Cloudera Runtime 7.1.6

Troubleshooting Apache Kudu

Date published: 2020-02-28
Date modified: 2021-03-03

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

| ssues starting or restarting the master or thetablet server........coooeveeieennn, 4
Errors during hole pUNChING TESE........coiiee e st 4
Already present: FS [ayout alf@ady EXISES........ccoriiiriiirieiiiee ettt 5
Troubleshooting NTP stability ProblEmMS..........ooiic s 5

DiSK SPACE USAJE ISSUE.......eeiueiiieeiiiecieesieeeteesteeeteesseesseesaeeeseesseseseessaeeneesnessnreennes 5

PEr fOr MANCE ISSUES.......eiiiiieeie ettt sttt st nre e ssteesneesneeensee e 6
[T o (U 1= o TR OSSR 6

Accessing the tracing Web iNtErfaCe..... ..o e 6
RPC TIMEOUL TFBEES......eeueiveeiteeetese ettt sttt b et b et b e e b s bt se bt s s bt a bbbt bt e b et b e nn e 6
Kernel stack WatChadOg TraCES........c.oiiiiiire e ettt s b e sbe e 7
L= 0 aTe] Y 100 CS USSR 8
BIOCK CBCNE SIZE.......oeciieeiet bbb e bt b et bbbt b 8
(== TS 0T o] 11 o OSSR 9
Slow Name reSOlULION @NO NSTO........cciveuirieiieeiiee ettt e bbb e enesn s e 10

S o T ST 10
ClassNotFoundException: com.cloudera.kudu.hive.KuduStorageHandler...........cocoovirrineineineineneenenes 10
Runtime error: Could not create thread: Resource temporarily unavailable (error 11).........ccccveeveeveirenenees 10
Tombstoned or STOPPED tablet rEPliCaS.........cuiuiiriiiriiiriee bbbt 10
Corruption: checksum error 0N CRIE DIOCK...........ciiiiiereere e 11

Symbolizing StaCK TracesS........ccouv e 11

Recover from a dead Kudu master in a multi-master deployment................... 12
Prepare fOr the FECOVEIYo ettt bbbttt e e e e e et et e e e st eaeebesbesbesbesbeseesbebees 13

PEIfOIM ThE FTEOOVEIYot e ettt h e bbbt b e s b se et et st e e et e e e e eneeneeaeeren 14

Cloudera Runtime I ssues starting or restarting the master or the tablet server

Y ou may face issues while starting or restarting the master or the tablet server in case there are errorsin the hole
punching tests, or if the FS layout already exists, or if the master and tablet server's clocks are not synchronized using
NTP.

Kudu requires hole punching capabilities in order to be efficient. Hole punching support depends upon your operation
system kernel version and local filesystern implementation.

¢ RHEL or CentOS 6.4 or later, patched to kernel version of 2.6.32-358 or later. Unpatched RHEL or CentOS 6.4
does not include a kernel with support for hole punching.

e Ubuntu 14.04 includes version 3.13 of the Linux kernel, which supports hole punching.

* Newer versions of the ext4 and xfs filesystems support hole punching. Older versions that do not support hole
punching will cause Kudu to emit an error message such as the following and to fail to start:

Error during hole punch test. The | og bl ock nanager requires a
filesystemw th hol e punchi ng support such as ext4 or xfs. On el 6,

kernel version 2.6.32-358 or newer is required. To run w thout hole
punchi ng (at the cost of sonme efficiency and scalability), reconfigure
Kudu with --block _manager=file. Refer to the Kudu docunentation for nore
details. Raw error nessage foll ows.

Note:

Ij ext4 mountpoints may actually be backed by ext2 or ext3 formatted devices, which do not support hole
punching. The hole punching test will fail when run on such filesystems. There are severa different waysto
determine whether an ext4 mountpoint is backed by an ext2, ext3, or ext4 formatted device. See the Stack
Exchange post for more details.

Without hole punching support, the log block manager is unsafe to use. It won't ever delete blocks, and will consume
ever more space on disk.

If you can’t use hole punching in your environment, you can still try Kudu. Enable the file block manager instead
of the log block manager by adding the --block_manager=file flag to the commands you use to start the master and
tablet servers. Thefile block manager does not scale as well as the log block manager.

& Attention:

Thefile block manager is known to scale and perform poorly, and should only be used for small-scale
eva uation and development, and only on systems where hole punching is unavailable.

The file block manager uses one file per block. As multiple blocks are written for each rowset, the number of
blocks can be very high, especially for actively written tablets. This can cause performance issues compared
to the log block manager even with a small amount of data. And it isimpossible to switch between block
managers without wiping and reinitializing the tablet servers.

https://unix.stackexchange.com/q/60723
https://unix.stackexchange.com/q/60723

Cloudera Runtime Disk space usage issue

When Kudu starts, it checks each configured data directory, expecting either for al to be initialized or for al to be
empty. If aserver failsto start with alog message such as the following, then this precondition check has failed.

Check failed: _s.ok() Bad status: Already present: Could not create new FS |
ayout: FSManager root is not enpty: /dataO/kudu/data

This could be because Kudu was configured with non-empty data directories on first startup, or because a previously-
running, healthy Kudu process was restarted and at |east one data directory was deleted or is somehow corrupted,
perhaps because of adisk error. If it isthe latter, see Changing directory configuration.

Asof Kudu 1.6.0, Kudu daemons can continue to operate during a brief loss of clock synchronization. If clock
synchronization islost for several hours, the Kudu daemons may crash. If a daemon crashes due to clock
synchronization issues, consult the ERROR log for a dump of related information which may help to diagnose the
issue.

Note: If using other than link-local NTP server, it may take some time for ntpd to synchronize with one of its

E reference serversin case of network connectivity issues. In case of a spotty network between the machine and
the reference NTP servers, ntpd may become unsynchronized with its reference NTP servers. If that happens,
consider finding other set of reference NTP servers: the best bet isto use NTP serversin the local network or
* . pool.ntp.org servers.

When using the log block manager (the default on Linux), Kudu uses sparse files to store data. A sparse file hasa
different apparent size than the actual amount of disk space it uses. This means that some tools may inaccurately
report the disk space used by Kudu. For example, the sizelisted by Is -I does not accurately reflect the disk space used
by Kudu datafiles:

$ Is -1h /data/kudu/tserver/data

total 117M

STW------ 1 kudu kudu 160M Mar 26 19: 37 0b9807b8bl17d48a6a7d5b16bf 4ac4e6d. da
ta

STWe------ 1 kudu kudu 4. 4K Mar 26 19: 37 0b9807b8b17d48a6a7d5b16bf 4ac4e6d

. et adat a

STW---- - - 1 kudu kudu 32M Mar 26 19: 37 2f 26eeacc7e04b65a009e2c9a2a8bd20.
dat a

STW------ 1 kudu kudu 4. 3K Mar 26 19: 37 2f 26eeacc7e04b65a009e2c9a2a8bd20. m
et adat a

STWe------ 1 kudu kudu 672M Mar 26 19: 37 30a2dd2cd3554d8a9613f 588a8d136f f. da
ta

STWe---- - - 1 kudu kudu 4. 4K Mar 26 19: 37 30a2dd2cd3554d8a9613f 588a8d136f f

. met adat a

STW------ 1 kudu kudu 32M Mar 26 19: 37 7434c83chec74aebaf 5974e4909cbf 82.
dat a

STWe------ 1 kudu kudu 4. 3K Mar 26 19: 37 7434c83c5ec74ae6af 5974e4909cbf 82. m
et adat a

STWe---- - - 1 kudu kudu 672M Mar 26 19: 37 772d070347a04f 9f 8ad2ad3241440090. da
ta

STW------ 1 kudu kudu 4. 4K Mar 26 19: 37 772d070347a04f 9f 8ad2ad3241440090

. met adat a

STWe------ 1 kudu kudu 160M Mar 26 19: 37 86e50a95531f 46b6a79e671e6f 5f 4151.
dat a

Cloudera Runtime Performance issues

STW------ 1 kudu kudu 4.4K Mar 26 19: 37 86e50a95531f 46b6a79e671e6f 5f 4151. m
et adat a
STW-- - - 1 kudu kudu 687 Mar 26 19: 26 bl ock_nmnager i nst ance

Notice that the total size reported is 117MiB, while thefirst file's sizeis listed as 160MiB. Adding the -s option to Is
will cause Isto output the file's disk space usage.

The du and df utilities report the actual disk space usage by default.
$ du -h /datal/kudu/tserver/datall8M /data/kudu/tserver/data
The apparent size can be shown with the --apparent-size flag to du.

$ du -h --apparent-size /datal/kudu/tserver/datal. 7G /datal/kudu/tserver/data

Thistopic helps you to troubleshoot issues and improve performance using Kudu tracing, memory limits, block size
cache, heap sampling, and name service cache daemon (nscd).

The Kudu master and tablet server daemons include built-in support for tracing based on the open source Chromium
Tracing framework. Y ou can use tracing to diagnose latency issues or other problems on Kudu servers.

Thetracing interface is part of the embedded web server in each of the Kudu daemons, and can be accessed using
aweb browser. Note that while the interface has been known to work in recent versions of Google Chrome, other
browsers may not work as expected.

Tablet Server <TABLET-SERVER-1.EXAMPLE.COM>:8050/tracing.html

Master <MASTER-1.EXAMPLE.COM>:8051/tracing.html

If client applications are experiencing RPC timeouts, the Kudu tablet server WARNING level logs should contain a
log entry which includes an RPC-level trace.

For example:
W)922 00: 56: 52. 313848 10858 i nbound_call.cc:193] Call kudu.consensus. Consens

usSer vi ce. Updat eConsensus
from 192. 168. 1. 102: 43499 (request call id 3555909) took 1464nms (client tim

eout 1000).

W)922 00: 56: 52. 314888 10858 i nbound_cal |l .cc: 197] Trace:

0922 00: 56: 50. 849505 (+ Ous) service_pool.cc:97] Inserting onto call que
ue

0922 00: 56: 50. 849527 (+ 22us) service_pool . cc: 158] Handling cal

0922 00: 56: 50. 849574 (+ 47us) raft_consensus. cc: 1008] Updating replica
for 2 ops

0922 00: 56: 50. 849628 (+ 54us) raft_consensus. cc: 1050] Early marking co
mritted up to term 8 index: 880241

0922 00: 56: 50. 849968 (+ 340us) raft_consensus. cc: 1056] Triggering prepare

for 2 ops

Cloudera Runtime

Performance issues

0922 00: 56: 50. 850119 (+
0922 00: 56: 50. 850213 (+

151us) | og.cc:420] Serialized 1555 byte log entry
94us) raft_consensus.cc: 1131] Marking conmitted

up to term 8 index: 880241
0922 00: 56: 50. 850218 (+ 5us) raft_consensus.cc: 1148] Updating | ast rece
ived op as term 8 index: 880243
0922 00: 56: 50. 850219 (+ lus) raft_consensus. cc: 1195] Filling consensus
response to | eader.
0922 00: 56: 50. 850221 (+ 2us) raft_consensus.cc: 1169] Waiting on the rep

icates to finish |ogging
0922 00:56:52. 313763 (+1463542us) raft_consensus. cc: 1182] fini shed

0922 00:56: 52. 313764 (+ lus) raft_consensus. cc: 1190]

ni shed

0922 00: 56: 52. 313788 (+

sponse

Updat eRepl i cas() fi

24us) inbound_call.cc:114] Queuei ng success re

These traces can indicate which part of the request was slow. Make sure you include them when filing bug reports

related to RPC latency outliers.

Each Kudu server process has a background thread called the Stack Watchdog, which monitors other threadsin the
server in case they are blocked for longer-than-expected periods of time. These traces can indicate operating system
issues or bottle-necked storage.

When the watchdog thread identifies a case of thread blockage, it logs an entry in the WARNING log as follows:

WD921 23:51:54.306350 10912 kernel _stack_wat chdog. cc: 111] Thread 10937 stuck

at /datal/ kudu/ consensus/| og. cc: 505 for 537ns:

Ker nel st ack:
[<ffffffffa00b209d>]
[<ffffffffa00b2471>]
[<ffffffffa00febd8>]
[<ffffffffa00d9b23>]
[<ffffffffa00d9b9c>]
[<ffffffffa00d9e90>]
[<ffffffff8llac48b>]
[<ffffffff8119c742>]
[<ffffffff8111lcle0>]
[<ffffffff8l1lc4c8>]
[<ffffffffa00d3fbl>]
[<ffffffff81180f5b>]
[<ffffffff8118leeb>]
[<ffffffff81182046>]
[<ffffffff81182102>]
[<ffffffff8100b072>]
[<ffffffffffffffff>)
User st ack:

Ox3alacelOc4

do_get _write_access+0x29d/ 0x520 [bd2]

j bd2_journal _get wite access+0x31/0x50 [j bd2]
__ext4 journal _get wite access+0x38/0x80 [ext4]
ext4 _reserve_i node_wite+0x73/ 0xal [ext4]

ext4 _mar k_i node_di rty+0x4c/ 0x1d0 [ext 4]
ext4_dirty_i node+0x40/ 0x60 [ext 4]
__mark_i node_di rt y+0x3b/ 0x160

file update_ tine+0xf2/0x170

__generic file_ aio wite+0x230/0x490

generic _file_aio wite+0x88/ 0x100

ext4 file wite+0x61/0x1e0 [ext4]
do_sync_readv_witev+0xf b/ 0x140
do_readv_writev+0xd6/ 0x1f 0

vfs writev+0x46/ 0x60

sys_pwitev+0xa2/ 0xc0

system cal | _f ast pat h+0x16/ 0x1b
Oxffffffffffffffff

(unknown)

SISINISISIGISINISISLS)

0x1262103
0x12622d4
0x12603df
0x8e7bf b
0x8f 478b
0x8f 55db
0x12a7b6f

0x3alb007851
0Ox3alace894d

(nil)

(unknown)
(unknown)
(unknown)
(unknown)
(unknown)
(unknown)
(unknown)
(unknown)
(unknown)
(unknown)

These traces can be useful for diagnosing root-cause latency issues in Kudu especially when they are caused by
underlying systems such as disk controllers or filesystems.

Cloudera Runtime Performance issues

Kudu has a hard and soft memory limit. The hard memory limit is the maximum amount a Kudu processis allowed
to use, and is controlled by the --memory_limit_hard_bytes flag. The soft memory limit is a percentage of the hard
memory limit, controlled by the flag memory_limit_soft_percentage and with a default value of 80%, that determines
the amount of memory a process may use before it will start rejecting some write operations.

If the logs or RPC traces contain messages such as the following example, then Kudu is rejecting writes due to
memory back pressure. This may result in write timeouts.

Servi ce unavail abl e: Soft menory limt exceeded (at 96.35% of capacity)

There are several waysto relieve the memory pressure on Kudu:

 |If the host has more memory available for Kudu, increase --memory_limit_hard_bytes.

* Increase the rate at which Kudu can flush writes from memory to disk by increasing the number of disks or
increasing the number of maintenance manager threads --maintenance_manager_num_threads. Generally, the
recommended ratio of maintenance manager threads to data directoriesis 1:3.

* Reduce the volume of writes flowing to Kudu on the application side.

Finally, in Kudu versions 1.7 and lower, check the value of the --block_cache capacity mb setting. This setting
determines the maximum size of Kudu's block cache. While a higher value can help with read and write performance,
setting it too high as a percentage of the --memory_limit_hard_bytes setting is harmful. Do not raise --block _cach

e _capacity_mb above --memory_pressure_percentage (default 60%) of --memory_limit_hard_bytes, as thiswill cause
Kudu to flush aggressively even if write throughput islow. The recommended value for --block_cache_capacity_mb
is below the following:

(50% * --memory_pressure_percentage) * --memory_limit_hard_bytes
With the defaults, this means the --block _cache capacity_mb should not exceed 30% of --memory_limit_hard_bytes.

In Kudu 1.8 and higher, serverswill refuse to start if the block cache capacity exceeds the memory pressure threshold.

Kudu uses an LRU cache for recently read data. On workloads that scan a subset of the data repeatedly, raising the
size of this cache can offer significant performance benefits. To increase the amount of memory dedicated to the
block cache, increase the value of the --block_cache capacity mb flag. The default is 512 MiB.

Kudu provides a set of useful metrics for evaluating the performance of the block cache, which can be found on the/
metrics endpoint of the Web Ul. The following is an example set:

{
"nanme": "bl ock_cache_inserts",
"val ue": 64

s

{
"name": "bl ock_cache_l ookups",
"val ue": 512

e

{ .
"nane": "block _cache_evictions",
"value": 0

I

{ .
"name": "bl ock_cache_m sses",
"val ue": 96

s

{

nane": "bl ock _cache_m sses_cachi ng",

8

Cloudera Runtime Performance issues

"val ue": 64

e

{ .
"name": "bl ock _cache_hits",
"value": O

%,
"nanme": "bl ock_cache_hits_caching",
"val ue": 352

I

{
"name": "bl ock_cache_usage",
"val ue": 6976

}

To judge the efficiency of the block cache on atablet server, first wait until the server has been running and serving
normal requests for some time, so the cacheis not cold. Unless the server stores very little data or isidle, block_ca
che_usage should be equal or nearly equal to block_cache capacity mb. Once the cache has reached steady state,
compare block _cache lookupsto block _cache misses caching. The latter metric counts the number of blocks that
Kudu expected to read from cache but which weren’t found in the cache. If a significant amount of lookups result in
misses on expected cache hits, and theblock _cache_evictions metric is significant compared to block _cache inserts,
then raising the size of the block cache may provide a performance boost. However, the utility of the block cacheis
highly dependent on workload, so it’s necessary to test the benefits of alarger block cache.

Attention: Do not raise the block cache size --block_cache _capacity _mb higher than the memory pressure
threshold (defaults to 60% of --memory_limit_hard bytes). As thiswould cause poor flushing behavior, Kudu
serversversion 1.8 and higher will refuse to start when misconfigured in this way.

For advanced debugging of memory usage, administrators may enable heap sampling on Kudu daemons. This allows
Kudu devel opers to associate memory usage with the specific lines of code and data structures responsible. When
reporting a bug related to memory usage or an apparent memory leak, heap profiling can give quantitative datato
pinpoint the issue.

Caution: Heap sampling is an advanced troubleshooting technique and may cause performance degradation
or instability of the Kudu service. Currently it is not recommended to enable this in a production environment
unless specifically requested by the Kudu devel opment team.

To enable heap sampling on a Kudu daemon, pass the flag --heap-sample-every-n-bytes=524588. If heap sampling is
enabled, the current sampled heap occupancy can be retrieved over HTTP by visiting http://tabl et-server.example.com
:8050/pprof/heap or http://master.example.com:8051/pprof/heap. The output is a machine-readable dump of the stack
traces with their associated heap usage.

Rather than visiting the heap profile page directly in aweb browser, it is typically more useful to use the pprof tool
that is distributed as part of the gperftools open source project. For example, a devel oper with alocal build tree can
use the following command to collect the sampled heap usage and output an SV G diagram:

thirdparty/install ed/ uni nstrunented/bin/pprof -svg 'http://1ocal host:8051/p
prof/heap' > /tnp/heap.svg

The resulting SV G may be visualized in aweb browser or sent to the Kudu community to help troubleshoot memory
occupancy issues.

Tip: Heap samples contain only summary information about allocations and do not contain any data from the
heap. It is safe to share heap samples in public without fear of exposing confidential or sensitive data

Cloudera Runtime Usahility issues

For better scalability on nodes hosting many replicas, we recommend that you use nscd (name service cache daemon)
to cache both DNS name resolution and static name resolution (via/etc/hosts).

When DNS lookups are slow, you will see alog message similar to the following:

W)926 11:19:01.339553 27231 net _util.cc: 193] Tinme spent resol ve address for
kudu-tserver.exanpl e.com real 4.647s user 0.000s sys 0.000s

nscd can alleviate slow name resol ution by providing a cache for the most common name service requests, such as for
passwords, groups, and hosts.

Refer to your operating system documentation for how to install and enable nscd.

This topic lists some common exceptions and errors that you may encounter while using Kudu and helps you to
resolve issues related to usability.

Y ou will encounter this exception when you try to access a Kudu table using Hive. Thisis not a case of amissing
jar, but ssimply that Impala stores Kudu metadata in Hive in aformat that is unreadable to other tools, including Hive
itself. and Spark. Currently, there is no workaround for Hive users. Spark users can work around this by creating
temporary tables.

Y ou may encounter this error when Kudu is unable to create more threads, usually on versions older than Kudu 1.7. It
happens on tablet servers, and is asign that the tablet server hosts too many tablet replicas.

To fix the issue, you can raise the nproc ulimit as detailed in the documentation for your operating system or
distribution.

However, the better solution is to reduce the number of replicas on the tablet server. This may involve rethinking
the tabl€e's partitioning schema. For the recommended limits on number of replicas per tablet server, see the Scaling
recommendations and limitations topic.

Y ou may notice some replicas on atablet server are in a STOPPED state and remain on the server indefinitely. These
replicas are tombstones. A tombstone indicates that the tablet server once held a bona fide replica of its tablet.

For example, in case atablet server goes down and its replicas are re-replicated el sewhere, if the tablet server regjoins
the cluster, its replicas will become tombstones. A tombstone will remain until the table it belongs to is deleted, or
anew replica of the same tablet is placed on the tablet server. A count of tombstoned replicas and details of each
one are available on the /tablets page of the tablet server web Ul. The Raft consensus algorithm that Kudu uses for
replication requires tombstones for correctnessin certain rare situations. They consume minimal resources and hold
no data. They must not be deleted.

10

Cloudera Runtime Symbolizing stack traces

Inversions prior to Kudu 1.8.0, if the data on disk becomes corrupt, you will encounter warnings containing
"Corruption: checksum error on CFile block™ in the tablet server logs and client side errors when trying to scan tablets
with corrupt CFile blocks. Fixing this corruption is a manual process.

To fix theissug, first identify all the affected tablets by running a checksum scan on the affected tables or tablets
using the ksck tool.

sudo -u kudu kudu cluster ksck <master addresses> -checksum scan -tabl es=<ta

bl es>
sudo -u kudu kudu cl uster ksck <master_addresses> -checksum scan -tabl ets=
<t abl et s>

If thereis at least one replicafor each tablet that does not return a corruption error, you can repair the bad copies by
deleting them and forcing them to be re-replicated from the leader using the remote_replica delete tool.

sudo -u kudu kudu renote replica delete <tserver_address> <tablet id> "Cfile
Cor rupti on"

If al of the replicaare corrupt, then some dataloss has occurred. Until KUDU-2526 is completed, this can happen if
the corrupt replica became the leader and the existing follower replicas are replaced.

If data has been lost, you can repair the table by replacing the corrupt tablet with an empty one using the unsafe_repla
ce_tablet tool.

sudo -u kudu kudu tabl et unsafe_replace_tabl et <nmaster_addresses> <tabl e
t_id>

From versions 1.8.0 onwards, Kudu will mark the affected replicas as failed, leading to their automatic re-replication
elsewhere.

Thistopic helps you to identify whether there is a high contention among the threads to acquire alock and away to
symbolize stack addresses.

Sometimes you might see the following in the logs:

0323 03:59:31.091198 (+607857us) spinlock profiling.cc:243] Wiaited 492 ns on

| ock 0x4cb0960. stack: 0000000002398852 0000000000ad8c69 0000000000aa62ba 0
00000000221aaa8 000000000221b1a8 00000000023a8f 83 00007f a8b818be24 00007f a8b
646a34c

That isusually asign of high contention among threads to acquire alock, and in this case the reported time shows
how long athread spent on a CPU before acquiring the lock. The call stack addresses that are listed help to restore the
stack trace of the waiting thread and locate the problem in the code.

It is possible to trand ate the addresses into the name of functions and lines in the code having the binary that
produced the output (in this example, it is kudu-master). If the binary is stripped of symbols and debug information, it
ispossible to do so if the debug information for the binary is available separately.

Assuming both the stripped release binary and the debug information are available as RPMs, unpack them into a
directory; for example, sysroot:

$ nkdir sysroot && cd sysroot
$ rpnRcpio ../kudu-1.10.0.el 7.x86_64.rpm| cpio -idnv

11

https://kudu.apache.org/docs/command_line_tools_reference.html#cluster-ksck
https://issues.apache.org/jira/browse/KUDU-2526

Cloudera Runtime Recover from a dead Kudu master in amulti-master deployment

$ rpnRcpi o ../ kudu-debugi nfo-1.10.0.el 7. x86_64.rpm | cpio -idnv

Use addr2line to find the line in the code for the stack address. In caseif the binary is not stripped of debug
information, supply the actual binary with an -e option instead of the debug info file as follows:

addr2line -C -f -e usr/lib/debug/usr/lib/kudu/sbin-rel ease/ kudu- nast er. debug
0x0000000000aa62ba

kudu: : mast er: : Mast er Servi cel npl : : Connect ToMast er (kudu: : mast er: : Connect ToMast

er Request PB const*, kudu: : mast er:: Connect ToMast er ResponsePB*, kudu: :rpc:: Rpc

Cont ext *)

[usr/ src/debug/ kudu- 1. 10. 0/ sr c/ kudu/ mast er / mast er _servi ce. cc: 504

To achieve the same with gdb, first find the address of the .text section in the symboal file (in the example, 00000000

00a2cdb0):
$ readelf -S usr/lib/debug/usr/lib/kudu/sbin-rel ease/ kudu-master. debug | gre
p .text
[13] .text NOBI TS 0000000000a2cdh0 000002c0

Then start up gdb, pointing it to the kudu-master executable (that's the executabl e that produced the output in the log
file):

gdb usr/1i b/ kudu/ sbi n-rel ease/ kudu- nast er

Now load the .debug symbols into gdb using the address found above. Tell gdb where to find source files and set the
sysroot:

(gdb) add-synbol -file usr/lib/debug/usr/lib/kudu/sbin-rel ease/ kudu-nast er. de
bug 0x0000000000a2cdb0

(gdb) set substitute-path /usr/src/debug/kudu-21.10.0 usr/src/debug/kudu-1
.10.0

(gdb) set sysroot

To trandlate the address into line number and function information, useinfo line* <address>:

(gdb) info line * 0x0000000000aa62ba
Li ne 504 of "/usr/src/debug/kudu-1.10.0/src/kudu/ master/ master_service. cc"
starts at address Oxaa62af <kudu::rmaster::MsterServicel npl:: Connect ToMas
ter (kudu: : mast er: : Connect ToMast er Request PB const*, kudu:: naster:: Connect ToMa
st er ResponsePB*, kudu: :rpc:: RpcCont ext*) +47>
and ends at Oxaa62bb <kudu:: master:: Mast er Servi cel npl : : Connect ToMast er (k
udu: : mast er: : Connect ToMast er Request PB const *, kudu: : mast er: : Connect ToMast er R
esponsePB*, kudu: :rpc:: RpcCont ext *) +59>.

Kudu multi-master deployments function normally in the event of a master loss. However, it isimportant to replace
the dead master. Otherwise a second failure may lead to aloss of availability, depending on the number of available
masters. This workflow describes how to replace the dead master.

Due to KUDU-1620, it is not possible to perform this workflow without also restarting the live masters. As such, the
workflow requires a maintenance window, albeit a potentially brief oneif the cluster was set up with DNS aliases.

12

https://issues.apache.org/jira/browse/KUDU-1620

Cloudera Runtime Recover from a dead Kudu master in amulti-master deployment

& Important:

e Kudu does not yet support live Raft configuration changes for masters. As such, it is only possible to
replace a master if the deployment was created with DNS aliases or if every node in the cluster isfirst shut
down. See the previous multi-master migration workflow in Migrating to multiple Kudu masters for more
details on deploying with DNS aliases.

« Theworkflow presupposes at least basic familiarity with Kudu configuration management. If using
Cloudera Manager, the workflow also presupposes familiarity with it.

e All of the command line steps below should be executed as the Kudu UNIX user, typically kudu.

Itiscrucial to make sure that the master node is truly dead and does not accidentally restart while you are preparing
for the recovery.

1. If the cluster was configured without DNS aliases perform the following steps. Otherwise move on to step 2:

a) Establish amaintenance window (one hour should be sufficient). During this time the Kudu cluster will be
unavailable.

b) Shut down all Kudu tablet server processesin the cluster.

2. Ensurethat the dead master iswell and truly dead. Take whatever steps needed to prevent it from accidentally
restarting; this can be quite dangerous for the cluster post-recovery.

3. Choose one of the remaining live mastersto serve as abasis for recovery. The rest of thisworkflow will refer to
this master as the "reference” master.

4. Choose an unused machine in the cluster where the new master will live. The master generates very little load so

it can be co-located with other data services or |oad-generating processes, though not with another Kudu master
from the same configuration. The rest of thisworkflow will refer to this master as the "replacement” master.

5. Perform the following preparatory steps for the replacement master:
e Ensure Kudu isinstalled on the machine, either via system packages (in which case the kudu and kudu-master

packages should be installed), or via some other means.
¢ Choose and record the directory where the master’ s datawill live.
6. Perform the following preparatory steps for each live master:

« ldentify and record the directory where the master’ s data lives. If using Kudu system packages, the default
valueis /var/lib/kudu/master, but it may be customized viathe fs wal_dir and fs_data_dirs configuration
parameter. Please note if you've set fs data_dirs to some directories other than the value of fs wal_dir,
it should be explicitly included in every command below where fs wal_dir is aso included. For more
information on configuring these directories, see Apache Kudu configuration.

 |dentify and record the master’'s UUID. It can be fetched using the following command:

$ sudo -u kudu kudu fs dunp uuid --fs_wal _dir=<master_wal _dir> [--fs_dat
a_dirs=<master_data _dir>] 2>/dev/null

master _data dir
live master’s previously recorded data directory

Example

$ sudo -u kudu kudu fs dunp uuid --fs_wal _dir=/datal/kudu/ master/
wal --fs_data_dirs=/datal/ kudu/ mast er/data 2>/ dev/ nul
80a82c4b8a9f 4c819bab744927ad765¢

13

Cloudera Runtime Recover from a dead Kudu master in amulti-master deployment

7. Perform the following preparatory steps for the reference master:

« ldentify and record the directory where the master’ s data lives. If using Kudu system packages, the default
value is /var/lib/kudu/master, but it may be customized using the fs wal_dir and fs_data_dirs configuration
parameter. If you haveset fs_data dirsto some directories other than the value of fs wal_dir, it should be
explicitly included in every command below where fs wal_dir is also included.

* ldentify and record the UUIDs of every master in the cluster, using the following command:

$ sudo -u kudu kudu local _replica cneta print_replica_uuids --fs_wal _dir
=<master_data _dir> <tabl et id> 2>/ dev/null
master_data_dir
The reference master’ s previously recorded data directory.
tablet_id
Must be set to the string, 00000000000000000000000000000000.

For example

$ sudo -u kudu kudu | ocal _replica cneta print_replica_uuids --fs

_wal _dir=/datal/kudu/ master/wal --fs_data dirs=/data/kudu/ master/

data 00000000000000000000000000000000 2>/ dev/ nul

80a82c4b8a9f 4c819bab744927ad765¢c 2a73eeee5d47413981d9alc637ccel70
1c3f 3094256347528d02ec107466aef 3

8. Using the two previously-recorded lists of UUIDs (one for al live masters and one for all masters), determine and
record (by process of elimination) the UUID of the dead master.

After you have identified areference master, you need to copy the master data to the replacement master node. Y ou
need to bring the Kudu clusters down. Therefore, identify at least a one-hour maintenance window for this task.

1. Format the data directory on the replacement master machine using the previously recorded UUID of the dead
master. Use the following command sequence:

$ sudo -u kudu kudu fs format --fs wal dir=<master _wal dir> [--fs data_d
i rs=<master_data_dir>] --uuid=<uuid>
master_data_dir
The replacement master’s previously recorded data directory.
uuid
The dead master’s previously recorded UUID.

For example:

$ sudo -u kudu kudu fs format --fs_wal _dir=/datal/kudu/ master/ wal
--fs_data_dirs=/datal/ kudu/ mnaster/ data --uui d=80a82c4b8a9f 4c819b
ab744927ad765c

14

Cloudera Runtime Recover from a dead Kudu master in amulti-master deployment

2. Copy the master datato the replacement master with the following command:

Important: If your Kudu cluster is secure, in addition to running as the Kudu UNIX user, you must
authenticate as the Kudu service user prior to running this command.

$ sudo -u kudu kudu | ocal _replica copy_fromremte --fs_wal _dir=<naster_
wal _dir> [--fs_data_dirs=<master_data_dir>] <tablet id> <reference_naster>

master _data_dir
The replacement master’ s previously recorded data directory.
tablet_id
Must be set to the string, 00000000000000000000000000000000.
reference_master
The RPC address of the reference master. It must be a string of the form <hostname>:<port>.
hostname
The reference master’s previously recorded hostname or alias.
port
The reference master’ s previously recorded RPC port number.
For example:
$ sudo -u kudu kudu local _replica copy fromrenote --fs_wal _dir=

/ dat a/ kudu/ master/wal --fs_data dirs=/data/ kudu/ mast er/ data 0000
0000000000000000000000000000 nmster-2: 7051

3. If you are using Cloudera Manager, add the replacement Kudu master role now, but do not start it.

* Override the empty value of the Master Address parameter for the new role with the replacement master’s
dias.
« |If you are using a non-default RPC port, add the port number (separated by a colon) as well.
4. If the cluster was set up with DNS aliases, reconfigure the DNS alias for the dead master to point at the
replacement master.
5. If the cluster was set up without DNS aliases, perform the following steps:
a) Stop theremaining live masters.
b) Rewrite the Raft configurations on these masters to include the replacement master. See Sep 4 in the Perform
the migration topic for more details.
6. Start the replacement master.

7. Restart the remaining mastersin the new multi-master deployment. While the masters are shut down, there will be
an availability outage, but it should last only aslong asit takes for the masters to come back up.

To verify that all masters are working properly, consider performing the following sanity checks:

« Using abrowser, visit each master’ sweb Ul and navigate to the /masters page. All the masters should now be
listed there with one master in the LEADER role and the othersin the FOLLOWER role. The contents of /masters
on each master should be the same.

* RunaKudu system check (ksck) on the cluster using the kudu command line tool.

15

	Contents
	Issues starting or restarting the master or the tablet server
	Errors during hole punching test
	Already present: FS layout already exists
	Troubleshooting NTP stability problems

	Disk space usage issue
	Performance issues
	Kudu tracing
	Accessing the tracing web interface
	RPC timeout traces
	Kernel stack watchdog traces

	Memory limits
	Block cache size
	Heap sampling
	Slow name resolution and nscd

	Usability issues
	ClassNotFoundException: com.cloudera.kudu.hive.KuduStorageHandler
	Runtime error: Could not create thread: Resource temporarily unavailable (error 11)
	Tombstoned or STOPPED tablet replicas
	Corruption: checksum error on CFile block

	Symbolizing stack traces
	Recover from a dead Kudu master in a multi-master deployment
	Prepare for the recovery
	Perform the recovery

