Using Apache Iceberg

Date published: 2023-01-24
Date modified: 2023-01-24

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

| Contents | iii

Apache 1cebDerg fEaALUIES.........cvocee e 5
F N L= = o =N = (=P S 5
Create tADIE FEALUNE.....c.ece ettt sttt s e be s eese et et e e et e seeseeneeaeetesneerenteneeneens 6
Create table aS SEECE FEALUNE........eoeeeee et sttt e e e e e seeneesesneeneeeenes 8
Create partitioned table as SEIECt FEALUIE...........ci e 8
Create table ... [TKE FEALUIE.......ccui ettt e sttt s e neeseeb e e sesaesbeseesenneenean 9
Describe table MEetaata FEALUNE..........cooiririre ettt s e e e e ne e s nenneerens 9
DIOP TADIE FEBIUME. ... vttt bbbt b bbb e bt e bt e bt e st s b e s bt st n e ens 9
EXPIre SNAPSNOLS FEALUIE........cuiieetireeieitet ettt b et b e b e bbbt e bbbt b e b e s b e sbenes 10
INSErt tAD]@ A FEALUNE......c.eeeeeeeeeeetece ettt st e e e e e s e seeseebesbesaesrenbeneeseenean 11
Load data iNPAEN FEALUIE...........ciriiieee bbbttt b e n e 12
Load or replace partition datal fEBIUNE............ceiiiiiirieeee bbb 12
IMENOE FEALUIE. ...ttt b e b e bt e bt e bt b h e b et b et e b e e e b e s e e bt seeb e se e bt seeb e seenesbenesbeneebeneas 13
Migrate Hive table tO 1CEEIg fEAIUME.... ..o 13

Changing the Metadata |OCELION..........c.ceeriiiriiireee bbb 14
Partition EVOIULION FEBIUNE..........ceeieeieere ettt sttt se et et e e e e eneeseeneesessesseseenseneeseens 14
Partition transfOrmM FEALUIE...........ceiiie et s ae st st sae st et see st e eeneeneeneeneenennens 15
Query metadata tahl €S FEBIUNE.........co.cirieireee bbbt 17
ROIIDACK 1ADI€ FEALUE.......eeneeeeeeeee ettt st eesees e s sesresbesbeseeseenteneens 17
SCheMa EVOIULION FEALUE...........oieeeeieece ettt sttt sttt se e e e e e e e e eseeseesessesteseesaeneensesenns 17
SChEMA INFEIENCE FEBIUNE. ... et a ettt ee s te b e st e se e et e e e e eneeneeneerennes 18
LT (s V= I = (=SSP 19
TrUNCALE tADIE FEALUIE........e ettt s st ae s ae s be s be s eesbesbesee e enee e e e eneesennennens 20
Update and delete data fFERIUINES..........coiiiiiieeieet ettt bbbttt a e bbb enn 21

Best practices for 1ceberg in CDP.........ooie e 21

FEatUr e lIMITALIONS.......eiiieeiieeiee ettt re e st eeree e 22

Prerequisites for USING | CEDEN ...uv i 22

AcCCesSiNg 1 CEDEr g tabIES.......cueeieecee s 22
Editing a policy t0 aCCESS ICEDEIG FIlES......iiuiiiicecec et 24
Creating a policy to query an [Ceberg table.........oiiieieiceceeeece e e e e 26

Creating an lIceberg table........ooo e 28

Creating an Iceberg partitioned table..........cccocoveoeeiiiicec e, 28

EXPIring SNAPRSNOLS......cocuiiiiicce et 29

Inserting data into a table..........ccoooveiii e 30

Migrating a Hive table to 1CEDEI g.......vovvriieiiiece e 30
Selecting an Iceberg table.........oo e 31
RUNNING tiMe travel QUENTES.......c.coiieeeee et 32
Updating an 1ceberg partition..........cccceie e iie et 32
Test driving Iceberg from Impala........cccooeeeieiiiiin s 33
Test driving 1ceberg from HIVe........oov i 35
HIVE dEMO ALAL......ceeiiiieieeeeee e 37
| CEDEN g ata LYPES.....ei ettt nree s 39

| ceberg table ProPertiES.......oo e 40

Apache | ceberg features

Y ou can quickly build on your past experience with SQL to analyze |ceberg tables.

Impala queries are table-format agnostic. For example, Impala options are supported in queries of 1ceberg tables from
Impala. Y ou can run nested, correlated, analytic queries on all supported table types.

Most Hive queries are table-format agnostic. This documentation does not attempt to show every possible query
supported from Hive and Impala. For example, creating a view is not covered, but you can create aview of any table
from Hive or Impalausing SQL syntax. The following topics show many examples of how to run queries on Iceberg
tables from Hive and Impala.

In Hive or Impala, you can use ALTER TABLE to set table properties. From Impala, you can use ALTER TABLE
to rename atable, to change the table owner, or to change the role of the table owner. From Hive, you can alter the
metadata location of the table if the new metadata does not belong to another table; otherwise, an exception occurs.

Y ou can convert an Iceberg vl table to v2 by setting atable property as follows: format-version' = '2'.

ALTER TABLE t abl e _nane SET TBLPROPERTI ES t abl e _properti es;

« table properties

A list of properties and values using the following syntax:

("key' = 'value', '"key' = 'value', ...)

ALTER TABLE t abl e_name RENAME TO new_t abl e_nane;
ALTER TABLE t abl e nanme SET OMNER USER user _nane;

ALTER TABLE t abl e_name SET OMER ROLE rol e_nane;

ALTER TABLE test table SET TBLPROPERTI ES(' netadata | ocation' =" hdfs://ice_tab
| e/ met adat a/ vl. net adata.j son');
ALTER TABLE test_tabl e2 SET TBLPROPERTI ES(' format-version' = '2');

ALTER TABLE t1 RENAME TO t 2;
ALTER TABLE ice_tablel set OMER USER j ohn_doe;

ALTER TABLE ice_tabl e2 set OMER ROLE sone_rol e;
ALTER TABLE i ce 8 SET TBLPROPERTIES ('read.split.target-size' ="' 268435456');

ALTER TABLE ice_tabl e3 SET TBLPROPERTI ES(' f ormat -version' = '2");

Apache | ceberg features

You use CREATE TABLE from Impalaor CREATE EXTERNAL TABLE from Hiveto create an external tablein
Iceberg. You learn the subtle differences in these features for creating | ceberg tables from Hive and Impala. You also
learn about partitioning.

Hive and Impala handle external table creation alittle differently, and that extendsto creating tablesin Iceberg. By
default, Iceberg tables you create are v1. To create an | ceberg v2 table from Hive or Impala, you need to set atable
property asfollows:'format-version' = '2'.

From Hive, CREATE EXTERNAL TABLE isrecommended to create an |ceberg tablein CDP.

When you use the EXTERNAL keyword to create the |Iceberg table, by default only the schemais dropped when you
drop the table. The actual datais not purged. Conversely, if you do not use EXTERNAL, by default the schema and
actual datais purged. Y ou can override the default behavior. For more information, see the Drop table feature.

From Hive, you can create atable that reuses existing metadata by setting the metadata location table property to
the object store path to the metadata. The operation skips generation of new metadata and re-registers the existing
metadata.

From Impala, CREATE TABLE is recommended to create an |ceberg table in CDP. Impala creates the Iceberg table
metadata in the metastore and also initializes the actual |ceberg table datain the object store.

The difference between Hive and Impalawith regard to creating an Iceberg table is related to Impala compatibility
with Kudu, HBase, and other tables. For more information, see the Apache documentation, "Using Impalawith
Iceberg Tables".

When you create an Iceberg table using CREATE EXTERNAL TABLE in Hive or using CREATE TABLE in
Impala, HiveCatalog creates an HM S table and al so stores some metadata about the table on your object store, such
as S3. Creating an | ceberg table generates a metadata.json file, but not a snapshot. In the metadata.json, the snapshot-
id of anew tableis-1. Inserting, deleting, or updating table data generates a snapshot. The |ceberg metadata files and
datafiles are stored in the table directory under the warehouse folder. Any optional partition datais converted into

| ceberg partitions instead of creating partitions in the Hive Metastore, thereby removing the bottleneck.

To create an |ceberg table from Hive or from Impala, you associate the |ceberg storage handler with the table using
one of the following clauses, respectively:

* Hive: STORED BY ICEBERG
* Impalas STORED ASICEBERG or STORED BY ICEBERG

Y ou can write |ceberg tables in the following formats:

e From Hive: Parquet (default), Avro, ORC
e From Impala: Parquet

Impala supports writing Iceberg tablesin only Parquet format. Impala does not support defining both file format and
storage engine. For example, CREATE TABLE thl ... STORED ASPARQUET STORED BY ICEBERG works
from Hive, but not from Impala.

Y ou can read |ceberg tables in the following formats:
* From Hive: Parquet, Avro, ORC

https://impala.apache.org/docs/build/html/topics/impala_iceberg.html
https://impala.apache.org/docs/build/html/topics/impala_iceberg.html

Apache | ceberg features

e From Impala: Parquet, Avro, ORC

Note: Reading Iceberg tablesin Avro format from Impalais available as atechnical preview. Cloudera
E recommends that you use this feature in test and development environments. It is not recommended for
production deployments.

CREATE [EXTERNAL] TABLE [I F NOT EXI STS] [db_nane.]tabl e_nane
[(col _name data_type, ...)]
[PARTI TI ONED BY [SPEC] ([col _nane] [, spec(value)][, spec(value)]...)]]
[STORED AS file_format]
STORED BY | CEBERG
[TBLPROPERTI ES (' key' ="' val ue', 'key'='"value', ...)]

CREATE TABLE [I F NOT EXI STS] [db_nane.]tabl e_nanme
[(col _name data_type, ...)]
[PARTI TI ONED BY [SPEC] ([col _nane][, spec(value)][, spec(value)]...)]]
STORED {AS | BY} | CEBERG
[TBLPROPERTI ES (property_nanme=property_value, ...)]

CREATE EXTERNAL TABLE ice_1 (i INT, t TIMESTAMP, j BI G NT) STORED BY | CEBERG
CREATE EXTERNAL TABLE ice_2 (i INT, t TIMESTAMP) PARTI TI ONED BY (j B
| G NT) STORED BY | CEBERG
CREATE EXTERNAL TABLE ice 4 (i int) STORED AS ORC STORED BY | CEBERG
CREATE EXTERNAL TABLE ice_ 5 (i int) STORED BY | CEBERG (' netadata_I| oca
tion' =" hdfs://ice_tabl e/ netadat a/ vl. net adata.json')
CREATE EXTERNAL TABLE ice_6 (i int) STORED AS ORC STORED BY | CEBERG TB
LPROPERTIES (' format-version' = "'2");

CREATE EXTERNAL TABLE ice_1 (i INT, t TIMESTAMP, j BI G NT) STORED BY | CEBERG
CREATE EXTERNAL TABLE ice_2 (i INT, t TIMESTAMP) PARTI TIONED BY (j B
| @ NT) STORED BY | CEBERG
CREATE EXTERNAL TABLE ice_4 (i int) STORED AS ORC STORED BY | CEBERG
CREATE EXTERNAL TABLE ice_5 (i int) STORED BY | CEBERG (' netadata_| oca
tion' =" hdfs://ice_tabl e/ netadat a/ vl. net adata. j son')
CREATE EXTERNAL TABLE ice_6 (i int) STORED AS ORC STORED BY | CEBERG TB
LPROPERTI ES (' format-version' = '2');

CREATE TABLE ice_7 (i INT, t TIMESTAMP, j BIG NT) STORED BY | CEBERG //creat

es only the schema

CREATE TABLE ice_8 (i INT, t TIMESTAMP) PARTI TIONED BY (j BI G NT) STORED BY
| CEBERG //creates schema and initializes data

CREATE TABLE ice_v2 (i INT, t TIMESTAMP) PARTI TI ONED BY (j BI G NT) STORED BY
| CEBERG TBLPROPERTIES (' format-version' = '2'); //creates a v2 table

Drop table feature
Partition transform feature

Apache | ceberg features

Y ou can create an | ceberg table based on an existing Hive or Impalatable.
The create table as select (CTAS) query can optionally include a partitioning spec for the table being created.

CREATE EXTERNAL TABLE ctas STORED BY | CEBERG AS SELECT i, t, j FROMice_1;

CREATE TABLE ctas STORED BY | CEBERG AS SELECT i, b FROMice_11;

Y ou can create a partitioned | ceberg table by selecting another table. Y ou see an example of how to use
PARTITIONED BY and TBLPROPERTIES to declare the partition spec and table properties for the new table.

Y ou see an exampl e of using a partition transform with the PARTITIONED BY SPEC clause.

The newly created table does not inherit the partition spec and table properties from the source table in SELECT.
The I ceberg table and the corresponding Hive tableis created at the beginning of the query execution. The datais
inserted / committed when the query finishes. So for atransient period the table exists but contains no data.

CREATE [EXTERNAL] TABLE prod. db. sanpl e
USI NG i ceberg
PARTI TI ONED BY (part)
TBLPROPERTI ES (' key' =' val ue')
AS SELECT ...

CREATE EXTERNAL TABLE ctas STORED BY | CEBERG AS SELECT i, t, j FROMice_1;

CREATE EXTERNAL TABLE ctas_part PARTI TI ONED BY(z) STORED BY | CEBERG TBLPROPE
RTIES (' format-version'='2")

AS SELECT x, ts, z FROM t;

CREATE EXTERNAL TABLE ctas_part_spec PARTI TI ONED BY SPEC (nont h(d)) STORED
BY | CEBERG TBLPROPERTI ES (' fornmat-version' = 2")

AS SELECT x, ts, d FROM source_t;

CREATE TABLE ctas STORED BY | CEBERG AS SELECT i, b FROMice_11;

CREATE TABLE ctas_part PARTI TI ONED BY(b) STORED BY | CEBERG AS SELECT i, s, b
FROM i ce_11;

CREATE TABLE ctas_part_spec PARTI TI ONED BY SPEC (nonth(d)) STORED BY | CEBERG
TBLPROPERTI ES (' fornmat-version' = 2")

AS SELECT x, ts, d FROM source_t;

https://docs.cloudera.com/cdw-runtime/1.5.0/iceberg-how-to/topics/iceberg-partition-transformation.html

Apache | ceberg features

Create table ... like feature

From Hive, you can create an | ceberg table schema based on another table. The table contains no data. The table
properties of the original table are carried over to the new table definition.

The create table ... link feature is available only from Hive. The following example shows how to use this feature:

Hive example

CREATE TABLE target LIKE source STORED BY | CEBERG

Describe table metadata feature

Y ou can use certain Hive and Impala show and describe commands to get information about table metadata. Y ou can

also query metadata tables.

The following table lists SHOW and DESCRIBE commands supported by Hive and Impala.

Command Syntax Description

SHOW CREATE TABLE table_name

Reveals the schema that created the table.

Hive and Impala

SQL Engine Support

SHOW FILESIN table_name

Liststhefilesrelated to the table.

Impala

SHOW PARTITIONS table_name

Returns the | ceberg partition spec, just the
column information, not actual partitions or
files.

Impala

DESCRIBE [EXTENDED] table_name

The optional EXTENDED shows all the

metadata for the table in Thrift serialized form,

which is useful for debugging.

Hive and Impala

DESCRIBE [FORMATTED] table_name

The optional FORMATTED shows the
metadata in tabular format.

Hive

DESCRIBE HISTORY table_name [BET
WEEN timestampl AND timestamp2]

Optionally limits the output history to a period
of time.

Impaa

Hive example

DESCRI BE t;

Hive output includes the following information:

col_name data_type

X

int

comment

y int

NULL NULL
Partition Transform Information NULL NULL
col_name transform_type NULL
y IDENTITY NULL

Drop table feature

The syntax you use to create the table determines the default behavior when you drop the I ceberg table from Hive or

Impala.

Apache | ceberg features

If you use CREATE TABLE, the external .table.purge flag is set to true. When the table is dropped, the contents

of the table directory (actual data) are removed. If you use CREATE EXTERNAL TABLE from Hive, the

external .table.purge flag is set to false. Dropping atable purges the schema only. The actual datais not removed. You
can explicitly set the external .table.purge property to true to drop the data as well as the schema.

To prevent dataloss during migration of atable to I ceberg, do not drop or move the table during migration.
Exception: If you set the table property ‘external .table.purge’="FAL SE', no data loss occurs if you drop the table.

DROP TABLE [I F EXI STS] tabl e _nane

ALTER TABLE t SET TBLPROPERTI ES(' ext ernal . tabl e. purge' = true');
DROP TABLE t;

Create table feature

Y ou can expire snapshots that | ceberg generates when you create or modify atable. During the lifetime of atable the
number of snapshots of the table accumulate. Y ou learn how to remove snapshots you no longer need.

Y ou should periodically expire snapshots to delete data files that are no longer needed, and to reduce the size of
table metadata. Each write to an | ceberg table from Hive creates a new snapshot, or version, of atable. Snapshots
can be used for time-travel queries, or for rollbacks. The table can be rolled back to any valid snapshot. Snapshots
accumulate until they are expired by the expire_snapshots operation.

Y ou use the following syntax to expire snapshots older than a timestamp or timestamp expression:

ALTER TABLE ... EXECUTE expire_snapshot s(<tinestanp expressi on>)

The first example removes snapshots having atimestamp older than August 15, 2022 1:50 pm. The second example
removes snapshots from 10 days ago and before.

ALTER TABLE ice_11 EXECUTE expire_snapshot s(' 2022-08-15 13:50: 00");
ALTER TABLE i ce_t EXECUTE expire_snapshots(now() - interval 10 days);

Y ou should periodically expire snapshots to delete data files that are no longer needed, and to reduce the size of
table metadata. Each write to an | ceberg table from Hive creates a new snapshot, or version, of atable. Snapshots
can be used for time-travel queries, or for rollbacks. The table can be rolled back to any valid snapshot. Snapshots
accumulate until they are expired by the expire_snapshots operation.

ALTER TABLE test _tabl e EXECUTE expire_snapshots('2021-12-09 05: 39: 18. 6890000
00");

Y ou can prevent expiration of recent snapshots by configuring the history.expire.min-snapshots-to-keep table
property. You can use the alter table feature to set a property.

10

https://docs.cloudera.com/cdw-runtime/1.5.0/iceberg-how-to/topics/iceberg-alteration.html

Apache | ceberg features

The contents of the table directory (actual data) might, or might not, be removed when you drop the table. An orphan
data file can remain when you drop an Iceberg table, depending on the external .table.purge flag table property. An
orphaned datafileis one that has contents in the table directory, but no snapshot.

Expiring a snapshot does not remove old metadata files by default. Y ou must clean up metadata files using writ
e.metadata.del ete-after-commit.enabled=true and write.metadata.previous-versions-max table properties. For more
information, see "lceberg table properties’. Setting this property controls automatic metadata file removal after
metadata operations, such as expiring snapshots or inserting data.

From Hive and Impala, you can insert datainto Iceberg tables using the standard INSERT INTO asingletable.

Y ou can replace datain the table with the result of a query. To replace data, Hive and Impala dynamically overwrite
partitions that have rows returned by the SELECT query. Partitions that do not have rows returned by the SELECT
query, are not replaced. Using INSERT OVERWRITE on tables that use the BUCKET partition transform is not
recommended. Results are unpredictable because dynamic overwrite behavior would be too random in this case.

From Hive, CDP also supports inserting into multiple tables as a technical preview; however, this operation is not
atomic, so data consistency of |ceberg tablesis equivalent to that of Hive external tables. Changes within asingle
table will remain atomic.

Inserting, deleting, or updating table data generates a snapshot. A new snapshot corresponds to a new manifest list.
Manifest lists are named snap-*.avro.

I ceberg specification defines sort orders. At this point, Hive doesn’t support defining sort orders. But if there are sort
orders defined by using other engines Hive can utilize them on write operations. For more information about sorting,
see sort orders specification.

I NSERT | NTO TABLE t abl enane VALUES val ues row [, values row ...]
I NSERT | NTO TABLE t abl enanel sel ect _statenentl FROM t abl enane2

| NSERT OVERWRI TE TABLE t abl enanel sel ect _statenent1l FROM t abl enane2

CREATE TABLE ice_10 (i INT, s STRING b BOOLEAN) STORED BY | CEBERG
I NSERT I NTO i ce_10 VALUES (1, 'asf', true);

CREATE TABLE ice_11 (i INT, s STRING b BOOLEAN) STORED BY | CEBERG
I NSERT | NTO ice_11 VALUES (2, 'apache', false);

I NSERT INTO ice_11 SELECT * FROM ice_10;

SELECT * FROM ice_11;

| NSERT OVERWRI TE ice_11 SELECT * FROM i ce_10;

FROM cust oner s
I NSERT | NTO targetl SELECT custoner _id, first_nane;
I NSERT | NTO target2 SELECT | ast_nane, customer _id;

11

https://docs.cloudera.com/cdw-runtime/1.5.0/iceberg-how-to/topics/iceberg-drop.html
https://docs.cloudera.com/cdw-runtime/1.5.0/iceberg-how-to/topics/iceberg-table-properties.html
https://iceberg.apache.org/spec/#sort-orders

Apache | ceberg features

From Impala, you can load Parquet or ORC data from afile in adirectory on your file system or object store into an
I ceberg table. Y ou might need to set the mem_limit or pool configuration (max-query-mem-limit, min-query-mem-
limit) to accommodate the load.

LOAD DATA I NPATH ‘<path to file> INTO table t;

In this example, you create atable using the LIKE clause to point to a table stored as Parquet. Thisisrequired for
I ceberg to infer the schema. Y ou also |oad data stored as ORC.

CREATE TABLE test_iceberg LIKE ny_parquet_table STORED AS | CEBERG
SET MEM LI M T=1MB;

LOAD DATA | NPATH '/t np/ sone_db/ parquet files/'
I NTO TABLE i ceberg_tbl;

LOAD DATA | NPATH '/t np/ some_db/orc_fil es/'
| NTO TABLE i ceberg2_tbl;

CREATE TABLE test _iceberg LIKE my_parquet table STORED AS | CEBERG
SET MEM LI M T=1MB;

LOAD DATA | NPATH '/t np/ some_db/ parquet _files/' |INTO TABLE iceberg_tbl;

LOAD DATA | NPATH '/t np/ some_db/ orc_files/' | NTO TABLE iceberg2_tbl;

Thereis no difference in the way you insert data into a partitioned or unpartitioned |ceberg table.
Working with partitions is easy because you write the query in the same way for the following operations:

* Insertinto, or replace, an unpartitioned table
« Insertinto, or replace, an identity partitioned table
e Insertinto, or replace, atransform-partitioned table

Do not use INSERT OVERWRITE on tables that went through partition evolution. Truncate such tables first, and
then INSERT the tables.

CREATE TABLE ice_12 (i int, s string, t timestanp, t2 tinestanp) STORED BY |
CEBERG

I NSERT I NTO ice_12 VALUES (42, 'inpala', now), to_date(now)));
| NSERT OVERWRI TE ice_t VALUES (42, 'inpala', now(), to_date(now()));

12

Apache | ceberg features

Y ou can perform actions on an I ceberg table based on the results of ajoin with av2 Iceberg table.

MERGE | NTO <target table> AS T USI NG <source expression/table> AS S

ON <bool ean expressi onl>

WHEN MATCHED [AND <bool ean expressi on2>] THEN UPDATE SET <set cl ause |ist>
WHEN MATCHED [AND <bool ean expressi on3>] THEN DELETE

VHEN NOT MATCHED [AND <bool ean expressi on4>] THEN | NSERT VALUES <val ue |ist>

create external table target _ice(a int, b string, c int) partitioned by spec
(bucket (16, a), truncate(3, b)) stored by iceberg stored as orc tblproperti
es ('format-version' ='2");

create table source(a int, b string, c int);

merge into target_ice as t using source src ONt.a = src.a

when matched and t.a > 100 THEN DELETE
when mat ched then update set b = "Merged', ¢ =t.c + 10
when not matched then insert values (src.a, src.b, src.c);

CDP supports table migration from Hive tables to |ceberg tables using ALTER TABLE to set the table properties.
Y ou set the storage_handler table property to the Iceberg storage handler.

Impala does not support table migration in this release. The topic "Test driving Iceberg from Impald’ shows how to
create | ceberg tables from Impalatables.

Note: Do not drop or move the old table during a migration operation. Doing so will delete the data files of
B the old and new tables. Exception: If you set the table property 'external.table.purge’="FAL SE', no dataloss
occurs when you drop the table.

In-place table migration saves time generating | ceberg tables. Thereis no need to regenerate data files. Only
metadata, which points to source datafiles, is regenerated, as shown in the following diagram:

13

https://docs.cloudera.com/cdw-runtime/1.5.0/iceberg-how-to/topics/iceberg-table-migration.html

Apache | ceberg features

Hive Warehouse Directory Hive Warehouse Directory

point to Hive table data 4—J

f 1
\ |
\ |
\ I
\ I
\ |
\ |
\ |
\ |
\ |
\ I
L J

ALTER TABLE t abl e_name SET TBLPROPERTI ES
(' storage_handl er' =" org. apache. i ceberg. nr. hi ve. H vel ceber gSt or ageHandl er') ;

From Hive, you can change the table metadata | ocation, also known as the snapshot location.

» The new location must contain exactly the same metadata json file as the old location.
« Before changing the metadata | ocation, you must migrate the table to Iceberg.

After migrating atable to |ceberg, you can change the metadata location using ALTER TABLE as shown below:

ALTER TABLE t set TBLPROPERTIES (' netadata_l ocati on' =' <pat h>/ hi venet adat a/ 00
003- alada2b8-f c86- 4b5b- 8c91- 400b6b46d0Of 2. net adat a. j son') ;

Evolving a partition means changing it without rewriting datafiles. To evolve an |ceberg partition from Hive
or Impala, you learn to use ALTER to change identity partitions. By setting a partition spec for an identity
transformation partition, you ater the table.

You usethe SET PARTITION SPEC clausein an ALTER statement to change the identity partition for atable. A
partition spec change resultsin a new metadata.json and a commit, but does not create a new snapshot.

ALTER TABLE t abl e_name SET PARTI TI ON SPEC ([col _nane] [, spec(value)][, spec(
value)]...)]

° q)ec
The specification for atransform listed in the next topic, "Partition transform feature”.

14

Apache | ceberg features

ALTER TABLE t

SET PARTI TI ON SPEC (TRUNCATE(5, |evel), HOUR(event_tine),

BUCKET(15, nessage), price);

ALTER TABLE ice_p

SET PARTI TI ON SPEC (VO D(i), VA D(d), TRUNCATE(3, s), HOUR(t), i);

Partition transform feature

From Hive or Impala, you can create a table using identity partitioning in which every valueis asingle partition, or
the partition is calculated from values using transformations. Y ou learn supported transformations and see examples
of how to partition atable.

Using CREATE TABLE ... PARTITIONED BY you create identity-partitioned | ceberg tables. Identity-partitioned
| ceberg tables are similar to the Hive or Impala partitioned tables and are stored in the same directory structure as
the Hive and Impala partitioned tables. The differenceis data files of identity-partitioned Iceberg tables store the
partitioning columns with the following exception: Migrated external tables are not stored in the same directory
structure, but 1ceberg handles the tables and files regardless of the location.

Hive and Impala support |ceberg advanced partitioning through the PARTITION BY SPEC clause. Using this clause,
you can define the I ceberg partition fields and partition transforms.

The following table lists the available transformations of partitions and corresponding transform spec.

Partition by year years(time_stamp) | year(time_stamp) Hive and Impala
Partition by month months(time_stamp) | month(time_stamp) Hive and Impala
Partition by a date value stored asint (dateint) | days(time_stamp) | date(time_stamp) Hive
Partition by hours hours(time_stamp) Hive
Partition by a dateint in hours date_hour(time_stamp) Hive
Partition by hashed value mod N buckets bucket(N, col) Hive and Impala
Partition by value truncated to L, whichisa truncate(L, col) Hive and Impala

number of characters

Strings are truncated to length L. Integers and longs are truncated to bins. For example, truncate(10, i) yields
partitions 0, 10, 20, 30 ...

The idea behind transformation partition by hashed value mod N buckets is the same as hash bucketing for Hive
tables. A hashing algorithm cal cul ates the bucketed column value (modulus). For example, for 10 buckets, datais
stored in column value % 10, ranging from 0-9 (0 to n-1) buckets.

Y ou use the PARTITIONED BY SPEC clause to partition atable by an identity transform.

CREATE [EXTERNAL] TABLE [I F NOT EXI STS] [db_nane.]tabl e _nane
[(col _name data_ type][, time_stanp TI MESTAMP])]
[PARTI TI ONED BY SPEC([col _nane] [, spec(value)][, spec(value)]...)]
[STORED AS fil e_format]
STORED BY | CEBERG
[TBLPROPERTI ES (property_nane=property_value, ...)]

15

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL+BucketedTables
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL+BucketedTables

Apache | ceberg features

Where spec(value)represents one or more of the following transforms:

* YEARS(col_name)

« MONTHS(col_name)

* DAY S(col_name)

e BUCKET(bucket_num,col _name)
* TRUNCATE(length, col_name)

CREATE TABLE [I F NOT EXI STS] [db_nane.]tabl e_nane
[(col _name data_type, ...

[PARTI TI ONED BY SPEC([col _|)1]zine] [, spec(value)][, spec(value)]..

STORED (AS | BY) | CEBERG
[TBLPROPERTI ES (property_nane=property_value, ...)]

Where spec(value) represents one or more of the following transforms:

* YEARS(col_name)

¢ MONTHS(col_name)

* DAYS(col_name)

e BUCKET(bucket_num,col_name)
* TRUNCATE(Iength, col_name)

)

The following example creates atop level partition based on column i, a second level partition based on the hour part

of the timestamp, and athird level partition based on the first 1000 charactersin column j.

CREATE EXTERNAL TABLE ice_3 (i INT, t TIMESTAMP, j BI G NT) PARTITI ONED BY SP

EC (i, HOUR(t), TRUNCATE(1000, j)) STORED BY | CEBERG

CREATE TABLE ice_13 (i INT, t TIMESTAMP, j BI G NT) PARTITI ONED BY SPEC (i, H

OUR(t), TRUNCATE(1000, j)) STORED BY | CEBERG

The following examples show how to use the PARTITION BY SPEC clausein a CREATE TABLE query from

Impala.The same transforms are availablein a CREATE EXTERNAL TABLE query from Hive.

CREATE TABLE ice_t(id INT, name STRING dept STRI NG
PARTI TI ONED BY SPEC (bucket (19, id), dept)

STORED BY | CEBERG

TBLPROPERTI ES (' format-version' =" 2");

CREATE TABLE ice_ctas

PARTI TI ONED BY SPEC (truncate(1000, id))

STORED BY | CEBERG

TBLPROPERTI ES (' format-version' =" 2")

AS SELECT id, int_col, string_col FROM source_table;

Create table feature
Partition evolution feature
Creating an I ceberg partitioned table

16

Apache | ceberg features

From Hive, you can query Iceberg metadata tables as you would query a Hive table. For example, you can use
projections, joins, filters, and so on.

Y ou can also use the describe table metadata feature to get information about metadata. The following | ceberg
metadata tables are available from Hive:

o files

e entries

e snapshots
e manifests
e partitions

To reference a metadata table, use the full name of the table as shown in the following syntax:

<DATABASE_NAME>. <TABLE_NAME>. <METADATA TABLE_NAME>

SELECT * FROM default.table a.files;

In the event of a problem with your table, you can reset atable to a good state as long as the snapshot of the good
table is available. From Hive, roll back the table data to the state at an older table snapshot, or to atimestamp. From
Impala, this feature is not supported.

ALTER TABLE test _tabl e EXECUTE rol | back(snapshot|D);
ALTER TABLE test_tabl e EXECUTE rol | back('ti mestanp');

ALTER TABLE ice_7 EXECUTE ROLLBACK('2022-08-08 00: 00: 00')
ALTER TABLE ice_t EXECUTE ROLLBACK(3088747670581784990) ;

Y ou learn that the Hive or Impala schema changes when the associated | ceberg table changes. Y ou see examples of
changing the schema.

Although you can change the schema of your table over time, you can still read old data files because | ceberg
uniquely identifies schema elements. A schema change results in a new metadata.json and a commit, but does not
create a new snapshot.

The | ceberg table schemais synchronized with the Hive/lmpala table schema. A change to the schema of the Iceberg
table by an outside entity, such as Spark, changes the corresponding Hive/lmpalatable. Y ou can change the Iceberg
table using ALTER TABLE to make the following changes:

From Hive:

17

Apache | ceberg features

e Addacolumn
* Replace acolumn
e Change acolumn type or its position in the table

From Impala:

¢ Addacolumn
* Rename acolumn

e Dropacolumn

« Change acolumn type

An unsafe change to a column type, which would require updating each row of the table for example, is not allowed.
The following type changes are safe;

e inttolong

+ float to double

e decima(P, S) todecimal (P, S) if precision isincreased

Y ou can drop a column by changing the old column to the new column.

ALTER
ALTER

ALTER
AFTER

ALTER

ALTER

ALTER
ALTER

ALTER

ALTER
ALTER

ALTER
ALTER

ALTER

TABLE
TABLE

tabl e_name ADD COLUWNS (col _name type[, .])
tabl e_nane CHANGE COLUWN col ol d_nane col new nane type

TABLE t abl e_name CHANGE COLUWN col _ol d_nane col _new _nane type [Fl RST|
col _nane] [existing_col _name

TABLE

TABLE

TABLE
TABLE

TABLE

TABLE
TABLE

TABLE
TABLE

TABLE

tabl e_nane REPLACE COLUWNS (col nane type)

tabl e_nane ADD COLUWNS(col _nane type[, .])

tabl e_nane CHANGE COLUWN col ol d_nane col new nane type
tabl e_nane DROP COLUW col nane

t ADD COLUWNS(nessage STRING price DECH MAL(8,1));

t REPLACE COLUWMNS (i int comment ‘...’', a string, ...);
t CHANGE COLUWN col _x col _x DECI MAL (22, 3) AFTER col _y;

ice 12 ADD COLUWNS(nessage STRING price DECI MAL(8,1));
ice 12 DROP COLUW i ;

ice_12 CHANGE COLUMN s str STRING

From Hive or Impala, you can base anew |ceberg table on a schemain a Parquet file. Y ou see adifferencein the
Hive and Impala syntax and examples.

18

Apache | ceberg features

From Hive, you must use FILE inthe CREATE TABLE LIKE ... statement. From Impala, you must omit FILE in the
CREATE TABLE LIKE ... statement. The column definitions in the Iceberg table are inferred from the Parquet data
file when you create atable like Parquet from Hive or Impala. Set the following table property for creating the table:

hi ve. parquet . infer.binary.as = <val ue>

Where <value> is binary (the default) or string.

This property determines the interpretation of the unannotated Parquet binary type. Some systems expect binary to be
interpreted as string.

CREATE [EXTERNAL] TABLE [IF NOT EXI STS] [db_nane.]tabl e_nane LI KE FILE PARQU
ET 'obj ect_storage_path_of _parquet _file'

[PARTI TI ONED BY [SPEC] ([col _nane] [, spec(value)][, spec(value)]...)]]

[STORED AS file_format]

STORED BY | CEBERG

[TBLPROPERTI ES (property_nane=property value, ...)]

CREATE TABLE [I F NOT EXI STS] [db_nane.]tabl e nane LI KE PARQUET ' obj ect _stora
ge_path_of parquet file'

[PARTI TI ONED BY [SPEC] ([col _nane][, spec(value)][, spec(value)]...)]]

STORED (AS | BY) | CEBERG

[TBLPROPERTI ES (property_name=property_value, ...)]

CREATE TABLE ctlf_table LIKE FILE PARQUET ' hdfs://fil es/schema. parq'
STORED BY | CEBERG

CREATE TABLE ctlf_table LIKE FILE PARQUET ' hdfs://fil es/schema. parq'
STORED BY | CEBERG

CREATE TABLE ctlf_table LIKE PARQUET ' hdfs://fil es/schema. parq'
STORED BY | CEBERG

CREATE TABLE ctlf_table LIKE PARQUET ' hdfs://fil es/schema. parq'
STORED BY | CEBERG,

From Hive or Impala, you can run point in time queries for auditing and regulatory workflows on Iceberg tables.
Time travel queries can be time-based or based on a snapshot ID.

| ceberg generates a snapshot when you create, or modify, atable. A snapshot stores the state of atable. You can
specify which snapshot you want to read, and then view the data at that timestamp. In Hive, you can use projections,
joins, and filtersin time travel queries. In Impala, you can add expressions to the timestamps, as shown in the
examples. In Hive and Impala, you can expire snapshots.

19

Apache | ceberg features

Snapshot storage isincremental and dependent on the frequency and scale of updates. By default, Hive and Impala
use the latest snapshot. Y ou can query an earlier snapshot of |ceberg tables to get historical information. Hive and
Impala use the latest schemato query an earlier table snapshot even if it has a different schema.

SELECT * FROM tabl e nane FOR SYSTEM TI ME AS OF 'tine_stanp'
SELECT * FROM tabl e_nane FOR SYSTEM VERSI ON AS COF snapshot _id

e time_stamp

The state of the Iceberg table at the time specified by the UTC timestamp.
e snapshot_id

The ID of the | ceberg table snapshot from the history output.

SELECT * FROMt FOR SYSTEM TI ME AS OF ' 2021-08-09 10:35:57' LIMT 100;
SELECT * FROMt FOR SYSTEM VERSI ON AS OF 3088747670581784990 |limt 100;

SELECT * fromice_ 11 FOR SYSTEM TIME AS OF now() - interval 30 m nutes;
SELECT * fromice_11 FOR SYSTEM TI ME AS OF '2022-11-04 13:50:57";

*

SELECT * FROMt FOR SYSTEM VERSI ON AS OF 4319441858259506031 limit 5;

Expiring snapshots

Truncating an | ceberg table removes all rows from the table. A new snapshot is created. Truncation works for
partitioned and unpartitioned tables.

Although the table data and the table and column stats are cleared, the old snapshots and their data files continue to
exist to support time travel in the future.

TRUNCATE t abl e_nane

TRUNCATE [TABLE] tabl e name

TRUNCATE t;

20

Best practicesfor Iceberg in CDP

From Hive, you can update and delete datain a V2 Iceberg table.

Hive updates and deletes I ceberg tables using position delete files, one type of encoding defined by the Iceberg Spec.
Impalareads, but does not write, position updates and deletes. Hive and Impala do not support equality deletes, the
other type of encoding. Asatypical user, you are oblivious to these encodings. If you have a problem with updates or
deletesin the following situations, an equality delete file in the table isthe likely cause:

¢ In Change Data Capture (CDC) applications

e Inupserts from Apache Flink

e From athird-party engine

Inserting, deleting, or updating table data generates a snapshot. A new snapshot corresponds to a new manifest list.
Manifest lists are named snap-*.avro.

UPDATE t abl ename SET colum = value [, colum = value ...] [WHERE expres
si on]

DELETE FROM t abl ename [WHERE expr essi on]

create external table tbl _ice(a int, b string, c int) stored by iceberg stor
ed as orc tblproperties ('format-version' = 2');

insert into tbl _ice values (1, 'one', 50), (2, '"tw', 51), (3, 'three', 52),
(4, 'four', 53), (5, 'five', 54), (111, 'one', 55), (333, 'two', 56);
update tbl _ice set b='Changed' where b in (select b fromthl _ice where a <
4);

delete fromtbl ice where a <= 2,1,

Based on large scale TPC-DS benchmark testing, performance testing and real-world experiences, Cloudera
recommends several best practices when using | ceberg.

Follow these key best practices listed below when using | ceberg:
e Uselceberg asintended for analytics.

The table format is designed to manage a large, slow-changing collection of files. For more information, see the
| ceberg spec.
* Reduce read amplification

Monitor the growth of positional deltafiles, and perform timely compactions.
» Speed up drop table performance, preventing deletion of data files by using the following table properties:
Set external .table. purge=fal se and gc. enabl ed=f al se

« Tunethefollowing table properties to improve concurrency on writes and reduce commit failures: commit.retry
.num-retries (default is4), commit.retry.min-wait-ms (default is 100)

21

https://iceberg.apache.org/spec/#row-level-deletes
https://iceberg.apache.org/spec/

Feature limitations

* Maintain arelatively small number of data files under the iceberg table/partition directory for efficient reads. To
alleviate poor performance caused by too many small files, run the following queries:

TRUNCATE TABLE t arget;
| NSERT OVERWRI TE TABLE target select * fromtarget FOR SYST
EM VERSI ON AS OF <preTruncat eSnapshot | d>;

e To minimize the number of delete files and file handles and improve performance, ensure that the Spark
write.distribution.mode table property valueis “hash” (the default setting for Spark Iceberg 1.2.0 onwards).

Apache Iceberg in CDP has some limitations you need to understand.
The following features have limitations or are not supported in this release:

« When the underlying table is changed, you need to rebuild the materialized view manually, or use the Hive query
scheduling to rebuild the materialized view.

* From Impala, you can read, but not write, position updates and del etes.
» Hiveand Impaado not support equality updates and del etes.
« Anequdity deletefilein thetableisthe likely cause of a problem with updates or deletes in the following
situations:
« In Change Data Capture (CDC) applications
e Inupserts from Apache Flink
* From athird-party engine

Y ou need to set up your environment and meet Data L ake prerequisites for querying Iceberg tablesin CDP. You learn
which query editors are supported and which roles are required.

The following list covers prerequisites for using | ceberg:

Grant permission to run SQL queries
Test driving Iceberg from Hive

CDP uses Apache Ranger to provide centralized security administration and management. The Ranger Admin Ul is
the central interface for security administration. Y ou can use Ranger to create two policies that allow usersto query
| ceberg tables.

How you open the Ranger Admin Ul differs from one CDP service to another. In Management Console, you can
select your environment, and then click Environment Details Quick Links Ranger .

22

https://iceberg.apache.org/spec/#row-level-deletes
https://docs.cloudera.com/data-warehouse/1.5.0/querying-data-in-unified-analytics/topics/dw-ua-private-grant-sql-permissions.html

Accessing I ceberg tables

dw-team-env

aws crn:cdpenvironments:us-west-1:9d74eeed-1 cad-45b73d:environment:&

f4157a1f19ae &
@ H U5s West {Oregaon) - us-west-2

A shared environment for hive/impala data wareho

Data Lake upgrade available

@ Data Lake Details

MAME MODES sCALE

dw-team-env-di @2 wo Qo0 Light Duty

quic

& At
Catal

You log into the Ranger Admin Ul, and the Ranger Service Manager appears.

:ﬁ :Rangrer U Access Manager [Audit [)SecurityZone # Settings i admin ~
Service Manager Last Response Time : 12/20/2022 02:16:44 PM
Service Manager Security Zone: Sglact Zone Ma v M Import B Export
[~ HDFS +H8 6 [= HBASE o+ [>HAaDOOPSQL + B &
cm_hdfs - s u em_hbase - T n Hadoop SGL - F3 n

The default policies that appear differ from service to service. Y ou need to set up two Hadoop SQL policiesto query
| ceberg tables:

» Oneto authorize users to access the |ceberg files

Follow stepsin "Edit a policy to access |ceberg files' below.
» Oneto authorize usersto query Iceberg tables

Follow stepsin "Creating a policy to query an Iceberg table" below.

Prerequisites

e Obtain the RangerAdminrole.
» Get the user name and password your Administrator set up for logging into the Ranger Admin.

The default credentials for logging into the Ranger Admin Web Ul are admin/admin123.

23

Accessing | ceberg tables

Y ou learn how to edit the existing default Hadoop SQL Storage Handler policy to accessfiles. This policy is one of
the two Ranger policies required to use | ceberg.

The Hadoop SQL Storage Handler policy allows references to | ceberg table storage location, which is required for
creating or altering atable. Y ou use a storage handler when you create afile stored as | ceberg on the file system or
object store.

In this task, you specify | ceberg as the storage-type and allow the broadest access by setting the URL to *.

The Hadoop SQL Storage Handler policy supports only the RW Storage permission. A user having the required RW
Storage permission on aresource, such as |ceberg, that you specify in the storage-type properties, is alowed only

to reference the table location (for create/alter operations) in Iceberg. The RW Storage permission does not provide
access to any table data. Y ou need to create the Hadoop SQL policy described in the next topic in addition to this
Hadoop SQL Storage Handler policy to access datain tables.

For more information about these policy settings, see Ranger Storage Handler documentation.

1. Loginto Ranger Admin Web Ul.
The Ranger Service Manager appears.

"%"Rang'er UAccess Manager [) Audit (f)Security Zone & Settings
Last Response Time : 12/20V2022 02:16:44 PM
Service Manager Security Zone: v mimporn B Expost
[= HDFS + 0608 [~ HBASE + 68 [= HADOOP SQL + 608
cm_hdfs s | @ u om_hbase - - u Hadoop SOL s n

24

https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/security-ranger-authorization/topics/security-ranger-resource-policy-storage-handler.html

Accessing I ceberg tables

2. InPolicy Name, enable the all - storage-type, storage-url policy.
List of Policies : Hadoop SQL

Q, Search for your policy

Poliey ID Palicy Name Palicy Labels Status

g all - glokal --

) all - databage, table, column --

=

all - database, table --

all - staracge-Type, storage-url

008

3.
In Service Manager, in Hadoop SQL, select Edit 4 and edit the all storage-type, storage-url policy.

4. Below Policy Label, select storage-type, and enter iceberg..
5. In Storage URL, enter the value *, enable Include.

Policy Type
PolicyiD KR}

rolicy eme all - storage-type, storage-url

Policy Label

storage-typ v iceberg

Storage URL © . m

For more information about these policy settings, see Ranger storage handler documentation.

25

https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/security-ranger-authorization/topics/security-ranger-resource-policy-storage-handler.html

Accessing | ceberg tables

6.

1.
8.

In Allow Conditions, specify roles, users, or groups to whom you want to grant RW storage permissions.

Y ou can specify PUBLIC to grant access to |ceberg tables permissionsto all users. Alternatively, you can grant
access to one user. For example, add the systest user to the list of users who can access | ceberg:

Allow Conditions:

Select Role Select Group Select User
hive beacon dpprofiler |
hue admin impala
systest

For more information about granting permissions, see Configure a resource-based policy: Hadoop-SQL.
Add the RW Storage permission to the policy.
Save your changes.

Y ou learn how to set up the second required policy for using Iceberg. This policy manages SQL query access to
| ceberg tables.

Y ou create a Hadoop SQL policy to allow roles, groups, or users to query an Iceberg table in a database. In thistask,

you see an exampl e of just one of many ways to configure the policy conditions. Y ou grant (allow) the selected roles,
groups, or users the following add or edit permissions on the table: Select, Update, Create, Drop, Alter, and All. You

can also deny permissions.

For more information about creating this policy, see Ranger documentation.

1

2.

Log into Ranger Admin Web UI.
The Ranger Service Manager appears.

Click Add New Palicy.

26

https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/security-ranger-authorization/topics/security-ranger-resource-policy-configure-hive.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/security-ranger-authorization/topics/security-ranger-resource-policy-configure-hive.html

Accessing | ceberg tables

3. Fill inrequired fields.
For example, enter the following required settings:

* InPolicy Name, enter the name of the policy, for example IcebergPolicyl.

* Indatabase, enter the name of the database controlled by this policy, for exampleicedb.

« Intable, enter the name of the table controlled by this policy, for exampleicetable.

« In columns, enter the name of the column controlled by this policy, for example enter the wildcard asterisk (*)
to allow accessto al columns of icetable.

» Accept defaults for other settings.

Create Policy

Policy Details:
Policy Type m
Policy Name *
ey e IcebergPolicy1 o m

lcedb

i

icetable

4, Scroll down to Allow Conditions, and select the roles, groups, or users you want to access the table.

Y ou can use Deny All Other Accesses to deny accessto all other roles, groups, or users other than those specified
in the allow conditions for the policy.

5. Select permissionsto grant.
For example, select Create, Select, and Alter. Alternatively, to provide the broadest permissions, select All.

add/edit permissions

Allow Conditions:

Saloct Rolo Saloct Group Pormissions

+

Ignore RW Storage and other permissions not named after SQL queries. These are for future implementations.
6. Click Add.

27

Creating an Iceberg table

A step-by-step procedure describes how to create an Apache | ceberg table from a Hive or Impala Virtua Warehouse.
Y ou see how to access and use the recommended query editor Hue to create an Iceberg table.

In thistask, you create an |ceberg table in Cloudera Data Warehouse. In a Virtual Warehouse, you open Hue, and use
Hive or Impalato create atable.

Y ou must meet the prerequisites to query Iceberg tables from a Virtual Warehouse mentioned earlier, including
obtaining Ranger access permissions.

. Create anew Virtual Warehouse, or select an existing one.
. In Cloudera Data Warehouse Overview, select a Virtual Warehouse, and click Hue.

& drorke @HUE O i

0 35 255

. Select adatabase.

. Enter a query to create a simple | ceberg table in the default Parquet format.
Hive example:

CREATE EXTERNAL TABLE ice tl1 (i int, s string, ts tinestanp, d date)
STORED BY | CEBERG

Impala example:

CREATE TABLE ice t2 (i int, s string, ts tinestanp, d date)
STORED BY | CEBERG

In CDP, CREATE EXTERNAL TABLE, and just CREATE TABLE, are valid from Hive. Y ou use the
EXTERNAL keyword from Hive to create the | ceberg table to purge the data when you drop the table. In CDP,
from Impala, you must use CREATE TABLE to initiaize the | ceberg table.

" Click ™ torun the query.

Adding anew Virtual Warehouse
Submitting queries with Hue

The ease of use of the Iceberg partitioning is clear from an example of how to partition a table using the backward
compatible, identity-partition syntax. Alternatively, you can partition an | ceberg table by column values from Hive or
Impala

28

https://docs.cloudera.com/data-warehouse/1.5.0/managing-warehouses/topics/dw-private-cloud-adding-new-virtual-warehouse.html
https://docs.cloudera.com/data-warehouse/1.5.0/querying-data/topics/dw-querying-with-hue.html

Expiring snapshots

Y ou can specify partitioning that is backward compatible with Iceberg V1 using the PARTITION BY clause. This
type of table is called an identity-partitioned table. For more information about partitioning, see the Apache I ceberg
documentation.

Y ou must meet the prerequisites to query |ceberg tables from a Virtual Warehouse mentioned earlier.

1. InHue, select adatabase.

2. Create an identity-partitioned table.
Hive:

CREATE EXTERNAL TABLE ice extl (i int, s string, ts tinmestanp, d date) P
ARTI TI ONED BY (state string)

STORED BY | CEBERG

STORED AS ORC;

Impala

CREATE TABLE ice_ext2 (i int, s string, ts tinestanp, d date) PARTI TI ONED
BY (state string)
STORED BY | CEBERG

Click ™ torunthe query.

4. Create atable and specify an identity transform, such as bucket, truncate, or date, using the Iceberg V2
PARTITION BY SPEC clause.
Hive:

CREATE TABLE ice_t _transforns_1 (i int, s string, ts tinmestanp, d date)
PARTI TI ONED BY SPEC (TRUNCATE(10, i), BUCKET(11, s), YEAR(ts))
STORED by | CEBERG

Impala

CREATE TABLE ice t transforns (i int, s string, ts tinestanp, d date)PAR
TI TI ONED BY SPEC (TRUNCATE(10, i), BUCKET(11, s), YEAR(ts))STORED AS |CE
BERG,

> Click » torun the query.

Adding anew Virtua Warehouse
Submitting queries with Hue
Partition transform feature

Y ou can expire snapshots of an Iceberg table using an ALTER TABLE query from Hive or Impala. Y ou should
periodically expire snapshots to delete datafiles that are no longer needed, and reduce the size of table metadata.

29

https://iceberg.apache.org/spec/?h=partitioning#partition-transforms
https://iceberg.apache.org/spec/?h=partitioning#partition-transforms
https://docs.cloudera.com/data-warehouse/1.5.0/managing-warehouses/topics/dw-private-cloud-adding-new-virtual-warehouse.html
https://docs.cloudera.com/data-warehouse/1.5.0/querying-data/topics/dw-querying-with-hue.html

Inserting datainto atable

Each write to an | ceberg table creates a new snapshot, or version, of atable. Snapshots can be used for time-travel
queries, or the table can be rolled back to any valid snapshot. Snapshots accumulate until they are expired by the
expire_snapshots operation.

Enter a query to expire snapshots having the following timestamp: '2021-12-09 05:39:18.689000000

ALTER TABLE test tabl e EXECUTE expire_snapshots('2021-12-09 05: 39: 18. 6890000
00");

Time travel feature

Y ou can append data to an | ceberg table by inserting values or by selecting the data from another table. Y ou can
update data, replacing the old data.

Y ou use the INSERT command in one of the following ways to populate an Iceberg table from Hive:

* INSERT INTOtVALUES(Z, ‘asf’, true);
* INSERT INTOt SELECT * FROM s;
e INSERT OVERWRITE t SELECT * FROM s;

I NSERT INTO t VALUES (1, ‘asf’, true);
I NSERT INTO t SELECT * FROM s;
| NSERT OVERWRI TE t SELECT * FROM s;

Y ou see how to use asimple ALTER TABLE statement to migrate an externa Hive table to an Iceberg table. Y ou see
how to specify |ceberg classes in table properties to configure table input and output.

When you migrate an external Hive table to Iceberg, Hive makes the following changes:

« Convertsthe storage_handler, serde, inputformat and outputformat properties of the tablein HMSto use the

I ceberg specific classes.
» Readsthe footers of the existing data files and generates the necessary |ceberg metadata files based on the footers.
e Commitsall the datafilesto the Iceberg table in a single commit.

the old table during migration. Exception: If you set the table property 'external.table.purge’="FALSE', no data
loss occurs when you drop the table.

Ij Note: To prevent loss of new and old table data during migration of atable to Iceberg, do not drop or move

Y ou must meet the prerequisites to query |ceberg tables mentioned earlier.

30

Selecting an Iceberg table

Restriction: Migrating an Impalatable to Iceberg is not supported in this release.

. Login to the CDP web interface and navigate to the Data Warehouse service.

. In the Data Warehouse service, navigate to the Overview page, locate your Hive Virtua Warehouse, and click
Hue.

. Enter a query to use a database.

USE nydb;

. Enter aHive query to migrate an existing external Hive table to an Iceberg table.
For example:

ALTER TABLE t bl
SET TBLPROPERTI ES (‘ storage_handl er’ =" or g. apache. i ceberg. nr. hi ve. H vel c
eber gSt orageHandl er’) ;

Do not drop the table as explained above unless you set the 'external .table.purge’ table property to false.

" Click ™ torunthe query.

Y ou see an exampl e of how to read an Apache Iceberg table, and understand the advantages of 1ceberg.

Working with timestampsin I ceberg, you do not need to know whether the table is actually partitioned by month,

day or hour, based on the timestamp value. Y ou can simply supply a predicate for the timestamp value and Iceberg
converts the timestamp to month/day/hour transparently. Hive/lmpala must maintain actual partition valuesin a
separate column (for example, ts month or ts_day). Forgetting to reference the derived partition column in your query
can lead to inadvertent full table scans.

By default iceberg.table_identifier is not set in CDP, so you can use the familiar <db_name.<table_name> in queries.

Y ou must meet the prerequisites to query Iceberg tables mentioned earlier.

. Use adatabase.

For example:

USE nydat abase;

. Query an Iceberg table partitioned by city.
For example:

SELECT * FROM ice_t2 WHERE city="Bangal ore";

31

Running time travel queries

Y ou query historical snapshots of data using the FOR SYSTEM_TIME AS OF '<timestamp>' FOR
SYSTEM_VERSION AS OF <snapshot_id> clausesin a select statement. Y ou see how to use AS OF to specify a
snapshot of your |ceberg data at a certain time.

Y ou can inspect the history of an Iceberg table to see the snapshots. ou can query the metadata of the | ceberg table
using a SELECT ... AS OF statement to run time travel queries. Y ou use history information from a query of the
database to identify and validate snapshots, and then query a specific snapshot AS OF a certain Timestamp value.

* You must be aware of the table history.

However, this can include commits that have been rolled back.
* You must have access to valid snapshots.
* You must meet the prerequisites to query |ceberg tables mentioned earlier.

1. View thetable history.

SELECT * FROM db. t abl e. hi story;

2. Check the valid snapshots of the table.
SELECT * FROM db. t abl e. snapshot s;

3. Query aspecific snapshot by providing the timestamp and snapshot_id.
SELECT * FROM T
FOR SYSTEM Tl ME AS OF <TI MESTAMP>;

SELECT * FROM t
FOR SYSTEM VERSI ON AS OF <SNAPSHOT_| D>;

Y ou see how to update | ceberg table partitioning in an existing table and then how to change the partitioning to be
more granular.

Partition information is stored logically, and only in table metadata. When you update a partition spec, the old data
written with an earlier spec remains unchanged. New data is written using the new spec in anew layout. Metadata for
each of the partition versionsis separate.

* You must meet the prerequisites to query |ceberg tables mentioned earlier.

32

Test driving Iceberg from Impala

1. Create atable partitioned by year.
Hive

CREATE EXTERNAL TABLE ice_t (i int, j int, ts tinestanp)
PARTI TI ONED BY SPEC (truncate(5, j), year(ts))
STORED BY | CEBERG

Impaa

CREATE TABLE ice t (i int, j int, ts timestnmap)
PARTI TI ONED BY SPEC (truncate(5, j), year(ts))
STORED BY | CEBERG

2. Split the datainto manageabl e files using buckets.

ALTER TABLE ice_t SET PARTI TI ON SPEC (bucket (13, i));

3. Partition the table by month.

ALTER TABLE ice_t SET PARTITION SPEC (truncate(5, j), nonth(ts));

Y ou complete atask that creates |ceberg tables from Impalawith mock data that you can test drive using your own
queries. You learn how to work with partitioned tables.

¢ You must meet the prerequisites to query | ceberg tables mentioned earlier, including obtaining Ranger access
permissions.

1. InImpaa, use a database.
2. Create an Impalatable to hold mock datafor this task.

create external table nock rows stored as parquet as
select x from (

with v as (values (1 as x), (1), (1), (1), (1))
select v.x fromv, v v2, v v3, v v4, v v5, Vv v6

) &

3. Create another Impala table based on mock_rows.

create external table custoner_deno stored as parquet as

sel ect

FROM_TI MESTAMP(DAYS_SUB(now() , cast (TRUNC(RAND(7)*365*1) as bigint)), '
yyyy- MM) as year_nonth,

DAYS SUB(now() , cast (TRUNC(RAND(7)*365*1) as bigint)) as ts,

CONCAT(

cast (TRUNC(RAND(1) * 250

cast (TRUNC(RAND(2) * 250

cast (TRUNC(RAND(3) * 250

cast (TRUNC(RAND(4) * 250
) as ip,

2) as string), ".' ,
as string), '.',
2) as string), '.',
2) as string)

+ + + +
N
N—r

33

Test driving Iceberg from Impala

CONCAT("USER ", cast (TRUNC(RAND(4) * 1000) as string),' @onmedonmai n.com)
as emil,

CONCAT("USER ", cast (TRUNC(RAND(5) * 1000) as string)) as usernange,
CONCAT("USER ", cast (TRUNC(RAND(6) * 100) as string)) as country,

cast (RAND(8)*10000 as double) as netric_1,

cast (RAND(9)*10000 as double) as netric_2,

cast (RAND(10)*10000 as double) as netric_3,

cast(RAND(11)*10000 as double) as netric_4,

cast (RAND(12)*10000 as double) as netric_ 5

from nock_rows

4. Create another Impalatable based on mock_rows.

create external table custoner_denp2 stored as parquet as

sel ect

FROM Tl MESTAMP(DAYS_SUB(now() , cast (TRUNC(RAND(7)*365*1) as bigint)),
'yyyy-MM) as year nonth,

DAYS SUB(now() , cast (TRUNC(RAND(7)*365*1) as bigint)) as ts,

CONCAT(

cast (TRUNC(RAND(1) * 250 + 2) as string), '.' ,

cast (TRUNC(RAND(2) * 250 + 2) as string), '.',

cast (TRUNC(RAND(3) * 250 + 2) as string), '.',

cast (TRUNC(RAND(4) * 250 + 2) as string)
) as ip,
CONCAT("USER ", cast (TRUNC(RAND(4) * 1000) as string),' @omedonmai n.comi)
as emil,

CONCAT("USER ", cast (TRUNC(RAND(5) * 1000) as string)) as usernane,
CONCAT("USER ", cast (TRUNC(RAND(6) * 100) as string)) as country,
cast (RAND(8)*10000 as double) as netric_1,

cast (RAND(9)*10000 as double) as netric_2,

cast (RAND(10)*10000 as double) as netric_3,

cast(RAND(11)*10000 as double) as netric_4,

cast (RAND(12)*10000 as double) as netric 5

from nock_rows

5. Create an | ceberg table from the customer_demo table.

CREATE TABLE cust oner _denp_i ceberg STORED BY | CEBERG AS SELECT * FROM cu
st oner _deno;

6. Insert into the customer_demo_iceberg table the results of selecting all data from the customer_demo? table.

I NSERT | NTO cust oner _deno_i ceberg sel ect * from cust oner _deno2;
I NSERT | NTO cust oner _deno_i ceberg sel ect * from cust oner _deno2;
I NSERT | NTO cust oner _deno_i ceberg sel ect * from custoner_deno2;

7. Create an |ceberg table partitioned by the year_ month column and based on the customer_demo_iceberg table.

CREATE TABLE cust oner _deno_i ceberg part PARTI TI ONED BY(year _nonth) STORED
BY | CEBERG

AS SELECT ts, ip, enmail, usernane , country, netric_1 , nmetric_2 , netric

3, netric_4 , netric_5, year_nonth

FROM cust oner _deno_i ceber g;

8. Split the partitioned data into manageable files.

ALTER TABLE cust omer _deno_i ceberg_part SET PARTI TI ON SPEC (year _nont h, BU
CKET(15, country));

Test driving Iceberg from Hive

9. Insert the results of reading the customer_demo_iceberg table into the partitioned table.

I NSERT | NTO cust onmer _deno_i ceberg_part (year_nonth, ts, ip, enmail, usern
ane, country, netric_1, metric_2, nmetric_3, nmetric_4, metric_5b)
SELECT year _nonth, ts, ip, email, usernanme, country, nmetric_1, netric_2,

metric 3, netric_4, netric_ 5
FROM cust oner _deno_i ceber g;

10. Run time travel queries on the Iceberg tables, using the history output to get the snapshot id, and substitute the id
in the second SELECT query.

SELECT * FROM cust oner _deno_i ceberg FOR SYSTEM Tl ME AS OF ' 2021-12-09 05
: 39: 18. 689000000" LIMT 100;

DESCRI BE HI STORY cust onmer _deno_i ceber g;

SELECT * FROM cust oner _deno_i ceberg FOR SYSTEM VERSI ON AS OF <snapshot
id>LIMT 100;

Y ou learn how to access the Hive demo data, which you can use to get hands-on experience running Iceberg queries.

A DWAdmin can optionally load demo datain Hue when you create a new Database Catalog.

New Database Catalog X
Name

explored!

wperi2
Database Catalog Image Version:
2022.0.10075
Datalake
cow
@ Load Demo Data
| create |

The Admin enables Load Demo Data when creating the Database Catalog. Users can then query sample airline demo
datain Hue.

* You must meet the prerequisites to query Iceberg tables from a Virtual Warehouse mentioned earlier.
* You have accessto a Hive Virtual Warehouse, having a Database Catalog in which demo data has been loaded.
* You obtained the required role for querying the Virtual Warehouse: DWUser

1. In Cloudera Data Warehouse Overview, select a Hive Virtua Warehouse, and click Hue.

& drorke @HUE O i

0 35 255

2. InHue, expand the default database and verify that the airline demo datais available in your Virtua Warehouse.
Y ou see the following list of demo databases:

@)

3. Select airline_ontime _iceberg to use the airline_ontime_iceberg database.

35

Test driving Iceberg from Hive

4. Takealook at thetablesin the airline_ontime_iceberg database.

Flightsisthe fact table. It has 100M rows and three dirmensions, ariline, airports, and planes. This records flights
for more than 10 yearsin the US, and includes the following details:

e origin
e dedtination
e delay
e artime
5. Become familiar with the |ceberg airline queries to set up this database. See the next topic.

6. Query the demo datafrom Hive.
For example, find the flights that departed each year, by IATA code, airport, city, state, and country. Find the
average departure delay.

SELECT f.nonth, a.iata, a.airport, a.city, a.state, a.country
FROM flights f,

airports a

VWHERE f.origin = a.iata

GROUP BY

f. nmont h,

a.iata,

a.airport,

a.city,

a.state,

a.country

HAVI NG COUNT(*) > 10000

ORDER BY AV f . DepDel ay) DESC
LIMT 10;

Output appears as follows:

fecocococooo feccoococs fccoccoccocooccococoococccocoocococoooooco feccoccocoooococo
fecocococooo feccoocoocooo +
| f.nonth | a.iata | a.airport a.city
| a.state | a.country |
Fococococoo Fococcooooo FococococococococoCcoCoCoCoCoCoOCoCoooo Fococcoccococoocooooo
Fococococoo Focococococoo +
| 12 | ORD | Chicago O Hare International | Chicago
| NULL | USA |
6 | EWVR | Newark Intl | Newar k
| NULL | USA |
7 | JFK | John F Kennedy Intl | New York
| NULL | USA [
6 | I'AD | Washington Dulles |nternational | Chantilly
| NULL | USA
7 | EWVR | Newark Intl | Newar k
| NULL | USA [
| 6 | PHL | Phil adel phia Intl | Phil adel phi a
| NULL | USA [
1 | ORD | Chicago O Hare International | Chicago
| NULL | USA |
| 6 | ORD | Chicago O Hare |nternational | Chicago
| NULL | USA [
| 7 | ATL | WiliamB Hartsfield-Atlanta Intl | Atlanta
| NULL | USA [

36

Hive demo data

| 12 | MDW | Chicago M dway | Chicago

10 rows sel ected (103.812 seconds)

7. Split the partitioned data into managesblefiles.

ALTER TABLE airports SET PARTI TI ON SPEC (i at a, BUCKET(15, country));

Prerequisites for using Iceberg

To test drive Iceberg from Hive, you use demo datain the airline_online_iceberg database.

The Airlines demo data for Iceberg is stored in the airline_online_iceberg database. The following queries created and
set up this database.

create database if not exists airline_ontinme_iceberg;
use airline_ontinme_iceberg;

set hive.vectorized. execution. enabl ed=f al se;

set hive. stats. col um. aut ogat her =f al se;

The following Hive external tables were created in the airline_online_iceberg database:

e arports
e airlines
e planes
« flights

create external table if not exists airports (

iata string,

ai rport string,

city string,

stat e doubl e,

country string,

| at doubl e,

| on doubl e

stored as orc;

create external table if not exists airlines (
code string,
description string

stored as orc;
create external table if not exists planes (
tail num string,
owner _type string,
manuf act urer string,
i ssue_date string,
nodel string,

37

Hive demo data

status string,
aircraft _type string,
engi ne_type string,
year int

stored as orc;

create external table if not exists flights (
nmont h int,
dayof nonth int,
dayof week int,
deptinme int,
crsdeptinme int,
arrtime int,
crsarrtime int,
uni quecarrier string,
flightnumint,
tail num string,
act ual el apsedti me int,
crsel apsedtine int,
airtime int,
arrdel ay int,
depdel ay int,
origin string,
dest string,
di stance int,
taxiin int,
taxi out int,
cancel |l ed int,
cancel | ati oncode stri ng,
di verted string,
carrierdel ay int,
weat herdel ay int,
nasdel ay int,
securitydel ay int,
| at eai rcraftdelay int

partitioned by (year int)
stored as orc;

| oad data inpath '${datapath}/airline_ontine_iceberg.db/airports' into table
ai rports;

| oad data inpath '${datapath}/airline_ontine_iceberg.db/airlines' into table
airlines;

| oad data inpath '${datapath}/airline_ontine_iceberg.db/planes' into table p
| anes;

| oad data inpath '${datapath}/airline_ontime_iceberg.db/flights/year=1995'
nto table flights partition (year=1995);

| oad data inpath '${datapath}/airline_ontime_iceberg.db/flights/year=1996'
into table flights partition (year=1996);

| oad data inpath '${datapath}/airline_ontinme_iceberg.db/flights/year=1997'
into table flights partition (year=1997);

| oad data inpath '${datapath}/airline_ontime_iceberg.db/flights/year=1998'
into table flights partition (year=1998);

| oad data inpath '${datapath}/airline_ontime_iceberg.db/flights/year=1999'
nto table flights partition (year=1999);

38

| ceberg data types

| oad data inpath '${datapath}/airline_ontime_iceberg.db/flights/year=2000'

into table flights partition (year=2000);

| oad data inpath '${datapath}/airline_ontime_iceberg.db/flights/year=2001"
into table flights partition (year=2001);

| oad data inpath '${datapath}/airline_ontinme_iceberg.db/flights/year=2002
into table flights partition (year=2002);

| oad data inpath '${datapath}/airline_ontinme_iceberg.db/flights/year=2003'

nto table flights partition (year=2003);

| oad data inpath '${datapath}/airline_ontime_iceberg.db/flights/year=2004
into table flights partition (year=2004);

| oad data inpath '${datapath}/airline_ontinme_iceberg.db/flights/year=2005
into table flights partition (year=2005);

| oad data inpath '${datapath}/airline_ontime_iceberg.db/flights/year=2006'
into table flights partition (year=2006);

| oad data inpath '${datapath}/airline_ontime_iceberg.db/flights/year=2007"
nto table flights partition (year=2007);

| oad data inpath '${datapath}/airline_ontinme_iceberg.db/flights/year=2008
into table flights partition (year=2008);

ALTER TABLE pl anes ADD CONSTRAI NT pl anes_pk PRI MARY KEY (tail nunm) DI SABLE NO
VALI| DATE;

ALTER TABLE flights ADD CONSTRAI NT pl anes_fk FOREI GN KEY (tail nunm) REFEREN
CES pl anes(tail num) DI SABLE NOVALI DATE RELY

ALTER TABLE airlines ADD CONSTRAI NT airlines_pk PRI MARY KEY (code) DI SABLE
NOVALI| DATE;

ALTER TABLE flights ADD CONSTRAI NT airlines_fk FOREI GN KEY (uniquecarrier)
REFERENCES ai rli nes(code) DI SABLE NOVALI DATE RELY;

ALTER TABLE airports ADD CONSTRAI NT airports_pk PRI MARY KEY (iata) DI SABLE N
OVALI DATE;

ALTER TABLE flights ADD CONSTRAI NT airports _orig fk FOREIGN KEY (origin)
REFERENCES ai rports(iata) DI SABLE NOVAL|I DATE RELY

ALTER TABLE flights ADD CONSTRAI NT airports_dest fk FOREI GN KEY (dest) RE
FERENCES ai rports(iata) DI SABLE NOVALI DATE RELY

ALTER TABLE airports SET TBLPROPERTIES (' storage_handl er' = org. apache. i ceb
erg. nr. hive. Hi vel ceber gSt orageHandl er') ;

ALTER TABLE airlines SET TBLPROPERTIES (' storage_handl er' =" org. apache. i cebe
rg. nr. hive. H vel ceber gSt orageHandl er') ;

ALTER TABLE pl anes SET TBLPROPERTI ES (' storage_handl er' =" or g. apache. i ceberg.
nr. hi ve. Hi vel ceber gSt or ageHandl er') ;

ALTER TABLE flights SET TBLPROPERTIES (' storage_ handl er' =" org. apache. i ceber
g. nr. hi ve. H vel ceber gSt orageHandl er') ;

References include | ceberg data types and atable of equivalent SQL data types by Hive/lmpala SQL engine types.

39

| ceberg table properties

Iceberg supported data types

Table 1:

| ceberg data type SQL datatype Hive Impala

binary BINARY BINARY

boolean BOOLEAN BOOLEAN BOOLEAN

date DATE DATE DATE

decimal (P, S) DECIMAL(P, S DECIMAL (P, S) DECIMAL (P, S)

double DOUBLE DOUBLE DOUBLE

fixed(L) BINARY Not supported

float FLOAT FLOAT FLOAT

int TINYINT, SMALLINT, INT INTEGER INTEGER

list ARRAY ARRAY Read only

long BIGINT BIGINT BIGINT

map MAP MAP Read only

string VARCHAR, CHAR STRING STRING

struct STRUCT STRUCT Read only

time STRING Not supported

timestamp TIMESTAMP TIMESTAMP TIMESTAMP

timestamptz TIMESTAMPWITH LOCAL Use TIMESTAMP WITH Read timestamptz into

TIME ZONE LOCAL TIMEZONE for handling | TIMESTAMP values

thesein queries Writing not supported

uuid none STRING Not supported
Writing to Parquet is not
supported

Data type limitations

An implicit conversion to an |ceberg type occurs only if there is an exact match; otherwise, a cast is needed. For
example, to insert aVARCHAR(N) column into an |ceberg table you need a cast to the VARCHAR type as | ceberg
does not support the VARCHAR(N) type. Toinsert aSMALLINT or TINYINT into an Iceberg table, you need a cast
to the INT type as | ceberg does not support these types.

Unsupported data types

Impala does not support the following I ceberg data types:
e TIMESTAMPTZ (only read support)

 FIXED
« UUID

Iceberg table properties

The CDP environment for querying tables from Hive overrides some | ceberg table properties. Y ou learn which table
properties are supported for querying tables from Impala.

40

| ceberg table properties

| ceberg documentation describes all the properties for configuring tables. This documentation focuses on key
properties for working with Iceberg tablesin CDP.

| ceberg supports concurrent writes by default. Y ou can tune Iceberg v2 table properties for concurrent writes. Y ou set
the following properties if you plan to have concurrent writers on Iceberg v2 tables:

e commit.retry.min-wait-ms
e commit.retry.num-retries

CDP supports adding the Parquet compression type using table properties. For more information, see Iceberg
documentation about Compression Types.

Y ou can use the Alter Table feature to set a property. From Hive, the following |ceberg table property overrides arein
effect:

* iceberg.mr.split.size overrides read.split.target-size.
» read.split.open-file-cost is overridden.

Y ou can tune | ceberg v2 table properties for concurrent writes. From Impala, the following subset of Iceberg table
properties are supported:

* history.expire.min-snapshots-to-keep

Valid values: integers. Default = 1
« write.format.default

Valid value: Parquet
* write.metadata.del ete-after-commit.enabled

Valid values: true or false. Default = TBD.
* write.metadata.previous-versions-max

Valid values: integers. Default = 100.
* write.parquet.compression-codec

Valid values. GZIP, LZ4, NONE, SNAPPY (default value), ZSTD
e write.parquet.compression-level

Validvaues: 1 - 22. Default =3
e write.parquet.row-group-size-bytes

Valid values: 8388608 (or 8 MB) - 2146435072 (or 2047MB). Overiden by PARQUET_FILE_SIZE.
* write.parquet.page-size-bytes

Valid values: 65536 (or 64KB) - 1073741824 (or 1GB).
e writeparquet.dict-size-bytes

Valid values: 65536 (or 64KB) - 1073741824 (or 1GB)

41

https://iceberg.apache.org/docs/latest/configuration/
https://spark.apache.org/docs/2.4.3/sql-data-sources-parquet.html#configuration

	Contents
	Apache Iceberg features
	Alter table feature
	Create table feature
	Create table as select feature
	Create partitioned table as select feature
	Create table … like feature
	Describe table metadata feature
	Drop table feature
	Expire snapshots feature
	Insert table data feature
	Load data inpath feature
	Load or replace partition data feature
	Merge feature
	Migrate Hive table to Iceberg feature
	Changing the metadata location

	Partition evolution feature
	Partition transform feature
	Query metadata tables feature
	Rollback table feature
	Schema evolution feature
	Schema inference feature
	Time travel feature
	Truncate table feature
	Update and delete data features

	Best practices for Iceberg in CDP
	Feature limitations
	Prerequisites for using Iceberg
	Accessing Iceberg tables
	Editing a policy to access Iceberg files
	Creating a policy to query an Iceberg table

	Creating an Iceberg table
	Creating an Iceberg partitioned table
	Expiring snapshots
	Inserting data into a table
	Migrating a Hive table to Iceberg
	Selecting an Iceberg table
	Running time travel queries
	Updating an Iceberg partition
	Test driving Iceberg from Impala
	Test driving Iceberg from Hive
	Hive demo data
	Iceberg data types
	Iceberg table properties

