developed client, see Java client security examples or .Net client security examples for code examples.

Before you begin

» Generate or acquire atruststore containing the certificate of the Certificate Authority that issued the broker
certificates.

» Note down the location and password for the truststore. Y ou will need to provide these during configuration.

Procedure

1. Createa.propertiesfile.
In this example the file is named client.properties.

Cloudera Runtime Channel encryption

2. Add the mandatory propertiesto thefile.
The following configuration example contains all mandatory properties:

security. protocol =SSL
ssl.truststore.location= [***PATH TO CLI ENT TRUSTSTORE***]
ssl . truststore. passwor d=[*** PASSWORD* * *

3. (Optional) Add additional security propertiesto thefile.

Depending on your requirements and broker configuration, additional configuration properties might also be
needed. The following are some of the most commonly used optional properties:
e sdl.provider
» sd.cipher.suites
» sdl.enabled.protocols
e sdl.truststoretype
« sd.keystoretype
4. Runtheclient.
Console Producer

kaf ka- consol e- producer --bootstrap-server [***HOST1: PORT1***] --t
opic [***TOPIC***] --producer.config client.properties

Console Consumer

kaf ka- consol e- consuner --bootstrap-server [***HOST1: PORT1***] --t
opic [***TOPI C***] --consuner.config client.properties

Kafka clients are configured for TLS/SSL encryption.

Java client security examples
.Net client security examples

The Kafka MirrorMaker role supports TLS/SSL encrypted communication with Kafka brokers. To enable and
configure TLS/SSL, you need to enable TLS/SSL for the MirrorMaker role, enter key and truststore rel ated
information, and specify the client authentication used by the source and destination Kafka clusters.

» Generate or acquire akey and truststore for the MirrorMaker role which contain all necessary keys and
certificates.

* Note down the locations and passwords for the key and truststores. Y ou will need to provide these during
configuration.

1. In Cloudera Manager, select the Kafka service.
2. Goto Configuration.

https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/kafka-developing-applications/topics/kafka-develop-java-security-example.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/kafka-developing-applications/topics/kafka-develop-dotnet-security-example.html

Cloudera Runtime

Channel encryption

3. Find and configure the following properties based on your cluster and requirements.

Table 1:

Cloudera Manager Property Description

Enable TLY/SSL for Kafka MirrorMaker
ssl_enabled

Encrypt communication between clients and Kafka MirrorMaker
using Transport Layer Security (TLS) (formerly known as Secure
Socket Layer (SSL)).

KafkaMirrorMaker TLS/SSL Server JKS Keystore File Location

ssl_server_keystore location

The path to the TLS/SSL keystore file containing the server
certificate and private key used for TLS/SSL. Used when Kafka
MirrorMaker isacting asa TLS/SSL server.

Kafka MirrorMaker TLS/SSL Server JKS Keystore File Password

ssl_server_keystore password

The password for the Kafka MirrorMaker keystorefile.

Kafka MirrorMaker TLS/SSL Server JKS Keystore Key Password
ssl_server_keystore keypassword

The password that protects the private key contained in the JKS
keystore used when Kafka MirrorMaker is acting asa TLS/SSL
server.

KafkaMirrorMaker TLS/SSL Trust Store File

ssl_client_truststore location

The location on disk of the trust store, used to confirm the
authenticity of TLS/SSL servers that Kafka MirrorMaker might
connect to. Thistrust store must contain the certificate(s) used to
sign the service(s) connected to. If this parameter is not provided, the
default list of well-known certificate authorities is used instead.

Kafka MirrorMaker TLS/SSL Trust Store Password
ssl_client_truststore password

The password for the Kafka MirrorMaker TLS/SSL Trust Store File.
This password is not required to access the trust store; thisfield can
be left blank. This password provides optional integrity checking of
thefile. The contents of trust stores are certificates, and certificates
are public information.

Source Kafka Cluster's Client Auth

source.sdl.client.auth

Only required if the source Kafka cluster requires client
authentication.

Destination Kafka Cluster's Client Auth
destination.sdl.client.auth

Only required if destination Kafka cluster requires client
authentication.

4. Click Save Changes.
5. Restart the Kafka service.

Results

The Kafka MirrorMaker role is configured for TLS/SSL encryption.

Configure Zookeeper TLS/SSL support for Kafka

Learn how to configure TLS/SSL communication between Kafka and Zookeeper.

About this task

Y ou can configure Kafka to connect to and communicate with Zookeeper through a secure TLS/SSL channel. The
feature can be enabled or disabled with the Enable Secure Connection to ZooK eeper property. This property is set to
true by default, however, it only takes effect if the Enable TLS/SSL for ZooK eeper property is also enabled for the

dependent ZooK eeper service.

Before you begin

If you want to enable secure connections to Zookeeper, make sure that the Enable TLS/SSL for ZooK eeper property
is enabled for the dependent ZooK eeper service. For more information, see Configure ZooKeeper TLS/SSL using

Cloudera Manager.

https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/zookeeper-security/topics/zookeeper-configure-tls-ssl.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/zookeeper-security/topics/zookeeper-configure-tls-ssl.html

Cloudera Runtime Authentication

1. In Cloudera Manager, select the Kafka service.
2. Select Configuration and find the Enable Secure Connection to ZooK eeper property.

3. Enable or disable Zookeeper TLS/SSL support for Kafkafor all required services by selecting or clearing the
checkbox next to the name of the service.

4. Enter aReason for change, and click Save Changes to commit the changes.
5. Restart the Kafka service.

Zookeeper TLS/SSL support for Kafkais enabled or disabled for the selected Kafka services. If the feature is enabled,
the selected Kafka services communicate with their dependent Zookeeper service through a secure TLS/SSL channel.

Kafka supports TLS/SSL authentication for its clients. Configuring TLS/SSL authentication for a Kafka deployment
involves enabling TLS/SSL encryption for the brokers and then configuring both clients and brokers for TLS/SSL
authentication.

Kafka supports TLS/SSL authentication (two-way authentication). To enable and configure TLS/SSL client
authentication, you need to enable TLS/SSL encryption and set client authentication to be required by the brokers.

TLS/SSL authentication for Kafka brokers can be configured with the SSL Client Authentication property. The
property has three valid values, required, requested, and none. If set to required, al clients connecting to the broker
will be required to authenticate with TLS/SSL. If set to requested, authentication will be requested by the broker, but
clients without certificates will still be able to connect. If set to none, no SSL authentication is required.

The authenticated user'sidentity is determined by how the SSL Client Authentication property is configured and
whether a certificate is presented. The following table collects the possible outcomes:

required « authentication: successful authentication: fails
e authenticated user: [***SUBJECT FROM
THE CERTIFICATE***]

requested « authentication: successful « authentication: successful
e authenticated user: [***SUBJECT FROM |« authenticated user: ANONYMOUS
THE CERTIFICATE***]

none e authentication: successful » authentication: successful
¢ authenticated user: ANONYMOUS ¢ authenticated user: ANONYMOUS

If Ranger is used for authorization, the authenticated user'sidentity is used to determine what operations the client is
authorized to carry out. As aresult, you must ensure that policiesin Ranger are set up accordingly.

Cloudera Runtime Authentication

Cloudera does not recommend that you set this property to requested. It is only useful in alimited number of
scenarios and provides a false sense of security. Clients that present no certificates or present an invalid certificate
will still be able to establish a connection, but will authenticate as ANONYMOUS. Depending on how your cluster
is configured, the ANONY MOUS user might not have access to the required Kafka resources. This can lead to client
failure.

Configure TLS/SSL encryption for the Kafka brokers. For more information, see Configure TLS/SSL encryption for
Kafka brokers.

1. In Cloudera Manager, select the Kafka service.
2. Goto Configuration.
3. Find and configure the SSL Client Authentication property based on your cluster and requirements.

SSL Client Authentication Client authentication mode for SSL connections. This configuration
has three valid values, required, requested, and none. If set to
required, client authentication isrequired. If set to requested, client
authentication is requested and clients without certificates can

still connect. If set to none, which is the default value, no client
authentication isrequired

sdl.client.auth

Note: If you are using the SASL_SSL protocol, for example you authenticate with Kerberos and

IE encrypt with TLS/SSL, and set SSL Client Authentication to required, Kafkawill ignore the SSL Client
Authentication property. In a case like this, SASL authentication takes precedence. Authenticating the
client twice with both SASL and SSL would be redundant.

4. Configure principal mapping rules:
a) Findthe Kafka Broker Advanced Configuration Snippet (Safety Valve) for kafka.properties property.
b) Add principal mapping rules.
For example:

ssl . princi pal . mappi ng. rul es=RULE: *. *[Cc] [Nn] =([a- zA- Z0-9.]*) . *$/ $1/ L, DEF
AULT

E Note: For more information on principal mapping rules, see Principal name mapping.

5. Click Save Changes.
6. Restart the Kafka service.

Kafka brokers are configured for TLS/SSL authentication.
Configure your clients for TLS/SSL authentication.
Configure TLS/SSL encryption for Kafka brokers

Principal name mapping

Kafka supports TLS/SSL authentication (two-way authentication). Client configuration is done by setting the relevant
security-related properties for the client.

Cloudera Runtime Authentication

The following steps demonstrate configuration for the console consumer or producer. If you are configuring a custom
developed client, see Java client security examples or .Net client security examples for code examples.

« Generate or acquire akey and truststore for your clients which contain al necessary keys and certificates.

« Note down the locations and passwords for the key and truststores. Y ou will need to provide these during
configuration.

« |f the Certificate Authority of the client certificatesis different from the Certificate Authority of the broker
certificates, ensure the client Certificate Authority certificate is added to the truststore of the Kafka brokers.

Otherwise, the broker will not trust the certificates used by its clients and a trusted connection will not be
established.

1. Create a.propertiesfile.
In this example the file is named client.properties.
2. Add the mandatory propertiesto thefile.
The following configuration example contains all mandatory properties:

security. protocol =SSL

ssl.truststore.l ocation=[***PATH TO CLI ENT TRUSTSTORE***]
ssl . truststore. passwor d=[*** PASSWORD* * *

ssl . keystore. |l ocation=[***PATH TO CLI ENT KEYSTORE***]

ssl . keyst or e. passwor d=[*** PASSWORD* * * |

ssl . key. passwor d=[** * PASSWORD* * * |

3. (Optional) Add additional properties.
Depending on your requirements and broker configuration, other configuration properties might also be needed.
The following are some of the most commonly used optional properties:
e sdl.provider
* ss.cipher.suites
« sd.enabled.protocols

» sd.truststore.type
» sdl.keystoretype

4. Runtheclient.
Console Consumer

kaf ka- consol e- producer --bootstrap-server [***HOST1: PORT1***] --t
opic [***TOPIC***] --producer.config client.properties

Console Producer

kaf ka- consol e- consuner --bootstrap-server [***HOST1: PORT1***] --t
opic [***TOPIC***] --consuner.config client.properties

Kafka clients are configured for TLS/SSL authentication.

Java client security examples
.Net client security examples

10

https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/kafka-developing-applications/topics/kafka-develop-java-security-example.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/kafka-developing-applications/topics/kafka-develop-dotnet-security-example.html

Cloudera Runtime Authentication

Kafka can be configured to trand ate certificate subject names into short names. Thisis done by adding mapping rules
to Kafka's configuration. These short names can be used as the unique identifier of the user. Compared to subject
names, short names are much easier to manage.

When aclient authenticates using a TLS/SSL keystore, by default Kafka assumes that the username for that client is
the certificate's subject name, which is usually a Distinguished Name such as the following:

cn=al i ce, cn=gr oups, cn=account s, dc=hadoopsecurity, dc=l ocal

Working with these long names s difficult. Security policies and group mappings are usually defined in terms of the
user's short name (alice) rather than the full Distinguished Name. Kafka can be configured to trandate the certificate's
subject into a short name that can be used as the unique identifier of the user.

This can be done by adding the necessary mapping rulesto the sdl.principal.mapping.rules Kafka property.
However, this property is not directly configurable in Cloudera Manager. As aresult, you need to use the Kafka
Broker Advanced Configuration Snippet (Safety Valve) for kafka.properties property to add it to your configuration.

Note: The sdl.principal.mapping.rules property is only supported in Kafka 2.4.0 or higher. In older versions
B of Kafka, a custom principal builder needs to be created and provided.

The rule takes the form of aregular expression to match the subject name of the certificate and the transformation to
apply to the match. The property accepts multiple rules. Each rule has to be separated by acomma. The last ruleis
usually the DEFAULT rule, which uses the full subject name.

For example, consider the following setting:
ssl . princi pal . mappi ng. rul es=RULE: . *[Cc] [Nn] =([a- zA-Z0-9.]*).*$/$1/ L, DEFAULT

This configuration has two rules which are processed in the following order:
1. RULEA[CCc][NN]=([a-zA-Z0-9.]*).*$/$1/L
2. DEFAULT

Thefirst rule to match the certificate's subject nameis used, later ones areignored. The DEFAULT ruleisa'catch
al" rule. It dlways matches and does not do any replacement if none of the previous ones were matched.

The regular expression of the first rule,"[Cc][Nn]=([a-zA-Z0-9.]*).*$, matches any subject that starts with CN=,cn=,
Cn=, or cN=, followed by the user's short name, that contains characters ranging between a-z,A-Z, and 0-9, followed
by any string. It then replaces the matched string with the user's short name. The short name is the content matched
inside the parenthesis and is referenced in the second part of therule as $1. The L at the end of the rule convertsthe
resulting string to lowercase.

For more information and examples on principal mapping rules, see the Apache Kafka documentation.
Apache Kafka documentation
Learn how to enable Kerberos Authentication for Kafka.

Apache Kafka supports Kerberos authentication, but it is supported only for the new Kafka Producer and Consumer
APls.

11

https://kafka.apache.org/documentation/#security_authz_ssl

Cloudera Runtime Authentication

If you already have a Kerberos server, you can add Kafkato your current configuration. If you do not have a Kerberos
server, install it before proceeding. See Enabling Kerberos Authentication for Runtime for detailed instructions

If you already have configured the mapping from Kerberos principals to short names using the hadoop.security.auth
_to_local HDFS configuration property, configure the same rules for Kafka by adding the sasl.kerberos.principal.to.l
ocal.rules property to the Advanced Configuration Snippet for Kafka Broker Advanced Configuration Snippet using
Cloudera Manager. Specify the rules as a comma separated list.

In Cloudera Manager, navigate to Kafka Configuration.
Set SSL Client Authentication to none.

Set Inter Broker Protocol to SASL_PLAINTEXT.
Click Save Changes.

Restart the Kafka service, select Action Restart.

Make sure that listeners= SASL_PLAINTEXT is present in the Kafka broker logs, by default in /var/log/kafkal/s
erver.log.

7. Create ajaas.conf file with either cached credentials or keytabs.

S O o A

» To use cached Kerberos credentials, where you use kinit first, use this configuration:

Kaf kad i ent {
com sun. security. aut h. nodul e. Kr b5Logi nMbdul e required
useTi cket Cache=tr ue;

H

< |f you use a keytab, use this configuration:

Kaf kad i ent {

com sun. security. aut h. nodul e. Kr b5Logi nMbdul e required
useKeyTab=t r ue

keyTab="/etc/ security/ keyt abs/ nykaf kacl i ent. keyt ab"

princi pal =" nykaf kacl i ent/clients. host nane. com@xAMPLE. COM';

For more information on generating keytabs, see Get or create a Kerberos principal for each user account.
8. Createthe client.properties file containing the following properties.

security. protocol =SASL_PLAI NTEXT
sasl . ker ber os. servi ce. nane=kaf ka

9. Test with the Kafka console producer and consumer.
To obtain a Kerberos ticket-granting ticket (TGT):
ki nit USER
10. Verify that the jaas.conf file is used by setting the environment.
export KAFKA OPTS="-D ava.security. auth. | ogin.config=/hone/user/jaas. conf"

11. Verify that your topic exists.

kaf ka-topics --list --bootstrap-server ANYBROKER 9092 --comand-config ¢
lient.properties

12

Cloudera Runtime Authentication

12. Run a Kafka consol e producer.

kaf ka- consol e- producer --broker-1list ANYBROKER: 9092 --topic testl --produc
er.config client.properties

13. Run a Kafka console consumer.

kaf ka- consol e- consunmer --topic testl --from begi nning --bootstrap-se
rver ANYBROKER 9092 --consuner.config client. properties

Enabling Kerberos Authentication
Get or create aKerberos principal for each user account

An overview on Kafka delegation tokens.

Delegation tokens are lightweight authentication method to complement existing SASL authentication. Kafkais
designed to support a high number of clients. However, using Kerberos authentication might be difficult in some
environments due to the following reasons:

« With Kerberos authentication, all clients need accessto akeytab or aTGT. Securely distributing the keytabs
requires alot of effort and careful administration. When the TGT is compromised, it has a high blast radius,
especially when the same keytabs are used to access multiple services.

« With Kerberos, client authentication is centralized, and the high number of clients can put a high load on the KDC
(Key Distribution Center), resulting in a bottleneck.

Many Hadoop components use del egation tokens to mitigate these problems:

» Delegation tokens allow these components to secure distributed workloads with low administrative overhead.

« Itisnot required to distribute a Kerberos TGT or keytab, which, if compromised, may grant accessto all services.

« A delegation token is strictly tied to its associated service causing less damage if exposed.

« Delegation tokens make credential renewal more lightweight. Thisis because the renewal is designed in such a
way that only the renewer and the service are involved in the renewal process. The token itself remains the same,
so parties already using the token do not have to be updated.

Kafka del egation tokens are model ed after Hadoop del egation tokens, and many of their mechanism are the same or
very similar. However, this does not mean that they are interchangeable.

Delegation tokens are generated and verified following the HM AC mechanism. There are two basic parts of
information in a delegation token, the tokenl D (public part) and the HMAC value (private part).

Thefollowing list of steps give ageneric overview on how delegation tokens are used:

1. Theuser initially authenticates with the Kafka cluster via SASL, and obtains a del egation token using either the
AdminClient APIs or the kafka-del egation-token tool. The principal that created the delegation token is its owner.

2. The delegation token details are securely passed to Kafka clients. This can be achieved by sending the token data
over an SSL/TLS encrypted connection or writing them to a secure shared storage.

3. Instead of using Kerberos, the Kafka client uses the del egation tokens for subsequent authentication with the
brokers.

13

https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/security-kerberos-authentication/topics/cm-security-kerberos-enabling-intro.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/security-kerberos-authentication/topics/cm-security-kerberos-enabling-step6-user-principals.html

Cloudera Runtime Authentication

4. Thetoken isvalid for acertain time period, but it can be:
Renewed

A delegation token can be renewed multiple times up until its maximum life before it expires. The
token can be renewed by the owner or any other principals the owner sets as “renewer” at time of
creation.

Revoked
A delegation token can be revoked ahead of its expiry time.

Certain delegation token properties can be configured on a service level in Cloudera Manager. Y ou can enable or
disable delegation tokens, as well as configure expiry time and maximum lifetime. For more information, see Kafka
Propertiesin Cloudera Runtime.

HMAC Wikipedia Page
Client authentication using delegation tokens
Kafka Properties in Cloudera Runtime

Learn how to enable or disable Kafka del egation tokens.

Delegation token based authentication requires that both the Enable K erberos Authentication and Enable Delegation
Tokens properties are set to true. The default value of the Enable Delegation Tokens property istrue, but will have no
effect until Kerberosis also enabled.

Although enabling delegation tokens enables authentication between clients and servers using the SASL/SCRAM
mechanism, it isonly as avehicle for delegation tokens. Using SCRAM credentialsis not supported otherwise.

Sensitive del egation token metadata is stored in Zookeeper. It is recommended to restrict access on Zookeeper nodes
to prevent access to sensitive delegation token related data through Zookeeper. The connection between Kafka and
Zookeeper is not encrypted, therefore, it is aso recommended to use delegation tokens only if no unauthorized person
can read and manipulate the traffic between these services.

Delegation tokens can be enabled separately for each Kafka service.

A secure Kafka cluster with Kerberos authentication enabled is required for delegation tokens to function.

1. InCloudera Manager select the Kafka service.
2. Select Configuration and find the Enable Delegation Tokens property.
3. Enable or disable delegation tokens for al required services by checking or unchecking the checkbox next to the
name of the service.
4. Click Save Changes.
5. Perform aRolling Restart:
a) Return to the Home page by clicking the Cloudera Manager logo.
b) Go to the Kafka service and select ActionsRolling Restart.
¢) Check the Restart roles with stale configurations only checkbox and click Rolling restart.
d) Click Close when the restart has finished.

14

https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/configuration-properties/topics/cm_props_cdh710_kafka.html

Cloudera Runtime

Authentication

Delegation tokens are enabled or disabled for the selected Kafka services. If delegation tokens were enabled, then the
necessary secrets and settings are generated.

Enable Kerberos authentication for Kafka
Kafka security hardening with Zookeeper ACLs

A list of example actions you can issue to manage individual delegation tokens.

The functionality that’ s needed to manage and use delegation tokens is accessible using the AdminClient APIs or the
kafka-delegation-tokens tool. All of their operations are allowed only via SASL authenticated channels.

Both the API and the script provide the following actions:

tool.

E Note: The examples presented show how these actions can be executed with the kafka-del egation-tokens

Issue, and storefor verification

Renew

Remove

Describe

The owner of the token isthe currently authenticated principal. A renewer can be specified when
reguesting the token.

kaf ka- del egati on-t okens --bootstrap-server HOSTNAVE: PORT --crea
te --max-life-tinme-period -1 --command-confi g CLI ENT. PROPERTI ES
--renewer-princi pal USER USER1

Only the owner and the principals that are renewers of the delegation token can extend its validity
by renewing it before it expires. A successful renewal extends the Delegation Token's expiration
time for another renew-interval, until it reaches its max lifetime. Expired delegation tokens cannot
be used to authenticate, the brokers will remove expired delegation tokens from the broker’s cache
and from Zookeeper.

kaf ka- del egati on-t okens --boot strap-server HOSTNAME: PORT --renew
--renewtinme-period -1 --command-config CLI ENT. PROPERTIES --h
mac LAYYSFMLSABTJIF+LTZ1LCHR/ ZZFNA==

Delegation tokens are removed when they are canceled by the client or when they expire.

kaf ka- del egati on-t okens --boot strap-server HOSTNAME: PORT --expir
e --expiry-time-period -1 --conmmand- confi g CLI ENT. PROPERTI ES
--hmac LAYYSFMLS4BTJF+LTZ1LCHR/ ZZFNA==

Tokens can be described by owners, renewers or the Kafka super user.

kaf ka- del egati on-t okens --bootstrap-server HOSTNAVE: PORT - -
descri be --command-confi g CLI ENT. PROPERTI ES --owner-pri nci
pal USER: USER1

Note: In Apache Kafka, principals that have the describe permission on the token
E resource can also describe the token.

Learn how to rotate the delegation token Master Key/Secret.

15

Cloudera Runtime Authentication

The brokers generate and verify delegation tokens using a secret called del egation.token.master.key. This secret is
generated by Cloudera Manager and securely passed to Kafka brokers when authentication with delegation tokens
isenabled. You can change the secret with the Cloudera Manager API. This should be done if the secret becomes
compromised, or smply as a precautionary measure.

Important: Clientsthat were already connected to brokers before starting the process, will continue to work
even after the master key/secret is rotated. However, any hew connections (authentication requests), aswell as
renew and expire requests with old tokens can fail.

1. Expire existing tokens.

kaf ka- del egati on-t okens --boot strap-server HOSTNAVE: PORT --expire --expi
ry-time-period -1 --commuand-config CLI ENT. PROPERTI ES --hmac LAYYSFMLS4BTJF
+LTZ1LCHR/ ZZFNA==

2. Generate a new master key

curl -X PUT -u "USER" -H "content-type: application/json" -i "htt
ps:// CLOUDERA MANAGER HOST: 7183/ api / v31/ cl ust er s/ CLUSTER NAME/ servi ce
s/ KAFKA SERVI CE NAME/ config" -d '{"itenms" : [{"name" : "del egation.toke

n. mast er . key", "val ue"
el }’
3. Perform aRolling Restart:
a) In ClouderaManager go to the Kafka service and select ActionsRolling Restart.

b) Check the Restart roles with stale configurations only checkbox and click Rolling restart.
¢) Click Close when the restart has finished.

4. Reauthenticate with all clients.
This generates the new tokens.

$(openssl rand -base64 24)'","sensitive" : tru

The Master Key/Secret is rotated.

An overview of the methods available for configuring clients to use delegation tokens.

Brokers authenticate clients by verifying the delegation tokens provided by the client against the stored delegation
tokens. Delegation token authentication makes use of SASL/SCRAM authentication mechanism under the hood.
Y ou can configure Kafka clients in two ways, to use individually assigned delegation tokens or to use acommon
delegation token.

Learn how to configure client authentication using delegation tokens on a producer or consumer level.

Y ou can set up client authentication by configuring the JAAS configuration property as well as other mandatory
properties for each client. All properties can be set in the producer.properties or consumer.properties file of the client.
With this configuration method, you have the ability to specify different token details for each Kafka client within a
JVM. Asaresult you can configure Kafka clients in away that each of them use a unique token for authentication.

Configure each client.

16

Cloudera Runtime Authentication

Example Configuration:

sasl . j aas. confi g=or g. apache. kaf ka. common. security. scram ScranlLogi nMbdule re
quired \
user name="TOKENI D" \
passwor d="LAYYSFMLSABTJF+LTZ1LCHR/ ZZFNA=="\
t okenaut h="TRUE";
security. protocol =SASL_SSL
sasl . mechani sm=SCRAM SHA- 256

Within the JAAS configuration, there are three options that need to be specified. These are the username, password
and tokenauth options.

The username and password options specify the token ID and token HMAC. The tokenauth option expresses the
intent to use token authentication to the server.

Learn how to configure client authentication using delegation tokens on an application level.

With this configuration method, you can set up al clients within aJVM to use the same delegation token for
authentication.

1. Add aKafkaClient entry with alogin module item to your JAAS configuration file.
The module has to specify the username, password and tokenauth options.

Example Configuration:

Kaf kad i ent {

or g. apache. kaf ka. common. security. scram ScranlLogi nModul e required
user name="TOKENI D"
passwor d="LAYYSFM_.S4BTJF+LTZ1LCHR/ ZZFNA=="
t okenaut h="TRUE" ;

}

The username and password options specify the token ID and token HMAC. The tokenauth option expresses the
intent to use token authentication to the server.

2. Configure the following properties for your clients.
These properties are added to producer.properties or consumer.properties file that the client uses.

security. protocol =SASL_SSL
sasl . nechani sm=SCRAM SHA- 256

3. Passthelocation of your JAAS configuration file asaJVM parameter through a command line interface.
This setsthe JAAS configuration on the Java process level.

export KAFKA OPTS="-D ava. security. auth. | ogin.config=[PATH TO JAAS. CONF] "

Learn how to restrict or unlock access to Kafka Metadata in Zookeeper.

Learn how to restrict access to Kafka metadata in Zookeeper.

17

Cloudera Runtime Authentication

Locking down znodes in Zookeeper can be used to protect Kafka metadata against unauthorized access. Direct
manipulation of metadata in Zookeeper is not only dangerous for the health of the cluster, but can also serve as an
entry point for malicious usersto gain elevated access who can then alter the owner or renewer of delegation tokens.
Access to Kafka metadata in Zookeeper is restricted by default. Follow these steps if you have previously unlocked
access, but want to re-enable access restrictions.

A secure Kafka cluster with Kerberos authentication enabled is required.

1. Enablethe use of secure ACLs:
This can be achieved by setting the zookeeper.set.acl configuration parameter to true.
a) In Cloudera Manager select the Kafka service.
b) Select Configuration.
¢) Find the Enable Zookeeper ACL property.
d) Set the property to true by checking the checkbox next to the name of the role group.
2. Perform aRolling Restart:
a) Return to the Home page by clicking the Cloudera Manager logo.
b) Check the Restart roles with stale configurations only checkbox and click Rolling restart.
¢) Click Close when the restart has finished.
3. Passthe JAAS configuration file location asa JVM parameter through a command line interface.

Y ou can do this by setting the value of the KAFKA_OPTS environment variable to -Djava.security.auth.login.c
onfig=[PATH_TO_JAAS.CONF].

export KAFKA OPTS="-Dj ava.security.auth. | ogin.config=[PATH TO JAAS. CONF] "

Replace [PATH_TO_JAASCONF] with the path to your JAAS configuration file.
4. Run the zookeeper-security-migration tool with the zookeeper.acl option set to secure.

zookeeper-security-mgration --zookeeper.connect [HOSTNAME] : [PORT]/[ZOXX
EEPER_KAFKA CHROOT] --zookeeper.acl secure

Replace [ZOOKEEPER_KAFKA_CHROOT] with the value of the zookeeper.chroot property. To view the value
of the property, in Cloudera Manager go to Kafka Configuration and search for zookeeper.chroot.

The tool traverses the corresponding sub-trees changing the ACLs of the znodes.

18

Cloudera Runtime Authentication

5. Reset the ACLs on the root node to allow full access:

Resetting the ACL S on the root node is required because the zookeeper-security-migration tool also changes the
ACLs on theroot znode. This leads to the failure of the Zookeeper canary tests, which subsequently makes the
service display as unhealthy in Cloudera Manager.

f Important: Thisstep isonly necessary if the zookeeper.chroot parameter of the broker isset to /.

Note: Because the Kafka metadata at this point is already restricted, only authorized users or Zookeeper
super users can complete this step.

a) Changethe WMFLAGS environment variable to -Djava.security.auth.login.confi
g=[PATH_TO_JAASCONF].

export JVMFLAGS="-Dj ava. security. auth. | ogin.config=[PATH TO JAAS. CONF] "
b) Start the zookeeper client.

zookeeper-client -server $(hostname -f):2181

c) Enter the following to reset the ACLSs of the root node.

set Acl / worl d:anyone: cr dwa

Kafka metadatain Zookeeper is restricted via ACLS. Administrative operations, for example topic creation, deletion,
any configuration changes and so on, can only be performed by authorized users.

Enable Kerberos authentication for Kafka

Learn how to unlock access to Kafka metadata in Zookeeper
A secure Kafka cluster with Kerberos authentication enabled is required.

1. Disablethe use of secure ACLs:

This can be achieved by setting the zookeeper.set.acl configuration parameter to false.

a) In Cloudera Manager select the Kafka service.

b) Select Configuration.

¢) Find the Enable Zookeeper ACL property.

d) Set the property to false by unchecking the checkbox next to the name of the role group.
2. Perform aRolling Restart:

a) Return to the Home page by clicking the Cloudera Manager logo.

b) Go to the Kafka service and select Actions Rolling Restart.

¢) Check the Restart roles with stale configurations only checkbox and click Rolling restart.

d) Click Close when the restart has finished.

19

Cloudera Runtime Authentication

3. Run the zookeeper-security-migration tool with the zookeeper.acl option set to unsecure

zookeeper-security-mgration --zookeeper.connect [HOSTNAME] : [PORT]/[ZOX
EEPER_KAFKA CHROOT] --zookeeper.acl unsecure

Replace [ZOOKEEPER_KAFKA_CHROOT] with the value of the zookeeper.chroot property. To view the value
of the property, in Cloudera Manager go to Kafka Configuration and search for zookeeper.chroot.

Thetool traverses the corresponding sub-trees changing the ACL s of the znodes. Access to Kafka metadata stored in
Zookeeper becomes unrestricted.

Enable Kerberos authentication for Kafka

Y ou can configure Kafka to make use of LDAP credentials for client to broker authentication. In order to enable
LDAP authentication you must configure both brokers and clients accordingly.

Learn how to configure LDAP authentication for Kafka brokers.

Y ou can enable Kafkato use LDAP credentials for client to broker authentication. Broker configuration is done by
configuring the required propertiesin Cloudera Manager.

1. In Cloudera Manager, select the Kafka service.
2. Select Configuration.
3. Enable LDAP authentication:

a) Findthe SASL/PLAIN Authentication property.
b) Click theradio button next to LDAP. Do thisfor all required Kafka services.

4., Configurethe LDAP URL:

a) FInd the LDAP URL property.
b) Addyour LDAP server URL.

For example:
| dap: // cl ouder a. exanpl e. com 636

E Note: Depending on how your LDAP is set up, the URL can start with either [dap:// or Idaps.//.

20

Cloudera Runtime Authentication

5. Find and configure the LDAP User DN Template property.

The property specifies atemplate that Kafka uses to trandate short names into Distinguished Names (DNs). The
template that you need to specify will depend on your LDAP service and the schema of the DN's it accepts. The
following list collects a number of common examples.

e |f your DN'sinclude the short name in the uid component, for example:
ui d=j sm t h, ou=user s, dc=nyconpany, dc=com
Y ou can use atemplate similar to the following:

ui d={ 0}, ou=user s, dc=nyconpany, dc=com

« |If your LDAP service accepts usernames in the form of:
j sm t h@wyconpany. com
Y ou can use the following template:

{0} @ryconpany. com
e |f your LDAP service accepts usernames that do not have a domain, for example:

jsmth
Y ou can use the following templ ate;

{0}

6. Click Save Changes.
7. Restart the Kafka service.

LDAP authentication is configured for the brokers.
Configure clients to use LDAP authentication.
Configure Kafka LDAP authentication for Kafka clients

Cloudera Blog — How to configure clients to connect to Apache Kafka Clusters securely — Part 2: LDAP

Learn how to configure Kafka clients for LDAP authentication.

Y ou can enable Kafkato use LDAP credentials for client to broker authentication. Client configuration is done by
adding the required propertiesto the client's client.propertiesfile.

1. Setthe SASL mechanism to PLAIN.
Add the following property to the client.propertiesfile.

sasl . nechani snFPLAI N

21

https://blog.cloudera.com/how-to-configure-clients-to-connect-to-apache-kafka-clusters-securely-part-2-ldap/

Cloudera Runtime Authentication

2. Configure the security protocol.

You can either use SASL_SSL or SASL_PLAINTEXT. Which security protocol you use will depend on whether
or not SSL encryption is enabled on the broker. Add one of the following properties to the client.propertiesfile.

» If encryptionisenabled, use SASL_SSL:

security. protocol =SASL_SSL
e |If encryption isnot enabled, use SASL_PLAINTEXT:

security. protocol =SASL_PLAI NTEXT

Note: In apublic network Cloudera recommends that you use SASL_SS| as LDAP credentials can
become exposed.

3. Configure the JAAS.
Y ou have two options when configuring the JAAS:;
a) Embed the required properties in the client.properties file with the sadl.jaas.config property.

sasl .jaas.config=\

or g. apache. kaf ka. common. securi ty. pl ai n. Pl ai nLogi nModul e required \
user name="[*** LDAP USERNAME***]" \
passwor d="[*** LDAP PASSWORD***]";

Replace [LDAP_USERNAME] and [LDAP_PASSWORD] with avalid LDAP username and password.
b) Use aseparate JAAS config file:
1. Add aKafkaClient entry with alogin module item to your JAAS configuration file.

Example configuration:

Kaf kad i ent {
or g. apache. kaf ka. common. security. pl ai n. Pl ai nLogi nModul e required
user name="[*** LDAP USERNAME***]"
passwor d="[*** LDAP PASSWORD***]";

Replace [LDAP_USERNAME] and [LDAP_PASSWORD] with avalid LDAP username and password.
2. Passthelocation of your JAAS configuration file asa JVM parameter through a command line interface

export KAFKA OPTS="-D ava.security.auth.login.config=[***PATH TO
JAAS. CONF***]"

Replace [***PATH TO JAAS.CONF***] with the location of the JAAS configuration file you created.

LDAP authentication is configured for the client.

Y ou can configure Kafka to use the PAM authentication mechanism for client to broker authentication. In order to
enable PAM authentication you must configure both brokers and clients accordingly.

Learn how to configure PAM authentication for Kafka brokers.

22

Cloudera Runtime Authentication

Y ou can enable Kafkato use PAM for client to broker authentication. Broker configuration is done by configuring the
required properties in Cloudera Manager.

1. In Cloudera Manager select the Kafka service.
2. Select Configuration.
3. Enable PAM authentication:

a) Findthe SASL/PLAIN Authentication property.
b) Click the radio button next to PAM. Do thisfor all required Kafka services.

4. Configurethe PAM service name:

a) Find the PAM Service property.
b) Enter avalid PAM service name. The property defaultsto login.

5. Click Save Changes.
6. Restart the Kafka service

PAM authentication is configured for the brokers.

Configure clientsto use PAM authentication.

Learn how to configure Kafka clients for PAM authentication.

Y ou can enable Kafka to use PAM for client to broker authentication. Client configuration is done by adding the
required properties to the client's client.propertiesfile.

1. Setthe SASL mechanism to PLAIN.
Add the following property to the client.propertiesfile.
sasl . mechani sm=PLAI N

2. Configure the security protocol.

You can either use SASL_SSL or SASL_PLAINTEXT. Which security protocol you use will depend on whether
or not SSL encryption is enabled on the broker. Add one of the following properties to the client.propertiesfile.

» If encryptionisenabled, use SASL_SSL:

security. protocol =SASL_SSL
e |If encryption isnot enabled, use SASL_PLAINTEXT:

security. protocol =SASL_PLAI NTEXT

Note: In apublic network Cloudera recommends that you use SASL_SSL as credentials can become
exposed.

23

Cloudera Runtime Authorization

3. Configurethe JAAS.
Y ou have two options when configuring the JAAS:
a) Embed the required properties in the client.properties file with the sadl.jaas.config property.

sasl . jaas.config=\

or g. apache. kaf ka. conmon. securi ty. pl ai n. Pl ai nLogi nMbdul e required \
user nanme="[USERNAME] " \
passwor d="[PASSWORD] " ;

Replace [USERNAME] and [PASSWORD] with avalid username and password.
b) Use aseparate JAAS config file:
1. AddaKafkaClient entry with alogin module item to your JAAS configuration file.

Example configuration:

Kaf kaCl i ent {
or g. apache. kaf ka. common. security. pl ai n. Pl ai nLogi nMbdul e required
user name="[USERNAME] "
passwor d="[PASSWORD] " ;

Replace [USERNAME] and [PASSWORD] with avalid username and password.
2. Passthelocation of your JAAS configuration file asa JVM parameter through a command line interface

export KAFKA OPTS="-Dj ava.security.auth.| ogin.config=[PATH TO JAAS. C
ONF] "

Replace [PATH_TO_JAASCONF] with the location of the JAAS configuration file you created.

PAM authentication is configured for the client.

Learn more about authorization with Ranger.

Y ou can use Ranger to provide authorization for Kafka. For more information, see Using Ranger to Provide
Authorization in CDP.

Using Ranger to Provide Authorization in CDP

Learn how to enable Ranger authorization for Kafka.

The following instructions can be used to enable and configure Ranger authorization for Kafka where the Ranger
serviceis either deployed on the same cluster as the Kafka service or if the Ranger serviceis deployed in a Data
Context cluster.

24

https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/security-ranger-authorization/topics/security-ranger-provide-authorization-cdp.html

Cloudera Runtime Authorization

» Ranger authorization requires that at least one of the following authentication mechanismsis enabled in Kafka:

* Kerberos

e Two-way TLS/SSL
« LDAP

« PAM

» Itisalso possible to have a Kafka service depend on a Ranger service which is deployed on aremote, non Data
Context cluster. Thisis achieved by configuring the following advanced configuration snippets instead of the
configuration steps described below:

» KafkaBroker Advanced Configuration Snippet (Safety Valve) for ranger-kafka-security.xml

Name: ranger. plugin. kaf ka. policy.rest.url
Val ue: http://[****FQDN OF RANGER ADM N HOST***]: 6080/

« KafkaBroker Advanced Configuration Snippet (Safety Valve) for ranger-kafka-audit.xml

Nane: xasecure. audit. destination.solr.zookeepers
Val ue: [***FQDN OF ZOOKEEPER HOST***]:2181/solr-infra

In Cloudera Manager select the Kafka service.

Select Configuration and find the RANGER Service property.

Check the checkbox next to the name of the Ranger service that you want this Kafka service to depend on.
Click Save Changes.

Restart the Kafka service.

SEFCINE

Ranger authorization for Kafkais enabled. The Kafka service depends on the selected Ranger service for
authorization.

Configure resource-based services and policies for Kafka. Additionally, configure which resource-based service
should be used for authorization.

Configure aresource-based service: Kafka

Configure aresource-based policy: Kafka

Configure the resource-based Ranger service used for authorization
Enable Kerberos authentication for Kafka

Channel encryption

Configure TLS/SSL client authentication for Kafka brokers

LDAP authentication

PAM authentication

Learn how to configure the resource-based Ranger service used by Kafka for authorization.

Y ou can configure which resource-based service in Ranger is used by Kafkafor authorization. Thisis controlled by
the Ranger service name for this Kafka cluster property which can be set in Cloudera Manager. The property can be
configured in two ways:

25

https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/security-ranger-authorization/topics/security-ranger-resource-service-configure-kafka.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/security-ranger-authorization/topics/security-ranger-resource-policy-configure-kafka.html

Cloudera Runtime Inter-broker security

Set a user defined string

The property accepts a user defined string. Alphanumeric characters as well as underscores are
allowed, for example, kafka_1. In this case, Kafka checks if aresource-based service in Ranger
matching the defined string exists. If it does, Kafkawill use that resource-based service. If it does
not, Kafka automatically creates and uses a hew resource-based service. The name of the newly
created resource-based service will be the name that was defined in the property.

Set {{GENERATED RANGER_SERVICE_NAME}}

The property accepts { { GENERATED _RANGER_SERVICE_NAME}} asavaid value. When
this specific placeholder value is set, Cloudera Manager generates a name for a new resource-based
service. The generated name is based on the Kafka service name and the cluster name. Kafka then
checks whether a resource-based service with the generated name exists in Ranger. If it does, Kafka
will use that resource-based service. If it does not, Kafka automatically creates and uses a new
resource-based service. The name of the newly created resource-based service will be the generated
name.

In both scenarios, the creation of the role-based service happens once the Kafka service is restarted.

The property by default is set to cm_kafka. However, for clusters provisioned with the Streams M essaging cluster
definitionsin CDP Data Hub, the default is {{ GENERATED_RANGER_SERVICE_NAME}}.

Configuring this property can prove useful when you have multiple Kafka clusters that use the same Ranger service
for authorization, but you want to define unique Ranger policies for each Kafka cluster.

1. In Cloudera Manager select the Kafka service.
2. Select Configuration and find the Ranger service name for this Kafka cluster property.
3. Configure the property.
Y ou have two choices:
e Set the property to a user defined string.
e Set the property to {{ GENERATED_RANGER_SERVICE_NAME}}.
4. Click Save Changes.
5. Restart the Kafka service.

The selected resource-based service is configured and is used by Kafka for authorization. If the resource-based
service does not exist, it will be automatically created in Ranger.

Apache Ranger Authorization

Kafka can expose multiple communication endpoints, each supporting a different protocol. Supporting multiple
communication endpoints enables you to use different communication protocols for client-to-broker communications
and inter-broker communications.

The security protocol used for inter-broker communication is controlled by the Inter Broker Protocol Cloudera
Manager property. By default this property is set to INFERRED, which sets the security protocol based on how other
security properties of the broker are configured.

The INFERRED setting configures the protocol according to the following logic:

26

https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/security-ranger-authorization/topics/security-ranger-provide-authorization-cdp.html

Cloudera Runtime Configuring multiple listeners

YES YES SASL_SsL
YES NO SASL_PLAINTEXT
NO YES ssL

NO NO PLAINTEXT

Cloudera recommends that you use the protocol set by INFERRED. However, you can change this setting and use a
specific protocol. This can be done by setting the Inter Broker Protocol property to the protocol that you want to use
for inter-broker communication.

Changing the inter-broker protocol from the default is primarily useful for the following reasons:
I mproving performance

Enabling TLS/SSL is known to have performance overhead. If your Kafka brokers are behind
afirewall and are not susceptible to network snooping, you can consider enabling TLS/SSL for
client-to-broker communication, but keep inter-broker communication set as PLAINTEXT. A
configuration like this can result in a better performing Kafka cluster.

Securing a non-secur e K afka deployment without downtime

It is possible to migrate from a non-secure Kafka configuration to a secure Kafka configuration
without downtime. This can be achieved with arolling restart and by setting the inter-broker
protocol to a protocol that is supported by al brokers until al brokers are updated to support the
new protocol. For example, if you have a Kafka cluster that needs to be configured to enable
Kerberos without downtime, you would take the following steps:

1. Setinter-broker protocol to PLAINTEXT.

2. Update the Kafka service configuration to enable Kerberos.
3. Perform aroalling restart.

4. Setinter-broker protocol to SASL_PLAINTEXT.

Kafka brokers can simultaneously listen to connection requests on multiple ports with various protocols. By default
Cloudera Manager automatically configures the ports and the protocols used by the brokers to listen to requests.
However, manual configuration is possible and may be required in an advanced deployment.

Kafka Brokers support listening for connections on multiple ports with different protocols. For example, abroker is
capable of listening on port 9092 for PLAINTEXT requests and 9093 using TLS/SSL simultaneously. Which ports a
broker listens to is controlled by the listeners Kafka broker property.

In Cloudera Manager, the listeners property is not available directly for configuration. Instead, it is set by Cloudera
Manager automatically based on how other security properties are configured.

For example, if TLS/SSL is enabled, Enable TLS/SSL for Kafka Broker is set to true, Cloudera Manager
automatically configures the Kafka broker to listen to TLS/SSL requests on port 9093. That is, the listeners property
isset to SSL://[*** KAFKA BROKER FQDN***]:9093.

It isusualy sufficient to rely on Cloudera Manager to automatically configure listeners for you. However, in a
deployment where the clients use various protocols and ports to establish a connection with the broker, you need to
configure the broker so that it listens on all ports and with all protocols used by the clients. This configuration has to
be done manually with the help of an advanced configuration snippet.

Complete the following steps to manually configure listeners for Kafka brokers.

27

Cloudera Runtime Configuring multiple listeners

During configuration, ensure that listeners are set individually for each broker, using each broker’s FQDN.

1. In Cloudera Manager, select the Kafka service.

2. Goto Instances.

3. Configure listeners using an advanced configuration snippet:
Repeat the following steps for each Kafka broker role.
a) Click on aKafkabroker role.
b) Go to Configuration.

¢) Findthe Kafka Broker Advanced Configuration Snippet (Safety Valve) for kafka.properties property and
configure listeners.

For example:

li st ener s=SASL_SSL: // [*** KAFKA BROKER FQDN***]: 9093, SSL: // [*** KAFKA
BROKER FQDN***] : 9094

This example shows a configuration where the broker is accepting both SASL_SSL and SSL requests.

Important: Ensurethat you configure alistener for all protocols and ports that you want the broker to
4 % listento.

d) Click Save Changes.
4. Restart the Kafka service.

The Kafka broker now listens for connection requests on the configured ports with the configured protocols.

28

	Contents
	Channel encryption
	Configure TLS/SSL encryption for Kafka brokers
	Configure TLS/SSL encryption for Kafka clients
	Configuring TLS/SSL encryption for Kafka MirrorMaker
	Configure Zookeeper TLS/SSL support for Kafka

	Authentication
	TLS/SSL client authentication
	Configure TLS/SSL client authentication for Kafka brokers
	Configure TLS/SSL authentication for Kafka clients
	Principal name mapping

	Enable Kerberos authentication for Kafka
	Delegation token based authentication
	Enable or disable authentication with delegation tokens
	Manage individual delegation tokens
	Rotate the master key/secret
	Client authentication using delegation tokens
	Configure clients on a producer or consumer level
	Configure clients on an application level

	Kafka security hardening with Zookeeper ACLs
	Restrict access to Kafka metadata in Zookeeper
	Unlock Kafka metadata in Zookeeper

	LDAP authentication
	Configure LDAP authentication for Kafka brokers
	Configure Kafka LDAP authentication for Kafka clients

	PAM authentication
	Configure PAM authentication for Kafka brokers
	Configure PAM authentication for Kafka clients

	Authorization
	Ranger
	Enable authorization in Kafka with Ranger
	Configure the resource-based Ranger service used for authorization

	Inter-broker security
	Configuring multiple listeners

