
Cloudera Manager 7.3.1

Encrypting Data in Transit in Cloudera Manager
Date published: 2020-11-30
Date modified: 2021-03-03

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Manager | Contents | iii

Contents

Encrypting Data in Transit... 5
TLS/SSL and Its Use of Certificates... 5
Certificates Overview... 5

Wildcard Domain Certificates and SAN Certificates Support...6
Renew Certificates Before Expiration Dates... 6

Understanding Keystores and Truststores...6

Choosing manual TLS or Auto-TLS.. 9

SAN Certificates..12

Configuring TLS Encryption for Cloudera Manager Using Auto-TLS............ 12
Auto-TLS Requirements and Limitations.. 14
Rotating Auto-TLS Certificate Authority and Host Certificates... 14
Auto-TLS Agent File Locations...14
Use case 1: Use Cloudera Manager to generate internal CA and corresponding certificates............................ 15
Use case 2: Enabling Auto-TLS with an intermediate CA signed by an existing Root CA.............................. 17

Certmanager Options - Using CM's GenerateCMCA API.. 18
Use case 3: Enabling Auto-TLS with Existing Certificates.. 21

Manually Configuring TLS Encryption for Cloudera Manager....................... 25
Generate TLS Certificates.. 26

On Each Cluster Host:..26
On the Cloudera Manager Server Host..29

Configure TLS for the Cloudera Manager Admin Console.. 29
Step 1: Enable HTTPS for the Cloudera Manager Admin Console.. 30
Step 2: Specify SSL Truststore Properties for Cloudera Management Services................................... 30
Step 3: Restart Cloudera Manager and Services..31

Configure TLS for Cloudera Manager Agents.. 31
Step 1: Enable TLS Encryption for Agents in Cloudera Manager.. 31
Step 2: Enable TLS on Cloudera Manager Agent Hosts...31
Step 3: Restart Cloudera Manager Server and Agents.. 32
Step 4: Verify that the Cloudera Manager Server and Agents are Communicating.............................. 32

Enable Server Certificate Verification on Cloudera Manager Agents...32
Configure Agent Certificate Authentication.. 33

Step 1: Export the Private Key to a File... 33
Step 2: Create a Password File.. 34
Step 3: Configure the Agent to Use Private Keys and Certificates... 34
Step 4: Enable Agent Certificate Authentication...34
Step 5: Restart Cloudera Manager Server and Agents.. 35
Step 6: Verify that Cloudera Manager Server and Agents are Communicating.................................... 35

Manually Configuring TLS Encryption on the Agent Listening Port...............36

Cloudera Manager Encrypting Data in Transit

Encrypting Data in Transit

How to configure TLS/SSL encryption in Cloudera Manager.

Transport Layer Security (TLS) 1.2 is an industry standard set of cryptographic protocols for securing
communications over a network. TLS evolved from Secure Sockets Layer (SSL). Because the SSL terminology is
still widely used, Cloudera software and documentation refer to TLS as TLS/SSL, but the actual protocol used is TLS.
SSL is not used in Cloudera software.

In addition to TLS/SSL encryption, HDFS and HBase transfer data using remote procedure calls (RPCs). To secure
this transfer, you must enable RPC encryption.

For instructions on enabling TLS/SSL and RPC encryption, see the following topics:

Related Information
Transport Layer Security (TLS) 1.2

How to Convert File Encodings (DER, JKS, PEM) for TLS/SSL Certificates and Keys

TLS/SSL and Its Use of Certificates
TLS/SSL provides privacy and data integrity between applications communicating over a network by encrypting the
packets transmitted between endpoints (ports on a host, for example). Configuring TLS/SSL for any system typically
involves creating a private key and public key for use by server and client processes to negotiate an encrypted
connection at runtime. In addition, TLS/SSL can use certificates to verify the trustworthiness of keys presented during
the negotiation to prevent spoofing and mitigate other potential security issues.

Setting up Cloudera clusters to use TLS/SSL requires creating private key, public key, and storing these securely in a
keystore, among other tasks. Although adding a certificate to the keystore may be the last task in the process, the lead
time required to obtain a certificate depends on the type of certificate you plan to use for the cluster.

Certificates Overview
A certificate is digitally signed, typically by a certificate authority (CA) that indirectly (through a chain of trust)
verifies the authenticity of the public key presented during the negotiation. Certificates can be signed in one of the
three different ways shown in the table:

Type Usage Note

Public CA-signed
certificates

Recommended. This type of certificate is signed by a public certificate authority (CA), such as Symantec or Comodo.
Public CAs are trusted third-parties whose certificates can be verified through publicly accessible chains of trust.
Using this type of certificate can simplify deployment because security infrastructure, such as root CAs, are already
contained in the Java JDK and its default truststore.

Internal CA-signed
certificates

This type of certificate is signed by your organization's internal CA. Organizations using OpenSSL Certificate
Authority, Microsoft Active Directory Certificate Service, or another internal CA system can use this type of
certificate.

Self-signed certificates Not recommended for production deployments. Self-signed certificates are acceptable for use in non-production
deployments, such as for proof-of-concept setups.

During the process of configuring TLS/SSL for the cluster, you typically obtain a certificate for each host in the
cluster, and re-use the certificate obtained in a given format (JKS, PEM) as needed for the various services (daemon
roles) supported by the host. For information about converting formats, see “How to Convert File Encodings (DER,
JKS, PEM) for TLS/SSL Certificates and Keys”. As an alternative to creating discrete certificates for each host in the
cluster, Cloudera cluster components support wildcard domains and SubjectAlternateName certificates.

5

https://tools.ietf.org/html/rfc5246
https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/security-how-to-guides/topics/cm-security-openssl-jks.html

Cloudera Manager Understanding Keystores and Truststores

Wildcard Domain Certificates and SAN Certificates Support

Cloudera Manager and CDP support the use of wildcard domain certificates and SAN certificates.

A wildcard certificate—a certificate with the common name *, as in *.example.com, rather than a specific host name
—can be used for any number of first level sub-domains within a single domain name. For example, a wildcard
certificate can be used with host-1.example.com, host-2.example, host-3.example.com, and so on.

Certificates obtained from public CAs are not free, so using wildcard certificates can reduce costs. Using wildcard
certificates also makes it easier to enable encryption for transient clusters and for clusters that need to expand and
shrink, since the same certificate and keystore can be re-used.

Important: Be aware that using wildcard domain certificates has some security risks. Specifically, because
all nodes use the same certificate, a breach of any one machine can result in a breach of all machines.

Wildcard Certificates Wildcard certificates can be used by all hosts within a given domain. Using wildcard certificates for all hosts in the
cluster can reduce costs but also exposes greater potential risk.

SubjectAlternativeName
Certificates

SubjectAlternativeName (SAN) certificates are bound to a set of specific DNS names. A single SAN certificate can be
used for all hosts or a subset of hosts in the cluster. SAN certificates are used in Cloudera Manager high-availability
(HA) configurations.

Renew Certificates Before Expiration Dates

The signed certificates you obtain from a public CA (or those you obtain from an internal CA) have an expiration
date, such as that shown in this excerpt:

Expired certificates cause most cluster operations to fail. Cloudera Manager Agent hosts, for example, will not be
able to validate the Cloudera Manager Server host and will fail to launch the cluster nodes. Administrators should
note expiration dates of all certificates when they deploy the certificates to the cluster nodes and setup reminders to
allow enough time to renew.

Tip: Use OpenSSL to check the expiration dates for certificates already deployed:

openssl x509 -enddate -noout -in /opt/cloudera/security/pki/$(hostname
 -f)-server.cert.pem

Understanding Keystores and Truststores

Configuring Cloudera Manager Server and cluster components to use TLS/SSL requires obtaining keys, certificates,
and related security artifacts.

6

Cloudera Manager Understanding Keystores and Truststores

Java Keystore and Truststore

All clients in a Cloudera Manager cluster configured for TLS/SSL need access to the truststore to validate certificates
presented during TLS/SSL session negotiation. The certificates assure the client or server process that the issuing
authority for the certificate is part of a legitimate chain of trust.

The standard Oracle Java JDK distribution includes a default truststore (cacerts) that contains root certificates for
many well-known CAs, including Symantec. Rather than using the default truststore, Cloudera recommends using the
alternative truststore, jssecacerts. The alternative truststore is created by copying cacerts to that filename (jssecacerts).
Certificates can be added to this truststore when needed for additional roles or services. This alternative truststore is
loaded by Hadoop daemons at startup.

Important: For use with Cloudera clusters, the alternative trust store—jssecacerts—must start as a copy of
cacerts because cacerts contains all available default certificates needed to establish the chain of trust during
the TLS/SSL handshake. After jssecacerts has been created, new public and private root CAs are added to it
for use by the cluster. See “Manually Configuring TLS Encryption for Cloudera Manager”>“On Each Cluster
Host” for details.

The private keys are maintained in the keystore.

Note: For detailed information about the Java keystore and truststore, see Oracle documentation:

• Keytool—Key and Certificate Management Tool
• JSSE Reference Guide for Java

Although the keystore and truststore in some environments may comprise the same file, as configured for Cloudera
Manager Server and CDP clusters, the keystore and truststore are distinct files. For Cloudera Manager Server clusters,
each host should have its own keystore, even if the content is identical while using wildcard certificates. Also, each
host should have a truststore file, even if the content of the truststore is identical across hosts. This table summarizes
the general differences between keystore and the truststore in Cloudera Manager Server clusters.

Keystore Truststore

Used by the server side of a TLS/SSL client-server connection. Used by the client side of a TLS/SSL client-server connection.

Typically contains 1 private key for the host system. Contains no keys of any kind.

Contains the certificate for the host's private key. Contains root certificates for well-known public certificate authorities.
May contain certificates for intermediary certificate authorities.

Password protected. Use the same password for the key and its
keystore.

Password-protection not needed. However, if password has been used
for the truststore, never use the same password as used for a key and
keystore.

Password stored in a plaintext file read permissions granted to a
specific group only (OS filesystem permissions set to 0440, hadoop:h
adoop).

Password (if there is one for the truststore) stored in a plaintext file
readable by all (OS filesystem permissions set to 0440).

No default. Provide a keystore name and password when you create the
private key and CSR for any host system.

For Java JDK, cacerts is the default unless the alternative default
jssecacerts is available.

Must be owned by hadoop user and group so that HDFS, MapReduce,
YARN can access the private key.

HDFS, MapReduce, and YARN need client access to truststore.

The details in the table above are specific to the Java KeyStore (JKS) format, which is used by Java-based cluster
services such as Cloudera Manager Server, Cloudera Management Service, and many (but not all) CDP components
and services. See “Certificate Formats (JKS, PEM) and Cluster Components” for information about certificate and
key file type used various processes.

CDP Services as TLS/SSL Servers and Clients

Cluster services function as a TLS/SSL server, client, or both:

7

Cloudera Manager Understanding Keystores and Truststores

Component Client Server

HBase

HDFS

Hive

Hue (Hue is a TLS/SSL client of HDFS, MapReduce, YARN, HBase,
and Oozie.)

MapReduce

Oozie

YARN

ZooKeeper

Daemons that function as TLS/SSL servers load the keystores when starting up. When a client connects to an TLS/
SSL server daemon, the server transmits the certificate loaded at startup time to the client, and the client then uses its
truststore to validate the certificate presented by the server.

Certificate Formats (JKS, PEM) and Cluster Components

Cloudera Manager Server, Cloudera Management Service, and many other CDP services use JKS formatted keystores
and certificates. Cloudera Manager Agent, Hue, Key Trustee Server, Impala, and other Python or C++ based services
require PEM formatted certificates and keystores rather than Java. Specifically, PEM certificates conform to PKCS
#8, which requires individual Base64-encoded text files for certificate and password-protected private key file. The
table summarizes certificate types required by several components.

Component JKS PEM

HBase

HDFS

Hive (Hive clients and HiveServer 2)

8

Cloudera Manager Choosing manual TLS or Auto-TLS

Component JKS PEM

Hue

Impala

MapReduce

Oozie

Solr

YARN

ZooKeeper

For more information, see:

• “How to Convert File Encodings (DER, JKS, PEM) for TLS/SSL Certificates and Keys”
• OpenSSL Cryptography and TLS/SSL Toolkit

Recommended Keystore and Truststore Configuration

Cloudera recommends the following for keystores and truststores for Cloudera Manager clusters:

• Create a separate keystore for each host. Each keystore should have a name that helps identify it as to the type of
host—server or agent, for example. The keystore contains the private key and should be password protected.

• Create a single truststore that can be used by the entire cluster. This truststore contains the root CA and
intermediate CAs used to authenticate certificates presented during TLS/SSL handshake. The truststore does not
need to be password protected.

The steps included in “Manually Configuring TLS Encryption for Cloudera Manager”>“On Each Cluster Host”
follow this approach.

Related Information
How to Convert File Encodings (DER, JKS, PEM) for TLS/SSL Certificates and Keys

Manually Configuring TLS Encryption for Cloudera Manager

keytool - Key and Certificate Management Tool

Java Secure Socket Extension (JSSE) Reference Guide

Choosing manual TLS or Auto-TLS

An explanation of the difference between manual TLS and Auto-TLS in Cloudera Manager.

9

https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/security-how-to-guides/topics/cm-security-openssl-jks.html
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html
https://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html

Cloudera Manager Choosing manual TLS or Auto-TLS

Wire encryption protects data in motion, and Transport Layer Security (TLS) is the most widely used security
protocol for wire encryption. TLS provides authentication, privacy and data integrity between applications
communicating over a network by encrypting the packets transmitted between endpoints. Users interact with Hadoop
clusters via browser or command line tools, while applications use REST APIs or Thrift.

Overview of enabling TLS manually

The typical process to enable wire encryption on Cloudera Data Platform Private Cloud clusters is described below.

Get Certificates

• Generate a public/private keypair on each host
• Generate the Certificate signing request (CSR) for all the hosts.
• Get the CSR signed by the company’s internal Certificate Authority (CA).
• Generate keystore & truststore and deploy them across all the cluster hosts.

Cluster configuration

• For each service, enable TLS by setting the keystore and truststore configuration.
• Restart the affected components before proceeding to enable TLS for the next service.
• Make the required changes outside of the cluster manager’s UI (like setting up truststore, Enabling Knox SSL,

etc.)

Ongoing Maintenance

• For new service installation, the keystore and truststore information need to be configured for the service. Restart
the impacted services.

• For each new host to be added to the cluster, admins would have to perform the steps from the “Get Certificates”
section (only for the new hosts).

• The certificates are rotated before they expire.

Auto-TLS feature in Cloudera Manager

The process described above can be a significant effort in large deployments, often leading to long deployment times
and operational difficulties. The Auto-TLS feature automates all the steps required to enable TLS encryption at a
cluster level. Using Auto-TLS, you can let Cloudera manage the Certificate Authority (CA) for all the certificates
in the cluster or use the company’s existing CA. In most cases, all the necessary steps can be enabled easily via the
Cloudera Manager UI. This feature automates the following processes –

When Cloudera Manager is used as a Certificate Authority:

• Creates the root Certificate Authority or a Certificate Signing Request (CSR) for creating an intermediate
Certificate Authority to be signed by company’s existing Certificate Authority (CA)

• Generates the CSRs for hosts and signs them automatically

The following steps are always performed

• Creates a keystore and truststore for hosts.
• Deploys the certificates, keystore and truststore to all the hosts in the cluster.
• All the cluster services are then automatically TLS enabled by configuring the keystore and truststore information

from a role instance specific directory.
• Enables TLS for Cloudera Manager server and agents.
• After this initial setup, any new service, hosts (or) additional compute clusters setup are automatically TLS

enabled by default.
• Provides an automation framework for rotating certificates.

Let us review these options with examples below on a CDP DC 7.1 cluster:

• Use case 1: Using Cloudera Manager to generate an internal CA and corresponding certificates
• Use case 2: Enabling Auto-TLS with an existing Root CA
• Use case 3: Enabling Auto-TLS with existing Certificates

10

Cloudera Manager Choosing manual TLS or Auto-TLS

New Cluster deployment

With either of these options, you can reuse the existing TLS settings when creating a new cluster on a Cloudera
Manager with Auto-TLS enabled. When you launch the wizard to create a new cluster you should see the following
message. Now, when you deploy the cluster, all services will be automatically configured with wire encryption.

Summary

The Auto-TLS functionality not only speeds up the initial setup of the wire encryption but also automates future TLS
configuration steps for the cluster. The following table summarizes the differences between the options described in
this blog.

Steps HDP/EDH (manual) CDP Private Cloud
use case 1 - Using
Cloudera Manager to
generate an internal
CA and corresponding
certificates

CDP Private Cloud use
case 2 - Enabling Auto-
TLS with an existing
Root CA

CDP Private Cloud
use case 3 - Enabling
Auto-TLS with Existing
Certificates

Generate CSR Manual Automated Automated Manual

CSR Signed by CA Manual Automated One-time Manual

Deploy certificate to all
hosts

Manual Automated Automated Automated

Configuration for each
service

Manual Automated Automated Automated

Cluster restarts Multiple Once Once Once

Configuration steps Manual Automated Automated Automated

New Service steps Manual Automated Automated Automated

New Host cert. generation Manual Automated Automated Manual

The Auto-TLS feature significantly reduces the overhead of TLS management of your cluster, thus providing
increased security with reduced operational overhead and helps you stay focused on your customers and their
workloads.

11

Cloudera Manager SAN Certificates

Related Information
Use case 1: Use Cloudera Manager to generate internal CA and corresponding certificates

Use case 2: Enabling Auto-TLS with an intermediate CA signed by an existing Root CA

Use case 3: Enabling Auto-TLS with Existing Certificates

SAN Certificates

A SubjectAlternativeName (SAN) certificate is a certificate that uses the SubjectAlternativeName extension to
associate the resulting certificate with multiple specific host names. SAN certificates are supported while using Auto-
TLS only if custom certificates are generated. SAN certificates are not supported with the internal Cloudera Manager
Certificate Authority.

Configuring TLS Encryption for Cloudera Manager Using
Auto-TLS

Use Auto-TLS to simplify the process of configuring TLS encryption for Cloudera Manager.

About this task

The Auto-TLS feature automates all the steps required to enable TLS encryption at a cluster level. Using Auto-TLS,
you can let Cloudera manage the Certificate Authority (CA) for all the certificates in the cluster or use the company’s
existing CA. In most cases, all the necessary steps can be enabled easily via the Cloudera Manager UI. This feature
automates the following processes –

When Cloudera Manager is used as a Certificate Authority:

• Creates the root Certificate Authority or a Certificate Signing Request (CSR) for creating an intermediate
Certificate Authority to be signed by company’s existing Certificate Authority (CA)

• Generates the CSRs for hosts and signs them automatically

The following steps are always performed

• Creates a keystore and truststore for hosts.
• Deploys the certificates, keystore and truststore to all the hosts in the cluster.
• All the cluster services are then automatically TLS enabled by configuring the keystore and truststore information

from a role instance specific directory.
• Enables TLS for Cloudera Manager server and agents.
• After this initial setup, any new service, hosts (or) additional compute clusters setup are automatically TLS

enabled by default.
• Provides an automation framework for rotating certificates.

Let us review these options with examples below on a CDP Private Cloud Base 7.1 cluster:

• Use case 1: Using Cloudera Manager to generate an internal CA and corresponding certificates
• Use case 2: Enabling Auto-TLS with an existing Root CA
• Use case 3: Enabling Auto-TLS with existing Certificates

New Cluster deployment

With either of these options, you can reuse the existing TLS settings when creating a new cluster on a Cloudera
Manager with Auto-TLS enabled. When you launch the wizard to create a new cluster you should see the following
message. Now, when you deploy the cluster, all services will be automatically configured with wire encryption.

12

Cloudera Manager Configuring TLS Encryption for Cloudera Manager Using Auto-
TLS

Summary

The Auto-TLS functionality not only speeds up the initial setup of the wire encryption but also automates future TLS
configuration steps for the cluster. The following table summarizes the differences between the available options.

Steps HDP/EDH (manual) CDP Private Cloud
use case 1 - Using
Cloudera Manager to
generate an internal
CA and corresponding
certificates

CDP Private Cloud use
case 2 - Enabling Auto-
TLS with an existing
Root CA

CDP Private Cloud
use case 3 - Enabling
Auto-TLS with Existing
Certificates

Generate CSR Manual Automated Automated Manual

CSR Signed by CA Manual Automated One-time Manual

Deploy certificate to all
hosts

Manual Automated Automated Automated

Configuration for each
service

Manual Automated Automated Automated

Cluster restarts Multiple Once Once Once

Configuration steps Manual Automated Automated Automated

New Service steps Manual Automated Automated Automated

New Host cert. generation Manual Automated Automated Manual

The Auto-TLS feature significantly reduces the overhead of TLS management of your cluster, thus providing
increased security with reduced operational overhead and helps you stay focused on your customers and their
workloads.

Related Information
Manually Configuring TLS Encryption for Cloudera Manager

13

Cloudera Manager Configuring TLS Encryption for Cloudera Manager Using Auto-
TLS

Auto-TLS Requirements and Limitations
Reference information for Auto-TLS requirements, limitations, and component support.

About this task

For more info, see Auto-TLS Requirements and Limitations.

Rotating Auto-TLS Certificate Authority and Host Certificates
Your cluster security requirements may require that you rotate the auto-TLS CA and certificates.

Using an internal CA (Use case 1)

1. Navigate to Administration Security . Click Rotate Auto-TLS Certificates to launch the wizard.
2. Complete the wizard.

Using a custom CA (Use case 3)

1. Use the /cm/commands/addCustomCerts API command to replace the old certificates with new certificates
in CMCA directory for each host. You must run this command for each host separately. An example of a curl
command to upload the certificates to Cloudera Manager :

curl -u admin:admin -X POST --header 'Content-Type:
application/json' --header 'Accept: application/json' -d '{
 "location": "/opt/cloudera/AutoTLS",
 "interpretAsFilenames": true,
 "hostCerts": [{
 "hostname": "ccycloud-10.vcdp71.root.hwx.site",
 "certificate":
"/tmp/auto-tls/certs/ccycloud-10.vcdp71.root.hwx.site.pem",
 "key":
"/tmp/auto-tls/certs/ccycloud-10.vcdp71.root.hwx.site.pem"
 }]
}' 'https://ccycloud-7.vcdp71.root.hwx.site:7183/api/v41/cm/commands/ad
dCustomCerts'

In the example above, the "location" should be omitted if Auto-TLS was enabled or rotated after 7.1, and the file
paths should point to files on the CM server host.

2. Use CM API /hosts/{hostId}/commands/generateHostCerts to deploy the new certificates to each host. You must
run this command for each host separately. An example curl command :

curl -u admin:admin -X POST --header 'Content-Type: application/json' --
header
'Accept: application/json' -d '{ "sshPort" : 22, "userName" : "root", "p
assword" : "cloudera" }'
'https://ccycloud-7.vcdp71.root.hwx.site:7183/api/v41/hosts/250e1bb7-8987-
419c-a53f-c852c275d299/commands/generateHostCerts'

where '250e1bb7-8987-419c-a53f-c852c275d299' in the command above is the hostID.

Auto-TLS Agent File Locations

14

https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/security-encryption-reference/topics/security-auto-tls-requirements-limitations.html

Cloudera Manager Configuring TLS Encryption for Cloudera Manager Using Auto-
TLS

About this task

The certificates, keystores, and password files generated by auto-TLS are stored in /var/lib/cloudera-scm-agent/agent-
cert on each Cloudera Manager Agent. The filenames are as follows:

Table 1: Auto-TLS Agent Files

Filename Description

cm-auto-global_cacerts.pem CA certificate and other trusted certificates in PEM format

cm-auto-global_truststore.jks CA certificate and other trusted certificates in JKS format

cm-auto-in_cluster_ca_cert.pem CA certificate in PEM format

cm-auto-in_cluster_truststore.jks CA certificate in JKS format

cm-auto-host_key_cert_chain.pem Agent host certificate and private key in PEM format

cm-auto-host_cert_chain.pem Agent host certificate in PEM format

cm-auto-host_key.pem Agent host private key in PEM format

cm-auto-host_keystore.jks Agent host private key in JKS format

cm-auto-host_key.pw Agent host private key password file

Use case 1: Use Cloudera Manager to generate internal CA and
corresponding certificates

Use Cloudera Manager to create and manage its own Certificate Authority.

1. To choose this option, from Cloudera Manager go to Administration Security (Status tab) Enable Auto-TLS . The
Enable Auto-TLS page comes up.

15

Cloudera Manager Configuring TLS Encryption for Cloudera Manager Using Auto-
TLS

2. In the Trusted CA Certificates Location field in the Generate CA section, enter the path to a PEM file on the
Cloudera Manager host which contains a list of root CA certificates that should be imported into the truststores of
all hosts. This is an optional field.

3. From the Enable TLS for: options, select All existing and future clusters to enable Auto-TLS for all existing and
future clusters, or select Future clusters only to enable Auto-TLS for future clusters only.

4. Select the required SSH Username option. The available options are root and Another user.

Note: If Another user is selected, ensure that you specify the name of a user having passwordless sudo
privileges.

5. Select the required Authentication Method. You can either enable all hosts to accept the same password or you
can enable all hosts to accept the same private key.

6. Enter the password in the Password field and verify the SSH Port number.
7. Click Next.

You are prompted to start Cloudera Manager, followed by Cloudera management services and any impacted clusters.
When you start the Cloudera Manager server, you should see the UI at the TLS port 7183 by default. The browser
displays a self-signed certificate from the SCM Local CA authority, as shown below. The browser displays a warning
because it is not aware of the Root CA generated by Cloudera Manager. When the Root CA is imported into the client
browser’s truststore, this warning is not displayed by the browser.

When you set up the cluster, you should see a message stating that Auto-TLS is already enabled. Continue to install
the required services. The whole cluster is TLS encrypted. Any new hosts or services are automatically configured.
Here is an example of HDFS service with TLS encryption enabled by default (after trusting the root certificate
generated by Cloudera Manager).

16

Cloudera Manager Configuring TLS Encryption for Cloudera Manager Using Auto-
TLS

While this option is the simplest, it may not be suitable for some enterprise deployments where TLS certificates are
issued by the company’s existing Certificate Authority (CA) to maintain a centralized chain of trust.

Rotate Auto-TLS Certificate Authority and Host Certificates

Your cluster security requirements may require that you rotate the Auto-TLS CA and certificates.

1. Navigate to Administration > Security.
2. Click the Rotate Auto-TLS Certificates button to launch the wizard.
3. Complete the wizard.

Related Information
Use case 2: Enabling Auto-TLS with an intermediate CA signed by an existing Root CA

Use case 3: Enabling Auto-TLS with Existing Certificates

Use case 2: Enabling Auto-TLS with an intermediate CA signed by an
existing Root CA

You can make the Cloudera Manager CA an intermediate CA to an existing Root CA.

Important: You can apply Use Case 2 only to new Cloudera Manager installations that have not had hosts
added or clusters created. If you already added hosts or created clusters, then you can implement only Use
case 1 and Use case 3.

This is a three-step process. First, make Cloudera Manager generate a Certificate Signing Request (CSR). Second,
have the CSR signed by the company’s Certificate Authority (CA). Third, provide the signed certificate chain to
continue the Auto-TLS setup. The following example demonstrates these three steps.

1. Initialize the certmanager with –stop-at-csr option before starting the Cloudera Manager:

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk; /opt/cloudera/cm-agent/
bin/certmanager --location /var/lib/cloudera-scm-server/certmanager setup
 --configure-services --stop-at-csr

For more information on the options available for certmanager, and how to use the certmanager’s GenerateCMCA
API, see "Certmanager Options - Using CM's GenerateCMCA API".

2. This generates a Certificate Signing Request (CSR) file at /var/lib/cloudera-scm-server/certmanager/CMCA/
private/ca_csr.pem. If you examine the CSR closely, you notice the CSR request the necessary extension X509v3
Key Usage: critical Certificate Sign to sign certificates on its own.

17

Cloudera Manager Configuring TLS Encryption for Cloudera Manager Using Auto-
TLS

3. Sign the ca_csr.pem file with your root CA certificate.
4. After you have the signed certificate, make sure that the certificate has the required extensions – X509v3 Basic

Constraints: CA: TRUE and X509v3 Key Usage: Key Cert Sign.
5. Proceed with the installation with the following command:

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk;
/opt/cloudera/cm-agent/bin/certmanager --location
/var/lib/cloudera-scm-server/certmanager setup
--configure-services --trusted-ca-certs ca-certs.pem
--signed-ca-cert=cm_cert_chain.pem.
 X509v3 Basic Constraints: critical
 CA:TRUE, pathlen:0
X509v3 Key Usage: critical
 Digital Signature, Certificate Sign, CRL Sign

Note:

• cm_cert_chain.pem is a combination of the root CA certificate and the CA certificate that is generated
by Cloudera Manager.

• --trusted-ca-certs is an optional argument, and if it is given, then ca-certs.pem should point to a PEM-
formatted file containing one or more root CA certificates.

6. Start Cloudera Manager on TLS port 7183. If the signed intermediate certificate is already imported into the
client browser’s truststore, then you should not see any warnings. In the screenshot below, “Vkarthikeyan Internal
Root CA” is the root certificate. This certificate is already trusted by the system and has signed the Cloudera
intermediate CA.

Note: In this use case, rotation of the Auto-TLS certificate authority is not supported. Cloudera recommends
creating an intermediate CA with a long lifetime. The host certificates can be rotated by using the generate
HostCerts API.

Related Information
Use case 1: Use Cloudera Manager to generate internal CA and corresponding certificates

Use case 3: Enabling Auto-TLS with Existing Certificates

Certmanager Options - Using CM's GenerateCMCA API

Certmanager Options - Using CM's GenerateCMCA API
This article describes how to use the certmanager’s GenerateCMCA API. It generates the CMCA, which is an
OpenSSL self-signed cert and CA directory. It creates and signs the certificate for the CM host. Creates an “internal”
truststore with the CA certificate only. If trusted certificates were given, loads them into a “global” truststore.
certmanager is part of the CM agent package.

Name

certmanager setup- generates CMCA and certificates for the host.

18

Cloudera Manager Configuring TLS Encryption for Cloudera Manager Using Auto-
TLS

Description

This command initializes the certmanager and setup the certificates for the CM server to run on this host, using those
certificates.

The --location option (if any) given to certmanager will decide the location of the directory root where the
certmanager will keep its files. This directory will contain sensitive files. It must be backed up and protected
accordingly. This directory must not exist prior to calling this command, but must be create-able. (i.e. either its
ancestors must exist, or must be create-able).

Options

• --configconfig-file-or-dir

Path for configuration to use. If a directory, read and use all .ini files within it. If a file, must point to a config .ini
file.

• --overrideSection.Property=Value

Override config file setting.
• --hostnamedns-or-ip

Alternate name of local host (for SSL certificates). Only applies if CA type is 'internal'
• --altnamealt-name

Alternate name of to add to generated SSL certificates. Multiple names may be supplied by repeating the option.
Only applies if CA type is 'internal'

• --write-cm-init / --skip-cm-init

Writes a CM init file to set Auto-TLS related parameters. If disabled, only the CA directory will be created, and
the init file contents will be printed to stdout.

• --rotate / --no-rotate

Rotates the CA keys and certificates. If disabled, the command fails if the CA directory already exists.
• --configure-services / --no-configure-services

Configure new services to use Auto-TLS certificates. If disabled, only agents will use TLS certificates.
• --trusted-ca-certstrusted_certs.pem

Path to trusted CA certs bundle in PEM format. These certs will be imported into the truststore for all hosts.
• --skip-invalid-ca-certs / --fail-invalid-ca-cert

Whether to skip invalid CA certs in the trusted CA certs bundle. If false, setup will fail if any certs are invalid
orduplicates.

• --stop-at-csr / --dont-stop-at-csr

Whether to stop at signing the CSR. If true, continue the setup by running setup and passing in --signed-ca-cert.
• --signed-ca-certsigned_ca_chain.pem

Path to signed CA cert chain. Pass this after running setup with the --stop-at-csr option.
• --help

Show this message and exit.

How to customize CSR fields

Important: If you customize any of the CSR fields by using the “--override” option in an Auto-TLS enabled
cluster, then post update, you must restart the Cloudera Manager Server, Cloudera Manager Agents, Cloudera
Management Service, and Clusters.

You can customize the CSR fields by using the “--override“ command-line option. The properties available for the --
override parameter are mentioned below. An example of how to use the API follows this table.

19

https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/managing-clusters/topics/cm-server-start-stop.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/managing-clusters/topics/cm-agents-start-stop.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/managing-clusters/topics/cm-restart-management-service.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/managing-clusters/topics/cm-restart-management-service.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/managing-clusters/topics/cm-stop-start-refresh-restart-cluster.html#pnavId4

Cloudera Manager Configuring TLS Encryption for Cloudera Manager Using Auto-
TLS

Property Default Value Description

email_address - Additional subject alternate names to add to
the certioficate.

subject_suffix - The subject suffix to be appended to the CN.

ca_key_algo rsa CA Key encryption algorithm to be used.
Valid values are "rsa", "dsa", "ec".

ca_key_args 3072 Integer value determining the number of bits
for the key.

ca_sig_hash_algo sha256 The hashing algorithm to use when signing.

ca_dn - The Subject DN to add to the CSR.

ca_expiration 5 years "YYYMMDD" format date for when
certificate expires.Certificate expires at
23:59:59 on the given date at GMT time.

host_expiration 1 year "YYYMMDD" format date for when host
expires.

ca_name SCM Local CA on <host_fqdn> Common Name to be used while generating
the subject for the certificate.

host_key_algo rsa The asymmetric key algorithm to use to
generate a CSR for a host.

host_key_args 3072 The parameter to the key algorithm (# bits,
curve name, etc.) to generate a CSR for a host.

host_sig_hash_algo sha256 The hashing algorithm to use in the signature
when using the internal CA to sign the given
host's CSR.

key_encryption_algo aes256 The algo to use to encrypt the private key to
generate a CSR for a host.

Examples

This example shows how you can use additionalArguments property to pass any override parameters to the
certmanager using generateCMCA API.

curl -X POST "https://tkarkera-1.tkarkera.root.hwx.site:7183/api/v45/cm/comm
ands/generateCmca" -H "accept: application/json" -H "Content-Type: applicati
on/json" -d
 "{
 "sshPort": 22,
 "userName": "...",
 "password": "...",
 "privateKey": "...",
 "passphrase": "...",
 "location": "/opt/cloudera/CMCA",
 "customCA": false,
 "interpretAsFilenames": true,
 "cmHostCert": "host-cert.pem",
 "cmHostKey": "host-key.pem",
 "caCert": "ca-cert.pem",
 "keystorePasswd": "keystore.pw.txt",
 "truststorePasswd": "truststore.pw.txt",
 "trustedCaCerts": "cacerts.pem",
 "additionalArguments": [
 "--override",
 "ca_expiration=301010",
 "--override",
 "ca_key_args=4096",
 "--override",

20

Cloudera Manager Configuring TLS Encryption for Cloudera Manager Using Auto-
TLS

 "host_key_args=4096"
],
 "hostCerts": [
 {
 "hostname": "...",
 "certificate": "host-cert.pem",
 "key": "host-key.pem",
 "subjectAltNames": [
 "DNS:example.cloudera.com",
 "..."
]
 },
 {
 "hostname": "...",
 "certificate": "...",
 "key": "...",
 "subjectAltNames": [
 "...",
 "DNS:example.cloudera.com"
]
 }
],
 "configureAllServices": true
 }“

Use case 3: Enabling Auto-TLS with Existing Certificates
You can manually generate the certificates signed by an existing Root CA and upload them to Cloudera Manager

If you have an existing cluster where you need to enable Auto-TLS, or if there is a need to get the host certificates
signed individually by the company’s existing CA, you can use this option of enabling Auto-TLS with existing
certificates. This option adds operational overhead of generating certificates for any new hosts and uploading to
Cloudera Manager through an API request. In this option, certificates signed by CA are staged and Auto-TLS is
enabled by calling a Cloudera Manager API.

1. Create the Auto-TLS directory /opt/cloudera/AutoTLS in the Cloudera Manager server. The directory must be
owned by the cloudera-scm user.

2. Create a public/private key for each host and generate the corresponding Certificate Signing request (CSR). Have
these CSRs signed by the company’s Certificate Authority (CA). You can generate private keys and CSRs by
using your existing PKI tools and processes, or manually with common utilities like keytool or openssl. In this
example using openssl, the private key and CSR files are located under the /tmp/auto-tls directory. The password
used for the private key is stored in key.pwd.

openssl req -newkey rsa:4096 -sha256 -days 356 \
-keyout /tmp/auto-tls/keys/host1.example.com-key.pem \
-out /tmp/auto-tls/host1.example.com.csr \
-passout file:/tmp/auto-tls/keys/key.pwd \
-subj '/CN=host1.example.com, O=Cloudera Test, C=US' \
-extensions san -config <(echo '[req]'; echo 'distinguished_name=req';
 echo 'req_extensions=san';echo '[san]'; echo 'subjectAltName=DNS:host1.
example.com DNS:loadbalancer.example.com')

The same procedure is used for all cluster hosts.
3. Prepare all the certificates signed by the company’s CA on the Cloudera Manager server. In this example, all the

certificates are located under the /tmp/auto-tls directory. The password used for keystore and truststore are present
in key.pwd and truststore.pwd files respectively.

21

Cloudera Manager Configuring TLS Encryption for Cloudera Manager Using Auto-
TLS

4. Refer the example API given below. Customize this API to match the deployment that has been set up and then
execute the API.

curl -i -v -uadmin:admin -X POST --header 'Content-Type: application/json'
 --header 'Accept: application/json' -d '{
"location" : "/opt/cloudera/AutoTLS",
"customCA" : true,
"interpretAsFilenames" : true,
"cmHostCert" : "/tmp/auto-tls/certs/ccycloud-7.vcdp71.root.hwx.site.pem",
"cmHostKey" : "/tmp/auto-tls/keys/ccycloud-7.vcdp71.root.hwx.site-key.pem
",
"caCert" : "/tmp/auto-tls/ca-certs/cfssl-chain-truststore.pem",
"keystorePasswd" : "/tmp/auto-tls/keys/key.pwd",
"truststorePasswd" : "/tmp/auto-tls/ca-certs/truststore.pwd",
"trustedCaCerts" : "/tmp/auto-tls/ca-certs.pem", //This is a path to a PEM
 file on the Cloudera Manager host which contains
a list of CA certificates that should be imported into the truststores of
 all hosts. This is an optional field.
"hostCerts" : [{
"hostname" : "ccycloud-7.vcdp71.root.hwx.site",
"certificate" : "/tmp/auto-tls/certs/ccycloud-7.vcdp71.root.hwx.site.pem",
"key" : "/tmp/auto-tls/keys/ccycloud-7.vcdp71.root.hwx.site-key.pem"
}, {
"hostname" : "ccycloud-3.vcdp71.root.hwx.site",
"certificate" : "/tmp/auto-tls/certs/ccycloud-3.vcdp71.root.hwx.site.pem",
"key" : "/tmp/auto-tls/keys/ccycloud-3.vcdp71.root.hwx.site-key.pem"
}, {
"hostname" : "ccycloud-2.vcdp71.root.hwx.site",
"certificate" : "/tmp/auto-tls/certs/ccycloud-3.vcdp71.root.hwx.site.pem",
"key" : "/tmp/auto-tls/keys/ccycloud-3.vcdp71.root.hwx.site-key.pem"
}, {
"hostname" : "ccycloud-1.vcdp71.root.hwx.site",
"certificate" : "/tmp/auto-tls/certs/ccycloud-1.vcdp71.root.hwx.site.pem",
"key" : "/tmp/auto-tls/keys/ccycloud-1.vcdp71.root.hwx.site-key.pem"
}],
"configureAllServices" : "true",
"sshPort" : 22,
"userName" : "root",
"password" : "cloudera"
}' 'http://ccycloud-7.vcdp71.root.hwx.site:7180/api/v41/cm/commands/gener
ateCmca' //This link is valid if you have
not enabled TLS in the Cloudera Manager UI. If you enable TLS for the same
 deployment in the Cloudera Manager UI later,
the port number and the protocol changes for the API calls and for acces
sing the link from a browser. In such a scenario,

22

Cloudera Manager Configuring TLS Encryption for Cloudera Manager Using Auto-
TLS

the correct API call is as follows: https://ccycloud-7.vcdp71.root.hwx.si
te:7183/api/v41/cm/commands/generateCmca.

If a new deployment is set up without TLS encryption, the API uses HTTP and port 7180. If you are converting
the deployment to an Auto-TLS setup from an existing Manual TLS setup, the Cloudera Manager UI is converted
to HTTPS. In such cases, the URL for the API calls has to be modified.

Note: If you need to use an SSH private key instead of a password, then replace "password" in the above
example with "privateKey" and provide the SSH private key as an argument to that field. The SSH private
key must be properly JSON-encoded, including replacing newlines with '\n'. The following awk command
will output to the terminal the contents of ~/.ssh/id_rsa with newlines replaced, and can be used as input to
the "privateKey" argument:

awk 'NF {sub(/\r/, ""); printf "%s\\n",$0;}' ~/.ssh/id_rsa

Table 2: JSON file key properties

Property Data type Description

customCA boolean Option to generate an internal Cloudera
Manager CA (false) or use user-provided
certificates (true). When set to true (user-
provided certificates), the following other
arguments must be given: * cmHostCert *
cmHostKey * caCert * keystorePasswd *
truststorePasswd

cmHostCert string The certificate for the Cloudera Manager
host in PEM format. Only used if customCA
== true.

cmHostKey string The private key for the Cloudera Manager
host in PEM format. Only used if customCA
== true.

caCert string The certificate for the user-provided
certificate authority in PEM format. Only
used if customCA == true.

trustedCaCerts string A list of CA certificates that will be imported
into the Auto-TLS truststore and distributed
to all hosts.

5. When this API returns successfully, you should see the recent command run as follows.

6. When this API is executing you can check /var/log/cloudera-scm-server/cloudera-scm-server.log for API logs.
7. Restart the Cloudera Manager service. Then restart the Cloudera Manager agents on all cluster servers.
8. The Cloudera Manager UI/API is now available on the TLS port. Now restart all the Cloudera Manager

management services.
9. Restart the Cluster services. Now all the services are configured for wire encryption.

23

Cloudera Manager Configuring TLS Encryption for Cloudera Manager Using Auto-
TLS

10. When adding new hosts to this cluster, the following additional steps need to be performed to upload the CA
signed host certificates to Cloudera Manager.

a. The add hosts wizard will prompt the following screen with instructions to upload the certificates.

b. Upload the certificates to Cloudera Manager using the following example command:

curl -u admin:admin -X POST --header 'Content-Type:
application/json' --header 'Accept: application/json' -d '{
 "location": "/opt/cloudera/AutoTLS",
 "interpretAsFilenames": true,
 "hostCerts": [{
 "hostname": "ccycloud-10.vcdp71.root.hwx.site",
 "certificate":
"/tmp/auto-tls/certs/ccycloud-10.vcdp71.root.hwx.site.pem",
 "key":
"/tmp/auto-tls/certs/ccycloud-10.vcdp71.root.hwx.site.pem"
 }]
}' 'https://ccycloud-7.vcdp71.root.hwx.site:7183/api/v41/cm/commands/ad
dCustomCerts'

In the curl command example above, the "location" should be omitted if Auto-TLS was enabled or rotated
after 7.1, and the file paths should point to files on the CM server host.

c. Continue to add hosts.

In this example, the CA used to sign all the certificates is Sec Lab Intermediate CA which can be found in the
screenshot below:

Cloudera Manager UI:

24

Cloudera Manager Manually Configuring TLS Encryption for Cloudera Manager

Knox UI:

Rotate Auto-TLS Certificate Authority and Host Certificates

After the certificate files in the specified paths have been replaced with the new certificates, run the API calls that
were used when enabling Auto-TLS. Refer Step 4 in this use case to run the Cloudera Manager API. You do not need
to run the addCustomCerts API if you are performing the steps given in this use case.

Related Information
Use case 1: Use Cloudera Manager to generate internal CA and corresponding certificates

Use case 2: Enabling Auto-TLS with an intermediate CA signed by an existing Root CA

Manually Configuring TLS Encryption for Cloudera
Manager

How to manually enable TLS encryption and certificate authentication for Cloudera Manager.

25

Cloudera Manager Manually Configuring TLS Encryption for Cloudera Manager

About this task

Note: Cloudera recommends using auto-TLS to configure TLS encryption for Cloudera Manager and CDP
components.

The Auto-TLS feature automates all the steps required to enable TLS encryption at a cluster level. Using
Auto-TLS, you can let Cloudera manage the Certificate Authority (CA) for all the certificates in the cluster or
use the company’s existing CA. In most cases, all the necessary steps can be enabled easily via the Cloudera
Manager UI. This feature automates the following processes –

For instructions on enabling auto-TLS, see “Configuring TLS Encryption for Cloudera Manager Using Auto-
TLS ”.

When you configure authentication and authorization on a cluster, Cloudera Manager Server sends sensitive
information over the network to cluster hosts, such as Kerberos keytabs and configuration files that contain
passwords. To secure this transfer, you must configure TLS encryption between Cloudera Manager Server
and all cluster hosts.

TLS encryption is also used to secure client connections to the Cloudera Manager Admin Interface, using
HTTPS.

Cloudera Manager also supports TLS authentication. Without certificate authentication, a malicious user can
add a host to Cloudera Manager by installing the Cloudera Manager Agent software and configuring it to
communicate with Cloudera Manager Server. To prevent this, you must install certificates on each agent host
and configure Cloudera Manager Server to trust those certificates.

This guide shows how to configure and enable TLS encryption and certificate authentication for Cloudera
Manager. The provided examples use an internal certificate authority (CA) to sign all TLS certificates, so
this guide also shows you how to establish trust with the CA. (For certificates signed by a trusted public CA,
establishing trust is not necessary, because the Java Development Kit (JDK) already trusts them.)

Related Information
Configuring TLS Encryption for Cloudera Manager Using Auto-TLS

Generate TLS Certificates

About this task

The following procedure assumes that an internal certificate authority (CA) is used, and shows how to establish trust
for that internal CA. If you are using a trusted public CA (such as Symantec, GeoTrust, Comodo, and others), you do
not need to explicitly establish trust for the issued certificates, unless you are using an older JDK and a newer public
CA. Older JDKs might not trust newer public CAs by default.

On Each Cluster Host:

About this task

Complete the following steps on each cluster host, including the Cloudera Manager Server host.

Procedure

1. Configure your environment to set JAVA_HOME to the Oracle JDK. For example:

export JAVA_HOME=/usr/java/jdk1.8.0_141-cloudera

If you log out of the host before completing this procedure, make sure to set JAVA_HOME again when you log in
to complete the steps.

26

Cloudera Manager Manually Configuring TLS Encryption for Cloudera Manager

2. Create the /opt/cloudera/security/pki directory:

sudo mkdir -p /opt/cloudera/security/pki

If you choose to use a different directory, make sure you use the same directory on all cluster hosts to simplify
management and maintenance.

3. Use the keytool utility to generate a Java keystore and certificate signing request (CSR). Replace the OU, O, L,
ST, and C entries with the values for your environment. When prompted, use the same password for the keys
tore password and key password. Cloudera Manager does not support using different passwords for the key and
keystore.

$JAVA_HOME/bin/keytool -genkeypair -alias $(hostname -f) -keyalg
 RSA -keystore /opt/cloudera/security/pki/$(hostname -f).jks -keysiz
e 2048 -dname "CN=$(hostname -f),OU=Engineering,O=Cloudera,L=Palo
 Alto,ST=California,C=US" -ext san=dns:$(hostname -f)

$JAVA_HOME/bin/keytool -certreq -alias $(hostname -f) -keystore /opt/clo
udera/security/pki/$(hostname -f).jks -file /opt/cloudera/security/pki/$
(hostname -f).csr -ext san=dns:$(hostname -f) -ext EKU=serverAuth,client
Auth

Note: You must ensure that your Issuing Authority will issue the certificates with the extensions CDP
requires.

4. Submit the CSR files (for example, cm01.example.com.csr) to your certificate authority to obtain a server
certificate.

For security purposes, many commercial CAs ignore requested extensions in a CSR. Make sure that you inform
the CA that you require certificates with both server and client authentication options.

If possible, obtain the certificate in PEM (Base64 ASCII) format. The certificate file is in PEM format if it looks
similar to this (some lines omitted):

-----BEGIN CERTIFICATE-----
MIIDAzCCAesCAQAwgY0xCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlh
MRIwEAYDVQQHEwlQYWxvIEFsdG8xETAPBgNVBAoTCENsb3VkZXJhMRQwEgYDVQQL
…
tudY0C32LjGjWOg5ALliN9Oy1u2xRKGAVfapbzAZ2rchtlCZc7mtaT6BXgW8S+Db
0HhuObn1/8TL4Ho9G+KlJB3MWik2oEbOvQt0rBidMr9qaNX86m0i7pouXZelZ5c5
UnDPtrhW6A==
-----END CERTIFICATE-----

If your issued certificate is in binary (DER) format, convert it to PEM format.

5. After you have received the signed certificate, copy the signed certificate to the following location:

/opt/cloudera/security/pki/$(hostname -f).pem

6. Inspect the signed certificate to verify that both server and client authentication options are present, as well as the
subject alternative name:

openssl x509 -in /opt/cloudera/security/pki/$(hostname -f).pem -noout -t
ext

Look for output similar to the following to verify the server and client authentication options:

 X509v3 Extended Key Usage:

27

Cloudera Manager Manually Configuring TLS Encryption for Cloudera Manager

 TLS Web Server Authentication, TLS Web Client Authenticat
ion

Look for output similar to the following to validate the subject alternative name:

 X509v3 Subject Alternative Name:
 DNS:hostname.example.com

Important:

If the certificate does not have the DNS field, re-submit the CSR to the CA, and request that they generate
a certificate that keeps the Subject Alternative Name field intact.

If the certificate does not have both TLS Web Server Authentication and TLS Web Client Authentic
ation listed in the X509v3 Extended Key Usage section, re-submit the CSR to the CA, and request that
they generate a certificate that can be used for both server and client authentication.

7. Copy the root and intermediate CA certificates to /opt/cloudera/security/pki/rootca.pem and /opt/cloudera/securi
ty/pki/intca.pem on each host. If you have a concatenated file containing the root CA and an intermediate CA
certificate, split the file along the END CERTIFICATE/BEGIN CERTIFICATE boundary into individual files. If
there are multiple intermediate CA certificates, use unique file names such as intca-1.pem, intca-2.pem, and so on.

8. Copy the JDK cacerts file to jssecacerts as follows:

sudo cp $JAVA_HOME/jre/lib/security/cacerts $JAVA_HOME/jre/lib/security/
jssecacerts

Note: The default password for the cacerts file is changeit. The same applies to the jssecacerts file if you
copied it from the cacerts before changing the password. Cloudera recommends changing these passwords
by running the following commands:

$JAVA_HOME/bin/keytool -storepasswd -keystore $JAVA_HOME/jre/lib/sec
urity/cacerts

$JAVA_HOME/bin/keytool -storepasswd -keystore $JAVA_HOME/jre/lib/sec
urity/jssecacerts

The Oracle JDK uses the jssecacerts file for its default truststore if it exists. Otherwise, it uses the cacerts file.
Creating the jssecacerts file allows you to trust an internal CA without modifying the cacerts file that is included
with the JDK.

Note: If you upgrade your JDK, make sure to copy your existing jssecacerts file to the new JDK (under
$JAVA_HOME/jre/lib/security).

9. Import the root CA certificate into the JDK truststore.

sudo $JAVA_HOME/bin/keytool -importcert -alias rootca -keystore $JAVA_HO
ME/jre/lib/security/jssecacerts -file /opt/cloudera/security/pki/rootca.
pem

If you see a message like the following, enter yes to continue:

Trust this certificate? [no]: yes

You must see the following response verifying that the certificate has been properly imported:

Certificate was added to keystore

28

Cloudera Manager Manually Configuring TLS Encryption for Cloudera Manager

10. Perform these steps to replace the self-signed cert with CA issued cert.

cd /opt/cloudera/security/pki/; mv $(hostname -f).jks $(hostname -f)-ori
g.jks

keytool -importkeystore -srcstoretype JKS -deststoretype PKCS12 -srckeys
tore $(hostname -f)-orig.jks -srcalias $(hostname -f) -destkeystore $(ho
stname -f).p12

openssl pkcs12 -in $(hostname -f).p12 -nodes -nocerts -out $(hostname -f)-
pk.pem

openssl pkcs12 -export -in $(hostname -f).pem -inkey $(hostname -f)-pk.pem
 -name $(hostname -f) -out $(hostname -f).pk12

keytool -importkeystore -deststoretype JKS -srcstoretype PKCS12 -srckeys
tore $(hostname -f).pk12 -destkeystore $(hostname -f).jks

11. Append the intermediate CA certificate to the signed host certificate, and then import it into the keystore. Make
sure that you use the append operator (>>) and not the overwrite operator (>):

sudo cat /opt/cloudera/security/pki/intca.pem >> /opt/cloudera/security/
pki/$(hostname -f).pem

12. Create symbolic links (symlink) for the certificate and keystore files:

sudo ln -s /opt/cloudera/security/pki/$(hostname -f).pem /opt/cloudera/s
ecurity/pki/agent.pem

This allows you to use the same /etc/cloudera-scm-agent/config.ini file on all agent hosts rather than maintaining a
file for each agent.

On the Cloudera Manager Server Host

About this task

On the Cloudera Manager Server host, create an additional symlink for the keystore file:

sudo ln -s /opt/cloudera/security/pki/$(hostname -f).jks /opt/cloudera/secur
ity/pki/server.jks

Configure TLS for the Cloudera Manager Admin Console

About this task

Minimum Required Role: Cluster Administrator (also provided by Full Administrator) This feature is not available
when using Cloudera Manager to manage Data Hub clusters.

Use the following procedure to enable TLS encryption for the Cloudera Manager Server admin interface. Make sure
you have generated the host certificate as described in On Each Cluster Host: on page 26.

29

https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/managing-clusters/topics/cm-user-roles.html

Cloudera Manager Manually Configuring TLS Encryption for Cloudera Manager

Step 1: Enable HTTPS for the Cloudera Manager Admin Console

Procedure

1. Log in to the Cloudera Manager Admin Console.

2. Select Administration Settings .

3. Select the Security category.

4. Configure the following TLS settings:

Property Description

Cloudera Manager TLS/SSL
Server JKS Keystore File
Location

The complete path to the keystore file. For example:

/opt/cloudera/security/pki/server.jks

Cloudera Manager TLS/SSL
Server JKS Keystore File
Password

The password for the /opt/cloudera/security/jks/server.jks keystore.

Use TLS Encryption for Admin
Console

Check this box to enable TLS encryption for Cloudera Manager.

5. Enter a Reason for Change, then click Save Changes to save the settings.

Step 2: Specify SSL Truststore Properties for Cloudera Management Services

About this task

When enabling TLS for the Cloudera Manager Server admin interface, you must set the Java truststore location and
password in the Cloudera Management Services configuration. Otherwise, roles such as Host Monitor and Service
Monitor cannot connect to Cloudera Manager Server and will not start.

Configure the path and password for the $JAVA_HOME/jre/lib/security/jssecacerts truststore that you created earlier.
Make sure that you have created this file on all hosts, including the Cloudera Management Service hosts, as instructed
in On Each Cluster Host: on page 26.

Procedure

1. Open the Cloudera Manager Administration Console and go to the Cloudera Management Service service.

2. Click the Configuration tab.

3. Select Scope Cloudera Management Service (Service-Wide) .

4. Select Category Security .

5. Edit the following TLS/SSL properties according to your cluster configuration.

Property Description

TLS/SSL Client Truststore File
Location

The path to the client truststore file used in HTTPS communication. This truststore contains
certificates of trusted servers, or of Certificate Authorities trusted to identify servers. For this
example, set the value to:

<JAVA_HOME>/jre/lib/security/jssecacerts

Replace <JAVA_HOME> with the path to the Oracle JDK.

Cloudera Manager Server TLS/SSL
Certificate Trust Store Password

The password for the truststore file.

6. Enter a Reason for Change, then click Save Changes to save the settings.

30

Cloudera Manager Manually Configuring TLS Encryption for Cloudera Manager

Step 3: Restart Cloudera Manager and Services

About this task

You must restart both Cloudera Manager Server and the Cloudera Management Service for TLS encryption to work.
Otherwise, the Cloudera Management Services (such as Host Monitor and Service Monitor) cannot communicate
with Cloudera Manager Server.

Procedure

1. Restart the Cloudera Manager Server by running the following command on the Cloudera Manager Server host:

• RHEL 7 compatible:

sudo systemctl restart cloudera-scm-server

• RHEL 6 compatible, SLES, Ubuntu:
•

sudo service cloudera-scm-server restart

2. After the restart completes, connect to the Cloudera Manager Admin Console using the HTTPS URL (for
example: https://cm01.example.com:7183). If you used an internal CA-signed certificate, you must configure
your browser to trust the certificate. Otherwise, you will see a warning in your browser any time you access the
Cloudera Manager Administration Console. By default, certificates issued by public commercial CAs are trusted
by most browsers, and no additional configuration is necessary if your certificate is signed by one of them.

3. Restart the Cloudera Management Service (Cloudera Management Service Actions Restart).

Configure TLS for Cloudera Manager Agents

About this task

Minimum Required Role: Cluster Administrator (also provided by Full Administrator) This feature is not available
when using Cloudera Manager to manage Data Hub clusters.

Use the following procedure to encrypt the communication between Cloudera Manager Server and Cloudera Manager
Agents:

Step 1: Enable TLS Encryption for Agents in Cloudera Manager

About this task

Configure the TLS properties for Cloudera Manager Agents.

Procedure

1. Log in to the Cloudera Manager Admin Console.

2. Select Administration Settings .

3. Select the Security category.

4. Select the Use TLS Encryption for Agents option.

5. Enter a Reason for Change, then click Save Changes to save the settings.

Step 2: Enable TLS on Cloudera Manager Agent Hosts

About this task

To enable TLS between the Cloudera Manager agents and Cloudera Manager, you must specify values for the TLS
properties in the /etc/cloudera-scm-agent/config.ini configuration file on all agent hosts.

31

https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/managing-clusters/topics/cm-user-roles.html

Cloudera Manager Manually Configuring TLS Encryption for Cloudera Manager

Procedure

• On each agent host (including the Cloudera Manager Server host, which also has an agent), open the /etc/clouder
a-scm-agent/config.ini configuration file and set the use_tls parameter in the [Security] section as follows:

use_tls=1

Alternatively, you can edit the config.ini file on one host, and then copy it to the other hosts because this file by
default does not contain host-specific information. If you have modified properties such as listening_hostname or
listening_ip address in config.ini, you must edit the file individually on each host.

Step 3: Restart Cloudera Manager Server and Agents

Procedure

1. Restart the Cloudera Manager Server by running the following command on the Cloudera Manager Server host:

• RHEL 7 compatible:

sudo systemctl restart cloudera-scm-server

• RHEL 6 compatible, SLES, Ubuntu:
•

sudo service cloudera-scm-server restart

2. On each agent host (including the Cloudera Manager Server host), restart the Cloudera Manager agent service:

• RHEL 7 compatible:

sudo systemctl restart cloudera-scm-agent

• RHEL 6 compatible, SLES, Ubuntu:
•

sudo service cloudera-scm-agent restart

Step 4: Verify that the Cloudera Manager Server and Agents are Communicating

About this task

In the Cloudera Manager Admin Console, go to Hosts All Hosts . If you see successful heartbeats reported in the Last
Heartbeat column after restarting the agents, TLS encryption is working properly.

Enable Server Certificate Verification on Cloudera Manager Agents

About this task

Minimum Required Role: Cluster Administrator (also provided by Full Administrator) This feature is not available
when using Cloudera Manager to manage Data Hub clusters.

If you have completed the previous sections, communication between Cloudera Manager server and the agents is
encrypted, but the certificate authenticity is not verified. For full security, you must configure the agents to verify the
Cloudera Manager server certificate. If you are using a server certificate signed by an internal certificate authority
(CA), you must configure the agents to trust that CA:

32

https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/managing-clusters/topics/cm-user-roles.html

Cloudera Manager Manually Configuring TLS Encryption for Cloudera Manager

Procedure

1. On each agent host (including the Cloudera Manager Server host), open the /etc/cloudera-scm-agent/config.ini
configuration file, and then uncomment and set the following property:

verify_cert_file=/opt/cloudera/security/pki/rootca.pem

Alternatively, you can edit the config.ini file on one host, and then copy it to the other hosts because this file by
default does not contain host-specific information. If you have modified properties such as listening_hostname or
listening_ip address in config.ini, you must edit the file individually on each host.

2. Restart the Cloudera Manager agents. On each agent host (including the Cloudera Manager Server host), run the
following command:

• RHEL 7 compatible:

sudo systemctl restart cloudera-scm-agent

• RHEL 6 compatible, SLES, Ubuntu:
•

sudo service cloudera-scm-agent restart

3. Verify that the Cloudera Manager server and agents are communicating. In the Cloudera Manager Admin
Console, go to Hosts All Hosts . If you see successful heartbeats reported in the Last Heartbeat column after
restarting the agents and management service, TLS verification is working properly. If not, check the agent log (/
var/log/cloudera-scm-agent/cloudera-scm-agent.log) for errors.

Configure Agent Certificate Authentication

About this task

Important: Perform this procedure on each agent host, including the Cloudera Manager Server host, which
also has an agent.

Without certificate authentication, a malicious user can add a host to Cloudera Manager by installing the Cloudera
Manager agent software and configuring it to communicate with Cloudera Manager Server. To prevent this, you must
configure Cloudera Manager to trust the agent certificates.

Step 1: Export the Private Key to a File

About this task

On each Cloudera Manager Agent host, use the keytool utility to export the private key and certificate to a PKCS12
file, which can then be split up into individual key and certificate files using the openssl command:

Procedure

1. Export the private key and certificate:

sudo $JAVA_HOME/bin/keytool -importkeystore -srckeystore /opt/cloudera/s
ecurity/pki/$(hostname -f).jks -destkeystore /opt/cloudera/security/pki/
$(hostname -f)-key.p12 -deststoretype PKCS12 -srcalias $(hostname -f)

2. Use the openssl command to export the private key into its own file:

sudo openssl pkcs12 -in /opt/cloudera/security/pki/$(hostname -f)-key.p12
 -nocerts -out /opt/cloudera/security/pki/$(hostname -f).key

33

Cloudera Manager Manually Configuring TLS Encryption for Cloudera Manager

3. Create a symbolic link for the .key file:

sudo ln -s /opt/cloudera/security/pki/$(hostname -f).key /opt/cloudera/s
ecurity/pki/agent.key

This allows you to use the same /etc/cloudera-scm-agent/config.ini file on all agent hosts rather than maintaining a
file for each agent.

Step 2: Create a Password File

About this task

The Cloudera Manager agent obtains the password from a text file, not from a command line parameter or
environment variable. The password file allows you to use file permissions to protect the password. For example,
run the following commands on each Cloudera Manager Agent host, or run them on one host and copy the file to the
other hosts:

Create and secure the file containing the password used to protect the private key of the Agent:

Procedure

1. Use a text editor to create a file called /etc/cloudera-scm-agent/agentkey.pw that contains the password.

2. Change ownership of the file to root:

sudo chown root:root /etc/cloudera-scm-agent/agentkey.pw

3. Change the permissions of the file:

sudo chmod 440 /etc/cloudera-scm-agent/agentkey.pw

Step 3: Configure the Agent to Use Private Keys and Certificates

About this task

On a Cloudera Manager Agent, open the /etc/cloudera-scm-agent/config.ini configuration file, uncomment and edit
the following properties:

Property Example Value Description

client_key_file /opt/cloudera/security/pki/
agent.key

Path to the private key file.

client_keypw_file /etc/cloudera-scm-agent/
agentkey.pw

Path to the private key password file.

client_cert_file /opt/cloudera/security/pki/
agent.pem

Path to the client certificate file.

Copy the file to all other cluster hosts. If you have modified properties such as listening_hostname or listening_ip add
ress in config.ini, you must edit the file individually on each host.

Step 4: Enable Agent Certificate Authentication

Procedure

1. Log in to the Cloudera Manager Admin Console.

2. Select Administration Settings .

3. Click the Security category.

34

Cloudera Manager Manually Configuring TLS Encryption for Cloudera Manager

4. Configure the following TLS settings:

Setting Description

Use TLS Authentication of Agents to
Server

Select this option to enable TLS authentication of agents to the server.

Cloudera Manager TLS/SSL Certificate
Trust Store File

Specify the full filesystem path to the jssecacerts file located on the Cloudera Manager Server
host. For this example, set the value to:

<JAVA_HOME>/jre/lib/security/jssecacerts

Replace <JAVA_HOME> with the path to the Oracle JDK.

Cloudera Manager TLS/SSL Certificate
Trust Store Password

Specify the password for the jssecacerts truststore.

5. Enter a Reason for Change, then click Save Changes to save the settings.

Step 5: Restart Cloudera Manager Server and Agents

Procedure

1. On the Cloudera Manager server host, restart the Cloudera Manager server:

• RHEL 7 compatible:

sudo systemctl restart cloudera-scm-server

• RHEL 6 compatible, SLES, Ubuntu:
•

sudo service cloudera-scm-server restart

2. On every agent host, restart the Cloudera Manager agent:

• RHEL 7 compatible:

sudo systemctl restart cloudera-scm-agent

• RHEL 6 compatible, SLES, Ubuntu:
•

sudo service cloudera-scm-agent restart

Step 6: Verify that Cloudera Manager Server and Agents are Communicating

About this task

In the Cloudera Manager Admin Console, go to Hosts All Hosts . If you see successful heartbeats reported in the Last
Heartbeat column after restarting the agents and server, TLS certificate authentication is working properly. If not,
check the agent log (/var/log/cloudera-scm-agent/cloudera-scm-agent.log) for errors.

For example, you might see the following error:

WrongHost: Peer certificate commonName does not match host, expected 192.0.2
.155, got cdh-1.example.com
[02/May/2018 15:04:15 +0000] 4655 MainThread agent ERROR Heartbeat
ing to 192.0.2.155:7182 failed

For this scenario, make sure that your DNS and /etc/hosts file are configured correctly, and that your server_host
parameter in /etc/cloudera-scm-agent/config.ini uses the Cloudera Manager Server hostname, and not IP address.

35

Cloudera Manager Manually Configuring TLS Encryption on the Agent Listening Port

Manually Configuring TLS Encryption on the Agent
Listening Port

The agent listening port (TCP Port 9000) of a Cloudera Manager Agent can be secured with TLS. This port is used
for retrieving diagnostic and log information.

About this task

The requirements for a Cloudera Manager Agent to enable the agent listening port are as follows:

• The following properties must be defined in the config.ini file of the Cloudera Manager Agent: use_tls=1, veri
fy_cert_file, client_cert_file, client_keypw_file.

• An encryption key must be configured.
• A certificate must be configured.

The main requirement for the Cloudera Manager Server to connect with TLS to the agent listening port is as follows:

Procedure

• The Cloudera Manager TLS/SSL Client Trust Store File property must be configured to specify the CA certificate
using which all the agent certificates are signed.

Note: If either the Cloudera Manager Agent or the Cloudera Manager Server is not configured properly,
the various diagnostic capture features in Cloudera Manager could fail.

To verify whether the agent listening port is secured with TLS, run the following command:

openssl s_client -connect <hostname>:9000

If the output of this command includes a server certificate in PEM format, then the port is secured with TLS.

36

	Contents
	Encrypting Data in Transit
	TLS/SSL and Its Use of Certificates
	Certificates Overview
	Wildcard Domain Certificates and SAN Certificates Support
	Renew Certificates Before Expiration Dates

	Understanding Keystores and Truststores
	Choosing manual TLS or Auto-TLS
	SAN Certificates
	Configuring TLS Encryption for Cloudera Manager Using Auto-TLS
	Auto-TLS Requirements and Limitations
	Rotating Auto-TLS Certificate Authority and Host Certificates
	Auto-TLS Agent File Locations
	Use case 1: Use Cloudera Manager to generate internal CA and corresponding certificates
	Use case 2: Enabling Auto-TLS with an intermediate CA signed by an existing Root CA
	Certmanager Options - Using CM's GenerateCMCA API

	Use case 3: Enabling Auto-TLS with Existing Certificates

	Manually Configuring TLS Encryption for Cloudera Manager
	Generate TLS Certificates
	On Each Cluster Host:
	On the Cloudera Manager Server Host

	Configure TLS for the Cloudera Manager Admin Console
	Step 1: Enable HTTPS for the Cloudera Manager Admin Console
	Step 2: Specify SSL Truststore Properties for Cloudera Management Services
	Step 3: Restart Cloudera Manager and Services

	Configure TLS for Cloudera Manager Agents
	Step 1: Enable TLS Encryption for Agents in Cloudera Manager
	Step 2: Enable TLS on Cloudera Manager Agent Hosts
	Step 3: Restart Cloudera Manager Server and Agents
	Step 4: Verify that the Cloudera Manager Server and Agents are Communicating

	Enable Server Certificate Verification on Cloudera Manager Agents
	Configure Agent Certificate Authentication
	Step 1: Export the Private Key to a File
	Step 2: Create a Password File
	Step 3: Configure the Agent to Use Private Keys and Certificates
	Step 4: Enable Agent Certificate Authentication
	Step 5: Restart Cloudera Manager Server and Agents
	Step 6: Verify that Cloudera Manager Server and Agents are Communicating

	Manually Configuring TLS Encryption on the Agent Listening Port

