Cloudera Runtime 7.1.8

Managing Apache Impala

Date published: 2020-11-30
Date modified: 2022-08-25

CLOUD=RA

https://docs.cloudera.com/


https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.



Cloudera Runtime | Contents | iii

F Y &1 B I @ o =4 o o FO PR PRTRR 4
Concepts Used in FULL ACID V2 TAIES.......ooiiiiiieiees ettt s et 4
Key Differences between INSERT-ONLY and FULL ACID TabIES.......ccoourueiierriciirreecnesseecsesee e 5
Compaction of Datain FULL ACID Transactional Table..........coiiiiiiiiiiiiiee e 6

Automatic Invalidation/Refresh Of Metadatal......ooeeveeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 6



Cloudera Runtime READ Support for FULL ACID ORC Tables

FULL ACID v2 transactional tables are readable in Impala without modifying any configurations. Y ou must have
connection to Hive Metastore server in order to READ from FULL ACID tables.

There are two types of transactional tables available with Hive ACID.

* [INSERT-ONLY
» FULL ACID

Until this release, Impalain CDP supported INSERT-ONLY transactional tables allowing both READ and WRITE
operations. The latest version of Impalain CDP now & so supports READ of FULL ACID ORC tables.

By default tables created in Impalaare INSERT-ONLY managed tables whereas the default tables in Hive are
managed tablesthat are FULL-ACID and INSERT-ONLY .

e Impalacannot CREATE or WRITE to FULL ACID transactional tables yet. You can CREATE and WRITE
FULL ACID transactional tables with transaction scope at the row level viaHIVE and use Impalato READ these
tables.

* Impaladoes not support ACID v1.

Before beginning to use FULL ACID v2 tables you must be aware of these new concepts like transactions, Writel ds,
rowlDs, delta delete directories, locks, etc. that are added to FULL ACID tablesto achieve ACID semantics.

For every transaction, both read and write, Hive will assign aglobally unique ID. For transactional writes like
INSERT and DELETE, it will also assign atable-wise unique 1D, awrite ID. The write ID range will be encoded in
the delta and del ete directory names. Results of a DML transactional query are allocated to alocation under partition/
table. Thislocation is derived by Write ID allocated to the transaction. This provides Isolation of DML queries and
such queries can run in parallel without interfering with each other.

New data files resulting from a DML query are written to a unique location derived from Writeld of the transaction.
Y ou can find the results of an INSERT query in delta directories under partition/table location. Depending on the
operation type there can be two types of delta directories:

« DeltaDirectory: Thistypeis created for the results of INSERT statements and is named delta_<writeld>_<writel
d> under partition/table location.

» Delete Delta Directory: This deltadirectory is created for results of DELETE statements and isnamed delete delt
a <writeld>_<writeld> under partition/table location.

UPDATE operations create both delete and delta directories.

rowld is the auto-generated unique ID within the transaction and bucket. Thisis added to each row to identify each
row in atable. RowlD is used during a DELETE operation. When arecord is deleted from a table, the rowld of the
deleted row will be written to the delete_delta directory. So for all subsequent READ operations all rowswill be read
except these rows.




Cloudera Runtime READ Support for FULL ACID ORC Tables

INSERT-ONLY tables do not have a specia schema. They store the data just like plain original files from the non-
ACID world. However, their files are organized differently. For every INSERT statement the created files are put into
atransactional directory which has transactional information in its name.

Full ACID tables do have a special schema. They have row identifiers to support row-level DELETES. Soarow in
Full ACID format looks like this:

{
"operation": O,
"original Transaction": 1,
"bucket": 536870912,
"rowd": O,
"current Transaction": 1,
"row': {"i": 1}

* Thegreen columns are the hidden/system ACID columns.

* Field “row” holdsthe user data.

» operation 0 means INSERT, 1 UPDATE, and 2 DELETE. UPDATE will not appear because of the split-update
technique (INSERT + DELETE).

» originaTransaction isthe write ID of the INSERT operation that created this row.

« bucket is a 32-bit integer defined by BucketCodec class.

« rowld isthe auto-generated unique ID within the transaction and bucket.

e currentTransaction is the current write ID. For INSERT, it isthe same as currentTransaction. For DELETE, it is

the write ID when thisrecord isfirst created.
* row contains the actual data. For DELETE, row will be null.

Before beginning to use FULL ACID v2 tables you must be aware of the key differences between the INSERT-

ONLY and FULL-ACID tables.

This table highlights some of the differences between the INSERT-ONLY and FULL ACID tables.

Schema There is no special data schema. They
store the data just like plain origina

files from the non-ACID world.

Transactional information is encoded
in directory names.

Transactional information

Table properties ‘transactional'="true’,
‘transactional_properties='insert_only"
Supported operations INSERT-ONLY tables only support

insertion of data. UPDATES and
DELETES are not supported. These
tables also provide CREATE TABLE,
DROP TABLE, TRUNCATE,
INSERT, SELECT operations.

WRITE operation WRITE operations are atomic and the
results of the insert operation are not
visible to other query operations until

the operation is committed.

Dataisin specia format, i.e. there are synthetic columns
with transactional information in addition to actual data.

Full ACID tables also use the same directory structure as
INSERT-only tables. Transactional information is encoded
in the directory names. Directory name and filename are the
source of transactional information.

‘transactional'="true’

FULL ACID ORC tables can be READ using IMPALA.
These tables also provide UPDATE and DELETE
operations at the row level using HIVE. Thisis achieved
using transactions like Insert-Only Tables along with
changes in ORC Reader to support deletes.

WRITE operations are atomic - The operation either
succeeds completely or fails; it does not result in partial
data.




Cloudera Runtime

Automatic Invalidation/Refresh of Metadata

INSERT operation

DELETE operation

UPDATE operation

READ operation

Supported file format

Compactions

For every INSERT statement
the created files are added to a
transactional directory which has

transactional information in its name.

N/A

N/A

READ operations always read a
consistent snapshot of the data.

Supports any file formats.

Minor and major compactions are
supported.

INSERT operation is done through HIVE and this
statement is executed in a single transaction. This operation
creates a delta directory containing information about this
transaction and its data.

DELETE operation is done through HIV E and this event
creates aspecia “delete delta” directory.

UPDATE operation is done through HIVE. This operation
issplit into an INSERT and DELETE operation. This
operation creates adelta dir followed by adelete dir.

READ operations always read a consistent snapshot of the
data.

Supports only ORC.

Minor compactions can be created, which means several
delta and delete directories can be compacted into one delta
and delete directory. Major compactions are also supported.

IE Note: Currently, ALTER TABLE statement is not supported on both insert-only and full acid transactional

tables.

Hive 3 achieves atomicity and isolation of operations on transactional tables by using techniquesin write, read, insert,
create, delete, and update operations that involve deltafiles, which can provide query status information and help you
troubleshoot query problems.

As administrator, you need to manage compaction of delta files that accumulate during dataingestion. Compaction is
aprocess that performs critical cleanup of files.

Hive creates a set of deltafiles for each transaction that alters atable or partition and stores them in a separate
deltadirectory. When the number of delta and delete directories in the table grow, the read performance will be
impacted, since reading is a process of merging the results of valid transactions. To avoid any compromise on the read
performance, occasionally Hive performs compaction, namely minor and major. This process merges these directories
while preserving the transaction information.

To initiate automatic compaction, you must enable it using Cloudera Manager. For more information on managing the
compaction process, see the link provided under Related Information.

Inthisrelease, you can invalidate or refresh metadata automatically after changes to databases, tables or partitions
render metadata stale. Y ou control the synching of tables or database metadata by basing the process on events. Y ou
learn how to access metrics and state information about the invalidate event processor.

When tools such as Hive and Spark are used to process the raw data ingested into Hive tables, new HM S metadata
(database, tables, partitions) and filesystem metadata (new files in existing partitions/tables) are generated. In
previous versions of Impala, in order to pick up this new information, Impala users needed to manually issue an
INVALIDATE or REFRESH commands.

When automatic invalidate/refresh of metadatais enabled,, the Catalog Server polls Hive Metastore (HMS)
notification events at a configurable interval and automatically applies the changes to Impala catalog.

Impala Catalog Server polls and processes the following changes.

6



Cloudera Runtime Automatic Invalidation/Refresh of Metadata

* Invalidates the tables when it receivesthe ALTER TABLE event.

* Refreshesthe partition when it receives the ALTER, ADD, or DROP partitions.

» Addsthetables or databases when it receives the CREATE TABLE or CREATE DATABASE events.
« Removes the tables from catalogd when it receivesthe DROP TABLE or DROP DATABASE events.
» Refreshesthe table and partitions when it receives the INSERT events.

If the tableis not loaded at the time of processing the INSERT event, the event processor does not need to refresh
the table and skipsit.

» Changes the database and updates catalogd when it receives the ALTER DATABASE events. The following
changes are supported. This event does not invalidate the tables in the database.

« Change the database properties

» Change the comment on the database

e Changethe owner of the database

» Change the default location of the database

Changing the default location of the database does not move the tables of that database to the new location.
Only the new tables which are created subsequently use the default location of the database in caseit is not
provided in the create table statement.

Thisfeature is controlled by the ##hms_event_polling_interval_sflag. Start the catalogd with the ##hms_event
polling_interval_sflag set to a positive integer to enable the feature and set the polling frequency in seconds. We
recommend the value to be less than 5 seconds.

The following use cases are not supported:

*  When you bypass HM S and add or remove data into table by adding files directly on the filesystem, HM S does
not generate the INSERT event, and the event processor will not invalidate the corresponding table or refresh the
corresponding partition.

It is recommended that you use the LOAD DATA command to do the data load in such cases, so that event
processor can act on the events generated by the LOAD command.

» The Spark API that saves data to a specified location does not generate eventsin HM S, thusis not supported. For
example:

Seq((1, 2)).toDF("i", "j").wite.save("/user/hivel/warehouse/spark etl.db/
cust oner s/ dat e=01012019")

When the ##hms_event_polling_interval_sflagis set to a non-zero value for your catalogd, the event-based automatic
invalidation is enabled for all databases and tables. If you wish to have the fine-grained control on which tables or
databases need to be synced using events, you can use the impala.disableHmsSync property to disable the event
processing at the table or database level.

This feature can be turned off by setting the ##hms_event_polling_interval_sflag set to 0.

When you add the DBPROPERTIES or TBLPROPERTIES with the impala.disableHmsSync key, the HM S event
based sync isturned on or off. The value of the impala.disableHmsSync property determinesif the event processing
needs to be disabled for a particular table or database.

« |If 'impala.disableHmsSync'="true’, the events for that table or database are ignored and not synced with HMS.

* If 'impala.disableHmsSync'="false' or if impala.disableHmsSync is not set, the automatic sync with HMS is
enabled if the #hms_event_polling_interval_sglobal flag is set to non-zero.

* Todisable the event based HMS sync for anew database, set the impal a.disableHmsSync database propertiesin
Hive as currently, Impala does not support setting database properties:

CREATE DATABASE <nane> W TH DBPROPERTI ES (' i npal a. di sabl eHnsSync' =' true');




Cloudera Runtime Automatic Invalidation/Refresh of Metadata

* Toenable or disable the event based HMS sync for atable:
CREATE TABLE <name> ... TBLPROPERTIES ('i npal a. di sabl eHrsSync' =" true' |
‘false');

« To changethe event based HMS sync at the table level:

ALTER TABLE <nanme> SET TBLPROPERTI ES (' i npal a. di sabl eHsSync' =" true' | '
fal se');

When both table and database level properties are set, the table level property takes precedence. If the table level
property is not set, then the database level property is used to evaluate if the event needs to be processed or not.

If the property is changed from true (meaning events are skipped) to false (meaning events are not skipped), you need
toissue amanua INVALIDATE METADATA command to reset event processor because it doesn't know how many
events have been skipped in the past and cannot know if the object in the event isthe latest. In such a case, the status
of the event processor changesto NEEDS INVALIDATE.

Y ou can use the web Ul of the catalogd to check the state of the automatic invalidate event processor.

By default, the debug web Ul of catalogd is at http://IMPALA-SERVER-HOSTNAME: 25020 (non-secure cluster) or
https://IMPALA-SERVER-HOSTNAME: 25020 (secure cluster).

Under the web Ul, there are two pages that presents the metrics for HM S event processor that is responsible for the
event based automatic metadata sync.

* /metricsttevents
* [events

This provides a detailed view of the metrics of the event processor, including min, max, mean, median, of the
durations and rate metrics for all the counters listed on the /metrics#tevents page.

The /metricsttevents page provides the following metrics about the HM S event processor.

events-processor.avg-events-fetch- Average duration to fetch a batch of events and processiit.
duration

events-processor.avg-events-process- | Average time taken to process a batch of events received from the Metastore.

duration
events-processor.events-received Total number of the Metastore events received.
events-processor.events- Exponentially weighted moving average (EWMA) of number of events received in last 15 min.

received-15min-rate Thisrate of events can be used to determine if there are spikes in event processor activity during certain

hours of the day.

events-processor.events- Exponentially weighted moving average (EWMA) of number of eventsreceived in last 1 min.

received-1min-rate Thisrate of events can be used to determine if there are spikesin event processor activity during certain

hours of the day.

events-processor.events- Exponentially weighted moving average (EWMA) of number of eventsreceived in last 5 min.

received-5min-rate Thisrate of events can be used to determine if there are spikes in event processor activity during certain

hours of the day.
events-processor.events-skipped Total number of the Metastore events skipped.

Events can be skipped based on certain flags are table and database level. Y ou can use this metric to
make decisions, such as:

* If most of the events are being skipped, see if you might just turn off the event processing.
» If most of the events are not skipped, seeif you need to add flags on certain databases.




Cloudera Runtime

Automatic Invalidation/Refresh of Metadata

Name Description

events-processor.status

Metastore event processor status to see if there are events being received or not. Possible states are:
¢ PAUSED

The event processor is paused because catalog is being reset concurrently.
« ACTIVE

The event processor is scheduled at a given frequency.
« ERROR
«  Theevent processor isin error state and event processing has stopped.
« NEEDS_INVALIDATE

The event processor could not resolve certain events and needs amanual INVALIDATE command
to reset the state.

e STOPPED
The event processing has been shutdown. No events will be processed.
« DISABLED

The event processor is not configured to run.




	Contents
	ACID Operation
	Concepts Used in FULL ACID v2 Tables
	Key Differences between INSERT-ONLY and FULL ACID Tables
	Compaction of Data in FULL ACID Transactional Table

	Automatic Invalidation/Refresh of Metadata

