Cloudera Edge Management 1.4.1

Using Agent Parameters in a Dataflow

Date published: 2019-04-15
Date modified: 2022-07-21

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Edge Management | Contents | iii

Overview of agent parametersin CEM ... 4
Tracking NUMErouS agents SCENAITO........ccuieiieiieeiee e ree e s e ete e see e e re e 4

L og collection aggregation SCENAIT0........ccuurerrierrersieesree e e stesseeessesseeesseesseesaenas 8

Cloudera Edge Management Overview of agent parametersin CEM

Cloudera Edge Management (CEM) is an edge management solution for 10T and streaming use cases. Y ou can use
CEM to manage, control, monitor thousands of MiNiFi agents deployed at the edge. Parameters provide the ability to
parameterize the values of processors and service properties in the flow including sensitive properties. Y ou can create
and configure parameters within the CEM UI.

CEM helps customersto work on TechOps or 10T type use cases. The challenges with 10T are around edge
management like the inability to control and manage edge agents, difficulty in collecting real-time data from edge
devices directly and most importantly, the trouble with updating specific sets of agents with edge applications. CEM
addresses those challenges. CEM paves the way for transformative solutions across 10T initiatives across multiple
industry verticals.

By using CEM you can manage numerous use cases. Hereis alist of examples:

* Monitoring oil rig data

e Trucking system

e Laptop tracking

e Monitoring ail refinery data

In this section we will describe two scenarios where you can use parameters.
In the first scenario, we will describe how to create a single flow, parameterize numerous agent I1Ds, and track data.

In the second scenario, we will describe how to create a single flow, parameterize the log location, and collect data
when log location changes.

You are asupervisor in an oil company that is engaged in exploration, development, and production of crude ail.
Y our company has deployed numerous ail rigs on site X and wants you to monitor data coming out for those oil rigs.
Learn how to use parameters to solve such challenges.

Earlier, you needed to create one dataflow for each and every oil rig. So, you created numerous dataflows to monitor
numerous oil rigs.

Parameters can solve this challenge of creating numerous dataflow for tracking purposes. With the parameter concept
introduced in CEM, you can create a single dataflow and use this to monitor data from al the oil rigs.

1. You useyour tooling to create agent specific parameter contexts for the agent I1Ds of the newly added servers.

2. With these items created, you then publish your flow and make the updates available to agents. EFM, when agents
heartbeat in with a specific context, are given an update to aflow with the new V2 agent IDs provided. Those
agents that have not had a specific context made will use the default, version 1 agent IDs.

Y ou have a class with numerous MiNiFi agents deployed on all the ail rigs and running. Y ou have built a dataflow
inside this class, and published this dataflow to all the MiNiFi agents deployed on the oil rigs. The dataflow gathers
logs from the desired location, for example /opt/myapp/logs, on the machines and then performs the associated logic
to only get the content which is WARNING or ERROR. Y ou are managing and monitoring the warnings and errors
that are collected at the EFM server for every heartbeat from the oil rigs.

Cloudera Edge Management Tracking numerous agents scenario

1. To have the agents running the same flow assigned, assign them all to the same class, design your flow, establish
your processors and controller services. In this example, the classis RigClass.

2. Open the controller service you want to parameterize and select the blue arrow next to the property of interest.

i)

Configuration

Settings

MyService

Properties

rig_id o 1

Cloudera Edge Management Tracking numerous agents scenario

3. Specify the name asrig_id for the parameter and an optional default value (here, listed as default) with optional
description. Once populated, select Add.

Create Parameter

default

Set empty string

Sensitive Value
Yes © No

Unigue identifier for individual rigs

4. Select Apply on the Controller Service pane to complete this configuration.

This establishes a parameter context for the flow. Y ou can provide agent-specific values to override the default
values of rig_id. Alternatively, you can choose to deploy the flow with default values.

5. Given that there are potentially alarge number of instances we are addressing, the design choice was made to
make this available programmatically without any specific UX at thisjuncture. Y ou can issue these commands
from the command line, a REST client in your program of choice, or through the Swagger Ul (http://<efm

address: port>/efm/swagger/ui.html). This example shows command line curl and Swagger approaches for
addressing these items. If you manually assigned |Ds to your agents, through nifi.c2.agent.identifier in bootstra
p.conf, compile your list of those entities. If you have not, we can collect the auto-generated identifiers.

< For collecting the auto-generated 1Ds, use the REST API.
Through Swagger, use the following endpaint: http://local host/ef m/swagger/ui.html#/ Agents/getAgents

By clicking Try it out, you can execute. Look through the results and extract the agent identifiers, such as:

{

"identifier": "myagentidentifierl",
"agent d ass": "Ri gCd ass",
"agent Mani fest1d": "b472989e- 705a- 3125- a2dd- 7f 26bdd908b9" ,

Cloudera Edge Management Tracking numerous agents scenario

"status": {
"uptime": 1572535845540
}

" tate": "ONLI NE",
"firstSeen": 1572535764479,
"l ast Seen": 1572535845662

}

Through the command line, use curl and the jq tool to extract these, such as highlighted in this script
(get_agents for_class.sh):

#!/ bi n/ bash -e

Specify the base location of the EFM server
ef m address="http://c2652-nodel. coel ab. cl oudera. com 10090"
ef m api _base_url =" ${ef m addr ess}/ ef nf api "

[-z "$1"] & & { echo "No cl ass nane supplied"; exit; }
query_cl ass=%$1
Select all agent identifiers for the provided query class and
cl ass_agents=$(curl -s -X GET "${ef m api _base_url}/agent s/ page?agent d as
s="${query_class}"" -H "accept: application/json"
jg -r .elements[].identifier)

echo "${cl ass_agents}"
Thisgivesalisting of all identifiers:

./ get _agents for_class.sh Ri gd ass
3c7b311f - c9c0- 4f 5f - bb03- c10be82beab6
Myagentidentifierl

* Youwould then like to assign values for each instance and formulate an update to change these items. Asyou
were thinking about scaling, you decided to opt for programmatic changesin lieu of manually editing each
item. Again, you can address thisin two manners, either through Swagger or command line.

Through Swagger, use the following endpoint: http://local host/ef m/swagger/ui.html# Agents/createA gentPara
meters

By clicking Try it out, you can generate the payload and hit execute. In the case of multiple overrides,
additional JSON objects to this payload would be provided.

More likely however, you will have arepository/store of information you would like to impart on each asset.
Doing this programmatically via CLI (or other tooling) is the most common path we have seen and could be
accomplished through an interaction as shown in (create_params_for_agent.sh):

#!/bin/sh -e

ef m address=' http://| ocal host'
ef m api _base_url =" ${ef m addr ess}/ ef nf api "

[-z "$1"] && { echo "No agent ID specified"; exit; }
agent i d=%$1

agent _key=%$2

agent val ue=%$3

Update the agent i
echo "Updating Agent ID: ${agent id} paraneter context to override va
lue for ${agent key} to ${agent val ue}"
curl -s -X DELETE "${efm api base url}/agents/${agent _id}/paraneters"
curl -s -X POST "${ef m api base url}/agents/${agent id}/paranmeters" \
-H "accept: application/json" \
-H "Content-Type: application/json" \

7

Cloudera Edge Management Log collection aggregation scenario

-d "[{ _
\"nane\": \"${agent_id}\",
\"sensitive\": fal se,
\"description\": \"Agent overridden val ue\",
\"value\": \"${agent_val ue}\"
H

By iterating over the identifiers we found before with their associated values.

./ create_parans_for_agent.sh nmyagentidentifierl rig_id rigidl

Updating Agent ID: myagentidentifierl paranmeter context to override va
lue for rigidto rigidl
{"id":"cfd553d8-fc2c-491d- af 1b- 9554a59¢c90d2", " nanme": " Agent specific con
text for agent nyagentidentifierl”, "paraneters”:[{"nane":"nyagentidentif
ierl","sensitive":fal se,"description":"Agent overridden val ue", "val ue":"
rigidl"}]3}{"id":"038d0129-1150-4016- ab99- 328f f bf 09437", "name": " Agent spe
cific context for agent nyagentidentifierl","parameters":[{"name": "nyage
ntidentifierl", "sensitive":false,"description":"Agent overridden val ue"
"value":"rigidl"}]1}

6. With everything configured, go back to the flow and publish.

Next time agents heartbeat in, the agents receive the updated flow with their associated overrides based on their
identifiers. Do note that these parameter overrides are immutable, so if you want to adjust, add, or remove values
for an agent, it will need to first be deleted for the agent before creating it.

You are asupervisor in acar rental company that is engaged in renting cars and trucks. Y our company has put
numerous cars and trucks on rent and you monitor logs coming out for those vehicles. If the log path changesin this
situation, then you need to update each and every dataflow to update the path. Learn how to use parameters to solve
such challenges.

In thislog monitoring scenario, eventually, you have more servers doing this same processing and they are
provisioned with a new version of myapp and the log location has changed. Earlier, for example, your logs

resided in /opt/myapp/logs. Now, for example, your logs reside in /opt/myappv2/logs. Due to policy on making
Configuration Management changes on existing servers, you have the same content and flow but have different needs
on configuration for this source data.

This catersto alog collection aggregation use case. In this scenario, agents may be deployed on alarge number of
serversthat are all performing thislog collection process.

CEM has a standard way to filter and transform these logs to filter out only the events of interest.

Earlier, you needed to create one dataflow for each and every vehicle. So, you created numerous dataflows to monitor
numerous vehicles. If the log path changed in this situation, then you updated each and every dataflow to update the
path.

Parameters can solve this challenge. With the parameter concept introduced in CEM, you can create a single dataflow
to monitor datafrom all the vehicles and parameterize the log path in the flow. So, if the log path changes, you just
need to update it in the dataflow once.

1. You first update your LogCollection flow for your class to parameterize the GetFile location to log.location and
specify the default value of /opt/myapp/logs.

2. With these items created, you then publish your flow and make the update available to agents. EFM, when agents
heartbeat in with a specific context, are given an update to a flow with the new v2 location provided. Those agents
that have not had a specific context made will use the default, version 1 location of the logs.

Cloudera Edge Management Log collection aggregation scenario

Initial setup

Y ou have a class called LogCollection with numerous MiNiFi agents deployed on all the vehicles and running. Y ou
have built a dataflow inside this class and published this dataflow to al the MiNiFi agents deployed on the vehicles.
The dataflow gathers logs from the desired location, for example /opt/myapp/logs, on the machines and then performs
the associated logic to only get the content which is WARNING or ERROR. Y ou are managing and monitoring the
warnings and errors that are collected at the EFM server for every heartbeat from the vehicles.

Actual steps

1. Open theflow for the LogCollection agent class.
2. Design the flow.

3. Find the one or more properties or configurations that may need unique values on a per agent basis and create
parameters. Keep track of name which will be used asan ID in our REST API calls. You will reference this as
parameter name moving forward.

Create Parameter

MAME *

Input Delimiter

WALLIE

Set empty string

SEMNSITIVE VALLE
Yes © No

DESCRIPTION

4. Switch over to Swagger to perform manual steps for update (this could be automated through Configuration
Management tooling like Salt, Puppet, and Ansible).

Cloudera Edge Management Log collection aggregation scenario

5. Confirm the agent identifier(s) you wish to augment (thisis driven by the value provided by users for nifi.c2.agen
t.identifier or automatically generated) by specifying a custom value for the one or more parameter name values
created above.

Through Swagger, use the following endpoint: http://local host/ef m/swagger/ui.html#/ Agents/getAgents

curl -X CGET "http://Iocal host/ef m api/agents" -H "accept: application/j
son"

Sample response:

[
(N
"identifier": "test_agent 1",
"agent C ass": "default",
"agent Mani festld": "39344613-9b36-41e7-9416-e6b755d038c9",
"flowd": "7650ef4e-5258-11lea-ba2c-0242ac120002",
"deviceld": "15831645727656044827",
"status":
"uptinme": 1434101,
"repositories": {
"flowfile": {
"size": O
}1
"provenance": {
"size": O

}

,orrponents": {
"Fl owControl ler": {
"running": true
}

}
}1
"state": "M SSING',

"firstSeen": 1582035123611,
"| ast Seen": 1582036507014

}

"identifier": "test_agent_ 2",
"agentd ass": "default",
"agent Mani festld": "39344613-9b36-41e7-9416-e6b755d038c9",
"flowmd": "c4al627c-5259-11lea- be90-0242ac120009",
"deviceld": "12645594159739466366",
"status": {
"uptine": 888065,
"repositories": {
"flowfile": {
"size": O
¥

"provenance": {
"size": O
}

onponent s": {

"Fl owControl ler": {
"running": true

}

}
}a
"state": "M SSING',

"firstSeen": 1582035621624,
"l ast Seen": 1582036507139

}

10

Cloudera Edge Management Log collection aggregation scenario

"identifier": "test_ agent 3",
"agentC ass": "default",
"agent Mani festld": "39344613-9b36-41e7-9416-e6b755d038c9",
"flowd": "c4al922e-5259-11lea-ba73-0242ac120008",
"deviceld": "11588253182801567996",
"status": {
"uptinme": 889065,
"repositories": {
"flowfile": {
"size": O
},

"provenance": {
"size": O

}

onponent s": {
"Fl onControl ler": {
"running": true

}

}

}
}1
"state": "M SSING',

"firstSeen": 1582035621721,
"| ast Seen": 1582036508237

}
]

6. Create agent specific parameter contexts for those properties you wish to override.

Through Swagger, use the following endpoint: http://local host/ef m/swagger/ui.html# Agents/createA gentParamete
rs

curl -X POST "http://1ocal host/efm api / agent s/ <AGENT | D>/ par aneters" -H
"accept: application/json" -H "Content-Type: application/json"

The body that gets posted contains one or more key value names for the designated parameter name values.

Sample body (one parameter for an agent):

[

{
"nane":. "paranmeter nane 1",
"sensitive": false,
"description": "Agent paraneter nane override ",
"val ue": "paraneter val ue"

}

Sanmpl e body (nmultiple paraneters for an agent):

{
"name": "paraneter nanme 1",
"sensitive": false,
"description": "Agent paraneter nanme override ",
"val ue": "paraneter value 1"

¥

{
"name": "paraneter nanme 2",
"sensitive": false,
"description": "Agent paraneter name override ",
"val ue": "paraneter value 2"

}

11

Cloudera Edge Management Log collection aggregation scenario

]

7. Optionally, confirm the creation of the agent parameter contexts by using Swagger or curl.
Through Swagger, use the following endpoaint: http://local host/ef m/swagger/ui.html# Agents/getAgentParameters

curl -X CGET "http://Iocal host/ef m api / agent s/ <AGENT | D>/ paraneters" -H "
accept: application/json"

Sampl e response:
"nanme": "paraneter nanme 1",
"sensitive": fal se,
"description": "Agent paraneter name override ",
"val ue": "paraneter val ue"

]
8. Inthe CEM UI, push publish to deploy flow to agents with associated parameter contexts.

12

	Contents
	Overview of agent parameters in CEM
	Tracking numerous agents scenario
	Log collection aggregation scenario

