
Cloudera Runtime 7.1.0

Securing Apache Hive
Date published: 2019-08-21
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/


Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.



Cloudera Runtime | Contents | iii

Contents

Hive access authorization.........................................................................................4

Transactional table access....................................................................................... 5

External table access................................................................................................ 5

Accessing Hive files in Ozone..................................................................................5

Configuring access to Hive on YARN.................................................................... 7
Configuring HiveServer for ETL using YARN queues.......................................................................................9
Managing YARN queue users........................................................................................................................... 10
Configuring queue mapping to use the user name from the application tag using Cloudera Manager..............10

Disabling impersonation (doas).............................................................................11

Connecting to an Apache Hive endpoint through Apache Knox....................... 12

Hive authentication.................................................................................................12
Securing HiveServer using LDAP..................................................................................................................... 13
Client connections to HiveServer.......................................................................................................................14
Pluggable authentication modules in HiveServer.............................................................................................. 15
JDBC connection string syntax..........................................................................................................................15

Communication encryption................................................................................... 17
Enabling TLS/SSL for HiveServer.................................................................................................................... 18
Enabling SASL in HiveServer........................................................................................................................... 19

Securing an endpoint under AutoTLS................................................................. 20
Securing Hive metastore.....................................................................................................................................21

Token-based authentication for Cloudera Data Warehouse integrations......... 21

Activating the Hive web UI................................................................................... 21



Cloudera Runtime Hive access authorization

Hive access authorization

As administrator, you need to understand that the Hive default authorization for running Hive queries is insecure and
what you need to do to secure your data. You need to set up Apache Ranger.

To limit Apache Hive access to approved users, Cloudera recommends and supports only Ranger. Authorization is the
process that checks user permissions to perform select operations, such as creating, reading, and writing data, as well
as editing table metadata. Apache Ranger provides centralized authorization for all Cloudera Runtime Services.

You can set up Ranger to protect managed, ACID tables or external tables using a Hadoop SQL policy. You can
protect external table data on the file system by using an HDFS policy in Ranger.

Preloaded Ranger Policies

In Ranger, preloaded Hive policies are available by default. Users covered by these policies can perform Hive
operations. All users need to use the default database, perform basic operations such as listing database names, and
query the information schema. To provide this access, preloaded default database tables columns and information_
schema database policies are enabled for group public (all users). Keeping these policies enabled for group public is
recommended. For example, if the default database tables columns policy is disabled preventing use of the default
database, the following error appears:

hive> USE default;
Error: Error while compiling statement: FAILED: HiveAccessControlException
Permission denied: user [hive] does not have [USE] privilege on [default]

Apache Ranger policy authorization

Apache Ranger provides centralized policy management for authorization and auditing of all Cloudera Runtime
services, including Hive. All Cloudera Runtime services are installed with a Ranger plugin used to intercept
authorization requests for that service, as shown in the following illustration.

The following table compares authorization models:

4



Cloudera Runtime Transactional table access

Authorization model Secure? Fine-grained
authorization (column,
row level)

Privilege management
using GRANT/REVOKE
statements

Centralized management
GUI

Apache Ranger Secure Yes Yes Yes

Hive default Not secure. No restriction
on which users can run
GRANT statements

Yes Yes No

When you run grant/revoke commands and Apache Ranger is enabled, a Ranger policy is created/removed.

Related Information
HDFS ACLS

Configure a Resource-based Policy: Hive

Row-level Filtering and Column Masking in Hive

Query Hive

Transactional table access

As administrator, you must enable the Apache Ranger service to authorize users who want to work with transactional
tables. These types of tables are the default, ACID-compliant tables in Hive 3 and later.

ACID tables reside by default in /warehouse/tablespace/managed/hive. Only the Hive service can own and interact
with files in this directory. Ranger is the only available authorization mechanism that Cloudera recommends for
ACID tables.

External table access

As administrator, you must set up Apache Ranger to allow users to access external tables.

External tables reside by default in /warehouse/tablespace/external on your object store. To specify some other
location of the external table, you need to include the specification in the table creation statement as shown in the
following example:

CREATE EXTERNAL TABLE my_external_table (a string, b string)  
LOCATION '/users/andrena';

Hive assigns a default permission of 777 to the hive user, sets a umask to restrict subdirectories, and provides a
default ACL to give Hive read and write access to all subdirectories. External tables must be secured using Ranger.

Accessing Hive files in Ozone

Learn how to set up policies to give users access to Hive external files in Ozone. For example, if Ozone users are
running SparkSQL statements that query Hive tables, you must set up an Ozone access policy and Ozone file system
access policy.

About this task

When Ranger is enabled in the cluster, any user other than the default admin user, "om" requires the necessary Ranger
permissions and policy updates to access the Ozone filesystem. To create a Hive external table that points to the
Ozone filesystem, the "hive" user should have the required permissions in Ranger.

5

https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/hdfs-acls/topics/hdfs-acls-examples.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/security-ranger-authorization/topics/security-ranger-resource-policy-configure-hive.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/security-ranger-authorization/topics/security-ranger-row-level-filtering-and-column-masking-in-hive.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/starting-hive/topics/hive_start_hive_as_authorized_user.html


Cloudera Runtime Accessing Hive files in Ozone

In this task, you first enable Ozone in the Ranger service, and then set up the required policies.

Procedure

1. In Cloudera Manager, click  Clusters Ozone Configuration  to navigate to the configuration page for Ozone.

2. Search for ranger_service, and enable the property.

3. Click  Clusters Ranger Ranger Admin Web UI , enter your user name and password, then click Sign In.
The Service Manager for Resource Based Policies page is displayed in the Ranger console.

4. Click the cm_ozone preloaded resource-based service to modify an Ozone policy.

5.
In the cm_ozone policies page, click the Policy ID or click  Edit against the "all - volume, bucket, key"
policy to modify the policy details.

6. In the Allow Conditions pane, add the "hive" user, choose the necessary permissions, and then click Save.

7. Click the Service Manager link in the breadcrumb trail and then click the Hadoop SQL preloaded resource-based
service to update the Hadoop SQL URL policy.

6



Cloudera Runtime Configuring access to Hive on YARN

8.
In the Hadoop SQL policies page, click the Policy ID or click  Edit against the "all - url" policy to modify
the policy details.

By default, "hive", "hue", "impala", "admin" and a few other users are provided access to all the Ozone URLs.
You can select users and groups in addition to the default. To grant everyone access, add the "public" group to the
group list. Every user is then subject to your allow conditions.

What to do next
Create a Hive external table having source data in Ozone.

Also, it is recommended that you set certain Hive configurations before querying Hive tables in Ozone.

Related Information
Set up Ozone security

Cloudera's Ranger documentation

Creating an Ozone-based Hive external table

Configuring access to Hive on YARN

By default, access to Hive and YARN by unauthorized users is not allowed. You also cannot run unauthorized
workloads on YARN. You need to know how to give end users and workloads the access rules necessary for querying
Hive workloads in YARN queues.

About this task
You must configure the following access to query Hive workloads on YARN:

• Allow the end user to access Hive
• Allow the Hive workload on YARN
• Allow the end user to access YARN

Follow the steps in this topic to configure Hive and YARN for end users to access Hive on YARN.

7

https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/ozone-security/topics/ozone-using-with-ranger.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/security-ranger-authorization/topics/security-ranger-provide-authorization-cdp.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/using-hiveql/topics/hive-create-ozone-based-table.html


Cloudera Runtime Configuring access to Hive on YARN

Procedure

1. In Cloudera Manager, click  Clusters Hive on Tez Configuration  and search for hive.server2.enable.doAs.

2. Set the value of doas to false. Uncheck Hive (Service-Wide) to disable impersonation.

For more information about configuring doas, see "Enabling or disabling impersonation".

Save changes.

3. Search for the Hive Service Advanced Configuration Snippet (Safety Valve) for hive-site.xml setting.

4.
In the Hive Service Advanced Configuration Snippet (Safety Valve) for hive-site.xml setting, click .

5. Add the properties and values to allow the Hive workload on YARN.

Name: hive.server2.tez.initialize.default.sessions Value: false
Name: hive.server2.tez.queue.access.check Value: true
Name: hive.server2.tez.sessions.custom.queue.allowed Value: true

For more information about allowing the Hive workload on YARN, see "Configuring HiveServer for ETL using
YARN queues".

Save changes.

8



Cloudera Runtime Configuring access to Hive on YARN

6. In Cloudera Manager, click  Clusters YARN Configuration , and search for ResourceManager Advanced
Configuration Snippet (Safety Valve) for yarn-site.xml.

7.
In the ResourceManager Advanced Configuration Snippet (Safety Valve) for yarn-site.xml setting, click .

8. Add the properties and values to allow the end user to access YARN using placement rules.

Name: yarn.resourcemanager.application-tag-based-placement.enable Value:
 true 
Name: yarn.resourcemanager.application-tag-based-placement.username.white
list Value: < Comma separated list of users who can use the application 
tag based placement.>

For more information about allowing end user access to YARN, see "Configure queue mapping to use the user
name from the application tag using Cloudera Manager".

Save changes.

9. Restart the YARN ResourceManager service for the changes to apply.
End users you specified can now query Hive workloads in YARN queues.

Related Information
Disabling impersonation (doas)

Configuring HiveServer for ETL using YARN queues

Managing YARN queue users

Configuring queue mapping to use the user name from the application tag using Cloudera Manager

Configuring HiveServer for ETL using YARN queues
You need to set several configuration properties to allow placement of the Hive workload on the Yarn queue
manager, which is common for running an ETL job. You need to set several parameters that effectively disable the
reuse of containers. Each new query gets new containers routed to the appropriate queue.

About this task
Hive configuration properties affect mapping users and groups to YARN queues. You set these properties to use with
YARN Placement Rules.

To set Hive properties for YARN queues:

Procedure

1. In Cloudera Manager, click  Clusters Hive-on-Tez Configuration .

2. Search for the Hive Service Advanced Configuration Snippet (Safety Valve) for hive-site.xml setting.

9



Cloudera Runtime Configuring access to Hive on YARN

3. In the Hive Service Advanced Configuration Snippet (Safety Valve) for hive-site.xml setting, click +.

4. In Name enter the property hive.server2.tez.initialize.default.sessions and in value enter false.

5. In Name enter the property hive.server2.tez.queue.access.check and in value enter true.

6. In Name enter the property hive.server2.tez.sessions.custom.queue.allowed and in value enter true.

Managing YARN queue users
To manage users of secure YARN queues, you need to know how to configure impersonation for Ranger.

To allow access to YARN queues, as Administrator, you configure HiveServer user impersonation to false. You
also need to configure hive.server2.tez.queue.access.check=true. To manage YARN queues, you need the following
behavior:

• User submits the query through HiveServer (HS2) to the YARN queue
• Tez app starts for the user
• Access to the YARN queue is allowed for this user.

As administrator, you can allocate resources to different users.

Managing YARN queues under Ranger

When you use Ranger, you configure HiveServer not to use impersonation (doas=false). HiveServer authorizes only
the hive user, not the connected end user, to access Hive tables and YARN queues unless you also configure the
following parameter:

hive.server2.tez.queue.access.check=true

Configuring queue mapping to use the user name from the application tag
using Cloudera Manager

You learn how to add service users to the YARN queue by following a mapping procedure.

You can configure queue mapping to use the user name from the application tag instead of
the proxy user who submitted the job. You can add only service users like hive using the
yarn.resourcemanager.application-tag-based-placement.username.whitelist property
and not normal users.

When a user runs Hive queries, HiveServer2 submits the query in the queue mapped from an end user instead of a
hive user. For example, when user ALICE submits a Hive query with doAs=false mode, job will run in YARN as hive
user. If application-tag based scheduling is enabled, then the job will be placed to a target queue based on the queue
mapping configuration of user ALICE.

For more information about queue mapping configurations, see Manage placement rules. For information about Hive
access, see Apache Hive documentation.

1. In Cloudera Manager, select the YARN service.
2. Click the Configuration tab.
3. Search for ResourceManager. In the Filters pane, under Scope, select ResourceManager.
4. In ResourceManager Advanced Configuration Snippet (Safety Valve) for yarn-site.xml  add the following:

a. Enable the application-tag-based-placement property to enable application placement based on the user ID
passed using the application tags.

Name: yarn.resourcemanager.application-tag-based-placement.enable
Value: true
Description: Set to "true" to enable application placement based on the
 user ID passed using the application tags. When it is enabled, it chec
ks for the userid=<userId> pattern and if found, the application will be

10

https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/yarn-allocate-resources/topics/yarn-placement-rules.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/howto-data-access.html


Cloudera Runtime Disabling impersonation (doas)

 placed onto the found user's queue, if the original user has the requir
ed rights on the passed user's queue.

b. Add the list of users in the allowlist who can use application tag based placement. The applications when
the submitting user is included in the allowlist, will be placed onto the queue defined in the yarn.scheduler.c
apacity.queue-mappings property defined for the user from the application tag. If there is no user defined, the
submitting user will be used.

Name: yarn.resourcemanager.application-tag-based-placement.username.whit
elist
Value: 
Description: Comma separated list of users who can use the application
 tag based placement, if "yarn.resourcemanager.application-tag-based-pla
cement.enable" is enabled.

5. Restart the ResourceManager service for the changes to apply.

Disabling impersonation (doas)

As administrator, you must understand the permissions model supported in CDP Private Cloud Base is Apache
Ranger.

Disable impersonation to use Ranger

When you enable Ranger, you disable user impersonation (doAs=false). This is the Hive default and Ranger is the
only supported and recommended security model. Managed, ACID tables as well as external tables, secured by
Ranger, are supported in this configuration. Impersonation of the end user is disabled, which is the state required by
Hive for managing ACID tables.

In Cloudera Manager, click  Hive on Tez Configuration  and search for (hive.server2.enable.doAs).

Uncheck Hive (Service-Wide) to disable impersonation.

With no impersonation, HiveServer authorizes only the hive user to access Hive tables.

Related Information
Apache Software Foundation HDFS Permissions Guide

HDFS ACLS

11

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/hdfs-acls/topics/hdfs-acls-examples.html


Cloudera Runtime Connecting to an Apache Hive endpoint through Apache Knox

Connecting to an Apache Hive endpoint through Apache
Knox

If your cluster uses Apache Knox for perimeter security in CDP Private Cloud Base, you can connect to an Apache
Hive endpoint through Knox. You set the HiveServer transport mode and reference your Java keystore.

Before you begin
Automate the creation of an internal certificate authority (CA) using Auto-TLS (see link below). Set up SSL,
including trust, for Knox Gateway clients.

Procedure

1. In Cloudera Manager, click  Clusters Hive on Tez Configuration , and change the Hive on Tez service transport
mode in Cloudera Manager to http.

KNOX discovers the service automatically and builds a proxy URL for Hive on Tez only when the transport mode
is http.

2. Download the Knox Gateway TLS/SSL client trust store JKS file from Knox, and save it locally.

You can find the location of the JKS file from value of the Knox property gateway.tls.keystore.path.

3. In the Hive connection string, include parameters as follows:

jdbc:hive2://<host>:8443/;ssl=true;transportMode=http;  \
httpPath=gateway/cdp-proxy-api/hive;  \
sslTrustStore=/<path to JKS>/bin/certs/gateway-client-trust.jks;  \
trustStorePassword=<Java default password>

In this example, changeit is the Java default password for the trust store.

Hive authentication

HiveServer supports authentication of clients using Kerberos or user/password validation backed by LDAP.

If you configure HiveServer to use Kerberos authentication, HiveServer acquires a Kerberos ticket during startup.
HiveServer requires a principal and keytab file specified in the configuration. Client applications (for example, JDBC
or Beeline) must have a valid Kerberos ticket before initiating a connection to HiveServer2. JDBC-based clients must
include principal=<hive.server2.authentication.principal> in the JDBC connection string. For example:

String url = "jdbc:hive2://node1:10000/default;principal=hive/HiveServerHost
@YOUR-REALM.COM"

12



Cloudera Runtime Hive authentication

Connection con = DriverManager.getConnection(url);

where hive is the principal configured in hive-site.xml and HiveServerHost is the host where HiveServer is running.

To start Beeline and connect to a secure HiveServer, enter a command as shown in the following example:

beeline -u "jdbc:hive2://10.65.13.98:10000/default;principal=hive/_HOST@CLOU
DERA.SITE"

Securing HiveServer using LDAP
You can secure the remote client connection to Hive by configuring HiveServer to use authentication with LDAP.

About this task
When you configure HiveServer to use user and password validation backed by LDAP, the Hive client sends a
username and password during connection initiation. HiveServer validates these credentials using an external LDAP
service. You can enable LDAP Authentication with HiveServer using Active Directory or OpenLDAP.

Procedure

1. In Cloudera Manager, select  Hive-on-Tez Configuration  .

2. Search for ldap.

3. Check Enable LDAP Authentication for HiveServer2 for Hive (Service Wide).

4. Enter your LDAP URL in the format ldap[s]://<host>:<port>.

LDAP_URL is the access URL for your LDAP server. For example, ldap://ldap_host_name.xyz.com:389

5. Enter the Active Directory Domain or LDAP Base DN for your environment.

• Active Directory (AD)
• LDAP_BaseDN

Enter the domain name of the AD server. For example, corp.domain.com.

Enter the base LDAP distinguished name (DN) for your LDAP server. For example, ou=dev, dc=xyz.

6. Click Save Changes.

13



Cloudera Runtime Hive authentication

7. Restart the Hive service.

8. Construct the LDAP connection string to connect to HiveServer.
The following simple example is insecure because it sends clear text passwords.

String URL = "jdbc:hive2://node1:10000/default;user=LDAP_Userid;password
=LDAP_Password" 
Connection con = DriverManager.getConnection(url); 

The following example shows a secure connection string that uses encrypted passwords.

String url ="jdbc:hive2://node1:10000/default;ssl=true;sslTrustStore=/my
truststore_path;trustStorePassword=my_truststore_password"
Connection con = DriverManager.getConnection(url); 

For information about encrypting communication, see links below.

Related Information
Custom Configuration (about Cloudera Manager Safety Valve)

Client connections to HiveServer
You can use Beeline, a JDBC, or an ODBC connection to HiveServer.

JDBC Client-HiveServer Authentication

The JDBC client requires a connection URL as shown below. JDBC-based clients must include a user name and
password in the JDBC connection string. For example:

String url = "jdbc:hive2://node1:10000/default;user=LDAP_Userid;password=LDA
P_Password" Connection con = DriverManager.getConnection(url); 

where the LDAP_Userid value is the user ID and LDAP_Password is the password of the client user.

HiveServer modes of operation

HiveServer supports the following modes for interacting with Hive:

Operating Mode Description

Embedded The Beeline client and the Hive installation reside on the same host
machine or virtual machine. No TCP connectivity is required.

Remote Use remote mode to support multiple, concurrent clients executing
queries against the same remote Hive installation. Remote transport
mode supports authentication with LDAP and Kerberos. It also
supports encryption with SSL. TCP connectivity is required.

Remote mode: Launch Hive using the following URL:

 jdbc:hive2://<host>:<port>/<db>. 

The default HiveServer2 port is 10000.

Embedded mode: Launch Hive using the following URL:

  jdbc:hive2:// 

14

https://docs.cloudera.com/cloudera-manager/7.10.1/configuring-clusters/topics/cm-configuration-snippet.html


Cloudera Runtime Hive authentication

Transport Modes

As administrator, you can start HiveServer in one of the following transport modes:

Transport Mode Description

TCP HiveServer uses TCP transport for sending and receiving Thrift RPC
messages.

HTTP HiveServer uses HTTP transport for sending and receiving Thrift RPC
messages.

Pluggable Authentication Modules in HiveServer

While running in TCP transport mode, HiveServer supports Pluggable Authentication Modules (PAM). Using
Pluggable Authentication Modules, you can integrate multiple authentication schemes into a single API. You use the
Cloudera Manager Safety Valve technique on  HIVE_ON_TEZ-1 Configuration  to set the following properties:

• hive.server2.authentication

Value = CUSTOM
• hive.server2.custom.authentication.class

Value = <the pluggable auth class name>

The class you provide must be a proper implementation of the     org.apache.hive.service.auth.PasswdAuthenticatio
nProvider. HiveServer calls its Authenticate(user, passed) method to authenticate requests. The implementation can
optionally extend the Hadoop's org.apache.hadoop.conf.Configured class to grab the Hive Configuration object.

HiveServer Trusted Delegation

HiveServer determines the identity of the connecting user from the authentication subsystem (Kerberos or LDAP).
Any new session started for this connection runs on behalf of this connecting user. If the server is configured to proxy
the user, the identity of the connecting user is used to connect to Hive. Users with Hadoop superuser privileges can
request an alternate user for the given session. HiveServer checks that the connecting user can proxy the requested
userid, and if so, runs the new session as the alternate user.

Pluggable authentication modules in HiveServer
While running in TCP transport mode, HiveServer supports Pluggable Authentication Modules (PAM). Using
Pluggable Authentication Modules, you can integrate multiple authentication schemes into a single API.

You use the Cloudera Manager Safety Valve technique on  HIVE_ON_TEZ-1 Configuration  to set the following
properties:

• hive.server2.authentication

Value = CUSTOM
• hive.server2.custom.authentication.class

Value = <the pluggable auth class name>

The class you provide must be a proper implementation of the   org.apache.hive.service.auth.PasswdAuthenticati
onProvider. HiveServer calls its Authenticate(user, passed) method to authenticate requests. The implementation can
optionally extend the Hadoop's org.apache.hadoop.conf.Configured class to grab the Hive Configuration object.

JDBC connection string syntax
The JDBC connection string for connecting to a remote Hive client requires a host, port, and Hive database name.
You can optionally specify a transport type and authentication.

15



Cloudera Runtime Hive authentication

jdbc:hive2://<host>:<port>/<dbName>;<sessionConfs>?<hiveConfs>#<hiveVars>  

Connection string parameters

The following table describes the parameters for specifying the JDBC connection.

JDBC Parameter Description Required

host The cluster node hosting HiveServer. yes

port The port number to which HiveServer listens. yes

dbName The name of the Hive database to run the
query against.

yes

sessionConfs Optional configuration parameters for the
JDBC/ODBC driver in the following format:
<key1>=<value1>;<key2>=<key2>...;

no

hiveConfs Optional configuration parameters for Hive on
the server in the following format: <key1>=<
value1>;<key2>=<key2>;         ...

The configurations last for the duration of the
user session.

no

hiveVars Optional configuration parameters for Hive
variables in the following format: <key1>=<
value1>;<key2>=<key2>;         ...

The configurations last for the duration of the
user session.

no

TCP and HTTP Transport

The following table shows variables for use in the connection string when you configure HiveServer. The JDBC
client and HiveServer can use either HTTP or TCP-based transport to exchange RPC messages. Because the default
transport is TCP, there is no need to specify transportMode=binary if TCP transport is desired.

transportMode Variable Value Description

http Connect to HiveServer2 using HTTP transport.

binary Connect to HiveServer2 using TCP transport.

The syntax for using these parameters is:

jdbc:hive2://<host>:<port>/<dbName>;transportMode=http;httpPath=<http_endpoi
nt>; \
  <otherSessionConfs>?<hiveConfs>#<hiveVars>

User Authentication

If configured in remote mode, HiveServer supports Kerberos, LDAP, Pluggable Authentication Modules (PAM), and
custom plugins for authenticating the JDBC user connecting to HiveServer. The format of the JDBC connection URL
for authentication with Kerberos differs from the format for other authentication models. The following table shows
the variables for Kerberos authentication.

User Authentication Variable Description

principal A string that uniquely identifies a Kerberos user.

16



Cloudera Runtime Communication encryption

User Authentication Variable Description

saslQop Quality of protection for the SASL framework. The level of quality is
negotiated between the client and server during authentication. Used by
Kerberos authentication with TCP transport.

user Username for non-Kerberos authentication model.

password Password for non-Kerberos authentication model.

The syntax for using these parameters is:

jdbc:hive://<host>:<port>/<dbName>;principal=<HiveServer2_kerberos_principal
>;<otherSessionConfs>?<hiveConfs>#<hiveVars> 

Transport Layer Security

HiveServer2 supports SSL and Sasl QOP for transport-layer security. The format of the JDBC connection string for
SSL uses these variables:

SSL Variable Description

ssl Specifies whether to use SSL

sslTrustStore The path to the SSL TrustStore.

trustStorePassword The password to the SSL TrustStore.

The syntax for using the authentication parameters is:

jdbc:hive2://<host>:<port>/<dbName>; \
ssl=true;sslTrustStore=<ssl_truststore_path>;trustStorePassword=<truststo
re_password>; \
<otherSessionConfs>?<hiveConfs>#<hiveVars> 

When using TCP for transport and Kerberos for security, HiveServer2 uses Sasl QOP for encryption rather than SSL.

Sasl QOP Variable Description

principal A string that uniquely identifies a Kerberos user.

saslQop The level of protection desired. For authentication, checksum, and
encryption, specify auth-conf. The other valid values do not provide
encryption.

The JDBC connection string for Sasl QOP uses these variables.

jdbc:hive2://FQDN.EXAMPLE.COM:10000/default;principal=hive/_H
OST@EXAMPLE.COM;saslQop=auth-conf

The _HOST is a wildcard placeholder that gets automatically replaced with the fully qualified domain name (FQDN)
of the server running the HiveServer daemon process.

Communication encryption

Encryption between HiveServer2 and its clients is independent from Kerberos authentication. HiveServer supports the
following types of encryption between the service and its clients (Beeline, JDBC/ODBC):

• SASL (Simple Authentication and Security Layer)

17



Cloudera Runtime Communication encryption

• TLS/SSL (Transport Layer Security/Secure Sockets Layer)

TLS/SSL requires certificates. SASL QOP encryption does not. SASL QOP is aimed at protecting core Hadoop RPC
communications. SASL QOP might cause performance problems when handling large amounts of data. You can
configure HiveServer to support TLS/SSL connections from JDBC/ODBC clients using Cloudera Manager.

Client connections to HiveServer2 over TLS/SSL

A client connecting to a HiveServer2 over TLS/SSL must access the trust store on HiveServer to establish a chain of
trust and verify server certificate authenticity. The trust store is typically not password protected. The trust store might
be password protected to prevent its contents from being modified. However, password protected trust stores can be
read from without using the password.

The client needs the path to the trust store when attempting to connect to HiveServer2 using TLS/SSL. You can
specify the trust store in one of the following ways:

• Pass the path to the trust store each time you connect to HiveServer in the JDBC connection string:

jdbc:hive2://fqdn.example.com:10000/default;ssl=true;\
 sslTrustStore=$JAVA_HOME/jre/lib/security/jssecacerts;trustStorePassword
=extraneous 

• Set the path to the trust store one time in the Java system javax.net.ssl.trustStore property:

java -Djavax.net.ssl.trustStore=/usr/java/jdk1.8.0_141-cloudera/jre/lib/
security/jssecacerts \
 -Djavax.net.ssl.trustStorePassword=extraneous MyClass \
 jdbc:hive2://fqdn.example.com:10000/default;ssl=true 

Enabling TLS/SSL for HiveServer
You can secure client-server communications using symmetric-key encryption in the TLS/SSL (Transport Layer
Security/Secure Sockets Layer) protocol. To encrypt data exchanged between HiveServer and its clients, you can use
Cloudera Manager to configure TLS/SSL.

Before you begin

• HiveServer has the necessary server key, certificate, keystore, and trust store set up on the host system.
• The hostname variable ($(hostname -f)-server.jks) is used with Java keytool commands to create keystore, as

shown in this example:

$ sudo keytool -genkeypair -alias $(hostname -f)-server -keyalg RSA -key
store \
    /opt/cloudera/security/pki/$(hostname -f)-server.jks -keysize 2048 -
dname \
    "CN=$(hostname -f),OU=DEPT-NAME-OPTIONAL,O=COMPANY-
NAME,L=CITY,ST=STATE,C=TWO-DIGIT-NATION" \
    -storepass PASSWORD -keypass PASSWORD

About this task
On the beeline command line, the JDBC URL requirements include specifying ssl=true;sslTrustStore=<path_to_trus
tstore>. Truststore password requirements depend on the version of Java running in the cluster:

• Java 11: the truststore format has changed to PKCS and the truststore password is required; otherwise, the
connection fails.

• Java 8: The trust store password does not need to be specified.

18



Cloudera Runtime Communication encryption

Procedure

1. In Cloudera Manager, navigate to  Clusters Hive Configuration .

2. In Filters, select HIVE for the scope.

3. Select Security for the category.

4. Accept the default Enable TLS/SSL for HiveServer2, which is checked for Hive (Service-Wide).

5. Enter the path to the Java keystore on the host system.
/opt/cloudera/security/pki/KEYSTORE_NAME.jks

6. Enter the password for the keystore you used on the Java keytool command-line when the key and keystore were
created.

The password for the keystore must match the password for the key.

7. Enter the path to the Java trust store on the host system.

8. Click Save Changes.

9. Restart the Hive service.

10. Construct a connection string for encrypting communications using TLS/SSL.

jdbc:hive2://#<host>:#<port>/#<dbName>;ssl=true;sslTrustStore=#<ssl_trus
tstore_path>; \
trustStorePassword=#<truststore_password>;#<otherSessionConfs>?#<hiveCon
fs>#<hiveVars> 

Enabling SASL in HiveServer
You can provide a Quality of Protection (QOP) that is higher than the cluster-wide default using SASL (Simple
Authentication and Security Layer).

About this task

HiveServer2 by default uses hadoop.rpc.protection for its QOP value. Setting hadoop.rpc.protection to a higher level
than HiveServer (HS2) does not usually make sense. HiveServer ignores hadoop.rpc.protection in favor of hive.ser
ver2.thrift.sasl.qop.

You can determine the value of hadoop.rpc.protection: In Cloudera Manager, click  Clusters HDFS Configuration
Hadoop , and search for hadoop.rpc.protection.

If you want to provide a higher QOP than the default, set one of the SASL Quality of Protection (QOP) levels as
shown in the following table:

auth Default. Authentication only.

auth-int Authentication with integrity protection. Signed message digests (checksums) verify the integrity of
messages sent between client and server.

auth-conf Authentication with confidentiality (transport-layer encryption) and integrity. Applicable only if
HiveServer is configured to use Kerberos authentication.

Procedure

1. In Cloudera Manager, navigate to  Clusters Hive Configuration .

2. In HiveServer2 Advanced Configuration Snippet (Safety Valve) for hive-site click + to add a property and value.

3. Specify the QOP auth-conf setting for the SASL QOP property.
For example,

Name:hive.server2.thrift.sasl.qop

Value:         auth-conf

4. Click Save Changes.

19



Cloudera Runtime Securing an endpoint under AutoTLS

5. Restart the Hive service.

6. Construct a connection string for encrypting communications using SASL.

jdbc:hive2://fqdn.example.com:10000/default;principal=hive/_HOST@EXAMPLE
.COM;saslqop=auth-conf

The _HOST is a wildcard placeholder that gets automatically replaced with the fully qualified domain name
(FQDN) of the server running the HiveServer daemon process.

Securing an endpoint under AutoTLS

The default cluster configuration for HiveServer (HS2) with AutoTLS secures the HS2 WebUI Port, but not the
JDBC/ODBC endpoint.

About this task
The default cluster configuration for HS2 with AutoTLS will secure the HS2 Server WebUI Port, but not the JDBC/
ODBC endpoint.

Assumptions:

• Auto-TLS Self-signed Certificates.
• Proper CA Root certs eliminate the need for any of the following truststore actions.

When HS2 TLS is enabled hive.server2.use.SSL=true, the auto-connect feature on gateway servers is not supported.
The auto-connect feature uses /etc/hive/conf/beeline-site.xml to automatically connect to Cloudera Manager
controlled HS2 services. Also, with hive.server2.use.SSL=true, ZooKeeper discovery mode is not supported because
the HS2 reference stored in ZooKeeper does not include the ssl=true and other TLS truststore references (self-signed)
needed to connect with TLS.

The beeline-site.xml file managed for gateways doesn't not include ssl=true or a reference to a truststore that includes
a CA for the self-signed TLS certificate used by ZooKeeper or HiveServer.

The best practice, under the default configuration, is to have all external clients connect to Hive (JDBC/ODBC)
through the Apache Knox proxy. With TLS enabled via Auto-TLS with a self-signed cert, you can use the jks file
downloaded from Knox as the client trusted CA for the Knox host. That cert will only work for KNOX. And since
KNOX and HS2 TLS server certs are from the same CA, Knox connects without adjustments.

To connect through Knox:

Procedure

1. Configure the HS2 transport mode as http to support the Knox proxy interface.

jdbc:hive2://<host>:8443/;ssl=true;\
transportMode=http;httpPath=gateway/cdp-proxy-api/hive;\
...          

The TLS Public Certificate in <path>/bin/certs/gateway-client-trust.jks will not work.

2. Build a TLS Public Certificate from the self-signed root CA used for the cluster in Cloudera Manager.

keytool -import -v -trustcacerts -alias home90-ca -file \
/var/lib/cloudera-scm-agent/agent-cert/cm-auto-global_cacerts.pem \
-keystore <my_cacert>.jks

3. Connect to HS2 on the Beeline command line, using the -u option.

hive -u jdbc:hive2://<HS2 host>:10001/default;ssl=true;\
transportMode=http;httpPath=cliservice;\

20



Cloudera Runtime Token-based authentication for Cloudera Data Warehouse
integrations

principal=hive/_HOST@<realm>;user=<user name>;\
sslTrustStore=<path>/certs/home90_cacert.jks;\
trustStorePassword=changeit                  

The httpPath default is configured in Cloudera Manager. The sslTrustStore is required is you are using a self-
signed certificate.

Securing Hive metastore
Cloudera recommends using Apache Ranger policies to secure Hive data in Hive metastore. You need to perform
a few actions to prevent users from bypassing HiveServer to access the Hive metastore and the Hive metastore
database.

Procedure

1. Add a firewall rule on the metastore service host to allow access to the metastore port only from the HiveServer2
host. You can do this using iptables.

2. Grant access to the metastore database only from the metastore service host.
For example, in MySQL:  GRANT ALL PRIVILEGES ON metastore.* TO 'hive'@'metastorehost'; where
metastorehost is the host where the metastore service is running.

3. Make sure users who are not administrators cannot log into the HiveServer host.

Token-based authentication for Cloudera Data Warehouse
integrations

Using a token, you can sign on to use Hive and Impala in Cloudera Data Warehouse for a period of time instead
of entering your single-sign on (SSO) credentials every time you need to run a query. This feature is in a technical
preview state. Contact your account team for more information.

Activating the Hive web UI

The HiveServer2 GUI/ web UI does not display active client connections after enabling Kerberos, which leads to a
Kerberos ticket not being issued for a browser client.

HiveServer2 GUI/ web UI does not display active client connections after enabling Kerberos when SPENGO
authentication is disabled.

Procedure

1. In Cloudera Manager, go to  Clusters Hive-on-Tez Configuration .

2. Search for HiveServer2 Advanced Configuration Snippet (Safety valve) for hive-site.xml

3.
Click  and add the property hive.server2.webui.spnego.keytab and value hive.keytab

21



Cloudera Runtime Activating the Hive web UI

4.
Click  and add the property hive.server2.webui.spnego.principal and value HTTP/_HOST@[***REALM
NAME***]

5.
Click  and add the property hive.server2.webui.use.spnegoand value true

6.
Click  and add the property hive.users.in.admin.roleand value [***USERNAME1,USERNAME2,…***]

Note:  [***USERNAME1,USERNAME2,…***] is the list of comma separated users who want to access
historic query detail from the web UI.

7. Save changes, and restart Hive-on-Tez.

The Hive Web UI shows active client connections.

22


	Contents
	Hive access authorization
	Transactional table access
	External table access
	Accessing Hive files in Ozone
	Configuring access to Hive on YARN
	Configuring HiveServer for ETL using YARN queues
	Managing YARN queue users
	Configuring queue mapping to use the user name from the application tag using Cloudera Manager

	Disabling impersonation (doas)
	Connecting to an Apache Hive endpoint through Apache Knox
	Hive authentication
	Securing HiveServer using LDAP
	Client connections to HiveServer
	Pluggable authentication modules in HiveServer
	JDBC connection string syntax

	Communication encryption
	Enabling TLS/SSL for HiveServer
	Enabling SASL in HiveServer

	Securing an endpoint under AutoTLS
	Securing Hive metastore

	Token-based authentication for Cloudera Data Warehouse integrations
	Activating the Hive web UI

